mirror of
				https://github.com/python/cpython.git
				synced 2025-10-26 11:14:33 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			901 lines
		
	
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			901 lines
		
	
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include "pycore_interp.h"    // _PyInterpreterState.pythread_stacksize
 | |
| 
 | |
| /* Posix threads interface */
 | |
| 
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #if defined(__APPLE__) || defined(HAVE_PTHREAD_DESTRUCTOR)
 | |
| #define destructor xxdestructor
 | |
| #endif
 | |
| #include <pthread.h>
 | |
| #if defined(__APPLE__) || defined(HAVE_PTHREAD_DESTRUCTOR)
 | |
| #undef destructor
 | |
| #endif
 | |
| #include <signal.h>
 | |
| 
 | |
| #if defined(__linux__)
 | |
| #   include <sys/syscall.h>     /* syscall(SYS_gettid) */
 | |
| #elif defined(__FreeBSD__)
 | |
| #   include <pthread_np.h>      /* pthread_getthreadid_np() */
 | |
| #elif defined(__OpenBSD__)
 | |
| #   include <unistd.h>          /* getthrid() */
 | |
| #elif defined(_AIX)
 | |
| #   include <sys/thread.h>      /* thread_self() */
 | |
| #elif defined(__NetBSD__)
 | |
| #   include <lwp.h>             /* _lwp_self() */
 | |
| #endif
 | |
| 
 | |
| /* The POSIX spec requires that use of pthread_attr_setstacksize
 | |
|    be conditional on _POSIX_THREAD_ATTR_STACKSIZE being defined. */
 | |
| #ifdef _POSIX_THREAD_ATTR_STACKSIZE
 | |
| #ifndef THREAD_STACK_SIZE
 | |
| #define THREAD_STACK_SIZE       0       /* use default stack size */
 | |
| #endif
 | |
| 
 | |
| /* The default stack size for new threads on OSX and BSD is small enough that
 | |
|  * we'll get hard crashes instead of 'maximum recursion depth exceeded'
 | |
|  * exceptions.
 | |
|  *
 | |
|  * The default stack sizes below are the empirically determined minimal stack
 | |
|  * sizes where a simple recursive function doesn't cause a hard crash.
 | |
|  */
 | |
| #if defined(__APPLE__) && defined(THREAD_STACK_SIZE) && THREAD_STACK_SIZE == 0
 | |
| #undef  THREAD_STACK_SIZE
 | |
| /* Note: This matches the value of -Wl,-stack_size in configure.ac */
 | |
| #define THREAD_STACK_SIZE       0x1000000
 | |
| #endif
 | |
| #if defined(__FreeBSD__) && defined(THREAD_STACK_SIZE) && THREAD_STACK_SIZE == 0
 | |
| #undef  THREAD_STACK_SIZE
 | |
| #define THREAD_STACK_SIZE       0x400000
 | |
| #endif
 | |
| #if defined(_AIX) && defined(THREAD_STACK_SIZE) && THREAD_STACK_SIZE == 0
 | |
| #undef  THREAD_STACK_SIZE
 | |
| #define THREAD_STACK_SIZE       0x200000
 | |
| #endif
 | |
| /* bpo-38852: test_threading.test_recursion_limit() checks that 1000 recursive
 | |
|    Python calls (default recursion limit) doesn't crash, but raise a regular
 | |
|    RecursionError exception. In debug mode, Python function calls allocates
 | |
|    more memory on the stack, so use a stack of 8 MiB. */
 | |
| #if defined(__ANDROID__) && defined(THREAD_STACK_SIZE) && THREAD_STACK_SIZE == 0
 | |
| #   ifdef Py_DEBUG
 | |
| #   undef  THREAD_STACK_SIZE
 | |
| #   define THREAD_STACK_SIZE    0x800000
 | |
| #   endif
 | |
| #endif
 | |
| #if defined(__VXWORKS__) && defined(THREAD_STACK_SIZE) && THREAD_STACK_SIZE == 0
 | |
| #undef  THREAD_STACK_SIZE
 | |
| #define THREAD_STACK_SIZE       0x100000
 | |
| #endif
 | |
| /* for safety, ensure a viable minimum stacksize */
 | |
| #define THREAD_STACK_MIN        0x8000  /* 32 KiB */
 | |
| #else  /* !_POSIX_THREAD_ATTR_STACKSIZE */
 | |
| #ifdef THREAD_STACK_SIZE
 | |
| #error "THREAD_STACK_SIZE defined but _POSIX_THREAD_ATTR_STACKSIZE undefined"
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| /* The POSIX spec says that implementations supporting the sem_*
 | |
|    family of functions must indicate this by defining
 | |
|    _POSIX_SEMAPHORES. */
 | |
| #ifdef _POSIX_SEMAPHORES
 | |
| /* On FreeBSD 4.x, _POSIX_SEMAPHORES is defined empty, so
 | |
|    we need to add 0 to make it work there as well. */
 | |
| #if (_POSIX_SEMAPHORES+0) == -1
 | |
| #define HAVE_BROKEN_POSIX_SEMAPHORES
 | |
| #else
 | |
| #include <semaphore.h>
 | |
| #include <errno.h>
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* Whether or not to use semaphores directly rather than emulating them with
 | |
|  * mutexes and condition variables:
 | |
|  */
 | |
| #if (defined(_POSIX_SEMAPHORES) && !defined(HAVE_BROKEN_POSIX_SEMAPHORES) && \
 | |
|      defined(HAVE_SEM_TIMEDWAIT))
 | |
| #  define USE_SEMAPHORES
 | |
| #else
 | |
| #  undef USE_SEMAPHORES
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* On platforms that don't use standard POSIX threads pthread_sigmask()
 | |
|  * isn't present.  DEC threads uses sigprocmask() instead as do most
 | |
|  * other UNIX International compliant systems that don't have the full
 | |
|  * pthread implementation.
