mirror of
				https://github.com/python/cpython.git
				synced 2025-11-04 07:31:38 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			3280 lines
		
	
	
	
		
			109 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			3280 lines
		
	
	
	
		
			109 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
"""
 | 
						|
The typing module: Support for gradual typing as defined by PEP 484.
 | 
						|
 | 
						|
At large scale, the structure of the module is following:
 | 
						|
* Imports and exports, all public names should be explicitly added to __all__.
 | 
						|
* Internal helper functions: these should never be used in code outside this module.
 | 
						|
* _SpecialForm and its instances (special forms):
 | 
						|
  Any, NoReturn, Never, ClassVar, Union, Optional, Concatenate, Unpack
 | 
						|
* Classes whose instances can be type arguments in addition to types:
 | 
						|
  ForwardRef, TypeVar and ParamSpec
 | 
						|
* The core of internal generics API: _GenericAlias and _VariadicGenericAlias, the latter is
 | 
						|
  currently only used by Tuple and Callable. All subscripted types like X[int], Union[int, str],
 | 
						|
  etc., are instances of either of these classes.
 | 
						|
* The public counterpart of the generics API consists of two classes: Generic and Protocol.
 | 
						|
* Public helper functions: get_type_hints, overload, cast, no_type_check,
 | 
						|
  no_type_check_decorator.
 | 
						|
* Generic aliases for collections.abc ABCs and few additional protocols.
 | 
						|
* Special types: NewType, NamedTuple, TypedDict.
 | 
						|
"""
 | 
						|
 | 
						|
from abc import abstractmethod, ABCMeta
 | 
						|
import collections
 | 
						|
from collections import defaultdict
 | 
						|
import collections.abc
 | 
						|
import copyreg
 | 
						|
import contextlib
 | 
						|
import functools
 | 
						|
import operator
 | 
						|
import re as stdlib_re  # Avoid confusion with the typing.re namespace on <=3.11
 | 
						|
import sys
 | 
						|
import types
 | 
						|
from types import WrapperDescriptorType, MethodWrapperType, MethodDescriptorType, GenericAlias
 | 
						|
 | 
						|
from _typing import (
 | 
						|
    _idfunc,
 | 
						|
    TypeVar,
 | 
						|
    ParamSpec,
 | 
						|
    TypeVarTuple,
 | 
						|
    ParamSpecArgs,
 | 
						|
    ParamSpecKwargs,
 | 
						|
    TypeAliasType,
 | 
						|
    Generic,
 | 
						|
)
 | 
						|
 | 
						|
# Please keep __all__ alphabetized within each category.
 | 
						|
__all__ = [
 | 
						|
    # Super-special typing primitives.
 | 
						|
    'Annotated',
 | 
						|
    'Any',
 | 
						|
    'Callable',
 | 
						|
    'ClassVar',
 | 
						|
    'Concatenate',
 | 
						|
    'Final',
 | 
						|
    'ForwardRef',
 | 
						|
    'Generic',
 | 
						|
    'Literal',
 | 
						|
    'Optional',
 | 
						|
    'ParamSpec',
 | 
						|
    'Protocol',
 | 
						|
    'Tuple',
 | 
						|
    'Type',
 | 
						|
    'TypeVar',
 | 
						|
    'TypeVarTuple',
 | 
						|
    'Union',
 | 
						|
 | 
						|
    # ABCs (from collections.abc).
 | 
						|
    'AbstractSet',  # collections.abc.Set.
 | 
						|
    'ByteString',
 | 
						|
    'Container',
 | 
						|
    'ContextManager',
 | 
						|
    'Hashable',
 | 
						|
    'ItemsView',
 | 
						|
    'Iterable',
 | 
						|
    'Iterator',
 | 
						|
    'KeysView',
 | 
						|
    'Mapping',
 | 
						|
    'MappingView',
 | 
						|
    'MutableMapping',
 | 
						|
    'MutableSequence',
 | 
						|
    'MutableSet',
 | 
						|
    'Sequence',
 | 
						|
    'Sized',
 | 
						|
    'ValuesView',
 | 
						|
    'Awaitable',
 | 
						|
    'AsyncIterator',
 | 
						|
    'AsyncIterable',
 | 
						|
    'Coroutine',
 | 
						|
    'Collection',
 | 
						|
    'AsyncGenerator',
 | 
						|
    'AsyncContextManager',
 | 
						|
 | 
						|
    # Structural checks, a.k.a. protocols.
 | 
						|
    'Reversible',
 | 
						|
    'SupportsAbs',
 | 
						|
    'SupportsBytes',
 | 
						|
    'SupportsComplex',
 | 
						|
    'SupportsFloat',
 | 
						|
    'SupportsIndex',
 | 
						|
    'SupportsInt',
 | 
						|
    'SupportsRound',
 | 
						|
 | 
						|
    # Concrete collection types.
 | 
						|
    'ChainMap',
 | 
						|
    'Counter',
 | 
						|
    'Deque',
 | 
						|
    'Dict',
 | 
						|
    'DefaultDict',
 | 
						|
    'List',
 | 
						|
    'OrderedDict',
 | 
						|
    'Set',
 | 
						|
    'FrozenSet',
 | 
						|
    'NamedTuple',  # Not really a type.
 | 
						|
    'TypedDict',  # Not really a type.
 | 
						|
    'Generator',
 | 
						|
 | 
						|
    # Other concrete types.
 | 
						|
    'BinaryIO',
 | 
						|
    'IO',
 | 
						|
    'Match',
 | 
						|
    'Pattern',
 | 
						|
    'TextIO',
 | 
						|
 | 
						|
    # One-off things.
 | 
						|
    'AnyStr',
 | 
						|
    'assert_type',
 | 
						|
    'assert_never',
 | 
						|
    'cast',
 | 
						|
    'clear_overloads',
 | 
						|
    'dataclass_transform',
 | 
						|
    'final',
 | 
						|
    'get_args',
 | 
						|
    'get_origin',
 | 
						|
    'get_overloads',
 | 
						|
    'get_type_hints',
 | 
						|
    'is_typeddict',
 | 
						|
    'LiteralString',
 | 
						|
    'Never',
 | 
						|
    'NewType',
 | 
						|
    'no_type_check',
 | 
						|
    'no_type_check_decorator',
 | 
						|
    'NoReturn',
 | 
						|
    'NotRequired',
 | 
						|
    'overload',
 | 
						|
    'override',
 | 
						|
    'ParamSpecArgs',
 | 
						|
    'ParamSpecKwargs',
 | 
						|
    'Required',
 | 
						|
    'reveal_type',
 | 
						|
    'runtime_checkable',
 | 
						|
    'Self',
 | 
						|
    'Text',
 | 
						|
    'TYPE_CHECKING',
 | 
						|
    'TypeAlias',
 | 
						|
    'TypeGuard',
 | 
						|
    'TypeAliasType',
 | 
						|
    'Unpack',
 | 
						|
]
 | 
						|
 | 
						|
 | 
						|
def _type_convert(arg, module=None, *, allow_special_forms=False):
 | 
						|
    """For converting None to type(None), and strings to ForwardRef."""
 | 
						|
    if arg is None:
 | 
						|
        return type(None)
 | 
						|
    if isinstance(arg, str):
 | 
						|
        return ForwardRef(arg, module=module, is_class=allow_special_forms)
 | 
						|
    return arg
 | 
						|
 | 
						|
 | 
						|
def _type_check(arg, msg, is_argument=True, module=None, *, allow_special_forms=False):
 | 
						|
    """Check that the argument is a type, and return it (internal helper).
 | 
						|
 | 
						|
    As a special case, accept None and return type(None) instead. Also wrap strings
 | 
						|
    into ForwardRef instances. Consider several corner cases, for example plain
 | 
						|
    special forms like Union are not valid, while Union[int, str] is OK, etc.
 | 
						|
    The msg argument is a human-readable error message, e.g::
 | 
						|
 | 
						|
        "Union[arg, ...]: arg should be a type."
 | 
						|
 | 
						|
    We append the repr() of the actual value (truncated to 100 chars).
 | 
						|
    """
 | 
						|
    invalid_generic_forms = (Generic, Protocol)
 | 
						|
    if not allow_special_forms:
 | 
						|
        invalid_generic_forms += (ClassVar,)
 | 
						|
        if is_argument:
 | 
						|
            invalid_generic_forms += (Final,)
 | 
						|
 | 
						|
    arg = _type_convert(arg, module=module, allow_special_forms=allow_special_forms)
 | 
						|
    if (isinstance(arg, _GenericAlias) and
 | 
						|
            arg.__origin__ in invalid_generic_forms):
 | 
						|
        raise TypeError(f"{arg} is not valid as type argument")
 | 
						|
    if arg in (Any, LiteralString, NoReturn, Never, Self, TypeAlias):
 | 
						|
        return arg
 | 
						|
    if allow_special_forms and arg in (ClassVar, Final):
 | 
						|
        return arg
 | 
						|
    if isinstance(arg, _SpecialForm) or arg in (Generic, Protocol):
 | 
						|
        raise TypeError(f"Plain {arg} is not valid as type argument")
 | 
						|
    if type(arg) is tuple:
 | 
						|
        raise TypeError(f"{msg} Got {arg!r:.100}.")
 | 
						|
    return arg
 | 
						|
 | 
						|
 | 
						|
def _is_param_expr(arg):
 | 
						|
    return arg is ... or isinstance(arg,
 | 
						|
            (tuple, list, ParamSpec, _ConcatenateGenericAlias))
 | 
						|
 | 
						|
 | 
						|
def _should_unflatten_callable_args(typ, args):
 | 
						|
    """Internal helper for munging collections.abc.Callable's __args__.
 | 
						|
 | 
						|
    The canonical representation for a Callable's __args__ flattens the
 | 
						|
    argument types, see https://bugs.python.org/issue42195. For example:
 | 
						|
 | 
						|
        collections.abc.Callable[[int, int], str].__args__ == (int, int, str)
 | 
						|
        collections.abc.Callable[ParamSpec, str].__args__ == (ParamSpec, str)
 | 
						|
 | 
						|
    As a result, if we need to reconstruct the Callable from its __args__,
 | 
						|
    we need to unflatten it.
