mirror of
				https://github.com/python/cpython.git
				synced 2025-10-31 05:31:20 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1326 lines
		
	
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1326 lines
		
	
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
 | |
| /* Complex object implementation */
 | |
| 
 | |
| /* Borrows heavily from floatobject.c */
 | |
| 
 | |
| /* Submitted by Jim Hugunin */
 | |
| 
 | |
| #include "Python.h"
 | |
| #include "structmember.h"
 | |
| 
 | |
| #ifndef WITHOUT_COMPLEX
 | |
| 
 | |
| /* Precisions used by repr() and str(), respectively.
 | |
| 
 | |
|    The repr() precision (17 significant decimal digits) is the minimal number
 | |
|    that is guaranteed to have enough precision so that if the number is read
 | |
|    back in the exact same binary value is recreated.  This is true for IEEE
 | |
|    floating point by design, and also happens to work for all other modern
 | |
|    hardware.
 | |
| 
 | |
|    The str() precision is chosen so that in most cases, the rounding noise
 | |
|    created by various operations is suppressed, while giving plenty of
 | |
|    precision for practical use.
 | |
| */
 | |
| 
 | |
| #define PREC_REPR	17
 | |
| #define PREC_STR	12
 | |
| 
 | |
| /* elementary operations on complex numbers */
 | |
| 
 | |
| static Py_complex c_1 = {1., 0.};
 | |
| 
 | |
| Py_complex
 | |
| c_sum(Py_complex a, Py_complex b)
 | |
| {
 | |
| 	Py_complex r;
 | |
| 	r.real = a.real + b.real;
 | |
| 	r.imag = a.imag + b.imag;
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| Py_complex
 | |
| c_diff(Py_complex a, Py_complex b)
 | |
| {
 | |
| 	Py_complex r;
 | |
| 	r.real = a.real - b.real;
 | |
| 	r.imag = a.imag - b.imag;
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| Py_complex
 | |
| c_neg(Py_complex a)
 | |
| {
 | |
| 	Py_complex r;
 | |
| 	r.real = -a.real;
 | |
| 	r.imag = -a.imag;
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| Py_complex
 | |
| c_prod(Py_complex a, Py_complex b)
 | |
| {
 | |
| 	Py_complex r;
 | |
| 	r.real = a.real*b.real - a.imag*b.imag;
 | |
| 	r.imag = a.real*b.imag + a.imag*b.real;
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| Py_complex
 | |
| c_quot(Py_complex a, Py_complex b)
 | |
| {
 | |
| 	/******************************************************************
 | |
| 	This was the original algorithm.  It's grossly prone to spurious
 | |
| 	overflow and underflow errors.  It also merrily divides by 0 despite
 | |
| 	checking for that(!).  The code still serves a doc purpose here, as
 | |
| 	the algorithm following is a simple by-cases transformation of this
 | |
| 	one:
 | |
| 
 | |
| 	Py_complex r;
 | |
| 	double d = b.real*b.real + b.imag*b.imag;
 | |
| 	if (d == 0.)
 | |
| 		errno = EDOM;
 | |
| 	r.real = (a.real*b.real + a.imag*b.imag)/d;
 | |
| 	r.imag = (a.imag*b.real - a.real*b.imag)/d;
 | |
| 	return r;
 | |
| 	******************************************************************/
 | |
| 
 | |
| 	/* This algorithm is better, and is pretty obvious:  first divide the
 | |
| 	 * numerators and denominator by whichever of {b.real, b.imag} has
 | |
| 	 * larger magnitude.  The earliest reference I found was to CACM
 | |
| 	 * Algorithm 116 (Complex Division, Robert L. Smith, Stanford
 | |
| 	 * University).  As usual, though, we're still ignoring all IEEE
 | |
| 	 * endcases.
 | |
| 	 */
 | |
| 	 Py_complex r;	/* the result */
 | |
|  	 const double abs_breal = b.real < 0 ? -b.real : b.real;
 | |
| 	 const double abs_bimag = b.imag < 0 ? -b.imag : b.imag;
 | |
| 
 | |
| 	 if (abs_breal >= abs_bimag) {
 | |
|  		/* divide tops and bottom by b.real */
 | |
| 	 	if (abs_breal == 0.0) {
 | |
| 	 		errno = EDOM;
 | |
| 	 		r.real = r.imag = 0.0;
 | |
| 	 	}
 | |
| 	 	else {
 | |
| 	 		const double ratio = b.imag / b.real;
 | |
| 	 		const double denom = b.real + b.imag * ratio;
 | |
| 	 		r.real = (a.real + a.imag * ratio) / denom;
 | |
| 	 		r.imag = (a.imag - a.real * ratio) / denom;
 | |
| 	 	}
 | |
| 	}
 | |
| 	else {
 | |
| 		/* divide tops and bottom by b.imag */
 | |
| 		const double ratio = b.real / b.imag;
 | |
| 		const double denom = b.real * ratio + b.imag;
 | |
| 		assert(b.imag != 0.0);
 | |
| 		r.real = (a.real * ratio + a.imag) / denom;
 | |
| 		r.imag = (a.imag * ratio - a.real) / denom;
 | |
| 	}
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| Py_complex
 | |
| c_pow(Py_complex a, Py_complex b)
 | |
| {
 | |
| 	Py_complex r;
 | |
| 	double vabs,len,at,phase;
 | |
| 	if (b.real == 0. && b.imag == 0.) {
 | |
| 		r.real = 1.;
 | |
| 		r.imag = 0.;
 | |
| 	}
 | |
| 	else if (a.real == 0. && a.imag == 0.) {
 | |
| 		if (b.imag != 0. || b.real < 0.)