 | |
|  */
 | |
| #if defined(HAVE_PTHREAD_SIGMASK) && !defined(HAVE_BROKEN_PTHREAD_SIGMASK)
 | |
| #  define SET_THREAD_SIGMASK pthread_sigmask
 | |
| #else
 | |
| #  define SET_THREAD_SIGMASK sigprocmask
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #define MICROSECONDS_TO_TIMESPEC(microseconds, ts) \
 | |
| do { \
 | |
|     struct timeval tv; \
 | |
|     gettimeofday(&tv, NULL); \
 | |
|     tv.tv_usec += microseconds % 1000000; \
 | |
|     tv.tv_sec += microseconds / 1000000; \
 | |
|     tv.tv_sec += tv.tv_usec / 1000000; \
 | |
|     tv.tv_usec %= 1000000; \
 | |
|     ts.tv_sec = tv.tv_sec; \
 | |
|     ts.tv_nsec = tv.tv_usec * 1000; \
 | |
| } while(0)
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * pthread_cond support
 | |
|  */
 | |
| 
 | |
| #if defined(HAVE_PTHREAD_CONDATTR_SETCLOCK) && defined(HAVE_CLOCK_GETTIME) && defined(CLOCK_MONOTONIC)
 | |
| // monotonic is supported statically.  It doesn't mean it works on runtime.
 | |
| #define CONDATTR_MONOTONIC
 | |
| #endif
 | |
| 
 | |
| // NULL when pthread_condattr_setclock(CLOCK_MONOTONIC) is not supported.
 | |
| static pthread_condattr_t *condattr_monotonic = NULL;
 | |
| 
 | |
| static void
 | |
| init_condattr(void)
 | |
| {
 | |
| #ifdef CONDATTR_MONOTONIC
 | |
|     static pthread_condattr_t ca;
 | |
|     pthread_condattr_init(&ca);
 | |
|     if (pthread_condattr_setclock(&ca, CLOCK_MONOTONIC) == 0) {
 | |
|         condattr_monotonic = &ca;  // Use monotonic clock
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| int
 | |
| _PyThread_cond_init(PyCOND_T *cond)
 | |
| {
 | |
|     return pthread_cond_init(cond, condattr_monotonic);
 | |
| }
 | |
| 
 | |
| void
 | |
| _PyThread_cond_after(long long us, struct timespec *abs)
 | |
| {
 | |
| #ifdef CONDATTR_MONOTONIC
 | |
|     if (condattr_monotonic) {
 | |
|         clock_gettime(CLOCK_MONOTONIC, abs);
 | |
|         abs->tv_sec  += us / 1000000;
 | |
|         abs->tv_nsec += (us % 1000000) * 1000;
 | |
|         abs->tv_sec  += abs->tv_nsec / 1000000000;
 | |
|         abs->tv_nsec %= 1000000000;
 | |
|         return;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     struct timespec ts;
 | |
|     MICROSECONDS_TO_TIMESPEC(us, ts);
 | |
|     *abs = ts;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* A pthread mutex isn't sufficient to model the Python lock type
 | |
|  * because, according to Draft 5 of the docs (P1003.4a/D5), both of the
 | |
|  * following are undefined:
 | |
|  *  -> a thread tries to lock a mutex it already has locked
 | |
|  *  -> a thread tries to unlock a mutex locked by a different thread
 | |
|  * pthread mutexes are designed for serializing threads over short pieces
 | |
|  * of code anyway, so wouldn't be an appropriate implementation of
 | |
|  * Python's locks regardless.