 | 
						|
    """
 | 
						|
    return (
 | 
						|
        typ.__origin__ is collections.abc.Callable
 | 
						|
        and not (len(args) == 2 and _is_param_expr(args[0]))
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
def _type_repr(obj):
 | 
						|
    """Return the repr() of an object, special-casing types (internal helper).
 | 
						|
 | 
						|
    If obj is a type, we return a shorter version than the default
 | 
						|
    type.__repr__, based on the module and qualified name, which is
 | 
						|
    typically enough to uniquely identify a type.  For everything
 | 
						|
    else, we fall back on repr(obj).
 | 
						|
    """
 | 
						|
    # When changing this function, don't forget about
 | 
						|
    # `_collections_abc._type_repr`, which does the same thing
 | 
						|
    # and must be consistent with this one.
 | 
						|
    if isinstance(obj, type):
 | 
						|
        if obj.__module__ == 'builtins':
 | 
						|
            return obj.__qualname__
 | 
						|
        return f'{obj.__module__}.{obj.__qualname__}'
 | 
						|
    if obj is ...:
 | 
						|
        return '...'
 | 
						|
    if isinstance(obj, types.FunctionType):
 | 
						|
        return obj.__name__
 | 
						|
    if isinstance(obj, tuple):
 | 
						|
        # Special case for `repr` of types with `ParamSpec`:
 | 
						|
        return '[' + ', '.join(_type_repr(t) for t in obj) + ']'
 | 
						|
    return repr(obj)
 | 
						|
 | 
						|
 | 
						|
def _collect_parameters(args):
 | 
						|
    """Collect all type variables and parameter specifications in args
 | 
						|
    in order of first appearance (lexicographic order). For example::
 | 
						|
 | 
						|
        _collect_parameters((T, Callable[P, T])) == (T, P)
 | 
						|
    """
 | 
						|
    parameters = []
 | 
						|
    for t in args:
 | 
						|
        if isinstance(t, type):
 | 
						|
            # We don't want __parameters__ descriptor of a bare Python class.
 | 
						|
            pass
 | 
						|
        elif isinstance(t, tuple):
 | 
						|
            # `t` might be a tuple, when `ParamSpec` is substituted with
 | 
						|
            # `[T, int]`, or `[int, *Ts]`, etc.
 | 
						|
            for x in t:
 | 
						|
                for collected in _collect_parameters([x]):
 | 
						|
                    if collected not in parameters:
 | 
						|
                        parameters.append(collected)
 | 
						|
        elif hasattr(t, '__typing_subst__'):
 | 
						|
            if t not in parameters:
 | 
						|
                parameters.append(t)
 | 
						|
        else:
 | 
						|
            for x in getattr(t, '__parameters__', ()):
 | 
						|
                if x not in parameters:
 | 
						|
                    parameters.append(x)
 | 
						|
    return tuple(parameters)
 | 
						|
 | 
						|
 | 
						|
def _check_generic(cls, parameters, elen):
 | 
						|
    """Check correct count for parameters of a generic cls (internal helper).
 | 
						|
    This gives a nice error message in case of count mismatch.
 | 
						|
    """
 | 
						|
    if not elen:
 | 
						|
        raise TypeError(f"{cls} is not a generic class")
 | 
						|
    alen = len(parameters)
 | 
						|
    if alen != elen:
 | 
						|
        raise TypeError(f"Too {'many' if alen > elen else 'few'} arguments for {cls};"
 | 
						|
                        f" actual {alen}, expected {elen}")
 | 
						|
 | 
						|
def _unpack_args(args):
 | 
						|
    newargs = []
 | 
						|
    for arg in args:
 | 
						|
        subargs = getattr(arg, '__typing_unpacked_tuple_args__', None)
 | 
						|
        if subargs is not None and not (subargs and subargs[-1] is ...):
 | 
						|
            newargs.extend(subargs)
 | 
						|
        else:
 | 
						|
            newargs.append(arg)
 | 
						|
    return newargs
 | 
						|
 | 
						|
def _deduplicate(params):
 | 
						|
    # Weed out strict duplicates, preserving the first of each occurrence.
 | 
						|
    all_params = set(params)
 | 
						|
    if len(all_params) < len(params):
 | 
						|
        new_params = []
 | 
						|
        for t in params:
 | 
						|
            if t in all_params:
 | 
						|
                new_params.append(t)
 | 
						|
                all_params.remove(t)
 | 
						|
        params = new_params
 | 
						|
        assert not all_params, all_params
 | 
						|
    return params
 | 
						|
 | 
						|
 | 
						|
def _remove_dups_flatten(parameters):
 | 
						|
    """An internal helper for Union creation and substitution: flatten Unions
 | 
						|
    among parameters, then remove duplicates.
 | 
						|
    """
 | 
						|
    # Flatten out Union[Union[...], ...].
 | 
						|
    params = []
 | 
						|
    for p in parameters:
 | 
						|
        if isinstance(p, (_UnionGenericAlias, types.UnionType)):
 | 
						|
            params.extend(p.__args__)
 | 
						|
        else:
 | 
						|
            params.append(p)
 | 
						|
 | 
						|
    return tuple(_deduplicate(params))
 | 
						|
 | 
						|
 | 
						|
def _flatten_literal_params(parameters):
 | 
						|
    """An internal helper for Literal creation: flatten Literals among parameters"""
 | 
						|
    params = []
 | 
						|
    for p in parameters:
 | 
						|
        if isinstance(p, _LiteralGenericAlias):
 | 
						|
            params.extend(p.__args__)
 | 
						|
        else:
 | 
						|
            params.append(p)
 | 
						|
    return tuple(params)
 | 
						|
 | 
						|
 | 
						|
_cleanups = []
 | 
						|
_caches = {}
 | 
						|
 | 
						|
 | 
						|
def _tp_cache(func=None, /, *, typed=False):
 | 
						|
    """Internal wrapper caching __getitem__ of generic types with a fallback to
 | 
						|
    original function for non-hashable arguments.
 | 
						|
    """
 | 
						|
    def decorator(func):
 | 
						|
        # The callback 'inner' references the newly created lru_cache
 | 
						|
        # indirectly by performing a lookup in the global '_caches' dictionary.
 | 
						|
        # This breaks a reference that can be problematic when combined with
 | 
						|
        # C API extensions that leak references to types. See GH-98253.
 | 
						|
 | 
						|
        cache = functools.lru_cache(typed=typed)(func)
 | 
						|
        _caches[func] = cache
 | 
						|
        _cleanups.append(cache.cache_clear)
 | 
						|
        del cache
 | 
						|
 | 
						|
        @functools.wraps(func)
 | 
						|
        def inner(*args, **kwds):
 | 
						|
            try:
 | 
						|
                return _caches[func](*args, **kwds)
 | 
						|
            except TypeError:
 | 
						|
                pass  # All real errors (not unhashable args) are raised below.
 | 
						|
            return func(*args, **kwds)
 | 
						|
        return inner
 | 
						|
 | 
						|
    if func is not None:
 | 
						|
        return decorator(func)
 | 
						|
 | 
						|
    return decorator
 | 
						|
 | 
						|
def _eval_type(t, globalns, localns, recursive_guard=frozenset()):
 | 
						|
    """Evaluate all forward references in the given type t.
 | 
						|
    For use of globalns and localns see the docstring for get_type_hints().
 | 
						|
    recursive_guard is used to prevent infinite recursion with a recursive
 | 
						|
    ForwardRef.
 | 
						|
    """
 | 
						|
    if isinstance(t, ForwardRef):
 | 
						|
        return t._evaluate(globalns, localns, recursive_guard)
 | 
						|
    if isinstance(t, (_GenericAlias, GenericAlias, types.UnionType)):
 | 
						|
        if isinstance(t, GenericAlias):
 | 
						|
            args = tuple(
 | 
						|
                ForwardRef(arg) if isinstance(arg, str) else arg
 | 
						|
                for arg in t.__args__
 | 
						|
            )
 | 
						|
            is_unpacked = t.__unpacked__
 | 
						|
            if _should_unflatten_callable_args(t, args):
 | 
						|
                t = t.__origin__[(args[:-1], args[-1])]
 | 
						|
            else:
 | 
						|
                t = t.__origin__[args]
 | 
						|
            if is_unpacked:
 | 
						|
                t = Unpack[t]
 | 
						|
        ev_args = tuple(_eval_type(a, globalns, localns, recursive_guard) for a in t.__args__)
 | 
						|
        if ev_args == t.__args__:
 | 
						|
            return t
 | 
						|
        if isinstance(t, GenericAlias):
 | 
						|
            return GenericAlias(t.__origin__, ev_args)
 | 
						|
        if isinstance(t, types.UnionType):
 | 
						|
            return functools.reduce(operator.or_, ev_args)
 | 
						|
        else:
 | 
						|
            return t.copy_with(ev_args)
 | 
						|
    return t
 | 
						|
 | 
						|
 | 
						|
class _Final:
 | 
						|
    """Mixin to prohibit subclassing"""
 | 
						|
 | 
						|
    __slots__ = ('__weakref__',)
 | 
						|
 | 
						|
    def __init_subclass__(cls, /, *args, **kwds):
 | 
						|
        if '_root' not in kwds:
 | 
						|
            raise TypeError("Cannot subclass special typing classes")
 | 
						|
 | 
						|
class _Immutable:
 | 
						|
    """Mixin to indicate that object should not be copied."""
 | 
						|
    __slots__ = ()
 | 
						|
 | 
						|
    def __copy__(self):
 | 
						|
        return self
 | 
						|
 | 
						|
    def __deepcopy__(self, memo):
 | 
						|
        return self
 | 
						|
 | 
						|
 | 
						|
class _NotIterable:
 | 
						|
    """Mixin to prevent iteration, without being compatible with Iterable.
 | 
						|
 | 
						|
    That is, we could do:
 | 
						|
        def __iter__(self): raise TypeError()
 | 
						|
    But this would make users of this mixin duck type-compatible with
 | 
						|
    collections.abc.Iterable - isinstance(foo, Iterable) would be True.