 | |
| 			errno = EDOM;
 | |
| 		r.real = 0.;
 | |
| 		r.imag = 0.;
 | |
| 	}
 | |
| 	else {
 | |
| 		vabs = hypot(a.real,a.imag);
 | |
| 		len = pow(vabs,b.real);
 | |
| 		at = atan2(a.imag, a.real);
 | |
| 		phase = at*b.real;
 | |
| 		if (b.imag != 0.0) {
 | |
| 			len /= exp(at*b.imag);
 | |
| 			phase += b.imag*log(vabs);
 | |
| 		}
 | |
| 		r.real = len*cos(phase);
 | |
| 		r.imag = len*sin(phase);
 | |
| 	}
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static Py_complex
 | |
| c_powu(Py_complex x, long n)
 | |
| {
 | |
| 	Py_complex r, p;
 | |
| 	long mask = 1;
 | |
| 	r = c_1;
 | |
| 	p = x;
 | |
| 	while (mask > 0 && n >= mask) {
 | |
| 		if (n & mask)
 | |
| 			r = c_prod(r,p);
 | |
| 		mask <<= 1;
 | |
| 		p = c_prod(p,p);
 | |
| 	}
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static Py_complex
 | |
| c_powi(Py_complex x, long n)
 | |
| {
 | |
| 	Py_complex cn;
 | |
| 
 | |
| 	if (n > 100 || n < -100) {
 | |
| 		cn.real = (double) n;
 | |
| 		cn.imag = 0.;
 | |
| 		return c_pow(x,cn);
 | |
| 	}
 | |
| 	else if (n > 0)
 | |
| 		return c_powu(x,n);
 | |
| 	else
 | |
| 		return c_quot(c_1,c_powu(x,-n));
 | |
| 
 | |
| }
 | |
| 
 | |
| double
 | |
| c_abs(Py_complex z)
 | |
| {
 | |
| 	/* sets errno = ERANGE on overflow;  otherwise errno = 0 */
 | |
| 	double result;
 | |
| 
 | |
| 	if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
 | |
| 		/* C99 rules: if either the real or the imaginary part is an
 | |
| 		   infinity, return infinity, even if the other part is a
 | |
| 		   NaN. */
 | |
| 		if (Py_IS_INFINITY(z.real)) {
 | |
| 			result = fabs(z.real);
 | |
| 			errno = 0;
 | |
| 			return result;
 | |
| 		}
 | |
| 		if (Py_IS_INFINITY(z.imag)) {
 | |
| 			result = fabs(z.imag);
 | |
| 			errno = 0;
 | |
| 			return result;
 | |
| 		}
 | |
| 		/* either the real or imaginary part is a NaN,
 | |
| 		   and neither is infinite. Result should be NaN. */
 | |
| 		return Py_NAN;
 | |
| 	}
 | |
| 	result = hypot(z.real, z.imag);
 | |
| 	if (!Py_IS_FINITE(result))
 | |
| 		errno = ERANGE;
 | |
| 	else
 | |
| 		errno = 0;
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_subtype_from_c_complex(PyTypeObject *type, Py_complex cval)
 | |
| {
 | |
| 	PyObject *op;
 | |
| 
 | |
| 	op = type->tp_alloc(type, 0);
 | |
| 	if (op != NULL)
 | |
| 		((PyComplexObject *)op)->cval = cval;
 | |
| 	return op;
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| PyComplex_FromCComplex(Py_complex cval)
 | |
| {
 | |
| 	register PyComplexObject *op;
 | |
| 
 | |
| 	/* Inline PyObject_New */
 | |
| 	op = (PyComplexObject *) PyObject_MALLOC(sizeof(PyComplexObject));
 | |
| 	if (op == NULL)
 | |
| 		return PyErr_NoMemory();
 | |
| 	PyObject_INIT(op, &PyComplex_Type);
 | |
| 	op->cval = cval;
 | |
| 	return (PyObject *) op;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_subtype_from_doubles(PyTypeObject *type, double real, double imag)
 | |
| {
 | |
| 	Py_complex c;
 | |
| 	c.real = real;
 | |
| 	c.imag = imag;
 | |
| 	return complex_subtype_from_c_complex(type, c);
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| PyComplex_FromDoubles(double real, double imag)
 | |
| {
 | |
| 	Py_complex c;
 | |
| 	c.real = real;
 | |
| 	c.imag = imag;
 | |
| 	return PyComplex_FromCComplex(c);
 | |
| }
 | |
| 
 | |
| double
 | |
| PyComplex_RealAsDouble(PyObject *op)
 | |
| {
 | |
| 	if (PyComplex_Check(op)) {
 | |
| 		return ((PyComplexObject *)op)->cval.real;
 | |
| 	}
 | |
| 	else {
 | |
| 		return PyFloat_AsDouble(op);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| double
 | |
| PyComplex_ImagAsDouble(PyObject *op)
 | |
| {
 | |
| 	if (PyComplex_Check(op)) {
 | |
| 		return ((PyComplexObject *)op)->cval.imag;
 | |
| 	}
 | |
| 	else {
 | |
| 		return 0.0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| try_complex_special_method(PyObject *op) {
 | |
| 	PyObject *f;
 | |
| 	static PyObject *complexstr;
 | |
| 
 | |
| 	if (complexstr == NULL) {
 | |
| 		complexstr = PyString_InternFromString("__complex__");
 | |
| 		if (complexstr == NULL)
 | |
| 			return NULL;
 | |
| 	}
 | |
| 	if (PyInstance_Check(op)) {
 | |
| 		f = PyObject_GetAttr(op, complexstr);
 | |
| 		if (f == NULL) {
 | |
| 			if (PyErr_ExceptionMatches(PyExc_AttributeError))
 | |
| 				PyErr_Clear();
 | |
| 			else
 | |
| 				return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		f = _PyObject_LookupSpecial(op, "__complex__", &complexstr);
 | |
| 		if (f == NULL && PyErr_Occurred())
 | |
| 			return NULL;
 | |
| 	}
 | |
| 	if (f != NULL) {
 | |
| 		PyObject *res = PyObject_CallFunctionObjArgs(f, NULL);
 | |
| 		Py_DECREF(f);
 | |
| 		return res;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| Py_complex
 | |