 | |
|  *
 | |
|  * The pthread_lock struct implements a Python lock as a "locked?" bit
 | |
|  * and a <condition, mutex> pair.  In general, if the bit can be acquired
 | |
|  * instantly, it is, else the pair is used to block the thread until the
 | |
|  * bit is cleared.     9 May 1994 tim@ksr.com
 | |
|  */
 | |
| 
 | |
| typedef struct {
 | |
|     char             locked; /* 0=unlocked, 1=locked */
 | |
|     /* a <cond, mutex> pair to handle an acquire of a locked lock */
 | |
|     pthread_cond_t   lock_released;
 | |
|     pthread_mutex_t  mut;
 | |
| } pthread_lock;
 | |
| 
 | |
| #define CHECK_STATUS(name)  if (status != 0) { perror(name); error = 1; }
 | |
| #define CHECK_STATUS_PTHREAD(name)  if (status != 0) { fprintf(stderr, \
 | |
|     "%s: %s\n", name, strerror(status)); error = 1; }
 | |
| 
 | |
| /*
 | |
|  * Initialization.
 | |
|  */
 | |
| static void
 | |
| PyThread__init_thread(void)
 | |
| {
 | |
| #if defined(_AIX) && defined(__GNUC__)
 | |
|     extern void pthread_init(void);
 | |
|     pthread_init();
 | |
| #endif
 | |
|     init_condattr();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Thread support.
 | |
|  */
 | |
| 
 | |
| /* bpo-33015: pythread_callback struct and pythread_wrapper() cast
 | |
|    "void func(void *)" to "void* func(void *)": always return NULL.
 | |
| 
 | |
|    PyThread_start_new_thread() uses "void func(void *)" type, whereas
 | |
|    pthread_create() requires a void* return value. */
 | |
| typedef struct {
 | |
|     void (*func) (void *);
 | |
|     void *arg;
 | |
| } pythread_callback;
 | |
| 
 | |
| static void *
 | |
| pythread_wrapper(void *arg)
 | |
| {
 | |
|     /* copy func and func_arg and free the temporary structure */
 | |
|     pythread_callback *callback = arg;
 | |
|     void (*func)(void *) = callback->func;
 | |
|     void *func_arg = callback->arg;
 | |
|     PyMem_RawFree(arg);
 | |
| 
 | |
|     func(func_arg);
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| unsigned long
 | |
| PyThread_start_new_thread(void (*func)(void *), void *arg)
 | |
| {
 | |
|     pthread_t th;
 | |
|     int status;
 | |
| #if defined(THREAD_STACK_SIZE) || defined(PTHREAD_SYSTEM_SCHED_SUPPORTED)
 | |
|     pthread_attr_t attrs;
 | |
| #endif
 | |
| #if defined(THREAD_STACK_SIZE)
 | |
|     size_t      tss;
 | |
| #endif
 | |
| 
 | |
|     dprintf(("PyThread_start_new_thread called\n"));
 | |
|     if (!initialized)
 | |
|         PyThread_init_thread();
 | |
| 
 | |
| #if defined(THREAD_STACK_SIZE) || defined(PTHREAD_SYSTEM_SCHED_SUPPORTED)
 | |
|     if (pthread_attr_init(&attrs) != 0)
 | |
|         return PYTHREAD_INVALID_THREAD_ID;
 | |
| #endif
 | |
| #if defined(THREAD_STACK_SIZE)
 | |
|     PyThreadState *tstate = _PyThreadState_GET();
 | |
|     size_t stacksize = tstate ? tstate->interp->pythread_stacksize : 0;
 | |
|     tss = (stacksize != 0) ? stacksize : THREAD_STACK_SIZE;
 | |
|     if (tss != 0) {
 | |
|         if (pthread_attr_setstacksize(&attrs, tss) != 0) {
 | |
|             pthread_attr_destroy(&attrs);
 | |
|             return PYTHREAD_INVALID_THREAD_ID;
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| #if defined(PTHREAD_SYSTEM_SCHED_SUPPORTED)
 | |
|     pthread_attr_setscope(&attrs, PTHREAD_SCOPE_SYSTEM);
 | |
| #endif
 | |
| 
 | |
|     pythread_callback *callback = PyMem_RawMalloc(sizeof(pythread_callback));
 | |
| 
 | |
|     if (callback == NULL) {
 | |
|       return PYTHREAD_INVALID_THREAD_ID;
 | |
|     }
 | |
| 
 | |
|     callback->func = func;
 | |
|     callback->arg = arg;
 | |
| 
 | |
|     status = pthread_create(&th,
 | |
| #if defined(THREAD_STACK_SIZE) || defined(PTHREAD_SYSTEM_SCHED_SUPPORTED)
 | |
|                              &attrs,
 | |
| #else
 | |
|                              (pthread_attr_t*)NULL,
 | |
| #endif
 | |
|                              pythread_wrapper, callback);
 | |
| 
 | |
| #if defined(THREAD_STACK_SIZE) || defined(PTHREAD_SYSTEM_SCHED_SUPPORTED)
 | |
|     pthread_attr_destroy(&attrs);
 | |
| #endif
 | |
| 
 | |
|     if (status != 0) {
 | |
|         PyMem_RawFree(callback);
 | |
|         return PYTHREAD_INVALID_THREAD_ID;
 | |
|     }
 | |
| 
 | |
|     pthread_detach(th);
 | |
| 
 | |
| #if SIZEOF_PTHREAD_T <= SIZEOF_LONG
 | |
|     return (unsigned long) th;
 | |
| #else
 | |
|     return (unsigned long) *(unsigned long *) &th;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* XXX This implementation is considered (to quote Tim Peters) "inherently
 | |
|    hosed" because:
 | |
|      - It does not guarantee the promise that a non-zero integer is returned.