 | 
						|
 | 
						|
    Luckily, we can instead prevent iteration by setting __iter__ to None, which
 | 
						|
    is treated specially.
 | 
						|
    """
 | 
						|
 | 
						|
    __slots__ = ()
 | 
						|
    __iter__ = None
 | 
						|
 | 
						|
 | 
						|
# Internal indicator of special typing constructs.
 | 
						|
# See __doc__ instance attribute for specific docs.
 | 
						|
class _SpecialForm(_Final, _NotIterable, _root=True):
 | 
						|
    __slots__ = ('_name', '__doc__', '_getitem')
 | 
						|
 | 
						|
    def __init__(self, getitem):
 | 
						|
        self._getitem = getitem
 | 
						|
        self._name = getitem.__name__
 | 
						|
        self.__doc__ = getitem.__doc__
 | 
						|
 | 
						|
    def __getattr__(self, item):
 | 
						|
        if item in {'__name__', '__qualname__'}:
 | 
						|
            return self._name
 | 
						|
 | 
						|
        raise AttributeError(item)
 | 
						|
 | 
						|
    def __mro_entries__(self, bases):
 | 
						|
        raise TypeError(f"Cannot subclass {self!r}")
 | 
						|
 | 
						|
    def __repr__(self):
 | 
						|
        return 'typing.' + self._name
 | 
						|
 | 
						|
    def __reduce__(self):
 | 
						|
        return self._name
 | 
						|
 | 
						|
    def __call__(self, *args, **kwds):
 | 
						|
        raise TypeError(f"Cannot instantiate {self!r}")
 | 
						|
 | 
						|
    def __or__(self, other):
 | 
						|
        return Union[self, other]
 | 
						|
 | 
						|
    def __ror__(self, other):
 | 
						|
        return Union[other, self]
 | 
						|
 | 
						|
    def __instancecheck__(self, obj):
 | 
						|
        raise TypeError(f"{self} cannot be used with isinstance()")
 | 
						|
 | 
						|
    def __subclasscheck__(self, cls):
 | 
						|
        raise TypeError(f"{self} cannot be used with issubclass()")
 | 
						|
 | 
						|
    @_tp_cache
 | 
						|
    def __getitem__(self, parameters):
 | 
						|
        return self._getitem(self, parameters)
 | 
						|
 | 
						|
 | 
						|
class _LiteralSpecialForm(_SpecialForm, _root=True):
 | 
						|
    def __getitem__(self, parameters):
 | 
						|
        if not isinstance(parameters, tuple):
 | 
						|
            parameters = (parameters,)
 | 
						|
        return self._getitem(self, *parameters)
 | 
						|
 | 
						|
 | 
						|
class _AnyMeta(type):
 | 
						|
    def __instancecheck__(self, obj):
 | 
						|
        if self is Any:
 | 
						|
            raise TypeError("typing.Any cannot be used with isinstance()")
 | 
						|
        return super().__instancecheck__(obj)
 | 
						|
 | 
						|
    def __repr__(self):
 | 
						|
        if self is Any:
 | 
						|
            return "typing.Any"
 | 
						|
        return super().__repr__()  # respect to subclasses
 | 
						|
 | 
						|
 | 
						|
class Any(metaclass=_AnyMeta):
 | 
						|
    """Special type indicating an unconstrained type.
 | 
						|
 | 
						|
    - Any is compatible with every type.
 | 
						|
    - Any assumed to have all methods.
 | 
						|
    - All values assumed to be instances of Any.
 | 
						|
 | 
						|
    Note that all the above statements are true from the point of view of
 | 
						|
    static type checkers. At runtime, Any should not be used with instance
 | 
						|
    checks.
 | 
						|
    """
 | 
						|
    def __new__(cls, *args, **kwargs):
 | 
						|
        if cls is Any:
 | 
						|
            raise TypeError("Any cannot be instantiated")
 | 
						|
        return super().__new__(cls, *args, **kwargs)
 | 
						|
 | 
						|
 | 
						|
@_SpecialForm
 | 
						|
def NoReturn(self, parameters):
 | 
						|
    """Special type indicating functions that never return.
 | 
						|
    Example::
 | 
						|
 | 
						|
      from typing import NoReturn
 | 
						|
 | 
						|
      def stop() -> NoReturn:
 | 
						|
          raise Exception('no way')
 | 
						|
 | 
						|
    NoReturn can also be used as a bottom type, a type that
 | 
						|
    has no values. Starting in Python 3.11, the Never type should
 | 
						|
    be used for this concept instead. Type checkers should treat the two
 | 
						|
    equivalently.
 | 
						|
 | 
						|
    """
 | 
						|
    raise TypeError(f"{self} is not subscriptable")
 | 
						|
 | 
						|
# This is semantically identical to NoReturn, but it is implemented
 | 
						|
# separately so that type checkers can distinguish between the two
 | 
						|
# if they want.
 | 
						|
@_SpecialForm
 | 
						|
def Never(self, parameters):
 | 
						|
    """The bottom type, a type that has no members.
 | 
						|
 | 
						|
    This can be used to define a function that should never be
 | 
						|
    called, or a function that never returns::
 | 
						|
 | 
						|
        from typing import Never
 | 
						|
 | 
						|
        def never_call_me(arg: Never) -> None:
 | 
						|
            pass
 | 
						|
 | 
						|
        def int_or_str(arg: int | str) -> None:
 | 
						|
            never_call_me(arg)  # type checker error
 | 
						|
            match arg:
 | 
						|
                case int():
 | 
						|
                    print("It's an int")
 | 
						|
                case str():
 | 
						|
                    print("It's a str")
 | 
						|
                case _:
 | 
						|
                    never_call_me(arg)  # ok, arg is of type Never
 | 
						|
 | 
						|
    """
 | 
						|
    raise TypeError(f"{self} is not subscriptable")
 | 
						|
 | 
						|
 | 
						|
@_SpecialForm
 | 
						|
def Self(self, parameters):
 | 
						|
    """Used to spell the type of "self" in classes.
 | 
						|
 | 
						|
    Example::
 | 
						|
 | 
						|
      from typing import Self
 | 
						|
 | 
						|
      class Foo:
 | 
						|
          def return_self(self) -> Self:
 | 
						|
              ...
 | 
						|
              return self
 | 
						|
 | 
						|
    This is especially useful for:
 | 
						|
        - classmethods that are used as alternative constructors
 | 
						|
        - annotating an `__enter__` method which returns self
 | 
						|
    """
 | 
						|
    raise TypeError(f"{self} is not subscriptable")
 | 
						|
 | 
						|
 | 
						|
@_SpecialForm
 | 
						|
def LiteralString(self, parameters):
 | 
						|
    """Represents an arbitrary literal string.
 | 
						|
 | 
						|
    Example::
 | 
						|
 | 
						|
        from typing import LiteralString
 | 
						|
 | 
						|
        def run_query(sql: LiteralString) -> ...
 | 
						|
            ...
 | 
						|
 | 
						|
        def caller(arbitrary_string: str, literal_string: LiteralString) -> None:
 | 
						|
            run_query("SELECT * FROM students")  # ok
 | 
						|
            run_query(literal_string)  # ok
 | 
						|
            run_query("SELECT * FROM " + literal_string)  # ok
 | 
						|
            run_query(arbitrary_string)  # type checker error
 | 
						|
            run_query(  # type checker error
 | 
						|
                f"SELECT * FROM students WHERE name = {arbitrary_string}"
 | 
						|
            )
 | 
						|
 | 
						|
    Only string literals and other LiteralStrings are compatible
 | 
						|
    with LiteralString. This provides a tool to help prevent
 | 
						|
    security issues such as SQL injection.
 | 
						|
 | 
						|
    """
 | 
						|
    raise TypeError(f"{self} is not subscriptable")
 | 
						|
 | 
						|
 | 
						|
@_SpecialForm
 | 
						|
def ClassVar(self, parameters):
 | 
						|
    """Special type construct to mark class variables.
 | 
						|
 | 
						|
    An annotation wrapped in ClassVar indicates that a given
 | 
						|
    attribute is intended to be used as a class variable and
 | 
						|
    should not be set on instances of that class. Usage::
 | 
						|
 | 
						|
      class Starship:
 | 
						|
          stats: ClassVar[Dict[str, int]] = {} # class variable
 | 
						|
          damage: int = 10                     # instance variable
 | 
						|
 | 
						|
    ClassVar accepts only types and cannot be further subscribed.
 | 
						|
 | 
						|
    Note that ClassVar is not a class itself, and should not
 | 
						|
    be used with isinstance() or issubclass().
 | 
						|
    """
 | 
						|
    item = _type_check(parameters, f'{self} accepts only single type.')
 | 
						|
    return _GenericAlias(self, (item,))
 | 
						|
 | 
						|
@_SpecialForm
 | 
						|
def Final(self, parameters):
 | 
						|
    """Special typing construct to indicate final names to type checkers.
 | 
						|
 | 
						|
    A final name cannot be re-assigned or overridden in a subclass.
 | 
						|
    For example:
 | 
						|
 | 
						|
      MAX_SIZE: Final = 9000
 | 
						|
      MAX_SIZE += 1  # Error reported by type checker
 | 
						|
 | 
						|
      class Connection:
 | 
						|
          TIMEOUT: Final[int] = 10
 | 
						|
 | 
						|
      class FastConnector(Connection):
 | 
						|
          TIMEOUT = 1  # Error reported by type checker
 | 
						|
 | 
						|
    There is no runtime checking of these properties.
 | 
						|
    """
 | 
						|
    item = _type_check(parameters, f'{self} accepts only single type.')
 | 
						|
    return _GenericAlias(self, (item,))
 | 
						|
 | 
						|
@_SpecialForm
 | 
						|
def Union(self, parameters):
 | 
						|
    """Union type; Union[X, Y] means either X or Y.
 | 
						|
 | 
						|
    To define a union, use e.g. Union[int, str].  Details:
 | 
						|
    - The arguments must be types and there must be at least one.
 | 
						|
    - None as an argument is a special case and is replaced by
 | 
						|
      type(None).