| PyComplex_AsCComplex(PyObject *op)
 | |
| {
 | |
| 	Py_complex cv;
 | |
| 	PyObject *newop = NULL;
 | |
| 
 | |
| 	assert(op);
 | |
| 	/* If op is already of type PyComplex_Type, return its value */
 | |
| 	if (PyComplex_Check(op)) {
 | |
| 		return ((PyComplexObject *)op)->cval;
 | |
| 	}
 | |
| 	/* If not, use op's __complex__  method, if it exists */
 | |
| 
 | |
| 	/* return -1 on failure */
 | |
| 	cv.real = -1.;
 | |
| 	cv.imag = 0.;
 | |
| 
 | |
| 	newop = try_complex_special_method(op);
 | |
| 	
 | |
| 	if (newop) {
 | |
| 		if (!PyComplex_Check(newop)) {
 | |
| 			PyErr_SetString(PyExc_TypeError,
 | |
| 				"__complex__ should return a complex object");
 | |
| 			Py_DECREF(newop);
 | |
| 			return cv;
 | |
| 		}
 | |
| 		cv = ((PyComplexObject *)newop)->cval;
 | |
| 		Py_DECREF(newop);
 | |
| 		return cv;
 | |
| 	}
 | |
| 	else if (PyErr_Occurred()) {
 | |
| 		return cv;
 | |
| 	}
 | |
| 	/* If neither of the above works, interpret op as a float giving the
 | |
| 	   real part of the result, and fill in the imaginary part as 0. */
 | |
| 	else {
 | |
| 		/* PyFloat_AsDouble will return -1 on failure */
 | |
| 		cv.real = PyFloat_AsDouble(op);
 | |
| 		return cv;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| complex_dealloc(PyObject *op)
 | |
| {
 | |
| 	op->ob_type->tp_free(op);
 | |
| }
 | |
| 
 | |
| 
 | |
| static PyObject *
 | |
| complex_format(PyComplexObject *v, int precision, char format_code)
 | |
| {
 | |
| 	PyObject *result = NULL;
 | |
| 	Py_ssize_t len;
 | |
| 
 | |
| 	/* If these are non-NULL, they'll need to be freed. */
 | |
| 	char *pre = NULL;
 | |
| 	char *im = NULL;
 | |
| 	char *buf = NULL;
 | |
| 
 | |
| 	/* These do not need to be freed. re is either an alias
 | |
| 	   for pre or a pointer to a constant.  lead and tail
 | |
| 	   are pointers to constants. */
 | |
| 	char *re = NULL;
 | |
| 	char *lead = "";
 | |
| 	char *tail = "";
 | |
| 
 | |
| 	if (v->cval.real == 0. && copysign(1.0, v->cval.real)==1.0) {
 | |
| 		re = "";
 | |
| 		im = PyOS_double_to_string(v->cval.imag, format_code,
 | |
| 					   precision, 0, NULL);
 | |
| 		if (!im) {
 | |
| 			PyErr_NoMemory();
 | |
| 			goto done;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* Format imaginary part with sign, real part without */
 | |
| 		pre = PyOS_double_to_string(v->cval.real, format_code,
 | |
| 					    precision, 0, NULL);
 | |
| 		if (!pre) {
 | |
| 			PyErr_NoMemory();
 | |
| 			goto done;
 | |
| 		}
 | |
| 		re = pre;
 | |
| 
 | |
| 		im = PyOS_double_to_string(v->cval.imag, format_code,
 | |
| 					   precision, Py_DTSF_SIGN, NULL);
 | |
| 		if (!im) {
 | |
| 			PyErr_NoMemory();
 | |
| 			goto done;
 | |
| 		}
 | |
| 		lead = "(";
 | |
| 		tail = ")";
 | |
| 	}
 | |
| 	/* Alloc the final buffer. Add one for the "j" in the format string,
 | |
| 	   and one for the trailing zero. */
 | |
| 	len = strlen(lead) + strlen(re) + strlen(im) + strlen(tail) + 2;
 | |
| 	buf = PyMem_Malloc(len);
 | |
| 	if (!buf) {
 | |
| 		PyErr_NoMemory();
 | |
| 		goto done;
 | |
| 	}
 | |
| 	PyOS_snprintf(buf, len, "%s%s%sj%s", lead, re, im, tail);
 | |
| 	result = PyString_FromString(buf);
 | |
|   done:
 | |
| 	PyMem_Free(im);
 | |
| 	PyMem_Free(pre);
 | |
| 	PyMem_Free(buf);
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static int
 | |
| complex_print(PyComplexObject *v, FILE *fp, int flags)
 | |
| {
 | |
| 	PyObject *formatv;
 | |
| 	char *buf;
 | |
|         if (flags & Py_PRINT_RAW)
 | |
|             formatv = complex_format(v, PyFloat_STR_PRECISION, 'g');
 | |
|         else
 | |
|             formatv = complex_format(v, 0, 'r');
 | |
| 	if (formatv == NULL)
 | |
| 		return -1;
 | |
| 	buf = PyString_AS_STRING(formatv);
 | |
| 	Py_BEGIN_ALLOW_THREADS
 | |
| 	fputs(buf, fp);
 | |
| 	Py_END_ALLOW_THREADS
 | |
| 	Py_DECREF(formatv);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_repr(PyComplexObject *v)
 | |
| {
 | |
|     return complex_format(v, 0, 'r');
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_str(PyComplexObject *v)
 | |
| {
 | |
|     return complex_format(v, PyFloat_STR_PRECISION, 'g');
 | |
| }
 | |
| 
 | |
| static long
 | |
| complex_hash(PyComplexObject *v)
 | |
| {
 | |
| 	long hashreal, hashimag, combined;
 | |
| 	hashreal = _Py_HashDouble(v->cval.real);
 | |
| 	if (hashreal == -1)
 | |
| 		return -1;
 | |
| 	hashimag = _Py_HashDouble(v->cval.imag);
 | |
| 	if (hashimag == -1)
 | |
| 		return -1;
 | |
| 	/* Note:  if the imaginary part is 0, hashimag is 0 now,
 | |
| 	 * so the following returns hashreal unchanged.  This is
 | |
| 	 * important because numbers of different types that
 | |
| 	 * compare equal must have the same hash value, so that
 | |
| 	 * hash(x + 0*j) must equal hash(x).
