mirror of
				https://github.com/python/cpython.git
				synced 2025-11-04 07:31:38 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			424 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			424 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* Set of hash utility functions to help maintaining the invariant that
 | 
						|
    if a==b then hash(a)==hash(b)
 | 
						|
 | 
						|
   All the utility functions (_Py_Hash*()) return "-1" to signify an error.
 | 
						|
*/
 | 
						|
#include "Python.h"
 | 
						|
 | 
						|
#ifdef __APPLE__
 | 
						|
#  include <libkern/OSByteOrder.h>
 | 
						|
#elif defined(HAVE_LE64TOH) && defined(HAVE_ENDIAN_H)
 | 
						|
#  include <endian.h>
 | 
						|
#elif defined(HAVE_LE64TOH) && defined(HAVE_SYS_ENDIAN_H)
 | 
						|
#  include <sys/endian.h>
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef __cplusplus
 | 
						|
extern "C" {
 | 
						|
#endif
 | 
						|
 | 
						|
_Py_HashSecret_t _Py_HashSecret;
 | 
						|
 | 
						|
#if Py_HASH_ALGORITHM == Py_HASH_EXTERNAL
 | 
						|
extern PyHash_FuncDef PyHash_Func;
 | 
						|
#else
 | 
						|
static PyHash_FuncDef PyHash_Func;
 | 
						|
#endif
 | 
						|
 | 
						|
/* Count _Py_HashBytes() calls */
 | 
						|
#ifdef Py_HASH_STATS
 | 
						|
#define Py_HASH_STATS_MAX 32
 | 
						|
static Py_ssize_t hashstats[Py_HASH_STATS_MAX + 1] = {0};
 | 
						|
#endif
 | 
						|
 | 
						|
/* For numeric types, the hash of a number x is based on the reduction
 | 
						|
   of x modulo the prime P = 2**_PyHASH_BITS - 1.  It's designed so that
 | 
						|
   hash(x) == hash(y) whenever x and y are numerically equal, even if
 | 
						|
   x and y have different types.
 | 
						|
 | 
						|
   A quick summary of the hashing strategy:
 | 
						|
 | 
						|
   (1) First define the 'reduction of x modulo P' for any rational
 | 
						|
   number x; this is a standard extension of the usual notion of
 | 
						|
   reduction modulo P for integers.  If x == p/q (written in lowest
 | 
						|
   terms), the reduction is interpreted as the reduction of p times
 | 
						|
   the inverse of the reduction of q, all modulo P; if q is exactly
 | 
						|
   divisible by P then define the reduction to be infinity.  So we've
 | 
						|
   got a well-defined map
 | 
						|
 | 
						|
      reduce : { rational numbers } -> { 0, 1, 2, ..., P-1, infinity }.
 | 
						|
 | 
						|
   (2) Now for a rational number x, define hash(x) by:
 | 
						|
 | 
						|
      reduce(x)   if x >= 0
 | 
						|
      -reduce(-x) if x < 0
 | 
						|
 | 
						|
   If the result of the reduction is infinity (this is impossible for
 | 
						|
   integers, floats and Decimals) then use the predefined hash value
 | 
						|
   _PyHASH_INF for x >= 0, or -_PyHASH_INF for x < 0, instead.
 | 
						|
   _PyHASH_INF, -_PyHASH_INF and _PyHASH_NAN are also used for the
 | 
						|
   hashes of float and Decimal infinities and nans.
 | 
						|
 | 
						|
   A selling point for the above strategy is that it makes it possible
 | 
						|
   to compute hashes of decimal and binary floating-point numbers
 | 
						|
   efficiently, even if the exponent of the binary or decimal number
 | 
						|
   is large.  The key point is that
 | 
						|
 | 
						|
      reduce(x * y) == reduce(x) * reduce(y) (modulo _PyHASH_MODULUS)
 | 
						|
 | 
						|
   provided that {reduce(x), reduce(y)} != {0, infinity}.  The reduction of a
 | 
						|
   binary or decimal float is never infinity, since the denominator is a power
 | 
						|
   of 2 (for binary) or a divisor of a power of 10 (for decimal).  So we have,
 | 
						|
   for nonnegative x,
 | 
						|
 | 
						|
      reduce(x * 2**e) == reduce(x) * reduce(2**e) % _PyHASH_MODULUS
 | 
						|
 | 
						|
      reduce(x * 10**e) == reduce(x) * reduce(10**e) % _PyHASH_MODULUS
 | 
						|
 | 
						|
   and reduce(10**e) can be computed efficiently by the usual modular
 | 
						|
   exponentiation algorithm.  For reduce(2**e) it's even better: since
 | 
						|
   P is of the form 2**n-1, reduce(2**e) is 2**(e mod n), and multiplication
 | 
						|
   by 2**(e mod n) modulo 2**n-1 just amounts to a rotation of bits.