 | 
						|
    - Unions of unions are flattened, e.g.::
 | 
						|
 | 
						|
        Union[Union[int, str], float] == Union[int, str, float]
 | 
						|
 | 
						|
    - Unions of a single argument vanish, e.g.::
 | 
						|
 | 
						|
        Union[int] == int  # The constructor actually returns int
 | 
						|
 | 
						|
    - Redundant arguments are skipped, e.g.::
 | 
						|
 | 
						|
        Union[int, str, int] == Union[int, str]
 | 
						|
 | 
						|
    - When comparing unions, the argument order is ignored, e.g.::
 | 
						|
 | 
						|
        Union[int, str] == Union[str, int]
 | 
						|
 | 
						|
    - You cannot subclass or instantiate a union.
 | 
						|
    - You can use Optional[X] as a shorthand for Union[X, None].
 | 
						|
    """
 | 
						|
    if parameters == ():
 | 
						|
        raise TypeError("Cannot take a Union of no types.")
 | 
						|
    if not isinstance(parameters, tuple):
 | 
						|
        parameters = (parameters,)
 | 
						|
    msg = "Union[arg, ...]: each arg must be a type."
 | 
						|
    parameters = tuple(_type_check(p, msg) for p in parameters)
 | 
						|
    parameters = _remove_dups_flatten(parameters)
 | 
						|
    if len(parameters) == 1:
 | 
						|
        return parameters[0]
 | 
						|
    if len(parameters) == 2 and type(None) in parameters:
 | 
						|
        return _UnionGenericAlias(self, parameters, name="Optional")
 | 
						|
    return _UnionGenericAlias(self, parameters)
 | 
						|
 | 
						|
def _make_union(left, right):
 | 
						|
    """Used from the C implementation of TypeVar.
 | 
						|
 | 
						|
    TypeVar.__or__ calls this instead of returning types.UnionType
 | 
						|
    because we want to allow unions between TypeVars and strings
 | 
						|
    (forward references.)
 | 
						|
    """
 | 
						|
    return Union[left, right]
 | 
						|
 | 
						|
@_SpecialForm
 | 
						|
def Optional(self, parameters):
 | 
						|
    """Optional type.
 | 
						|
 | 
						|
    Optional[X] is equivalent to Union[X, None].
 | 
						|
    """
 | 
						|
    arg = _type_check(parameters, f"{self} requires a single type.")
 | 
						|
    return Union[arg, type(None)]
 | 
						|
 | 
						|
@_LiteralSpecialForm
 | 
						|
@_tp_cache(typed=True)
 | 
						|
def Literal(self, *parameters):
 | 
						|
    """Special typing form to define literal types (a.k.a. value types).
 | 
						|
 | 
						|
    This form can be used to indicate to type checkers that the corresponding
 | 
						|
    variable or function parameter has a value equivalent to the provided
 | 
						|
    literal (or one of several literals):
 | 
						|
 | 
						|
      def validate_simple(data: Any) -> Literal[True]:  # always returns True
 | 
						|
          ...
 | 
						|
 | 
						|
      MODE = Literal['r', 'rb', 'w', 'wb']
 | 
						|
      def open_helper(file: str, mode: MODE) -> str:
 | 
						|
          ...
 | 
						|
 | 
						|
      open_helper('/some/path', 'r')  # Passes type check
 | 
						|
      open_helper('/other/path', 'typo')  # Error in type checker
 | 
						|
 | 
						|
    Literal[...] cannot be subclassed. At runtime, an arbitrary value
 | 
						|
    is allowed as type argument to Literal[...], but type checkers may
 | 
						|
    impose restrictions.
 | 
						|
    """
 | 
						|
    # There is no '_type_check' call because arguments to Literal[...] are
 | 
						|
    # values, not types.
 | 
						|
    parameters = _flatten_literal_params(parameters)
 | 
						|
 | 
						|
    try:
 | 
						|
        parameters = tuple(p for p, _ in _deduplicate(list(_value_and_type_iter(parameters))))
 | 
						|
    except TypeError:  # unhashable parameters
 | 
						|
        pass
 | 
						|
 | 
						|
    return _LiteralGenericAlias(self, parameters)
 | 
						|
 | 
						|
 | 
						|
@_SpecialForm
 | 
						|
def TypeAlias(self, parameters):
 | 
						|
    """Special marker indicating that an assignment should
 | 
						|
    be recognized as a proper type alias definition by type
 | 
						|
    checkers.
 | 
						|
 | 
						|
    For example::
 | 
						|
 | 
						|
        Predicate: TypeAlias = Callable[..., bool]
 | 
						|
 | 
						|
    It's invalid when used anywhere except as in the example above.
 | 
						|
    """
 | 
						|
    raise TypeError(f"{self} is not subscriptable")
 | 
						|
 | 
						|
 | 
						|
@_SpecialForm
 | 
						|
def Concatenate(self, parameters):
 | 
						|
    """Used in conjunction with ``ParamSpec`` and ``Callable`` to represent a
 | 
						|
    higher order function which adds, removes or transforms parameters of a
 | 
						|
    callable.
 | 
						|
 | 
						|
    For example::
 | 
						|
 | 
						|
       Callable[Concatenate[int, P], int]
 | 
						|
 | 
						|
    See PEP 612 for detailed information.
 | 
						|
    """
 | 
						|
    if parameters == ():
 | 
						|
        raise TypeError("Cannot take a Concatenate of no types.")
 | 
						|
    if not isinstance(parameters, tuple):
 | 
						|
        parameters = (parameters,)
 | 
						|
    if not (parameters[-1] is ... or isinstance(parameters[-1], ParamSpec)):
 | 
						|
        raise TypeError("The last parameter to Concatenate should be a "
 | 
						|
                        "ParamSpec variable or ellipsis.")
 | 
						|
    msg = "Concatenate[arg, ...]: each arg must be a type."
 | 
						|
    parameters = (*(_type_check(p, msg) for p in parameters[:-1]), parameters[-1])
 | 
						|
    return _ConcatenateGenericAlias(self, parameters)
 | 
						|
 | 
						|
 | 
						|
@_SpecialForm
 | 
						|
def TypeGuard(self, parameters):
 | 
						|
    """Special typing form used to annotate the return type of a user-defined
 | 
						|
    type guard function.  ``TypeGuard`` only accepts a single type argument.
 | 
						|
    At runtime, functions marked this way should return a boolean.
 | 
						|
 | 
						|
    ``TypeGuard`` aims to benefit *type narrowing* -- a technique used by static
 | 
						|
    type checkers to determine a more precise type of an expression within a
 | 
						|
    program's code flow.  Usually type narrowing is done by analyzing
 | 
						|
    conditional code flow and applying the narrowing to a block of code.  The
 | 
						|
    conditional expression here is sometimes referred to as a "type guard".
 | 
						|
 | 
						|
    Sometimes it would be convenient to use a user-defined boolean function
 | 
						|
    as a type guard.  Such a function should use ``TypeGuard[...]`` as its
 | 
						|
    return type to alert static type checkers to this intention.
 | 
						|
 | 
						|
    Using  ``-> TypeGuard`` tells the static type checker that for a given
 | 
						|
    function:
 | 
						|
 | 
						|
    1. The return value is a boolean.
 | 
						|
    2. If the return value is ``True``, the type of its argument
 | 
						|
       is the type inside ``TypeGuard``.
 | 
						|
 | 
						|
       For example::
 | 
						|
 | 
						|
          def is_str(val: Union[str, float]):
 | 
						|
              # "isinstance" type guard
 | 
						|
              if isinstance(val, str):
 | 
						|
                  # Type of ``val`` is narrowed to ``str``
 | 
						|
                  ...
 | 
						|
              else:
 | 
						|
                  # Else, type of ``val`` is narrowed to ``float``.
 | 
						|
                  ...
 | 
						|
 | 
						|
    Strict type narrowing is not enforced -- ``TypeB`` need not be a narrower
 | 
						|
    form of ``TypeA`` (it can even be a wider form) and this may lead to
 | 
						|
    type-unsafe results.  The main reason is to allow for things like
 | 
						|
    narrowing ``List[object]`` to ``List[str]`` even though the latter is not
 | 
						|
    a subtype of the former, since ``List`` is invariant.  The responsibility of
 | 
						|
    writing type-safe type guards is left to the user.
 | 
						|
 | 
						|
    ``TypeGuard`` also works with type variables.  For more information, see
 | 
						|
    PEP 647 (User-Defined Type Guards).
 | 
						|
    """
 | 
						|
    item = _type_check(parameters, f'{self} accepts only single type.')
 | 
						|
    return _GenericAlias(self, (item,))
 | 
						|
 | 
						|
 | 
						|
class ForwardRef(_Final, _root=True):
 | 
						|
    """Internal wrapper to hold a forward reference."""