 | |
| 	 */
 | |
| 	combined = hashreal + 1000003 * hashimag;
 | |
| 	if (combined == -1)
 | |
| 		combined = -2;
 | |
| 	return combined;
 | |
| }
 | |
| 
 | |
| /* This macro may return! */
 | |
| #define TO_COMPLEX(obj, c) \
 | |
| 	if (PyComplex_Check(obj)) \
 | |
| 		c = ((PyComplexObject *)(obj))->cval; \
 | |
| 	else if (to_complex(&(obj), &(c)) < 0) \
 | |
| 		return (obj)
 | |
| 
 | |
| static int
 | |
| to_complex(PyObject **pobj, Py_complex *pc)
 | |
| {
 | |
|     PyObject *obj = *pobj;
 | |
| 
 | |
|     pc->real = pc->imag = 0.0;
 | |
|     if (PyInt_Check(obj)) {
 | |
|         pc->real = PyInt_AS_LONG(obj);
 | |
|         return 0;
 | |
|     }
 | |
|     if (PyLong_Check(obj)) {
 | |
|         pc->real = PyLong_AsDouble(obj);
 | |
|         if (pc->real == -1.0 && PyErr_Occurred()) {
 | |
|             *pobj = NULL;
 | |
|             return -1;
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     if (PyFloat_Check(obj)) {
 | |
|         pc->real = PyFloat_AsDouble(obj);
 | |
|         return 0;
 | |
|     }
 | |
|     Py_INCREF(Py_NotImplemented);
 | |
|     *pobj = Py_NotImplemented;
 | |
|     return -1;
 | |
| }
 | |
| 		
 | |
| 
 | |
| static PyObject *
 | |
| complex_add(PyObject *v, PyObject *w)
 | |
| {
 | |
| 	Py_complex result;
 | |
| 	Py_complex a, b;
 | |
| 	TO_COMPLEX(v, a);
 | |
| 	TO_COMPLEX(w, b);
 | |
| 	PyFPE_START_PROTECT("complex_add", return 0)
 | |
| 	result = c_sum(a, b);
 | |
| 	PyFPE_END_PROTECT(result)
 | |
| 	return PyComplex_FromCComplex(result);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_sub(PyObject *v, PyObject *w)
 | |
| {
 | |
|         Py_complex result;
 | |
| 	Py_complex a, b;
 | |
| 	TO_COMPLEX(v, a);
 | |
| 	TO_COMPLEX(w, b);;
 | |
| 	PyFPE_START_PROTECT("complex_sub", return 0)
 | |
| 	result = c_diff(a, b);
 | |
| 	PyFPE_END_PROTECT(result)
 | |
| 	return PyComplex_FromCComplex(result);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_mul(PyObject *v, PyObject *w)
 | |
| {
 | |
| 	Py_complex result;
 | |
| 	Py_complex a, b;
 | |
| 	TO_COMPLEX(v, a);
 | |
| 	TO_COMPLEX(w, b);
 | |
| 	PyFPE_START_PROTECT("complex_mul", return 0)
 | |
| 	result = c_prod(a, b);
 | |
| 	PyFPE_END_PROTECT(result)
 | |
| 	return PyComplex_FromCComplex(result);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_div(PyObject *v, PyObject *w)
 | |
| {
 | |
| 	Py_complex quot;
 | |
| 	Py_complex a, b;
 | |
| 	TO_COMPLEX(v, a);
 | |
| 	TO_COMPLEX(w, b);
 | |
| 	PyFPE_START_PROTECT("complex_div", return 0)
 | |
| 	errno = 0;
 | |
| 	quot = c_quot(a, b);
 | |
| 	PyFPE_END_PROTECT(quot)
 | |
| 	if (errno == EDOM) {
 | |
| 		PyErr_SetString(PyExc_ZeroDivisionError, "complex division by zero");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return PyComplex_FromCComplex(quot);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_classic_div(PyObject *v, PyObject *w)
 | |
| {
 | |
| 	Py_complex quot;
 | |
| 	Py_complex a, b;
 | |
| 	TO_COMPLEX(v, a);
 | |
| 	TO_COMPLEX(w, b);
 | |
| 	if (Py_DivisionWarningFlag >= 2 &&
 | |
| 	    PyErr_Warn(PyExc_DeprecationWarning,
 | |
| 		       "classic complex division") < 0)
 | |
| 		return NULL;
 | |
| 
 | |
| 	PyFPE_START_PROTECT("complex_classic_div", return 0)
 | |
| 	errno = 0;
 | |
| 	quot = c_quot(a, b);
 | |
| 	PyFPE_END_PROTECT(quot)
 | |
| 	if (errno == EDOM) {
 | |
| 		PyErr_SetString(PyExc_ZeroDivisionError, "complex division by zero");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return PyComplex_FromCComplex(quot);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_remainder(PyObject *v, PyObject *w)
 | |
| {
 | |
| 	Py_complex div, mod;
 | |
| 	Py_complex a, b;
 | |
| 	TO_COMPLEX(v, a);
 | |
| 	TO_COMPLEX(w, b);
 | |
| 	if (PyErr_Warn(PyExc_DeprecationWarning,
 | |
| 		       "complex divmod(), // and % are deprecated") < 0)
 | |
| 		return NULL;
 | |
| 
 | |
| 	errno = 0;
 | |
| 	div = c_quot(a, b); /* The raw divisor value. */
 | |
| 	if (errno == EDOM) {
 | |
| 		PyErr_SetString(PyExc_ZeroDivisionError, "complex remainder");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	div.real = floor(div.real); /* Use the floor of the real part. */
 | |
| 	div.imag = 0.0;
 | |
| 	mod = c_diff(a, c_prod(b, div));
 | |
| 
 | |
| 	return PyComplex_FromCComplex(mod);
 | |
| }
 | |
| 
 | |
| 
 | |
| static PyObject *
 | |
| complex_divmod(PyObject *v, PyObject *w)
 | |
| {
 | |
| 	Py_complex div, mod;
 | |
| 	PyObject *d, *m, *z;
 | |
| 	Py_complex a, b;
 | |
| 	TO_COMPLEX(v, a);
 | |
| 	TO_COMPLEX(w, b);
 | |
| 	if (PyErr_Warn(PyExc_DeprecationWarning,
 | |
| 		       "complex divmod(), // and % are deprecated") < 0)
 | |
| 		return NULL;
 | |
| 
 | |
| 	errno = 0;
 | |
| 	div = c_quot(a, b); /* The raw divisor value. */
 | |
| 	if (errno == EDOM) {
 | |
| 		PyErr_SetString(PyExc_ZeroDivisionError, "complex divmod()");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	div.real = floor(div.real); /* Use the floor of the real part. */
 | |
| 	div.imag = 0.0;
 | |
| 	mod = c_diff(a, c_prod(b, div));
 | |
| 	d = PyComplex_FromCComplex(div);
 | |
| 	m = PyComplex_FromCComplex(mod);
 | |
| 	z = PyTuple_Pack(2, d, m);
 | |
| 	Py_XDECREF(d);
 | |
| 	Py_XDECREF(m);
 | |
| 	return z;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_pow(PyObject *v, PyObject *w, PyObject *z)
 | |
| {
 | |
| 	Py_complex p;
 | |
| 	Py_complex exponent;