 | 
						|
 | 
						|
   */
 | 
						|
 | 
						|
Py_hash_t
 | 
						|
_Py_HashDouble(double v)
 | 
						|
{
 | 
						|
    int e, sign;
 | 
						|
    double m;
 | 
						|
    Py_uhash_t x, y;
 | 
						|
 | 
						|
    if (!Py_IS_FINITE(v)) {
 | 
						|
        if (Py_IS_INFINITY(v))
 | 
						|
            return v > 0 ? _PyHASH_INF : -_PyHASH_INF;
 | 
						|
        else
 | 
						|
            return _PyHASH_NAN;
 | 
						|
    }
 | 
						|
 | 
						|
    m = frexp(v, &e);
 | 
						|
 | 
						|
    sign = 1;
 | 
						|
    if (m < 0) {
 | 
						|
        sign = -1;
 | 
						|
        m = -m;
 | 
						|
    }
 | 
						|
 | 
						|
    /* process 28 bits at a time;  this should work well both for binary
 | 
						|
       and hexadecimal floating point. */
 | 
						|
    x = 0;
 | 
						|
    while (m) {
 | 
						|
        x = ((x << 28) & _PyHASH_MODULUS) | x >> (_PyHASH_BITS - 28);
 | 
						|
        m *= 268435456.0;  /* 2**28 */
 | 
						|
        e -= 28;
 | 
						|
        y = (Py_uhash_t)m;  /* pull out integer part */
 | 
						|
        m -= y;
 | 
						|
        x += y;
 | 
						|
        if (x >= _PyHASH_MODULUS)
 | 
						|
            x -= _PyHASH_MODULUS;
 | 
						|
    }
 | 
						|
 | 
						|
    /* adjust for the exponent;  first reduce it modulo _PyHASH_BITS */
 | 
						|
    e = e >= 0 ? e % _PyHASH_BITS : _PyHASH_BITS-1-((-1-e) % _PyHASH_BITS);
 | 
						|
    x = ((x << e) & _PyHASH_MODULUS) | x >> (_PyHASH_BITS - e);
 | 
						|
 | 
						|
    x = x * sign;
 | 
						|
    if (x == (Py_uhash_t)-1)
 | 
						|
        x = (Py_uhash_t)-2;
 | 
						|
    return (Py_hash_t)x;
 | 
						|
}
 | 
						|
 | 
						|
Py_hash_t
 | 
						|
_Py_HashPointer(void *p)
 | 
						|
{
 | 
						|
    Py_hash_t x;
 | 
						|
    size_t y = (size_t)p;
 | 
						|
    /* bottom 3 or 4 bits are likely to be 0; rotate y by 4 to avoid
 | 
						|
       excessive hash collisions for dicts and sets */
 | 
						|
    y = (y >> 4) | (y << (8 * SIZEOF_VOID_P - 4));
 | 
						|
    x = (Py_hash_t)y;
 | 
						|
    if (x == -1)
 | 
						|
        x = -2;
 | 
						|
    return x;
 | 
						|
}
 | 
						|
 | 
						|
Py_hash_t
 | 
						|
_Py_HashBytes(const void *src, Py_ssize_t len)
 | 
						|
{
 | 
						|
    Py_hash_t x;
 | 
						|
    /*
 | 
						|
      We make the hash of the empty string be 0, rather than using
 | 
						|
      (prefix ^ suffix), since this slightly obfuscates the hash secret
 | 
						|
    */
 | 
						|
    if (len == 0) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
#ifdef Py_HASH_STATS
 | 
						|
    hashstats[(len <= Py_HASH_STATS_MAX) ? len : 0]++;
 | 
						|
#endif
 | 
						|
 | 
						|
#if Py_HASH_CUTOFF > 0
 | 
						|
    if (len < Py_HASH_CUTOFF) {
 | 
						|
        /* Optimize hashing of very small strings with inline DJBX33A. */
 | 
						|
        Py_uhash_t hash;
 | 
						|
        const unsigned char *p = src;
 | 
						|
        hash = 5381; /* DJBX33A starts with 5381 */
 | 
						|
 | 
						|
        switch(len) {
 | 
						|
            /* ((hash << 5) + hash) + *p == hash * 33 + *p */
 | 
						|
            case 7: hash = ((hash << 5) + hash) + *p++; /* fallthrough */
 | 
						|
            case 6: hash = ((hash << 5) + hash) + *p++; /* fallthrough */
 | 
						|
            case 5: hash = ((hash << 5) + hash) + *p++; /* fallthrough */
 | 
						|