 | 
						|
 | 
						|
    __slots__ = ('__forward_arg__', '__forward_code__',
 | 
						|
                 '__forward_evaluated__', '__forward_value__',
 | 
						|
                 '__forward_is_argument__', '__forward_is_class__',
 | 
						|
                 '__forward_module__')
 | 
						|
 | 
						|
    def __init__(self, arg, is_argument=True, module=None, *, is_class=False):
 | 
						|
        if not isinstance(arg, str):
 | 
						|
            raise TypeError(f"Forward reference must be a string -- got {arg!r}")
 | 
						|
 | 
						|
        # If we do `def f(*args: *Ts)`, then we'll have `arg = '*Ts'`.
 | 
						|
        # Unfortunately, this isn't a valid expression on its own, so we
 | 
						|
        # do the unpacking manually.
 | 
						|
        if arg[0] == '*':
 | 
						|
            arg_to_compile = f'({arg},)[0]'  # E.g. (*Ts,)[0] or (*tuple[int, int],)[0]
 | 
						|
        else:
 | 
						|
            arg_to_compile = arg
 | 
						|
        try:
 | 
						|
            code = compile(arg_to_compile, '<string>', 'eval')
 | 
						|
        except SyntaxError:
 | 
						|
            raise SyntaxError(f"Forward reference must be an expression -- got {arg!r}")
 | 
						|
 | 
						|
        self.__forward_arg__ = arg
 | 
						|
        self.__forward_code__ = code
 | 
						|
        self.__forward_evaluated__ = False
 | 
						|
        self.__forward_value__ = None
 | 
						|
        self.__forward_is_argument__ = is_argument
 | 
						|
        self.__forward_is_class__ = is_class
 | 
						|
        self.__forward_module__ = module
 | 
						|
 | 
						|
    def _evaluate(self, globalns, localns, recursive_guard):
 | 
						|
        if self.__forward_arg__ in recursive_guard:
 | 
						|
            return self
 | 
						|
        if not self.__forward_evaluated__ or localns is not globalns:
 | 
						|
            if globalns is None and localns is None:
 | 
						|
                globalns = localns = {}
 | 
						|
            elif globalns is None:
 | 
						|
                globalns = localns
 | 
						|
            elif localns is None:
 | 
						|
                localns = globalns
 | 
						|
            if self.__forward_module__ is not None:
 | 
						|
                globalns = getattr(
 | 
						|
                    sys.modules.get(self.__forward_module__, None), '__dict__', globalns
 | 
						|
                )
 | 
						|
            type_ = _type_check(
 | 
						|
                eval(self.__forward_code__, globalns, localns),
 | 
						|
                "Forward references must evaluate to types.",
 | 
						|
                is_argument=self.__forward_is_argument__,
 | 
						|
                allow_special_forms=self.__forward_is_class__,
 | 
						|
            )
 | 
						|
            self.__forward_value__ = _eval_type(
 | 
						|
                type_, globalns, localns, recursive_guard | {self.__forward_arg__}
 | 
						|
            )
 | 
						|
            self.__forward_evaluated__ = True
 | 
						|
        return self.__forward_value__
 | 
						|
 | 
						|
    def __eq__(self, other):
 | 
						|
        if not isinstance(other, ForwardRef):
 | 
						|
            return NotImplemented
 | 
						|
        if self.__forward_evaluated__ and other.__forward_evaluated__:
 | 
						|
            return (self.__forward_arg__ == other.__forward_arg__ and
 | 
						|
                    self.__forward_value__ == other.__forward_value__)
 | 
						|
        return (self.__forward_arg__ == other.__forward_arg__ and
 | 
						|
                self.__forward_module__ == other.__forward_module__)
 | 
						|
 | 
						|
    def __hash__(self):
 | 
						|
        return hash((self.__forward_arg__, self.__forward_module__))
 | 
						|
 | 
						|
    def __or__(self, other):
 | 
						|
        return Union[self, other]
 | 
						|
 | 
						|
    def __ror__(self, other):
 | 
						|
        return Union[other, self]
 | 
						|
 | 
						|
    def __repr__(self):
 | 
						|
        if self.__forward_module__ is None:
 | 
						|
            module_repr = ''
 | 
						|
        else:
 | 
						|
            module_repr = f', module={self.__forward_module__!r}'
 | 
						|
        return f'ForwardRef({self.__forward_arg__!r}{module_repr})'
 | 
						|
 | 
						|
 | 
						|
def _is_unpacked_typevartuple(x: Any) -> bool:
 | 
						|
    return ((not isinstance(x, type)) and
 | 
						|
            getattr(x, '__typing_is_unpacked_typevartuple__', False))
 | 
						|
 | 
						|
 | 
						|
def _is_typevar_like(x: Any) -> bool:
 | 
						|
    return isinstance(x, (TypeVar, ParamSpec)) or _is_unpacked_typevartuple(x)
 | 
						|
 | 
						|
 | 
						|
class _PickleUsingNameMixin:
 | 
						|
    """Mixin enabling pickling based on self.__name__."""
 | 
						|
 | 
						|
    def __reduce__(self):
 | 
						|
        return self.__name__
 | 
						|
 | 
						|
 | 
						|
def _typevar_subst(self, arg):
 | 
						|
    msg = "Parameters to generic types must be types."
 | 
						|
    arg = _type_check(arg, msg, is_argument=True)
 | 
						|
    if ((isinstance(arg, _GenericAlias) and arg.__origin__ is Unpack) or
 | 
						|
        (isinstance(arg, GenericAlias) and getattr(arg, '__unpacked__', False))):
 | 
						|
        raise TypeError(f"{arg} is not valid as type argument")
 | 
						|
    return arg
 | 
						|
 | 
						|
 | 
						|
def _typevartuple_prepare_subst(self, alias, args):
 | 
						|
    params = alias.__parameters__
 | 
						|
    typevartuple_index = params.index(self)
 | 
						|
    for param in params[typevartuple_index + 1:]:
 | 
						|
        if isinstance(param, TypeVarTuple):
 | 
						|
            raise TypeError(f"More than one TypeVarTuple parameter in {alias}")
 | 
						|
 | 
						|
    alen = len(args)
 | 
						|
    plen = len(params)
 | 
						|
    left = typevartuple_index
 | 
						|
    right = plen - typevartuple_index - 1
 | 
						|
    var_tuple_index = None
 | 
						|
    fillarg = None
 | 
						|
    for k, arg in enumerate(args):
 | 
						|
        if not isinstance(arg, type):
 | 
						|
            subargs = getattr(arg, '__typing_unpacked_tuple_args__', None)
 | 
						|
            if subargs and len(subargs) == 2 and subargs[-1] is ...:
 | 
						|
                if var_tuple_index is not None:
 | 
						|
                    raise TypeError("More than one unpacked arbitrary-length tuple argument")
 | 
						|
                var_tuple_index = k
 | 
						|
                fillarg = subargs[0]
 | 
						|
    if var_tuple_index is not None:
 | 
						|
        left = min(left, var_tuple_index)
 | 
						|
        right = min(right, alen - var_tuple_index - 1)
 | 
						|
    elif left + right > alen:
 | 
						|
        raise TypeError(f"Too few arguments for {alias};"
 | 
						|
                        f" actual {alen}, expected at least {plen-1}")
 | 
						|
 | 
						|
    return (
 | 
						|
        *args[:left],
 | 
						|
        *([fillarg]*(typevartuple_index - left)),
 | 
						|
        tuple(args[left: alen - right]),
 | 
						|
        *([fillarg]*(plen - right - left - typevartuple_index - 1)),
 | 
						|
        *args[alen - right:],
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
def _paramspec_subst(self, arg):
 | 
						|
    if isinstance(arg, (list, tuple)):
 | 
						|
        arg = tuple(_type_check(a, "Expected a type.") for a in arg)
 | 
						|
    elif not _is_param_expr(arg):
 | 
						|
        raise TypeError(f"Expected a list of types, an ellipsis, "
 | 
						|
                        f"ParamSpec, or Concatenate. Got {arg}")
 | 
						|
    return arg
 | 
						|
 | 
						|
 | 
						|
def _paramspec_prepare_subst(self, alias, args):
 | 
						|
    params = alias.__parameters__
 | 
						|
    i = params.index(self)
 | 
						|
    if i >= len(args):
 | 
						|
        raise TypeError(f"Too few arguments for {alias}")
 | 
						|
    # Special case where Z[[int, str, bool]] == Z[int, str, bool] in PEP 612.
 | 
						|
    if len(params) == 1 and not _is_param_expr(args[0]):
 | 
						|
        assert i == 0
 | 
						|
        args = (args,)
 | 
						|
    # Convert lists to tuples to help other libraries cache the results.
 | 
						|
    elif isinstance(args[i], list):
 | 
						|
        args = (*args[:i], tuple(args[i]), *args[i+1:])
 | 
						|
    return args
 | 
						|
 | 
						|
 | 
						|
@_tp_cache
 | 
						|
def _generic_class_getitem(cls, params):
 | 
						|
    """Parameterizes a generic class.
 | 
						|
 | 
						|
    At least, parameterizing a generic class is the *main* thing this method
 | 
						|
    does. For example, for some generic class `Foo`, this is called when we
 | 
						|
    do `Foo[int]` - there, with `cls=Foo` and `params=int`.
 | 
						|
 | 
						|
    However, note that this method is also called when defining generic
 | 
						|
    classes in the first place with `class Foo(Generic[T]): ...`.
 | 
						|
    """
 | 
						|
    if not isinstance(params, tuple):
 | 
						|
        params = (params,)
 | 
						|
 | 
						|
    params = tuple(_type_convert(p) for p in params)
 | 
						|
    is_generic_or_protocol = cls in (Generic, Protocol)
 | 
						|
 | 
						|
    if is_generic_or_protocol:
 | 
						|
        # Generic and Protocol can only be subscripted with unique type variables.
 | 
						|
        if not params:
 | 
						|
            raise TypeError(
 | 
						|
                f"Parameter list to {cls.__qualname__}[...] cannot be empty"
 | 
						|
            )
 | 
						|
        if not all(_is_typevar_like(p) for p in params):
 | 
						|
            raise TypeError(
 | 
						|
                f"Parameters to {cls.__name__}[...] must all be type variables "
 | 
						|
                f"or parameter specification variables.")
 | 
						|
        if len(set(params)) != len(params):
 | 
						|
            raise TypeError(
 | 
						|
                f"Parameters to {cls.__name__}[...] must all be unique")
 | 
						|
    else:
 | 
						|
        # Subscripting a regular Generic subclass.
 | 
						|
        for param in cls.__parameters__:
 | 
						|
            prepare = getattr(param, '__typing_prepare_subst__', None)
 | 
						|
            if prepare is not None:
 | 
						|
                params = prepare(cls, params)
 | 
						|
        _check_generic(cls, params, len(cls.__parameters__))
 | 
						|
 | 
						|
        new_args = []
 | 
						|
        for param, new_arg in zip(cls.__parameters__, params):
 | 
						|
            if isinstance(param, TypeVarTuple):
 | 
						|
                new_args.extend(new_arg)
 | 
						|
            else:
 | 
						|
                new_args.append(new_arg)
 | 
						|
        params = tuple(new_args)
 | 
						|
 | 
						|
    return _GenericAlias(cls, params)
 | 
						|
 | 
						|
 | 
						|
def _generic_init_subclass(cls, *args, **kwargs):
 | 
						|
    super(Generic, cls).__init_subclass__(*args, **kwargs)
 | 
						|
    tvars = []
 | 
						|
    if '__orig_bases__' in cls.__dict__:
 | 
						|
        error = Generic in cls.__orig_bases__
 | 
						|
    else:
 | 
						|
        error = (Generic in cls.__bases__ and
 | 
						|
                    cls.__name__ != 'Protocol' and
 | 
						|
                    type(cls) != _TypedDictMeta)
 | 
						|
    if error:
 | 
						|
        raise TypeError("Cannot inherit from plain Generic")
 | 
						|
    if '__orig_bases__' in cls.__dict__:
 | 
						|
        tvars = _collect_parameters(cls.__orig_bases__)
 | 
						|
        # Look for Generic[T1, ..., Tn].
 | 
						|
        # If found, tvars must be a subset of it.
 | 
						|
        # If not found, tvars is it.
 | 
						|
        # Also check for and reject plain Generic,
 | 
						|
        # and reject multiple Generic[...].
 | 
						|
        gvars = None
 | 
						|
        for base in cls.__orig_bases__:
 | 
						|
            if (isinstance(base, _GenericAlias) and
 | 
						|
                    base.__origin__ is Generic):
 | 
						|
                if gvars is not None:
 | 
						|
                    raise TypeError(
 | 
						|
                        "Cannot inherit from Generic[...] multiple times.")