 | |
| 	long int_exponent;
 | |
| 	Py_complex a, b;
 | |
| 	TO_COMPLEX(v, a);
 | |
| 	TO_COMPLEX(w, b);
 | |
| 	if (z!=Py_None) {
 | |
| 		PyErr_SetString(PyExc_ValueError, "complex modulo");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	PyFPE_START_PROTECT("complex_pow", return 0)
 | |
| 	errno = 0;
 | |
| 	exponent = b;
 | |
| 	int_exponent = (long)exponent.real;
 | |
| 	if (exponent.imag == 0. && exponent.real == int_exponent)
 | |
| 		p = c_powi(a,int_exponent);
 | |
| 	else
 | |
| 		p = c_pow(a,exponent);
 | |
| 
 | |
| 	PyFPE_END_PROTECT(p)
 | |
| 	Py_ADJUST_ERANGE2(p.real, p.imag);
 | |
| 	if (errno == EDOM) {
 | |
| 		PyErr_SetString(PyExc_ZeroDivisionError,
 | |
| 				"0.0 to a negative or complex power");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	else if (errno == ERANGE) {
 | |
| 		PyErr_SetString(PyExc_OverflowError,
 | |
| 				"complex exponentiation");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return PyComplex_FromCComplex(p);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_int_div(PyObject *v, PyObject *w)
 | |
| {
 | |
| 	PyObject *t, *r;
 | |
| 	Py_complex a, b;
 | |
| 	TO_COMPLEX(v, a);
 | |
| 	TO_COMPLEX(w, b);
 | |
| 	if (PyErr_Warn(PyExc_DeprecationWarning,
 | |
| 		       "complex divmod(), // and % are deprecated") < 0)
 | |
| 		return NULL;
 | |
| 
 | |
| 	t = complex_divmod(v, w);
 | |
| 	if (t != NULL) {
 | |
| 		r = PyTuple_GET_ITEM(t, 0);
 | |
| 		Py_INCREF(r);
 | |
| 		Py_DECREF(t);
 | |
| 		return r;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_neg(PyComplexObject *v)
 | |
| {
 | |
| 	Py_complex neg;
 | |
| 	neg.real = -v->cval.real;
 | |
| 	neg.imag = -v->cval.imag;
 | |
| 	return PyComplex_FromCComplex(neg);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_pos(PyComplexObject *v)
 | |
| {
 | |
| 	if (PyComplex_CheckExact(v)) {
 | |
| 		Py_INCREF(v);
 | |
| 		return (PyObject *)v;
 | |
| 	}
 | |
| 	else
 | |
| 		return PyComplex_FromCComplex(v->cval);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_abs(PyComplexObject *v)
 | |
| {
 | |
| 	double result;
 | |
| 
 | |
| 	PyFPE_START_PROTECT("complex_abs", return 0)
 | |
| 	result = c_abs(v->cval);
 | |
| 	PyFPE_END_PROTECT(result)
 | |
| 
 | |
| 	if (errno == ERANGE) {
 | |
| 		PyErr_SetString(PyExc_OverflowError,
 | |
| 				"absolute value too large");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return PyFloat_FromDouble(result);
 | |
| }
 | |
| 
 | |
| static int
 | |
| complex_nonzero(PyComplexObject *v)
 | |
| {
 | |
| 	return v->cval.real != 0.0 || v->cval.imag != 0.0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| complex_coerce(PyObject **pv, PyObject **pw)
 | |
| {
 | |
| 	Py_complex cval;
 | |
| 	cval.imag = 0.;
 | |
| 	if (PyInt_Check(*pw)) {
 | |
| 		cval.real = (double)PyInt_AsLong(*pw);
 | |
| 		*pw = PyComplex_FromCComplex(cval);
 | |
| 		Py_INCREF(*pv);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	else if (PyLong_Check(*pw)) {
 | |
| 		cval.real = PyLong_AsDouble(*pw);
 | |
| 		if (cval.real == -1.0 && PyErr_Occurred())
 | |
| 			return -1;
 | |
| 		*pw = PyComplex_FromCComplex(cval);
 | |
| 		Py_INCREF(*pv);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	else if (PyFloat_Check(*pw)) {
 | |
| 		cval.real = PyFloat_AsDouble(*pw);
 | |
| 		*pw = PyComplex_FromCComplex(cval);
 | |
| 		Py_INCREF(*pv);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	else if (PyComplex_Check(*pw)) {
 | |
| 		Py_INCREF(*pv);
 | |
| 		Py_INCREF(*pw);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return 1; /* Can't do it */
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_richcompare(PyObject *v, PyObject *w, int op)
 | |
| {
 | |
| 	int c;
 | |
| 	Py_complex i, j;
 | |
| 	PyObject *res;
 | |
| 
 | |
| 	c = PyNumber_CoerceEx(&v, &w);
 | |
| 	if (c < 0)
 | |
| 		return NULL;
 | |
| 	if (c > 0) {
 | |
| 		Py_INCREF(Py_NotImplemented);
 | |
| 		return Py_NotImplemented;
 | |
| 	}
 | |
| 	/* Make sure both arguments are complex. */
 | |
| 	if (!(PyComplex_Check(v) && PyComplex_Check(w))) {
 | |
| 		Py_DECREF(v);
 | |
| 		Py_DECREF(w);
 | |
| 		Py_INCREF(Py_NotImplemented);
 | |
| 		return Py_NotImplemented;
 | |
| 	}
 | |
| 
 | |
| 	i = ((PyComplexObject *)v)->cval;
 | |
| 	j = ((PyComplexObject *)w)->cval;
 | |
| 	Py_DECREF(v);
 | |
| 	Py_DECREF(w);
 | |
| 
 | |
| 	if (op != Py_EQ && op != Py_NE) {
 | |
| 		PyErr_SetString(PyExc_TypeError,
 | |
| 			"no ordering relation is defined for complex numbers");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if ((i.real == j.real && i.imag == j.imag) == (op == Py_EQ))
 | |
| 		res = Py_True;
 | |
| 	else
 | |
| 		res = Py_False;
 | |
| 
 | |
| 	Py_INCREF(res);
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_int(PyObject *v)
 | |
| {
 | |
| 	PyErr_SetString(PyExc_TypeError,
 | |
| 		   "can't convert complex to int");
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_long(PyObject *v)
 | |
| {
 | |
| 	PyErr_SetString(PyExc_TypeError,
 | |
| 		   "can't convert complex to long");
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_float(PyObject *v)
 | |
| {
 | |
| 	PyErr_SetString(PyExc_TypeError,
 | |
| 		   "can't convert complex to float");
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_conjugate(PyObject *self)
 | |
| {
 | |
| 	Py_complex c;
 | |
| 	c = ((PyComplexObject *)self)->cval;
 | |
| 	c.imag = -c.imag;