            case 4: hash = ((hash << 5) + hash) + *p++; /* fallthrough */
 | 
						|
            case 3: hash = ((hash << 5) + hash) + *p++; /* fallthrough */
 | 
						|
            case 2: hash = ((hash << 5) + hash) + *p++; /* fallthrough */
 | 
						|
            case 1: hash = ((hash << 5) + hash) + *p++; break;
 | 
						|
            default:
 | 
						|
                assert(0);
 | 
						|
        }
 | 
						|
        hash ^= len;
 | 
						|
        hash ^= (Py_uhash_t) _Py_HashSecret.djbx33a.suffix;
 | 
						|
        x = (Py_hash_t)hash;
 | 
						|
    }
 | 
						|
    else
 | 
						|
#endif /* Py_HASH_CUTOFF */
 | 
						|
        x = PyHash_Func.hash(src, len);
 | 
						|
 | 
						|
    if (x == -1)
 | 
						|
        return -2;
 | 
						|
    return x;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
_PyHash_Fini(void)
 | 
						|
{
 | 
						|
#ifdef Py_HASH_STATS
 | 
						|
    int i;
 | 
						|
    Py_ssize_t total = 0;
 | 
						|
    char *fmt = "%2i %8" PY_FORMAT_SIZE_T "d %8" PY_FORMAT_SIZE_T "d\n";
 | 
						|
 | 
						|
    fprintf(stderr, "len   calls    total\n");
 | 
						|
    for (i = 1; i <= Py_HASH_STATS_MAX; i++) {
 | 
						|
        total += hashstats[i];
 | 
						|
        fprintf(stderr, fmt, i, hashstats[i], total);
 | 
						|
    }
 | 
						|
    total += hashstats[0];
 | 
						|
    fprintf(stderr, ">  %8" PY_FORMAT_SIZE_T "d %8" PY_FORMAT_SIZE_T "d\n",
 | 
						|
            hashstats[0], total);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
PyHash_FuncDef *
 | 
						|
PyHash_GetFuncDef(void)
 | 
						|
{
 | 
						|
    return &PyHash_Func;
 | 
						|
}
 | 
						|
 | 
						|
/* Optimized memcpy() for Windows */
 | 
						|
#ifdef _MSC_VER
 | 
						|
#  if SIZEOF_PY_UHASH_T == 4
 | 
						|
#    define PY_UHASH_CPY(dst, src) do {                                    \
 | 
						|
       dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; \
 | 
						|
       } while(0)
 | 
						|
#  elif SIZEOF_PY_UHASH_T == 8
 | 
						|
#    define PY_UHASH_CPY(dst, src) do {                                    \
 | 
						|
       dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; \
 | 
						|
       dst[4] = src[4]; dst[5] = src[5]; dst[6] = src[6]; dst[7] = src[7]; \
 | 
						|
       } while(0)
 | 
						|
#  else
 | 
						|
#    error SIZEOF_PY_UHASH_T must be 4 or 8
 | 
						|
#  endif /* SIZEOF_PY_UHASH_T */
 | 
						|
#else /* not Windows */
 | 
						|
#  define PY_UHASH_CPY(dst, src) memcpy(dst, src, SIZEOF_PY_UHASH_T)
 | 
						|
#endif /* _MSC_VER */
 | 
						|
 | 
						|
 | 
						|
#if Py_HASH_ALGORITHM == Py_HASH_FNV
 | 
						|
/* **************************************************************************
 | 
						|
 * Modified Fowler-Noll-Vo (FNV) hash function
 | 
						|
 */
 | 
						|
static Py_hash_t
 | 
						|
fnv(const void *src, Py_ssize_t len)
 | 
						|
{
 | 
						|
    const unsigned char *p = src;
 | 
						|
    Py_uhash_t x;
 | 
						|
    Py_ssize_t remainder, blocks;
 | 
						|
    union {
 | 
						|
        Py_uhash_t value;
 | 
						|
        unsigned char bytes[SIZEOF_PY_UHASH_T];
 | 
						|
    } block;
 | 
						|
 | 
						|
#ifdef Py_DEBUG
 | 
						|
    assert(_Py_HashSecret_Initialized);
 | 
						|
#endif
 | 
						|
    remainder = len % SIZEOF_PY_UHASH_T;
 | 
						|
    if (remainder == 0) {
 | 
						|