 | |
|      - The cast to unsigned long is inherently unsafe.
 | |
|      - It is not clear that the 'volatile' (for AIX?) are any longer necessary.
 | |
| */
 | |
| unsigned long
 | |
| PyThread_get_thread_ident(void)
 | |
| {
 | |
|     volatile pthread_t threadid;
 | |
|     if (!initialized)
 | |
|         PyThread_init_thread();
 | |
|     threadid = pthread_self();
 | |
|     return (unsigned long) threadid;
 | |
| }
 | |
| 
 | |
| #ifdef PY_HAVE_THREAD_NATIVE_ID
 | |
| unsigned long
 | |
| PyThread_get_thread_native_id(void)
 | |
| {
 | |
|     if (!initialized)
 | |
|         PyThread_init_thread();
 | |
| #ifdef __APPLE__
 | |
|     uint64_t native_id;
 | |
|     (void) pthread_threadid_np(NULL, &native_id);
 | |
| #elif defined(__linux__)
 | |
|     pid_t native_id;
 | |
|     native_id = syscall(SYS_gettid);
 | |
| #elif defined(__FreeBSD__)
 | |
|     int native_id;
 | |
|     native_id = pthread_getthreadid_np();
 | |
| #elif defined(__OpenBSD__)
 | |
|     pid_t native_id;
 | |
|     native_id = getthrid();
 | |
| #elif defined(_AIX)
 | |
|     tid_t native_id;
 | |
|     native_id = thread_self();
 | |
| #elif defined(__NetBSD__)
 | |
|     lwpid_t native_id;
 | |
|     native_id = _lwp_self();
 | |
| #endif
 | |
|     return (unsigned long) native_id;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void _Py_NO_RETURN
 | |
| PyThread_exit_thread(void)
 | |
| {
 | |
|     dprintf(("PyThread_exit_thread called\n"));
 | |
|     if (!initialized)
 | |
|         exit(0);
 | |
|     pthread_exit(0);
 | |
| }
 | |
| 
 | |
| #ifdef USE_SEMAPHORES
 | |
| 
 | |
| /*
 | |
|  * Lock support.
 | |
|  */
 | |
| 
 | |
| PyThread_type_lock
 | |
| PyThread_allocate_lock(void)
 | |
| {
 | |
|     sem_t *lock;
 | |
|     int status, error = 0;
 | |
| 
 | |
|     dprintf(("PyThread_allocate_lock called\n"));
 | |
|     if (!initialized)
 | |
|         PyThread_init_thread();
 | |
| 
 | |
|     lock = (sem_t *)PyMem_RawMalloc(sizeof(sem_t));
 | |
| 
 | |
|     if (lock) {
 | |
|         status = sem_init(lock,0,1);
 | |
|         CHECK_STATUS("sem_init");
 | |
| 
 | |
|         if (error) {
 | |
|             PyMem_RawFree((void *)lock);
 | |
|             lock = NULL;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     dprintf(("PyThread_allocate_lock() -> %p\n", (void *)lock));
 | |
|     return (PyThread_type_lock)lock;
 | |
| }
 | |
| 
 | |
| void
 | |
| PyThread_free_lock(PyThread_type_lock lock)
 | |
| {
 | |
|     sem_t *thelock = (sem_t *)lock;
 | |
|     int status, error = 0;
 | |
| 
 | |
|     (void) error; /* silence unused-but-set-variable warning */
 | |
|     dprintf(("PyThread_free_lock(%p) called\n", lock));
 | |
| 
 | |
|     if (!thelock)
 | |
|         return;
 | |
| 
 | |
|     status = sem_destroy(thelock);
 | |
|     CHECK_STATUS("sem_destroy");
 | |
| 
 | |
|     PyMem_RawFree((void *)thelock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * As of February 2002, Cygwin thread implementations mistakenly report error
 | |
|  * codes in the return value of the sem_ calls (like the pthread_ functions).
 | |
|  * Correct implementations return -1 and put the code in errno. This supports
 | |
|  * either.