 | |
| 	return PyComplex_FromCComplex(c);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(complex_conjugate_doc,
 | |
| "complex.conjugate() -> complex\n"
 | |
| "\n"
 | |
| "Returns the complex conjugate of its argument. (3-4j).conjugate() == 3+4j.");
 | |
| 
 | |
| static PyObject *
 | |
| complex_getnewargs(PyComplexObject *v)
 | |
| {
 | |
| 	Py_complex c = v->cval;
 | |
| 	return Py_BuildValue("(dd)", c.real, c.imag);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(complex__format__doc,
 | |
| "complex.__format__() -> str\n"
 | |
| "\n"
 | |
| "Converts to a string according to format_spec.");
 | |
| 
 | |
| static PyObject *
 | |
| complex__format__(PyObject* self, PyObject* args)
 | |
| {
 | |
|     PyObject *format_spec;
 | |
| 
 | |
|     if (!PyArg_ParseTuple(args, "O:__format__", &format_spec))
 | |
|         return NULL;
 | |
|     if (PyBytes_Check(format_spec))
 | |
|         return _PyComplex_FormatAdvanced(self,
 | |
|                                          PyBytes_AS_STRING(format_spec),
 | |
|                                          PyBytes_GET_SIZE(format_spec));
 | |
|     if (PyUnicode_Check(format_spec)) {
 | |
|         /* Convert format_spec to a str */
 | |
|         PyObject *result;
 | |
|         PyObject *str_spec = PyObject_Str(format_spec);
 | |
| 
 | |
|         if (str_spec == NULL)
 | |
|             return NULL;
 | |
| 
 | |
|         result = _PyComplex_FormatAdvanced(self,
 | |
|                                            PyBytes_AS_STRING(str_spec),
 | |
|                                            PyBytes_GET_SIZE(str_spec));
 | |
| 
 | |
|         Py_DECREF(str_spec);
 | |
|         return result;
 | |
|     }
 | |
|     PyErr_SetString(PyExc_TypeError, "__format__ requires str or unicode");
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| static PyObject *
 | |
| complex_is_finite(PyObject *self)
 | |
| {
 | |
| 	Py_complex c;
 | |
| 	c = ((PyComplexObject *)self)->cval;
 | |
| 	return PyBool_FromLong((long)(Py_IS_FINITE(c.real) &&
 | |
| 				      Py_IS_FINITE(c.imag)));
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(complex_is_finite_doc,
 | |
| "complex.is_finite() -> bool\n"
 | |
| "\n"
 | |
| "Returns True if the real and the imaginary part is finite.");
 | |
| #endif
 | |
| 
 | |
| static PyMethodDef complex_methods[] = {
 | |
| 	{"conjugate",	(PyCFunction)complex_conjugate,	METH_NOARGS,
 | |
| 	 complex_conjugate_doc},
 | |
| #if 0
 | |
| 	{"is_finite",	(PyCFunction)complex_is_finite,	METH_NOARGS,
 | |
| 	 complex_is_finite_doc},
 | |
| #endif
 | |
| 	{"__getnewargs__",	(PyCFunction)complex_getnewargs,	METH_NOARGS},
 | |
| 	{"__format__",          (PyCFunction)complex__format__,
 | |
|                                            METH_VARARGS, complex__format__doc},
 | |
| 	{NULL,		NULL}		/* sentinel */
 | |
| };
 | |
| 
 | |
| static PyMemberDef complex_members[] = {
 | |
| 	{"real", T_DOUBLE, offsetof(PyComplexObject, cval.real), READONLY,
 | |
| 	 "the real part of a complex number"},
 | |
| 	{"imag", T_DOUBLE, offsetof(PyComplexObject, cval.imag), READONLY,
 | |
| 	 "the imaginary part of a complex number"},
 | |
| 	{0},
 | |
| };
 | |
| 
 | |
| static PyObject *
 | |
| complex_subtype_from_string(PyTypeObject *type, PyObject *v)
 | |
| {
 | |
| 	const char *s, *start;
 | |
| 	char *end;
 | |
| 	double x=0.0, y=0.0, z;
 | |
| 	int got_bracket=0;
 | |
| #ifdef Py_USING_UNICODE
 | |
| 	char *s_buffer = NULL;
 | |
| #endif
 | |
| 	Py_ssize_t len;
 | |
| 
 | |
| 	if (PyString_Check(v)) {
 | |
| 		s = PyString_AS_STRING(v);
 | |
| 		len = PyString_GET_SIZE(v);
 | |
| 	}
 | |
| #ifdef Py_USING_UNICODE
 | |
| 	else if (PyUnicode_Check(v)) {
 | |
| 		s_buffer = (char *)PyMem_MALLOC(PyUnicode_GET_SIZE(v)+1);
 | |
| 		if (s_buffer == NULL)
 | |
| 			return PyErr_NoMemory();
 | |
| 		if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v),
 | |
| 					    PyUnicode_GET_SIZE(v),
 | |
| 					    s_buffer,
 | |
| 					    NULL))
 | |
| 			goto error;
 | |
| 		s = s_buffer;
 | |
| 		len = strlen(s);
 | |
| 	}
 | |
| #endif
 | |
| 	else if (PyObject_AsCharBuffer(v, &s, &len)) {
 | |
| 		PyErr_SetString(PyExc_TypeError,
 | |
| 				"complex() arg is not a string");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* position on first nonblank */
 | |
| 	start = s;
 | |
| 	while (Py_ISSPACE(*s))
 | |
| 		s++;
 | |
| 	if (*s == '(') {
 | |
| 		/* Skip over possible bracket from repr(). */
 | |
| 		got_bracket = 1;
 | |
| 		s++;
 | |
| 		while (Py_ISSPACE(*s))
 | |
| 			s++;
 | |
| 	}
 | |
| 
 | |
| 	/* a valid complex string usually takes one of the three forms:
 | |
| 
 | |
| 	     <float>                  - real part only
 | |
| 	     <float>j                 - imaginary part only
 | |
| 	     <float><signed-float>j   - real and imaginary parts
 | |
| 
 | |
| 	   where <float> represents any numeric string that's accepted by the
 | |
| 	   float constructor (including 'nan', 'inf', 'infinity', etc.), and
 | |
| 	   <signed-float> is any string of the form <float> whose first
 | |
| 	   character is '+' or '-'.
 | |
| 
 | |
| 	   For backwards compatibility, the extra forms
 | |
| 
 | |
| 	     <float><sign>j
 | |
| 	     <sign>j
 | |
| 	     j
 | |
| 
 | |
| 	   are also accepted, though support for these forms may be removed from
 | |
| 	   a future version of Python.