        /* Process at least one block byte by byte to reduce hash collisions
 | 
						|
         * for strings with common prefixes. */
 | 
						|
        remainder = SIZEOF_PY_UHASH_T;
 | 
						|
    }
 | 
						|
    blocks = (len - remainder) / SIZEOF_PY_UHASH_T;
 | 
						|
 | 
						|
    x = (Py_uhash_t) _Py_HashSecret.fnv.prefix;
 | 
						|
    x ^= (Py_uhash_t) *p << 7;
 | 
						|
    while (blocks--) {
 | 
						|
        PY_UHASH_CPY(block.bytes, p);
 | 
						|
        x = (_PyHASH_MULTIPLIER * x) ^ block.value;
 | 
						|
        p += SIZEOF_PY_UHASH_T;
 | 
						|
    }
 | 
						|
    /* add remainder */
 | 
						|
    for (; remainder > 0; remainder--)
 | 
						|
        x = (_PyHASH_MULTIPLIER * x) ^ (Py_uhash_t) *p++;
 | 
						|
    x ^= (Py_uhash_t) len;
 | 
						|
    x ^= (Py_uhash_t) _Py_HashSecret.fnv.suffix;
 | 
						|
    if (x == -1) {
 | 
						|
        x = -2;
 | 
						|
    }
 | 
						|
    return x;
 | 
						|
}
 | 
						|
 | 
						|
static PyHash_FuncDef PyHash_Func = {fnv, "fnv", 8 * SIZEOF_PY_HASH_T,
 | 
						|
                                     16 * SIZEOF_PY_HASH_T};
 | 
						|
 | 
						|
#endif /* Py_HASH_ALGORITHM == Py_HASH_FNV */
 | 
						|
 | 
						|
 | 
						|
#if Py_HASH_ALGORITHM == Py_HASH_SIPHASH24
 | 
						|
/* **************************************************************************
 | 
						|
 <MIT License>
 | 
						|
 Copyright (c) 2013  Marek Majkowski <marek@popcount.org>
 | 
						|
 | 
						|
 Permission is hereby granted, free of charge, to any person obtaining a copy
 | 
						|
 of this software and associated documentation files (the "Software"), to deal
 | 
						|
 in the Software without restriction, including without limitation the rights
 | 
						|
 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | 
						|
 copies of the Software, and to permit persons to whom the Software is
 | 
						|
 furnished to do so, subject to the following conditions:
 | 
						|
 | 
						|
 The above copyright notice and this permission notice shall be included in
 | 
						|
 all copies or substantial portions of the Software.
 | 
						|
 | 
						|
 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | 
						|
 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | 
						|
 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 | 
						|
 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | 
						|
 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | 
						|
 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 | 
						|
 THE SOFTWARE.
 | 
						|
 </MIT License>
 | 
						|
 | 
						|
 Original location:
 | 
						|
    https://github.com/majek/csiphash/
 | 
						|
 | 
						|
 Solution inspired by code from:
 | 
						|
    Samuel Neves (supercop/crypto_auth/siphash24/little)
 | 
						|
    djb (supercop/crypto_auth/siphash24/little2)
 | 
						|
    Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)
 | 
						|
 | 
						|
 Modified for Python by Christian Heimes:
 | 
						|
    - C89 / MSVC compatibility
 | 
						|
    - _rotl64() on Windows
 | 
						|
    - letoh64() fallback
 | 
						|
*/
 | 
						|
 | 
						|
/* byte swap little endian to host endian
 | 
						|
 * Endian conversion not only ensures that the hash function returns the same
 | 
						|
 * value on all platforms. It is also required to for a good dispersion of
 | 
						|
 * the hash values' least significant bits.