 | 
						|
                gvars = base.__parameters__
 | 
						|
        if gvars is not None:
 | 
						|
            tvarset = set(tvars)
 | 
						|
            gvarset = set(gvars)
 | 
						|
            if not tvarset <= gvarset:
 | 
						|
                s_vars = ', '.join(str(t) for t in tvars if t not in gvarset)
 | 
						|
                s_args = ', '.join(str(g) for g in gvars)
 | 
						|
                raise TypeError(f"Some type variables ({s_vars}) are"
 | 
						|
                                f" not listed in Generic[{s_args}]")
 | 
						|
            tvars = gvars
 | 
						|
    cls.__parameters__ = tuple(tvars)
 | 
						|
 | 
						|
 | 
						|
def _is_dunder(attr):
 | 
						|
    return attr.startswith('__') and attr.endswith('__')
 | 
						|
 | 
						|
class _BaseGenericAlias(_Final, _root=True):
 | 
						|
    """The central part of internal API.
 | 
						|
 | 
						|
    This represents a generic version of type 'origin' with type arguments 'params'.
 | 
						|
    There are two kind of these aliases: user defined and special. The special ones
 | 
						|
    are wrappers around builtin collections and ABCs in collections.abc. These must
 | 
						|
    have 'name' always set. If 'inst' is False, then the alias can't be instantiated,
 | 
						|
    this is used by e.g. typing.List and typing.Dict.
 | 
						|
    """
 | 
						|
    def __init__(self, origin, *, inst=True, name=None):
 | 
						|
        self._inst = inst
 | 
						|
        self._name = name
 | 
						|
        self.__origin__ = origin
 | 
						|
        self.__slots__ = None  # This is not documented.
 | 
						|
 | 
						|
    def __call__(self, *args, **kwargs):
 | 
						|
        if not self._inst:
 | 
						|
            raise TypeError(f"Type {self._name} cannot be instantiated; "
 | 
						|
                            f"use {self.__origin__.__name__}() instead")
 | 
						|
        result = self.__origin__(*args, **kwargs)
 | 
						|
        try:
 | 
						|
            result.__orig_class__ = self
 | 
						|
        except AttributeError:
 | 
						|
            pass
 | 
						|
        return result
 | 
						|
 | 
						|
    def __mro_entries__(self, bases):
 | 
						|
        res = []
 | 
						|
        if self.__origin__ not in bases:
 | 
						|
            res.append(self.__origin__)
 | 
						|
        i = bases.index(self)
 | 
						|
        for b in bases[i+1:]:
 | 
						|
            if isinstance(b, _BaseGenericAlias) or issubclass(b, Generic):
 | 
						|
                break
 | 
						|
        else:
 | 
						|
            res.append(Generic)
 | 
						|
        return tuple(res)
 | 
						|
 | 
						|
    def __getattr__(self, attr):
 | 
						|
        if attr in {'__name__', '__qualname__'}:
 | 
						|
            return self._name or self.__origin__.__name__
 | 
						|
 | 
						|
        # We are careful for copy and pickle.
 | 
						|
        # Also for simplicity we don't relay any dunder names
 | 
						|
        if '__origin__' in self.__dict__ and not _is_dunder(attr):
 | 
						|
            return getattr(self.__origin__, attr)
 | 
						|
        raise AttributeError(attr)
 | 
						|
 | 
						|
    def __setattr__(self, attr, val):
 | 
						|
        if _is_dunder(attr) or attr in {'_name', '_inst', '_nparams'}:
 | 
						|
            super().__setattr__(attr, val)
 | 
						|
        else:
 | 
						|
            setattr(self.__origin__, attr, val)
 | 
						|
 | 
						|
    def __instancecheck__(self, obj):
 | 
						|
        return self.__subclasscheck__(type(obj))
 | 
						|
 | 
						|
    def __subclasscheck__(self, cls):
 | 
						|
        raise TypeError("Subscripted generics cannot be used with"
 | 
						|
                        " class and instance checks")
 | 
						|
 | 
						|
    def __dir__(self):
 | 
						|
        return list(set(super().__dir__()
 | 
						|
                + [attr for attr in dir(self.__origin__) if not _is_dunder(attr)]))
 | 
						|
 | 
						|
 | 
						|
# Special typing constructs Union, Optional, Generic, Callable and Tuple
 | 
						|
# use three special attributes for internal bookkeeping of generic types:
 | 
						|
# * __parameters__ is a tuple of unique free type parameters of a generic
 | 
						|
#   type, for example, Dict[T, T].__parameters__ == (T,);
 | 
						|
# * __origin__ keeps a reference to a type that was subscripted,
 | 
						|
#   e.g., Union[T, int].__origin__ == Union, or the non-generic version of
 | 
						|
#   the type.
 | 
						|
# * __args__ is a tuple of all arguments used in subscripting,
 | 
						|
#   e.g., Dict[T, int].__args__ == (T, int).
 | 
						|
 | 
						|
 | 
						|
class _GenericAlias(_BaseGenericAlias, _root=True):
 | 
						|
    # The type of parameterized generics.
 | 
						|
    #
 | 
						|
    # That is, for example, `type(List[int])` is `_GenericAlias`.
 | 
						|
    #
 | 
						|
    # Objects which are instances of this class include:
 | 
						|
    # * Parameterized container types, e.g. `Tuple[int]`, `List[int]`.
 | 
						|
    #  * Note that native container types, e.g. `tuple`, `list`, use
 | 
						|
    #    `types.GenericAlias` instead.
 | 
						|
    # * Parameterized classes:
 | 
						|
    #     T = TypeVar('T')
 | 
						|
    #     class C(Generic[T]): pass
 | 
						|
    #     # C[int] is a _GenericAlias
 | 
						|
    # * `Callable` aliases, generic `Callable` aliases, and
 | 
						|
    #   parameterized `Callable` aliases:
 | 
						|
    #     T = TypeVar('T')
 | 
						|
    #     # _CallableGenericAlias inherits from _GenericAlias.
 | 
						|
    #     A = Callable[[], None]  # _CallableGenericAlias
 | 
						|
    #     B = Callable[[T], None]  # _CallableGenericAlias
 | 
						|
    #     C = B[int]  # _CallableGenericAlias
 | 
						|
    # * Parameterized `Final`, `ClassVar` and `TypeGuard`:
 | 
						|
    #     # All _GenericAlias
 | 
						|
    #     Final[int]
 | 
						|
    #     ClassVar[float]
 | 
						|
    #     TypeVar[bool]
 | 
						|
 | 
						|
    def __init__(self, origin, args, *, inst=True, name=None):
 | 
						|
        super().__init__(origin, inst=inst, name=name)
 | 
						|
        if not isinstance(args, tuple):
 | 
						|
            args = (args,)
 | 
						|
        self.__args__ = tuple(... if a is _TypingEllipsis else
 | 
						|
                              a for a in args)
 | 
						|
        self.__parameters__ = _collect_parameters(args)
 | 
						|
        if not name:
 | 
						|
            self.__module__ = origin.__module__
 | 
						|
 | 
						|
    def __eq__(self, other):
 | 
						|
        if not isinstance(other, _GenericAlias):
 | 
						|
            return NotImplemented
 | 
						|
        return (self.__origin__ == other.__origin__
 | 
						|
                and self.__args__ == other.__args__)
 | 
						|
 | 
						|
    def __hash__(self):
 | 
						|
        return hash((self.__origin__, self.__args__))
 | 
						|
 | 
						|
    def __or__(self, right):
 | 
						|
        return Union[self, right]
 | 
						|
 | 
						|
    def __ror__(self, left):
 | 
						|
        return Union[left, self]
 | 
						|
 | 
						|
    @_tp_cache
 | 
						|
    def __getitem__(self, args):
 | 
						|
        # Parameterizes an already-parameterized object.
 | 
						|
        #
 | 
						|
        # For example, we arrive here doing something like:
 | 
						|
        #   T1 = TypeVar('T1')
 | 
						|
        #   T2 = TypeVar('T2')
 | 
						|
        #   T3 = TypeVar('T3')
 | 
						|
        #   class A(Generic[T1]): pass
 | 
						|
        #   B = A[T2]  # B is a _GenericAlias
 | 
						|
        #   C = B[T3]  # Invokes _GenericAlias.__getitem__
 | 
						|
        #
 | 
						|
        # We also arrive here when parameterizing a generic `Callable` alias:
 | 
						|
        #   T = TypeVar('T')
 | 
						|
        #   C = Callable[[T], None]
 | 
						|
        #   C[int]  # Invokes _GenericAlias.__getitem__
 | 
						|
 | 
						|
        if self.__origin__ in (Generic, Protocol):
 | 
						|
            # Can't subscript Generic[...] or Protocol[...].
 | 
						|
            raise TypeError(f"Cannot subscript already-subscripted {self}")
 | 
						|
        if not self.__parameters__:
 | 
						|
            raise TypeError(f"{self} is not a generic class")