 | |
| 	*/
 | |
| 
 | |
| 	/* first look for forms starting with <float> */
 | |
| 	z = PyOS_string_to_double(s, &end, NULL);
 | |
| 	if (z == -1.0 && PyErr_Occurred()) {
 | |
| 		if (PyErr_ExceptionMatches(PyExc_ValueError))
 | |
| 			PyErr_Clear();
 | |
| 		else
 | |
| 			goto error;
 | |
| 	}
 | |
| 	if (end != s) {
 | |
| 		/* all 4 forms starting with <float> land here */
 | |
| 		s = end;
 | |
| 		if (*s == '+' || *s == '-') {
 | |
| 			/* <float><signed-float>j | <float><sign>j */
 | |
| 			x = z;
 | |
| 			y = PyOS_string_to_double(s, &end, NULL);
 | |
| 			if (y == -1.0 && PyErr_Occurred()) {
 | |
| 				if (PyErr_ExceptionMatches(PyExc_ValueError))
 | |
| 					PyErr_Clear();
 | |
| 				else
 | |
| 					goto error;
 | |
| 			}
 | |
| 			if (end != s)
 | |
| 				/* <float><signed-float>j */
 | |
| 				s = end;
 | |
| 			else {
 | |
| 				/* <float><sign>j */
 | |
| 				y = *s == '+' ? 1.0 : -1.0;
 | |
| 				s++;
 | |
| 			}
 | |
| 			if (!(*s == 'j' || *s == 'J'))
 | |
| 				goto parse_error;
 | |
| 			s++;
 | |
| 		}
 | |
| 		else if (*s == 'j' || *s == 'J') {
 | |
| 			/* <float>j */
 | |
| 			s++;
 | |
| 			y = z;
 | |
| 		}
 | |
| 		else
 | |
| 			/* <float> */
 | |
| 			x = z;
 | |
| 	}
 | |
| 	else {
 | |
| 		/* not starting with <float>; must be <sign>j or j */
 | |
| 		if (*s == '+' || *s == '-') {
 | |
| 			/* <sign>j */
 | |
| 			y = *s == '+' ? 1.0 : -1.0;
 | |
| 			s++;
 | |
| 		}
 | |
| 		else
 | |
| 			/* j */
 | |
| 			y = 1.0;
 | |
| 		if (!(*s == 'j' || *s == 'J'))
 | |
| 			goto parse_error;
 | |
| 		s++;
 | |
| 	}
 | |
| 
 | |
| 	/* trailing whitespace and closing bracket */
 | |
| 	while (Py_ISSPACE(*s))
 | |
| 		s++;
 | |
| 	if (got_bracket) {
 | |
| 		/* if there was an opening parenthesis, then the corresponding
 | |
| 		   closing parenthesis should be right here */
 | |
| 		if (*s != ')')
 | |
| 			goto parse_error;
 | |
| 		s++;
 | |
| 		while (Py_ISSPACE(*s))
 | |
| 			s++;
 | |
| 	}
 | |
| 
 | |
| 	/* we should now be at the end of the string */
 | |
| 	if (s-start != len)
 | |
| 		goto parse_error;
 | |
| 
 | |
| 
 | |
| #ifdef Py_USING_UNICODE
 | |
| 	if (s_buffer)
 | |
| 		PyMem_FREE(s_buffer);
 | |
| #endif
 | |
| 	return complex_subtype_from_doubles(type, x, y);
 | |
| 
 | |
|   parse_error:
 | |
| 	PyErr_SetString(PyExc_ValueError,
 | |
| 			"complex() arg is a malformed string");
 | |
|   error:
 | |
| #ifdef Py_USING_UNICODE
 | |
| 	if (s_buffer)
 | |
| 		PyMem_FREE(s_buffer);
 | |
| #endif
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
 | |
| {
 | |
| 	PyObject *r, *i, *tmp;
 | |
| 	PyNumberMethods *nbr, *nbi = NULL;
 | |
| 	Py_complex cr, ci;
 | |
| 	int own_r = 0;
 | |
| 	int cr_is_complex = 0;
 | |
| 	int ci_is_complex = 0;
 | |
| 	static char *kwlist[] = {"real", "imag", 0};
 | |
| 
 | |
| 	r = Py_False;
 | |
| 	i = NULL;
 | |
| 	if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OO:complex", kwlist,
 | |
| 					 &r, &i))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* Special-case for a single argument when type(arg) is complex. */
 | |
| 	if (PyComplex_CheckExact(r) && i == NULL &&
 | |
| 	    type == &PyComplex_Type) {
 | |
| 		/* Note that we can't know whether it's safe to return
 | |
| 		   a complex *subclass* instance as-is, hence the restriction
 | |
| 		   to exact complexes here.  If either the input or the
 | |
| 		   output is a complex subclass, it will be handled below 
 | |
| 		   as a non-orthogonal vector.  */
 | |
| 		Py_INCREF(r);
 | |
| 		return r;
 | |
| 	}
 | |
| 	if (PyString_Check(r) || PyUnicode_Check(r)) {
 | |
| 		if (i != NULL) {
 | |
| 			PyErr_SetString(PyExc_TypeError,
 | |
| 					"complex() can't take second arg"
 | |
| 					" if first is a string");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		return complex_subtype_from_string(type, r);
 | |
| 	}
 | |
| 	if (i != NULL && (PyString_Check(i) || PyUnicode_Check(i))) {
 | |
| 		PyErr_SetString(PyExc_TypeError,
 | |
| 				"complex() second arg can't be a string");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	tmp = try_complex_special_method(r);
 | |
| 	if (tmp) {
 | |
| 		r = tmp;
 | |
| 		own_r = 1;
 | |
| 	}
 | |
| 	else if (PyErr_Occurred()) {
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	nbr = r->ob_type->tp_as_number;
 | |
| 	if (i != NULL)
 | |
| 		nbi = i->ob_type->tp_as_number;
 | |
| 	if (nbr == NULL || nbr->nb_float == NULL ||
 | |
| 	    ((i != NULL) && (nbi == NULL || nbi->nb_float == NULL))) {
 | |
| 		PyErr_SetString(PyExc_TypeError,
 | |
| 			   "complex() argument must be a string or a number");
 | |
| 		if (own_r) {
 | |
| 			Py_DECREF(r);
 | |
| 		}
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* If we get this far, then the "real" and "imag" parts should
 | |
| 	   both be treated as numbers, and the constructor should return a
 | |
| 	   complex number equal to (real + imag*1j).
 | |
| 
 | |
|  	   Note that we do NOT assume the input to already be in canonical
 | |
| 	   form; the "real" and "imag" parts might themselves be complex
 | |
| 	   numbers, which slightly complicates the code below. */
 | |
| 	if (PyComplex_Check(r)) {
 | |
| 		/* Note that if r is of a complex subtype, we're only
 | |
| 		   retaining its real & imag parts here, and the return
 | |
| 		   value is (properly) of the builtin complex type. */
 | |
| 		cr = ((PyComplexObject*)r)->cval;
 | |
| 		cr_is_complex = 1;
 | |
| 		if (own_r) {
 | |
| 			Py_DECREF(r);
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		/* The "real" part really is entirely real, and contributes
 | |
| 		   nothing in the imaginary direction.  