 | |
|  */
 | |
| static int
 | |
| fix_status(int status)
 | |
| {
 | |
|     return (status == -1) ? errno : status;
 | |
| }
 | |
| 
 | |
| PyLockStatus
 | |
| PyThread_acquire_lock_timed(PyThread_type_lock lock, PY_TIMEOUT_T microseconds,
 | |
|                             int intr_flag)
 | |
| {
 | |
|     PyLockStatus success;
 | |
|     sem_t *thelock = (sem_t *)lock;
 | |
|     int status, error = 0;
 | |
|     struct timespec ts;
 | |
|     _PyTime_t deadline = 0;
 | |
| 
 | |
|     (void) error; /* silence unused-but-set-variable warning */
 | |
|     dprintf(("PyThread_acquire_lock_timed(%p, %lld, %d) called\n",
 | |
|              lock, microseconds, intr_flag));
 | |
| 
 | |
|     if (microseconds > PY_TIMEOUT_MAX) {
 | |
|         Py_FatalError("Timeout larger than PY_TIMEOUT_MAX");
 | |
|     }
 | |
| 
 | |
|     if (microseconds > 0) {
 | |
|         MICROSECONDS_TO_TIMESPEC(microseconds, ts);
 | |
| 
 | |
|         if (!intr_flag) {
 | |
|             /* cannot overflow thanks to (microseconds > PY_TIMEOUT_MAX)
 | |
|                check done above */
 | |
|             _PyTime_t timeout = _PyTime_FromNanoseconds(microseconds * 1000);
 | |
|             deadline = _PyTime_GetMonotonicClock() + timeout;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     while (1) {
 | |
|         if (microseconds > 0) {
 | |
|             status = fix_status(sem_timedwait(thelock, &ts));
 | |
|         }
 | |
|         else if (microseconds == 0) {
 | |
|             status = fix_status(sem_trywait(thelock));
 | |
|         }
 | |
|         else {
 | |
|             status = fix_status(sem_wait(thelock));
 | |
|         }
 | |
| 
 | |
|         /* Retry if interrupted by a signal, unless the caller wants to be
 | |
|            notified.  */
 | |
|         if (intr_flag || status != EINTR) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         if (microseconds > 0) {
 | |
|             /* wait interrupted by a signal (EINTR): recompute the timeout */
 | |
|             _PyTime_t dt = deadline - _PyTime_GetMonotonicClock();
 | |
|             if (dt < 0) {
 | |
|                 status = ETIMEDOUT;
 | |
|                 break;
 | |
|             }
 | |
|             else if (dt > 0) {
 | |
|                 _PyTime_t realtime_deadline = _PyTime_GetSystemClock() + dt;
 | |
|                 if (_PyTime_AsTimespec(realtime_deadline, &ts) < 0) {
 | |
|                     /* Cannot occur thanks to (microseconds > PY_TIMEOUT_MAX)
 | |
|                        check done above */
 | |
|                     Py_UNREACHABLE();
 | |
|                 }
 | |
|                 /* no need to update microseconds value, the code only care
 | |
|                    if (microseconds > 0 or (microseconds == 0). */
 | |
|             }
 | |
|             else {
 | |
|                 microseconds = 0;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Don't check the status if we're stopping because of an interrupt.  */
 | |
|     if (!(intr_flag && status == EINTR)) {
 | |
|         if (microseconds > 0) {
 | |
|             if (status != ETIMEDOUT)
 | |
|                 CHECK_STATUS("sem_timedwait");
 | |
|         }
 | |
|         else if (microseconds == 0) {
 | |
|             if (status != EAGAIN)
 | |
|                 CHECK_STATUS("sem_trywait");
 | |
|         }
 | |
|         else {
 | |
|             CHECK_STATUS("sem_wait");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (status == 0) {
 | |
|         success = PY_LOCK_ACQUIRED;
 | |
|     } else if (intr_flag && status == EINTR) {
 | |
|         success = PY_LOCK_INTR;
 | |
|     } else {
 | |
|         success = PY_LOCK_FAILURE;
 | |
|     }
 | |
| 
 | |
|     dprintf(("PyThread_acquire_lock_timed(%p, %lld, %d) -> %d\n",
 | |
|              lock, microseconds, intr_flag, success));
 | |
|     return success;
 | |
| }
 | |
| 
 | |
| void
 | |
| PyThread_release_lock(PyThread_type_lock lock)
 | |
| {
 | |
|     sem_t *thelock = (sem_t *)lock;
 | |
|     int status, error = 0;
 | |
| 
 | |
|     (void) error; /* silence unused-but-set-variable warning */
 | |
|     dprintf(("PyThread_release_lock(%p) called\n", lock));
 | |
| 
 | |
|     status = sem_post(thelock);
 | |
|     CHECK_STATUS("sem_post");
 | |
| }
 | |
| 
 | |
| #else /* USE_SEMAPHORES */
 | |
| 
 | |
| /*
 | |
|  * Lock support.