 | 
						|
 | 
						|
        # Preprocess `args`.
 | 
						|
        if not isinstance(args, tuple):
 | 
						|
            args = (args,)
 | 
						|
        args = tuple(_type_convert(p) for p in args)
 | 
						|
        args = _unpack_args(args)
 | 
						|
        new_args = self._determine_new_args(args)
 | 
						|
        r = self.copy_with(new_args)
 | 
						|
        return r
 | 
						|
 | 
						|
    def _determine_new_args(self, args):
 | 
						|
        # Determines new __args__ for __getitem__.
 | 
						|
        #
 | 
						|
        # For example, suppose we had:
 | 
						|
        #   T1 = TypeVar('T1')
 | 
						|
        #   T2 = TypeVar('T2')
 | 
						|
        #   class A(Generic[T1, T2]): pass
 | 
						|
        #   T3 = TypeVar('T3')
 | 
						|
        #   B = A[int, T3]
 | 
						|
        #   C = B[str]
 | 
						|
        # `B.__args__` is `(int, T3)`, so `C.__args__` should be `(int, str)`.
 | 
						|
        # Unfortunately, this is harder than it looks, because if `T3` is
 | 
						|
        # anything more exotic than a plain `TypeVar`, we need to consider
 | 
						|
        # edge cases.
 | 
						|
 | 
						|
        params = self.__parameters__
 | 
						|
        # In the example above, this would be {T3: str}
 | 
						|
        for param in params:
 | 
						|
            prepare = getattr(param, '__typing_prepare_subst__', None)
 | 
						|
            if prepare is not None:
 | 
						|
                args = prepare(self, args)
 | 
						|
        alen = len(args)
 | 
						|
        plen = len(params)
 | 
						|
        if alen != plen:
 | 
						|
            raise TypeError(f"Too {'many' if alen > plen else 'few'} arguments for {self};"
 | 
						|
                            f" actual {alen}, expected {plen}")
 | 
						|
        new_arg_by_param = dict(zip(params, args))
 | 
						|
        return tuple(self._make_substitution(self.__args__, new_arg_by_param))
 | 
						|
 | 
						|
    def _make_substitution(self, args, new_arg_by_param):
 | 
						|
        """Create a list of new type arguments."""
 | 
						|
        new_args = []
 | 
						|
        for old_arg in args:
 | 
						|
            if isinstance(old_arg, type):
 | 
						|
                new_args.append(old_arg)
 | 
						|
                continue
 | 
						|
 | 
						|
            substfunc = getattr(old_arg, '__typing_subst__', None)
 | 
						|
            if substfunc:
 | 
						|
                new_arg = substfunc(new_arg_by_param[old_arg])
 | 
						|
            else:
 | 
						|
                subparams = getattr(old_arg, '__parameters__', ())
 | 
						|
                if not subparams:
 | 
						|
                    new_arg = old_arg
 | 
						|
                else:
 | 
						|
                    subargs = []
 | 
						|
                    for x in subparams:
 | 
						|
                        if isinstance(x, TypeVarTuple):
 | 
						|
                            subargs.extend(new_arg_by_param[x])
 | 
						|
                        else:
 | 
						|
                            subargs.append(new_arg_by_param[x])
 | 
						|
                    new_arg = old_arg[tuple(subargs)]
 | 
						|
 | 
						|
            if self.__origin__ == collections.abc.Callable and isinstance(new_arg, tuple):
 | 
						|
                # Consider the following `Callable`.
 | 
						|
                #   C = Callable[[int], str]
 | 
						|
                # Here, `C.__args__` should be (int, str) - NOT ([int], str).
 | 
						|
                # That means that if we had something like...
 | 
						|
                #   P = ParamSpec('P')
 | 
						|
                #   T = TypeVar('T')
 | 
						|
                #   C = Callable[P, T]
 | 
						|
                #   D = C[[int, str], float]
 | 
						|
                # ...we need to be careful; `new_args` should end up as
 | 
						|
                # `(int, str, float)` rather than `([int, str], float)`.
 | 
						|
                new_args.extend(new_arg)
 | 
						|
            elif _is_unpacked_typevartuple(old_arg):
 | 
						|
                # Consider the following `_GenericAlias`, `B`:
 | 
						|
                #   class A(Generic[*Ts]): ...
 | 
						|
                #   B = A[T, *Ts]
 | 
						|
                # If we then do:
 | 
						|
                #   B[float, int, str]
 | 
						|
                # The `new_arg` corresponding to `T` will be `float`, and the
 | 
						|
                # `new_arg` corresponding to `*Ts` will be `(int, str)`. We
 | 
						|
                # should join all these types together in a flat list
 | 
						|
                # `(float, int, str)` - so again, we should `extend`.
 | 
						|
                new_args.extend(new_arg)
 | 
						|
            elif isinstance(old_arg, tuple):
 | 
						|
                # Corner case:
 | 
						|
                #    P = ParamSpec('P')
 | 
						|
                #    T = TypeVar('T')
 | 
						|
                #    class Base(Generic[P]): ...
 | 
						|
                # Can be substituted like this:
 | 
						|
                #    X = Base[[int, T]]
 | 
						|
                # In this case, `old_arg` will be a tuple:
 | 
						|
                new_args.append(
 | 
						|
                    tuple(self._make_substitution(old_arg, new_arg_by_param)),
 | 
						|
                )
 | 
						|
            else:
 | 
						|
                new_args.append(new_arg)
 | 
						|
        return new_args
 | 
						|
 | 
						|
    def copy_with(self, args):
 | 
						|
        return self.__class__(self.__origin__, args, name=self._name, inst=self._inst)
 | 
						|
 | 
						|
    def __repr__(self):
 | 
						|
        if self._name:
 | 
						|
            name = 'typing.' + self._name
 | 
						|
        else:
 | 
						|
            name = _type_repr(self.__origin__)
 | 
						|
        if self.__args__:
 | 
						|
            args = ", ".join([_type_repr(a) for a in self.__args__])
 | 
						|
        else:
 | 
						|
            # To ensure the repr is eval-able.
 | 
						|
            args = "()"
 | 
						|
        return f'{name}[{args}]'
 | 
						|
 | 
						|
    def __reduce__(self):
 | 
						|
        if self._name:
 | 
						|
            origin = globals()[self._name]
 | 
						|
        else:
 | 
						|
            origin = self.__origin__
 | 
						|
        args = tuple(self.__args__)
 | 
						|
        if len(args) == 1 and not isinstance(args[0], tuple):
 | 
						|
            args, = args
 | 
						|
        return operator.getitem, (origin, args)
 | 
						|
 | 
						|
    def __mro_entries__(self, bases):
 | 
						|
        if isinstance(self.__origin__, _SpecialForm):
 | 
						|
            raise TypeError(f"Cannot subclass {self!r}")
 | 
						|
 | 
						|
        if self._name:  # generic version of an ABC or built-in class
 | 
						|
            return super().__mro_entries__(bases)
 | 
						|
        if self.__origin__ is Generic:
 | 
						|
            if Protocol in bases:
 | 
						|
                return ()
 | 
						|
            i = bases.index(self)
 | 
						|
            for b in bases[i+1:]:
 | 
						|
                if isinstance(b, _BaseGenericAlias) and b is not self:
 | 
						|
                    return ()
 | 
						|
        return (self.__origin__,)
 | 
						|
 | 
						|
    def __iter__(self):
 | 
						|
        yield Unpack[self]
 | 
						|
 | 
						|
 | 
						|
# _nparams is the number of accepted parameters, e.g. 0 for Hashable,
 | 
						|
# 1 for List and 2 for Dict.  It may be -1 if variable number of
 | 
						|
# parameters are accepted (needs custom __getitem__).
 | 
						|
 | 
						|
class _SpecialGenericAlias(_NotIterable, _BaseGenericAlias, _root=True):
 | 
						|
    def __init__(self, origin, nparams, *, inst=True, name=None):
 | 
						|
        if name is None:
 | 
						|
            name = origin.__name__
 | 
						|
        super().__init__(origin, inst=inst, name=name)
 | 
						|
        self._nparams = nparams
 | 
						|
        if origin.__module__ == 'builtins':
 | 
						|
            self.__doc__ = f'A generic version of {origin.__qualname__}.'
 | 
						|
        else:
 | 
						|
            self.__doc__ = f'A generic version of {origin.__module__}.{origin.__qualname__}.'
 | 
						|
 | 
						|
    @_tp_cache
 | 
						|
    def __getitem__(self, params):
 | 
						|
        if not isinstance(params, tuple):
 | 
						|
            params = (params,)
 | 
						|
        msg = "Parameters to generic types must be types."