 | |
| 		   Just treat it as a double. */
 | |
| 		tmp = PyNumber_Float(r);
 | |
| 		if (own_r) {
 | |
| 			/* r was a newly created complex number, rather
 | |
| 			   than the original "real" argument. */
 | |
| 			Py_DECREF(r);
 | |
| 		}
 | |
| 		if (tmp == NULL)
 | |
| 			return NULL;
 | |
| 		if (!PyFloat_Check(tmp)) {
 | |
| 			PyErr_SetString(PyExc_TypeError,
 | |
| 					"float(r) didn't return a float");
 | |
| 			Py_DECREF(tmp);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		cr.real = PyFloat_AsDouble(tmp);
 | |
| 		cr.imag = 0.0; /* Shut up compiler warning */
 | |
| 		Py_DECREF(tmp);
 | |
| 	}
 | |
| 	if (i == NULL) {
 | |
| 		ci.real = 0.0;
 | |
| 	}
 | |
| 	else if (PyComplex_Check(i)) {
 | |
| 		ci = ((PyComplexObject*)i)->cval;
 | |
| 		ci_is_complex = 1;
 | |
| 	} else {
 | |
| 		/* The "imag" part really is entirely imaginary, and
 | |
| 		   contributes nothing in the real direction.
 | |
| 		   Just treat it as a double. */
 | |
| 		tmp = (*nbi->nb_float)(i);
 | |
| 		if (tmp == NULL)
 | |
| 			return NULL;
 | |
| 		ci.real = PyFloat_AsDouble(tmp);
 | |
| 		Py_DECREF(tmp);
 | |
| 	}
 | |
| 	/*  If the input was in canonical form, then the "real" and "imag"
 | |
| 	    parts are real numbers, so that ci.imag and cr.imag are zero.
 | |
| 	    We need this correction in case they were not real numbers. */
 | |
| 
 | |
| 	if (ci_is_complex) {
 | |
| 		cr.real -= ci.imag;
 | |
| 	}
 | |
| 	if (cr_is_complex) {
 | |
| 		ci.real += cr.imag;
 | |
| 	}
 | |
| 	return complex_subtype_from_doubles(type, cr.real, ci.real);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(complex_doc,
 | |
| "complex(real[, imag]) -> complex number\n"
 | |
| "\n"
 | |
| "Create a complex number from a real part and an optional imaginary part.\n"
 | |
| "This is equivalent to (real + imag*1j) where imag defaults to 0.");
 | |
| 
 | |
| static PyNumberMethods complex_as_number = {
 | |
| 	(binaryfunc)complex_add, 		/* nb_add */
 | |
| 	(binaryfunc)complex_sub, 		/* nb_subtract */
 | |
| 	(binaryfunc)complex_mul, 		/* nb_multiply */
 | |
| 	(binaryfunc)complex_classic_div,	/* nb_divide */
 | |
| 	(binaryfunc)complex_remainder,		/* nb_remainder */
 | |
| 	(binaryfunc)complex_divmod,		/* nb_divmod */
 | |
| 	(ternaryfunc)complex_pow,		/* nb_power */
 | |
| 	(unaryfunc)complex_neg,			/* nb_negative */
 | |
| 	(unaryfunc)complex_pos,			/* nb_positive */
 | |
| 	(unaryfunc)complex_abs,			/* nb_absolute */
 | |
| 	(inquiry)complex_nonzero,		/* nb_nonzero */
 | |
| 	0,					/* nb_invert */
 | |
| 	0,					/* nb_lshift */
 | |
| 	0,					/* nb_rshift */
 | |
| 	0,					/* nb_and */
 | |
| 	0,					/* nb_xor */
 | |
| 	0,					/* nb_or */
 | |
| 	complex_coerce,				/* nb_coerce */
 | |
| 	complex_int,				/* nb_int */
 | |
| 	complex_long,				/* nb_long */
 | |
| 	complex_float,				/* nb_float */
 | |
| 	0,					/* nb_oct */
 | |
| 	0,					/* nb_hex */
 | |
| 	0,					/* nb_inplace_add */
 | |
| 	0,					/* nb_inplace_subtract */
 | |
| 	0,					/* nb_inplace_multiply*/
 | |
| 	0,					/* nb_inplace_divide */
 | |
| 	0,					/* nb_inplace_remainder */
 | |
| 	0, 					/* nb_inplace_power */
 | |
| 	0,					/* nb_inplace_lshift */
 | |
| 	0,					/* nb_inplace_rshift */
 | |
| 	0,					/* nb_inplace_and */
 | |
| 	0,					/* nb_inplace_xor */
 | |
| 	0,					/* nb_inplace_or */
 | |
| 	(binaryfunc)complex_int_div,		/* nb_floor_divide */
 | |
| 	(binaryfunc)complex_div,		/* nb_true_divide */
 | |
| 	0,					/* nb_inplace_floor_divide */
 | |
| 	0,					/* nb_inplace_true_divide */
 | |
| };
 | |
| 
 | |
| PyTypeObject PyComplex_Type = {
 | |
| 	PyVarObject_HEAD_INIT(&PyType_Type, 0)
 | |
| 	"complex",
 | |
| 	sizeof(PyComplexObject),
 | |
| 	0,
 | |
| 	complex_dealloc,			/* tp_dealloc */
 | |
| 	(printfunc)complex_print,		/* tp_print */
 | |
| 	0,					/* tp_getattr */
 | |
| 	0,					/* tp_setattr */
 | |
| 	0,					/* tp_compare */
 | |
| 	(reprfunc)complex_repr,			/* tp_repr */
 | |
| 	&complex_as_number,    			/* tp_as_number */
 | |
| 	0,					/* tp_as_sequence */
 | |
| 	0,					/* tp_as_mapping */
 | |
| 	(hashfunc)complex_hash, 		/* tp_hash */
 | |
| 	0,					/* tp_call */
 | |
| 	(reprfunc)complex_str,			/* tp_str */
 | |
| 	PyObject_GenericGetAttr,		/* tp_getattro */
 | |
| 	0,					/* tp_setattro */
 | |
| 	0,					/* tp_as_buffer */
 | |
| 	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
 | |
| 		Py_TPFLAGS_BASETYPE,		/* tp_flags */
 | |
| 	complex_doc,				/* tp_doc */
 | |
| 	0,					/* tp_traverse */
 | |
| 	0,					/* tp_clear */
 | |
| 	complex_richcompare,			/* tp_richcompare */
 | |
| 	0,					/* tp_weaklistoffset */
 | |
| 	0,					/* tp_iter */
 | |
| 	0,					/* tp_iternext */
 | |
| 	complex_methods,			/* tp_methods */
 | |
| 	complex_members,			/* tp_members */
 | |
| 	0,					/* tp_getset */
 | |
| 	0,					/* tp_base */
 | |
| 	0,					/* tp_dict */
 | |
| 	0,					/* tp_descr_get */
 | |
| 	0,					/* tp_descr_set */
 | |
| 	0,					/* tp_dictoffset */
 | |
| 	0,					/* tp_init */
 | |
| 	PyType_GenericAlloc,			/* tp_alloc */
 | |
| 	complex_new,				/* tp_new */
 | |
| 	PyObject_Del,           		/* tp_free */
 | |
| };
 | |
| 
 | |
| #endif
 | 