 | |
|  */
 | |
| PyThread_type_lock
 | |
| PyThread_allocate_lock(void)
 | |
| {
 | |
|     pthread_lock *lock;
 | |
|     int status, error = 0;
 | |
| 
 | |
|     dprintf(("PyThread_allocate_lock called\n"));
 | |
|     if (!initialized)
 | |
|         PyThread_init_thread();
 | |
| 
 | |
|     lock = (pthread_lock *) PyMem_RawCalloc(1, sizeof(pthread_lock));
 | |
|     if (lock) {
 | |
|         lock->locked = 0;
 | |
| 
 | |
|         status = pthread_mutex_init(&lock->mut, NULL);
 | |
|         CHECK_STATUS_PTHREAD("pthread_mutex_init");
 | |
|         /* Mark the pthread mutex underlying a Python mutex as
 | |
|            pure happens-before.  We can't simply mark the
 | |
|            Python-level mutex as a mutex because it can be
 | |
|            acquired and released in different threads, which
 | |
|            will cause errors. */
 | |
|         _Py_ANNOTATE_PURE_HAPPENS_BEFORE_MUTEX(&lock->mut);
 | |
| 
 | |
|         status = _PyThread_cond_init(&lock->lock_released);
 | |
|         CHECK_STATUS_PTHREAD("pthread_cond_init");
 | |
| 
 | |
|         if (error) {
 | |
|             PyMem_RawFree((void *)lock);
 | |
|             lock = 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     dprintf(("PyThread_allocate_lock() -> %p\n", (void *)lock));
 | |
|     return (PyThread_type_lock) lock;
 | |
| }
 | |
| 
 | |
| void
 | |
| PyThread_free_lock(PyThread_type_lock lock)
 | |
| {
 | |
|     pthread_lock *thelock = (pthread_lock *)lock;
 | |
|     int status, error = 0;
 | |
| 
 | |
|     (void) error; /* silence unused-but-set-variable warning */
 | |
|     dprintf(("PyThread_free_lock(%p) called\n", lock));
 | |
| 
 | |
|     /* some pthread-like implementations tie the mutex to the cond
 | |
|      * and must have the cond destroyed first.
 | |
|      */
 | |
|     status = pthread_cond_destroy( &thelock->lock_released );
 | |
|     CHECK_STATUS_PTHREAD("pthread_cond_destroy");
 | |
| 
 | |
|     status = pthread_mutex_destroy( &thelock->mut );
 | |
|     CHECK_STATUS_PTHREAD("pthread_mutex_destroy");
 | |
| 
 | |
|     PyMem_RawFree((void *)thelock);
 | |
| }
 | |
| 
 | |
| PyLockStatus
 | |
| PyThread_acquire_lock_timed(PyThread_type_lock lock, PY_TIMEOUT_T microseconds,
 | |
|                             int intr_flag)
 | |
| {
 | |
|     PyLockStatus success = PY_LOCK_FAILURE;
 | |
|     pthread_lock *thelock = (pthread_lock *)lock;
 | |
|     int status, error = 0;
 | |
| 
 | |
|     dprintf(("PyThread_acquire_lock_timed(%p, %lld, %d) called\n",
 | |
|              lock, microseconds, intr_flag));
 | |
| 
 | |
|     if (microseconds == 0) {
 | |
|         status = pthread_mutex_trylock( &thelock->mut );
 | |
|         if (status != EBUSY)
 | |
|             CHECK_STATUS_PTHREAD("pthread_mutex_trylock[1]");
 | |
|     }
 | |
|     else {
 | |
|         status = pthread_mutex_lock( &thelock->mut );
 | |
|         CHECK_STATUS_PTHREAD("pthread_mutex_lock[1]");
 | |
|     }
 | |
|     if (status == 0) {
 | |
|         if (thelock->locked == 0) {
 | |
|             success = PY_LOCK_ACQUIRED;
 | |
|         }
 | |
|         else if (microseconds != 0) {
 | |
|             struct timespec abs;
 | |
|             if (microseconds > 0) {
 | |
|                 _PyThread_cond_after(microseconds, &abs);
 | |
|             }
 | |
|             /* continue trying until we get the lock */
 | |
| 
 | |
|             /* mut must be locked by me -- part of the condition
 | |
|              * protocol */
 | |
|             while (success == PY_LOCK_FAILURE) {
 | |
|                 if (microseconds > 0) {
 | |
|                     status = pthread_cond_timedwait(
 | |
|                         &thelock->lock_released,
 | |
|                         &thelock->mut, &abs);
 | |
|                     if (status == 1) {
 | |
|                         break;
 | |
|                     }
 | |
|                     if (status == ETIMEDOUT)
 | |
|                         break;
 | |
|                     CHECK_STATUS_PTHREAD("pthread_cond_timedwait");
 | |
|                 }
 | |
|                 else {
 | |
|                     status = pthread_cond_wait(
 | |
|                         &thelock->lock_released,
 | |
|                         &thelock->mut);
 | |
|                     CHECK_STATUS_PTHREAD("pthread_cond_wait");
 | |
|                 }
 | |
| 
 | |
|                 if (intr_flag && status == 0 && thelock->locked) {
