mirror of
				https://github.com/python/cpython.git
				synced 2025-10-31 05:31:20 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			173 lines
		
	
	
	
		
			4.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			173 lines
		
	
	
	
		
			4.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2008-2020 Stefan Krah. All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  *
 | |
|  * 1. Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  *
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in the
 | |
|  *    documentation and/or other materials provided with the distribution.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
 | |
|  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
|  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 | |
|  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
|  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 | |
|  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | |
|  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | |
|  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 | |
|  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 | |
|  * SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| 
 | |
| #include "mpdecimal.h"
 | |
| 
 | |
| #include <assert.h>
 | |
| 
 | |
| #include "bits.h"
 | |
| #include "constants.h"
 | |
| #include "difradix2.h"
 | |
| #include "numbertheory.h"
 | |
| #include "umodarith.h"
 | |
| 
 | |
| 
 | |
| /* Bignum: The actual transform routine (decimation in frequency). */
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Generate index pairs (x, bitreverse(x)) and carry out the permutation.
 | |
|  * n must be a power of two.
 | |
|  * Algorithm due to Brent/Lehmann, see Joerg Arndt, "Matters Computational",
 | |
|  * Chapter 1.14.4. [http://www.jjj.de/fxt/]
 | |
|  */
 | |
| static inline void
 | |
| bitreverse_permute(mpd_uint_t a[], mpd_size_t n)
 | |
| {
 | |
|     mpd_size_t x = 0;
 | |
|     mpd_size_t r = 0;
 | |
|     mpd_uint_t t;
 | |
| 
 | |
|     do { /* Invariant: r = bitreverse(x) */
 | |
|         if (r > x) {
 | |
|             t = a[x];
 | |
|             a[x] = a[r];
 | |
|             a[r] = t;
 | |
|         }
 | |
|         /* Flip trailing consecutive 1 bits and the first zero bit
 | |
|          * that absorbs a possible carry. */
 | |
|         x += 1;
 | |
|         /* Mirror the operation on r: Flip n_trailing_zeros(x)+1
 | |
|            high bits of r. */
 | |
|         r ^= (n - (n >> (mpd_bsf(x)+1)));
 | |
|         /* The loop invariant is preserved. */
 | |
|     } while (x < n);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Fast Number Theoretic Transform, decimation in frequency. */
 | |
| void
 | |
| fnt_dif2(mpd_uint_t a[], mpd_size_t n, struct fnt_params *tparams)
 | |
| {
 | |
|     mpd_uint_t *wtable = tparams->wtable;
 | |
|     mpd_uint_t umod;
 | |
| #ifdef PPRO
 | |
|     double dmod;
 | |
|     uint32_t dinvmod[3];
 | |
| #endif
 | |
|     mpd_uint_t u0, u1, v0, v1;
 | |
|     mpd_uint_t w, w0, w1, wstep;
 | |
|     mpd_size_t m, mhalf;
 | |
|     mpd_size_t j, r;
 | |
| 
 | |
| 
 | |
|     assert(ispower2(n));
 | |
|     assert(n >= 4);
 | |
| 
 | |
|     SETMODULUS(tparams->modnum);
 | |
| 
 | |
|     /* m == n */
 | |
|     mhalf = n / 2;
 | |
|     for (j = 0; j < mhalf; j += 2) {
 | |
| 
 | |
|         w0 = wtable[j];
 | |
|         w1 = wtable[j+1];
 | |
| 
 | |
|         u0 = a[j];
 | |
|         v0 = a[j+mhalf];
 | |
| 
 | |
|         u1 = a[j+1];
 | |
|         v1 = a[j+1+mhalf];
 | |
| 
 | |
|         a[j] = addmod(u0, v0, umod);
 | |
|         v0 = submod(u0, v0, umod);
 | |
| 
 | |
|         a[j+1] = addmod(u1, v1, umod);
 | |
|         v1 = submod(u1, v1, umod);
 | |
| 
 | |
|         MULMOD2(&v0, w0, &v1, w1);
 | |
| 
 | |
|         a[j+mhalf] = v0;
 | |
|         a[j+1+mhalf] = v1;
 | |
| 
 | |
|     }
 | |
| 
 | |
|     wstep = 2;
 | |
|     for (m = n/2; m >= 2; m>>=1, wstep<<=1) {
 | |
| 
 | |
|         mhalf = m / 2;
 | |
| 
 | |
|         /* j == 0 */
 | |
|         for (r = 0; r < n; r += 2*m) {
 | |
| 
 | |
|             u0 = a[r];
 | |
|             v0 = a[r+mhalf];
 | |
| 
 | |
|             u1 = a[m+r];
 | |
|             v1 = a[m+r+mhalf];
 | |
| 
 | |
|             a[r] = addmod(u0, v0, umod);
 | |
|             v0 = submod(u0, v0, umod);
 | |
| 
 | |
|             a[m+r] = addmod(u1, v1, umod);
 | |
|             v1 = submod(u1, v1, umod);
 | |
| 
 | |
|             a[r+mhalf] = v0;
 | |
|             a[m+r+mhalf] = v1;
 | |
|         }
 | |
| 
 | |
|         for (j = 1; j < mhalf; j++) {
 | |
| 
 | |
|             w = wtable[j*wstep];
 | |
| 
 | |
|             for (r = 0; r < n; r += 2*m) {
 | |
| 
 | |
|                 u0 = a[r+j];
 | |
|                 v0 = a[r+j+mhalf];
 | |
| 
 | |
|                 u1 = a[m+r+j];
 | |
|                 v1 = a[m+r+j+mhalf];
 | |
| 
 | |
|                 a[r+j] = addmod(u0, v0, umod);
 | |
|                 v0 = submod(u0, v0, umod);
 | |
| 
 | |
|                 a[m+r+j] = addmod(u1, v1, umod);
 | |
|                 v1 = submod(u1, v1, umod);
 | |
| 
 | |
|                 MULMOD2C(&v0, &v1, w);
 | |
| 
 | |
|                 a[r+j+mhalf] = v0;
 | |
|                 a[m+r+j+mhalf] = v1;
 | |
|             }
 | |
| 
 | |
|         }
 | |
| 
 | |
|     }
 | |
| 
 | |
|     bitreverse_permute(a, n);
 | |
| }
 | 
