mirror of
				https://github.com/python/cpython.git
				synced 2025-10-31 05:31:20 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			214 lines
		
	
	
	
		
			5.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			214 lines
		
	
	
	
		
			5.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2008-2016 Stefan Krah. All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  *
 | |
|  * 1. Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  *
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in the
 | |
|  *    documentation and/or other materials provided with the distribution.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
 | |
|  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
|  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 | |
|  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
|  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 | |
|  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | |
|  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | |
|  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 | |
|  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 | |
|  * SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| 
 | |
| #include "mpdecimal.h"
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <assert.h>
 | |
| #include "bits.h"
 | |
| #include "difradix2.h"
 | |
| #include "numbertheory.h"
 | |
| #include "transpose.h"
 | |
| #include "umodarith.h"
 | |
| #include "sixstep.h"
 | |
| 
 | |
| 
 | |
| /* Bignum: Cache efficient Matrix Fourier Transform for arrays of the
 | |
|    form 2**n (See literature/six-step.txt). */
 | |
| 
 | |
| 
 | |
| /* forward transform with sign = -1 */
 | |
| int
 | |
| six_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum)
 | |
| {
 | |
|     struct fnt_params *tparams;
 | |
|     mpd_size_t log2n, C, R;
 | |
|     mpd_uint_t kernel;
 | |
|     mpd_uint_t umod;
 | |
| #ifdef PPRO
 | |
|     double dmod;
 | |
|     uint32_t dinvmod[3];
 | |
| #endif
 | |
|     mpd_uint_t *x, w0, w1, wstep;
 | |
|     mpd_size_t i, k;
 | |
| 
 | |
| 
 | |
|     assert(ispower2(n));
 | |
|     assert(n >= 16);
 | |
|     assert(n <= MPD_MAXTRANSFORM_2N);
 | |
| 
 | |
|     log2n = mpd_bsr(n);
 | |
|     C = ((mpd_size_t)1) << (log2n / 2);  /* number of columns */
 | |
|     R = ((mpd_size_t)1) << (log2n - (log2n / 2)); /* number of rows */
 | |
| 
 | |
| 
 | |
|     /* Transpose the matrix. */
 | |
|     if (!transpose_pow2(a, R, C)) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* Length R transform on the rows. */
 | |
|     if ((tparams = _mpd_init_fnt_params(R, -1, modnum)) == NULL) {
 | |
|         return 0;
 | |
|     }
 | |
|     for (x = a; x < a+n; x += R) {
 | |
|         fnt_dif2(x, R, tparams);
 | |
|     }
 | |
| 
 | |
|     /* Transpose the matrix. */
 | |
|     if (!transpose_pow2(a, C, R)) {
 | |
|         mpd_free(tparams);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */
 | |
|     SETMODULUS(modnum);
 | |
|     kernel = _mpd_getkernel(n, -1, modnum);
 | |
|     for (i = 1; i < R; i++) {
 | |
|         w0 = 1;                  /* r**(i*0): initial value for k=0 */
 | |
|         w1 = POWMOD(kernel, i);  /* r**(i*1): initial value for k=1 */
 | |
|         wstep = MULMOD(w1, w1);  /* r**(2*i) */
 | |
|         for (k = 0; k < C; k += 2) {
 | |
|             mpd_uint_t x0 = a[i*C+k];
 | |
|             mpd_uint_t x1 = a[i*C+k+1];
 | |
|             MULMOD2(&x0, w0, &x1, w1);
 | |
|             MULMOD2C(&w0, &w1, wstep);  /* r**(i*(k+2)) = r**(i*k) * r**(2*i) */
 | |
|             a[i*C+k] = x0;
 | |
|             a[i*C+k+1] = x1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Length C transform on the rows. */
 | |
|     if (C != R) {
 | |
|         mpd_free(tparams);
 | |
|         if ((tparams = _mpd_init_fnt_params(C, -1, modnum)) == NULL) {
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
|     for (x = a; x < a+n; x += C) {
 | |
|         fnt_dif2(x, C, tparams);
 | |
|     }
 | |
|     mpd_free(tparams);
 | |
| 
 | |
| #if 0
 | |
|     /* An unordered transform is sufficient for convolution. */
 | |
|     /* Transpose the matrix. */
 | |
|     if (!transpose_pow2(a, R, C)) {
 | |
|         return 0;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* reverse transform, sign = 1 */
 | |
| int
 | |
| inv_six_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum)
 | |
| {
 | |
|     struct fnt_params *tparams;
 | |
|     mpd_size_t log2n, C, R;
 | |
|     mpd_uint_t kernel;
 | |
|     mpd_uint_t umod;
 | |
| #ifdef PPRO
 | |
|     double dmod;
 | |
|     uint32_t dinvmod[3];
 | |
| #endif
 | |
|     mpd_uint_t *x, w0, w1, wstep;
 | |
|     mpd_size_t i, k;
 | |
| 
 | |
| 
 | |
|     assert(ispower2(n));
 | |
|     assert(n >= 16);
 | |
|     assert(n <= MPD_MAXTRANSFORM_2N);
 | |
| 
 | |
|     log2n = mpd_bsr(n);
 | |
|     C = ((mpd_size_t)1) << (log2n / 2); /* number of columns */
 | |
|     R = ((mpd_size_t)1) << (log2n - (log2n / 2)); /* number of rows */
 | |
| 
 | |
| 
 | |
| #if 0
 | |
|     /* An unordered transform is sufficient for convolution. */
 | |
|     /* Transpose the matrix, producing an R*C matrix. */
 | |
|     if (!transpose_pow2(a, C, R)) {
 | |
|         return 0;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     /* Length C transform on the rows. */
 | |
|     if ((tparams = _mpd_init_fnt_params(C, 1, modnum)) == NULL) {
 | |
|         return 0;
 | |
|     }
 | |
|     for (x = a; x < a+n; x += C) {
 | |
|         fnt_dif2(x, C, tparams);
 | |
|     }
 | |
| 
 | |
|     /* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */
 | |
|     SETMODULUS(modnum);
 | |
|     kernel = _mpd_getkernel(n, 1, modnum);
 | |
|     for (i = 1; i < R; i++) {
 | |
|         w0 = 1;
 | |
|         w1 = POWMOD(kernel, i);
 | |
|         wstep = MULMOD(w1, w1);
 | |
|         for (k = 0; k < C; k += 2) {
 | |
|             mpd_uint_t x0 = a[i*C+k];
 | |
|             mpd_uint_t x1 = a[i*C+k+1];
 | |
|             MULMOD2(&x0, w0, &x1, w1);
 | |
|             MULMOD2C(&w0, &w1, wstep);
 | |
|             a[i*C+k] = x0;
 | |
|             a[i*C+k+1] = x1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Transpose the matrix. */
 | |
|     if (!transpose_pow2(a, R, C)) {
 | |
|         mpd_free(tparams);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* Length R transform on the rows. */
 | |
|     if (R != C) {
 | |
|         mpd_free(tparams);
 | |
|         if ((tparams = _mpd_init_fnt_params(R, 1, modnum)) == NULL) {
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
|     for (x = a; x < a+n; x += R) {
 | |
|         fnt_dif2(x, R, tparams);
 | |
|     }
 | |
|     mpd_free(tparams);
 | |
| 
 | |
|     /* Transpose the matrix. */
 | |
|     if (!transpose_pow2(a, C, R)) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| 
 | 