 | |
|                     /* We were woken up, but didn't get the lock.  We probably received
 | |
|                      * a signal.  Return PY_LOCK_INTR to allow the caller to handle
 | |
|                      * it and retry.  */
 | |
|                     success = PY_LOCK_INTR;
 | |
|                     break;
 | |
|                 }
 | |
|                 else if (status == 0 && !thelock->locked) {
 | |
|                     success = PY_LOCK_ACQUIRED;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         if (success == PY_LOCK_ACQUIRED) thelock->locked = 1;
 | |
|         status = pthread_mutex_unlock( &thelock->mut );
 | |
|         CHECK_STATUS_PTHREAD("pthread_mutex_unlock[1]");
 | |
|     }
 | |
| 
 | |
|     if (error) success = PY_LOCK_FAILURE;
 | |
|     dprintf(("PyThread_acquire_lock_timed(%p, %lld, %d) -> %d\n",
 | |
|              lock, microseconds, intr_flag, success));
 | |
|     return success;
 | |
| }
 | |
| 
 | |
| void
 | |
| PyThread_release_lock(PyThread_type_lock lock)
 | |
| {
 | |
|     pthread_lock *thelock = (pthread_lock *)lock;
 | |
|     int status, error = 0;
 | |
| 
 | |
|     (void) error; /* silence unused-but-set-variable warning */
 | |
|     dprintf(("PyThread_release_lock(%p) called\n", lock));
 | |
| 
 | |
|     status = pthread_mutex_lock( &thelock->mut );
 | |
|     CHECK_STATUS_PTHREAD("pthread_mutex_lock[3]");
 | |
| 
 | |
|     thelock->locked = 0;
 | |
| 
 | |
|     /* wake up someone (anyone, if any) waiting on the lock */
 | |
|     status = pthread_cond_signal( &thelock->lock_released );
 | |
|     CHECK_STATUS_PTHREAD("pthread_cond_signal");
 | |
| 
 | |
|     status = pthread_mutex_unlock( &thelock->mut );
 | |
|     CHECK_STATUS_PTHREAD("pthread_mutex_unlock[3]");
 | |
| }
 | |
| 
 | |
| #endif /* USE_SEMAPHORES */
 | |
| 
 | |
| int
 | |
| _PyThread_at_fork_reinit(PyThread_type_lock *lock)
 | |
| {
 | |
|     PyThread_type_lock new_lock = PyThread_allocate_lock();
 | |
|     if (new_lock == NULL) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     /* bpo-6721, bpo-40089: The old lock can be in an inconsistent state.
 | |
|        fork() can be called in the middle of an operation on the lock done by
 | |
|        another thread. So don't call PyThread_free_lock(*lock).
 | |
| 
 | |
|        Leak memory on purpose. Don't release the memory either since the
 | |
|        address of a mutex is relevant. Putting two mutexes at the same address
 | |
|        can lead to problems. */
 | |
| 
 | |
|     *lock = new_lock;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int
 | |
| PyThread_acquire_lock(PyThread_type_lock lock, int waitflag)
 | |
| {
 | |
|     return PyThread_acquire_lock_timed(lock, waitflag ? -1 : 0, /*intr_flag=*/0);
 | |
| }
 | |
| 
 | |
| /* set the thread stack size.
 | |
|  * Return 0 if size is valid, -1 if size is invalid,
 | |
|  * -2 if setting stack size is not supported.
 | |
|  */
 | |
| static int
 | |
| _pythread_pthread_set_stacksize(size_t size)
 | |
| {
 | |
| #if defined(THREAD_STACK_SIZE)
 | |
|     pthread_attr_t attrs;
 | |
|     size_t tss_min;
 | |
|     int rc = 0;
 | |
| #endif
 | |
| 
 | |
|     /* set to default */
 | |
|     if (size == 0) {
 | |
|         _PyInterpreterState_GET()->pythread_stacksize = 0;
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
| #if defined(THREAD_STACK_SIZE)
 | |
| #if defined(PTHREAD_STACK_MIN)
 | |
|     tss_min = PTHREAD_STACK_MIN > THREAD_STACK_MIN ? PTHREAD_STACK_MIN
 | |
|                                                    : THREAD_STACK_MIN;
 | |
| #else
 | |
|     tss_min = THREAD_STACK_MIN;
 | |
| #endif
 | |
|     if (size >= tss_min) {
 | |
|         /* validate stack size by setting thread attribute */
 | |
|         if (pthread_attr_init(&attrs) == 0) {
 | |
|             rc = pthread_attr_setstacksize(&attrs, size);
 | |
|             pthread_attr_destroy(&attrs);
 | |
|             if (rc == 0) {
 | |
|                 _PyInterpreterState_GET()->pythread_stacksize = size;
 | |
|                 return 0;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return -1;
 | |
| #else
 | |
|     return -2;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #define THREAD_SET_STACKSIZE(x) _pythread_pthread_set_stacksize(x)
 | |
| 
 | |
| 
 | |
| /* Thread Local Storage (TLS) API
 | |
| 
 | |
|    This API is DEPRECATED since Python 3.7.  See PEP 539 for details.