 | 
						|
 */
 | 
						|
#if PY_LITTLE_ENDIAN
 | 
						|
#  define _le64toh(x) ((uint64_t)(x))
 | 
						|
#elif defined(__APPLE__)
 | 
						|
#  define _le64toh(x) OSSwapLittleToHostInt64(x)
 | 
						|
#elif defined(HAVE_LETOH64)
 | 
						|
#  define _le64toh(x) le64toh(x)
 | 
						|
#else
 | 
						|
#  define _le64toh(x) (((uint64_t)(x) << 56) | \
 | 
						|
                      (((uint64_t)(x) << 40) & 0xff000000000000ULL) | \
 | 
						|
                      (((uint64_t)(x) << 24) & 0xff0000000000ULL) | \
 | 
						|
                      (((uint64_t)(x) << 8)  & 0xff00000000ULL) | \
 | 
						|
                      (((uint64_t)(x) >> 8)  & 0xff000000ULL) | \
 | 
						|
                      (((uint64_t)(x) >> 24) & 0xff0000ULL) | \
 | 
						|
                      (((uint64_t)(x) >> 40) & 0xff00ULL) | \
 | 
						|
                      ((uint64_t)(x)  >> 56))
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
#ifdef _MSC_VER
 | 
						|
#  define ROTATE(x, b)  _rotl64(x, b)
 | 
						|
#else
 | 
						|
#  define ROTATE(x, b) (uint64_t)( ((x) << (b)) | ( (x) >> (64 - (b))) )
 | 
						|
#endif
 | 
						|
 | 
						|
#define HALF_ROUND(a,b,c,d,s,t)         \
 | 
						|
    a += b; c += d;             \
 | 
						|
    b = ROTATE(b, s) ^ a;           \
 | 
						|
    d = ROTATE(d, t) ^ c;           \
 | 
						|
    a = ROTATE(a, 32);
 | 
						|
 | 
						|
#define DOUBLE_ROUND(v0,v1,v2,v3)       \
 | 
						|
    HALF_ROUND(v0,v1,v2,v3,13,16);      \
 | 
						|
    HALF_ROUND(v2,v1,v0,v3,17,21);      \
 | 
						|
    HALF_ROUND(v0,v1,v2,v3,13,16);      \
 | 
						|
    HALF_ROUND(v2,v1,v0,v3,17,21);
 | 
						|
 | 
						|
 | 
						|
static Py_hash_t
 | 
						|
siphash24(const void *src, Py_ssize_t src_sz) {
 | 
						|
    uint64_t k0 = _le64toh(_Py_HashSecret.siphash.k0);
 | 
						|
    uint64_t k1 = _le64toh(_Py_HashSecret.siphash.k1);
 | 
						|
    uint64_t b = (uint64_t)src_sz << 56;
 | 
						|
    const uint64_t *in = (uint64_t*)src;
 | 
						|
 | 
						|
    uint64_t v0 = k0 ^ 0x736f6d6570736575ULL;
 | 
						|
    uint64_t v1 = k1 ^ 0x646f72616e646f6dULL;
 | 
						|
    uint64_t v2 = k0 ^ 0x6c7967656e657261ULL;
 | 
						|
    uint64_t v3 = k1 ^ 0x7465646279746573ULL;
 | 
						|
 | 
						|
    uint64_t t;
 | 
						|
    uint8_t *pt;
 | 
						|
    uint8_t *m;
 | 
						|
 | 
						|
    while (src_sz >= 8) {
 | 
						|
        uint64_t mi = _le64toh(*in);
 | 
						|
        in += 1;
 | 
						|
        src_sz -= 8;
 | 
						|
        v3 ^= mi;
 | 
						|
        DOUBLE_ROUND(v0,v1,v2,v3);
 | 
						|
        v0 ^= mi;
 | 
						|
    }
 | 
						|
 | 
						|
    t = 0;
 | 
						|
    pt = (uint8_t *)&t;
 | 
						|
    m = (uint8_t *)in;
 | 
						|
    switch (src_sz) {
 | 
						|
        case 7: pt[6] = m[6];
 | 
						|
        case 6: pt[5] = m[5];
 | 
						|
        case 5: pt[4] = m[4];
 | 
						|
        case 4: memcpy(pt, m, sizeof(uint32_t)); break;
 | 
						|
        case 3: pt[2] = m[2];
 | 
						|
        case 2: pt[1] = m[1];
 | 
						|
        case 1: pt[0] = m[0];
 | 
						|
    }
 | 
						|
    b |= _le64toh(t);
 | 
						|
 | 
						|
    v3 ^= b;
 | 
						|
    DOUBLE_ROUND(v0,v1,v2,v3);
 | 
						|
    v0 ^= b;
 | 
						|
    v2 ^= 0xff;
 | 
						|
    DOUBLE_ROUND(v0,v1,v2,v3);
 | 
						|
    DOUBLE_ROUND(v0,v1,v2,v3);
 | 
						|
 | 
						|
    /* modified */
 | 
						|
    t = (v0 ^ v1) ^ (v2 ^ v3);
 | 
						|
    return (Py_hash_t)t;
 | 
						|
}
 | 
						|
 | 
						|
static PyHash_FuncDef PyHash_Func = {siphash24, "siphash24", 64, 128};
 | 
						|
 | 
						|
#endif /* Py_HASH_ALGORITHM == Py_HASH_SIPHASH24 */
 | 
						|
 | 
						|
#ifdef __cplusplus
 | 
						|
}
 | 
						|
#endif
 |