 | |
| */
 | |
| 
 | |
| /* Issue #25658: On platforms where native TLS key is defined in a way that
 | |
|    cannot be safely cast to int, PyThread_create_key returns immediately a
 | |
|    failure status and other TLS functions all are no-ops.  This indicates
 | |
|    clearly that the old API is not supported on platforms where it cannot be
 | |
|    used reliably, and that no effort will be made to add such support.
 | |
| 
 | |
|    Note: PTHREAD_KEY_T_IS_COMPATIBLE_WITH_INT will be unnecessary after
 | |
|    removing this API.
 | |
| */
 | |
| 
 | |
| int
 | |
| PyThread_create_key(void)
 | |
| {
 | |
| #ifdef PTHREAD_KEY_T_IS_COMPATIBLE_WITH_INT
 | |
|     pthread_key_t key;
 | |
|     int fail = pthread_key_create(&key, NULL);
 | |
|     if (fail)
 | |
|         return -1;
 | |
|     if (key > INT_MAX) {
 | |
|         /* Issue #22206: handle integer overflow */
 | |
|         pthread_key_delete(key);
 | |
|         errno = ENOMEM;
 | |
|         return -1;
 | |
|     }
 | |
|     return (int)key;
 | |
| #else
 | |
|     return -1;  /* never return valid key value. */
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void
 | |
| PyThread_delete_key(int key)
 | |
| {
 | |
| #ifdef PTHREAD_KEY_T_IS_COMPATIBLE_WITH_INT
 | |
|     pthread_key_delete(key);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void
 | |
| PyThread_delete_key_value(int key)
 | |
| {
 | |
| #ifdef PTHREAD_KEY_T_IS_COMPATIBLE_WITH_INT
 | |
|     pthread_setspecific(key, NULL);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| int
 | |
| PyThread_set_key_value(int key, void *value)
 | |
| {
 | |
| #ifdef PTHREAD_KEY_T_IS_COMPATIBLE_WITH_INT
 | |
|     int fail = pthread_setspecific(key, value);
 | |
|     return fail ? -1 : 0;
 | |
| #else
 | |
|     return -1;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void *
 | |
| PyThread_get_key_value(int key)
 | |
| {
 | |
| #ifdef PTHREAD_KEY_T_IS_COMPATIBLE_WITH_INT
 | |
|     return pthread_getspecific(key);
 | |
| #else
 | |
|     return NULL;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| void
 | |
| PyThread_ReInitTLS(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Thread Specific Storage (TSS) API
 | |
| 
 | |
|    Platform-specific components of TSS API implementation.
 | |
| */
 | |
| 
 | |
| int
 | |
| PyThread_tss_create(Py_tss_t *key)
 | |
| {
 | |
|     assert(key != NULL);
 | |
|     /* If the key has been created, function is silently skipped. */
 | |
|     if (key->_is_initialized) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     int fail = pthread_key_create(&(key->_key), NULL);
 | |
|     if (fail) {
 | |
|         return -1;
 | |
|     }
 | |
|     key->_is_initialized = 1;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void
 | |
| PyThread_tss_delete(Py_tss_t *key)
 | |
| {
 | |
|     assert(key != NULL);
 | |
|     /* If the key has not been created, function is silently skipped. */
 | |
|     if (!key->_is_initialized) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     pthread_key_delete(key->_key);
 | |
|     /* pthread has not provided the defined invalid value for the key. */
 | |
|     key->_is_initialized = 0;
 | |
| }
 | |
| 
 | |
| int
 | |
| PyThread_tss_set(Py_tss_t *key, void *value)
 | |
| {
 | |
|     assert(key != NULL);
 | |
|     int fail = pthread_setspecific(key->_key, value);
 | |
|     return fail ? -1 : 0;
 | |
| }
 | |
| 
 | |
| void *
 | |
| PyThread_tss_get(Py_tss_t *key)
 | |
| {
 | |
|     assert(key != NULL);
 | |
|     return pthread_getspecific(key->_key);
 | |
| }
 | 