 | 
						|
        params = tuple(_type_check(p, msg) for p in params)
 | 
						|
        _check_generic(self, params, self._nparams)
 | 
						|
        return self.copy_with(params)
 | 
						|
 | 
						|
    def copy_with(self, params):
 | 
						|
        return _GenericAlias(self.__origin__, params,
 | 
						|
                             name=self._name, inst=self._inst)
 | 
						|
 | 
						|
    def __repr__(self):
 | 
						|
        return 'typing.' + self._name
 | 
						|
 | 
						|
    def __subclasscheck__(self, cls):
 | 
						|
        if isinstance(cls, _SpecialGenericAlias):
 | 
						|
            return issubclass(cls.__origin__, self.__origin__)
 | 
						|
        if not isinstance(cls, _GenericAlias):
 | 
						|
            return issubclass(cls, self.__origin__)
 | 
						|
        return super().__subclasscheck__(cls)
 | 
						|
 | 
						|
    def __reduce__(self):
 | 
						|
        return self._name
 | 
						|
 | 
						|
    def __or__(self, right):
 | 
						|
        return Union[self, right]
 | 
						|
 | 
						|
    def __ror__(self, left):
 | 
						|
        return Union[left, self]
 | 
						|
 | 
						|
 | 
						|
class _DeprecatedGenericAlias(_SpecialGenericAlias, _root=True):
 | 
						|
    def __init__(
 | 
						|
        self, origin, nparams, *, removal_version, inst=True, name=None
 | 
						|
    ):
 | 
						|
        super().__init__(origin, nparams, inst=inst, name=name)
 | 
						|
        self._removal_version = removal_version
 | 
						|
 | 
						|
    def __instancecheck__(self, inst):
 | 
						|
        import warnings
 | 
						|
        warnings._deprecated(
 | 
						|
            f"{self.__module__}.{self._name}", remove=self._removal_version
 | 
						|
        )
 | 
						|
        return super().__instancecheck__(inst)
 | 
						|
 | 
						|
 | 
						|
class _CallableGenericAlias(_NotIterable, _GenericAlias, _root=True):
 | 
						|
    def __repr__(self):
 | 
						|
        assert self._name == 'Callable'
 | 
						|
        args = self.__args__
 | 
						|
        if len(args) == 2 and _is_param_expr(args[0]):
 | 
						|
            return super().__repr__()
 | 
						|
        return (f'typing.Callable'
 | 
						|
                f'[[{", ".join([_type_repr(a) for a in args[:-1]])}], '
 | 
						|
                f'{_type_repr(args[-1])}]')
 | 
						|
 | 
						|
    def __reduce__(self):
 | 
						|
        args = self.__args__
 | 
						|
        if not (len(args) == 2 and _is_param_expr(args[0])):
 | 
						|
            args = list(args[:-1]), args[-1]
 | 
						|
        return operator.getitem, (Callable, args)
 | 
						|
 | 
						|
 | 
						|
class _CallableType(_SpecialGenericAlias, _root=True):
 | 
						|
    def copy_with(self, params):
 | 
						|
        return _CallableGenericAlias(self.__origin__, params,
 | 
						|
                                     name=self._name, inst=self._inst)
 | 
						|
 | 
						|
    def __getitem__(self, params):
 | 
						|
        if not isinstance(params, tuple) or len(params) != 2:
 | 
						|
            raise TypeError("Callable must be used as "
 | 
						|
                            "Callable[[arg, ...], result].")
 | 
						|
        args, result = params
 | 
						|
        # This relaxes what args can be on purpose to allow things like
 | 
						|
        # PEP 612 ParamSpec.  Responsibility for whether a user is using
 | 
						|
        # Callable[...] properly is deferred to static type checkers.
 | 
						|
        if isinstance(args, list):
 | 
						|
            params = (tuple(args), result)
 | 
						|
        else:
 | 
						|
            params = (args, result)
 | 
						|
        return self.__getitem_inner__(params)
 | 
						|
 | 
						|
    @_tp_cache
 | 
						|
    def __getitem_inner__(self, params):
 | 
						|
        args, result = params
 | 
						|
        msg = "Callable[args, result]: result must be a type."
 | 
						|
        result = _type_check(result, msg)
 | 
						|
        if args is Ellipsis:
 | 
						|
            return self.copy_with((_TypingEllipsis, result))
 | 
						|
        if not isinstance(args, tuple):
 | 
						|
            args = (args,)
 | 
						|
        args = tuple(_type_convert(arg) for arg in args)
 | 
						|
        params = args + (result,)
 | 
						|
        return self.copy_with(params)
 | 
						|
 | 
						|
 | 
						|
class _TupleType(_SpecialGenericAlias, _root=True):
 | 
						|
    @_tp_cache
 | 
						|
    def __getitem__(self, params):
 | 
						|
        if not isinstance(params, tuple):
 | 
						|
            params = (params,)
 | 
						|
        if len(params) >= 2 and params[-1] is ...:
 | 
						|
            msg = "Tuple[t, ...]: t must be a type."
 | 
						|
            params = tuple(_type_check(p, msg) for p in params[:-1])
 | 
						|
            return self.copy_with((*params, _TypingEllipsis))
 | 
						|
        msg = "Tuple[t0, t1, ...]: each t must be a type."
 | 
						|
        params = tuple(_type_check(p, msg) for p in params)
 | 
						|
        return self.copy_with(params)
 | 
						|
 | 
						|
 | 
						|
class _UnionGenericAlias(_NotIterable, _GenericAlias, _root=True):
 | 
						|
    def copy_with(self, params):
 | 
						|
        return Union[params]
 | 
						|
 | 
						|
    def __eq__(self, other):
 | 
						|
        if not isinstance(other, (_UnionGenericAlias, types.UnionType)):
 | 
						|
            return NotImplemented
 | 
						|
        return set(self.__args__) == set(other.__args__)
 | 
						|
 | 
						|
    def __hash__(self):
 | 
						|
        return hash(frozenset(self.__args__))
 | 
						|
 | 
						|
    def __repr__(self):
 | 
						|
        args = self.__args__
 | 
						|
        if len(args) == 2:
 | 
						|
            if args[0] is type(None):
 | 
						|
                return f'typing.Optional[{_type_repr(args[1])}]'
 | 
						|
            elif args[1] is type(None):
 | 
						|
                return f'typing.Optional[{_type_repr(args[0])}]'
 | 
						|
        return super().__repr__()
 | 
						|
 | 
						|
    def __instancecheck__(self, obj):
 | 
						|
        return self.__subclasscheck__(type(obj))
 | 
						|
 | 
						|
    def __subclasscheck__(self, cls):
 | 
						|
        for arg in self.__args__:
 | 
						|
            if issubclass(cls, arg):
 | 
						|
                return True
 | 
						|
 | 
						|
    def __reduce__(self):
 | 
						|
        func, (origin, args) = super().__reduce__()
 | 
						|
        return func, (Union, args)
 | 
						|
 | 
						|
 | 
						|
def _value_and_type_iter(parameters):
 | 
						|
    return ((p, type(p)) for p in parameters)
 | 
						|
 | 
						|
 | 
						|
class _LiteralGenericAlias(_GenericAlias, _root=True):
 | 
						|
 | 
						|
    def __eq__(self, other):
 | 
						|
        if not isinstance(other, _LiteralGenericAlias):
 | 
						|
            return NotImplemented
 | 
						|
 | 
						|
        return set(_value_and_type_iter(self.__args__)) == set(_value_and_type_iter(other.__args__))
 | 
						|
 | 
						|
    def __hash__(self):
 | 
						|
        return hash(frozenset(_value_and_type_iter(self.__args__)))
 | 
						|
 | 
						|
 | 
						|
class _ConcatenateGenericAlias(_GenericAlias, _root=True):
 | 
						|
    def copy_with(self, params):
 | 
						|
        if isinstance(params[-1], (list, tuple)):
 | 
						|
            return (*params[:-1], *params[-1])
 | 
						|
        if isinstance(params[-1], _ConcatenateGenericAlias):
 | 
						|
            params = (*params[:-1], *params[-1].__args__)
 | 
						|
        return super().copy_with(params)
 | 
						|
 | 
						|
 | 
						|
@_SpecialForm
 | 
						|
def Unpack(self, parameters):
 | 
						|
    """Type unpack operator.
 | 
						|
 | 
						|
    The type unpack operator takes the child types from some container type,
 | 
						|
    such as `tuple[int, str]` or a `TypeVarTuple`, and 'pulls them out'. For
 | 
						|
    example:
 | 
						|
 | 
						|
      # For some generic class `Foo`:
 | 
						|
      Foo[Unpack[tuple[int, str]]]  # Equivalent to Foo[int, str]
 | 
						|
 | 
						|
      Ts = TypeVarTuple('Ts')
 | 
						|
      # Specifies that `Bar` is generic in an arbitrary number of types.
 | 
						|
      # (Think of `Ts` as a tuple of an arbitrary number of individual
 | 
						|
      #  `TypeVar`s, which the `Unpack` is 'pulling out' directly into the
 | 
						|
      #  `Generic[]`.)
 | 
						|
      class Bar(Generic[Unpack[Ts]]): ...
 | 
						|
      Bar[int]  # Valid
 | 
						|
      Bar[int, str]  # Also valid
 | 
						|
 | 
						|
    From Python 3.11, this can also be done using the `*` operator:
 | 
						|
 | 
						|
        Foo[*tuple[int, str]]
 | 
						|
        class Bar(Generic[*Ts]): ...
 | 
						|
 | 
						|
    The operator can also be used along with a `TypedDict` to annotate
 | 
						|
    `**kwargs` in a function signature. For instance:
 | 
						|
 | 
						|
      class Movie(TypedDict):
 | 
						|
        name: str
 | 
						|
        year: int
 | 
						|
 | 
						|
      # This function expects two keyword arguments - *name* of type `str` and
 | 
						|
      # *year* of type `int`.
 | 
						|
      def foo(**kwargs: Unpack[Movie]): ...
 | 
						|
 | 
						|
    Note that there is only some runtime checking of this operator. Not
 | 
						|
    everything the runtime allows may be accepted by static type checkers.
 | 
						|
 | 
						|
    For more information, see PEP 646.
 | 
						|
    """
 | 
						|
    item = _type_check(parameters, f'{self} accepts only single type.')
 | 
						|
    return _UnpackGenericAlias(origin=self, args=(item,))
 | 
						|
 | 
						|
 | 
						|
class _UnpackGenericAlias(_GenericAlias, _root=True):
 | 
						|
 | 
						|
    def __repr__(self):
 | 
						|
        # `Unpack` only takes one argument, so __args__ should contain only
 | 
						|
        # a single item.
 | 
						|
        return f'typing.Unpack[{_type_repr(self.__args__[0])}]'
 | 
						|
 | 
						|
    def __getitem__(self, args):
 | 
						|
        if self.__typing_is_unpacked_typevartuple__:
 | 
						|
            return args
 | 
						|
        return super().__getitem__(args)
 | 
						|
 | 
						|
    @property
 | 
						|
    def __typing_unpacked_tuple_args__(self):
 | 
						|
        assert self.__origin__ is Unpack
 | 
						|
        assert len(self.__args__) == 1
 | 
						|
        arg, = self.__args__
 | 
						|
        if isinstance(arg, _GenericAlias):
 | 
						|
            assert arg.__origin__ is tuple
 | 
						|
            return arg.__args__
 | 
						|
        return None
 | 
						|
 | 
						|
    @property
 | 
						|
    def __typing_is_unpacked_typevartuple__(self):
 | 
						|
        assert self.__origin__ is Unpack
 | 
						|
        assert len(self.__args__) == 1
 | 
						|
        return isinstance(self.__args__[0], TypeVarTuple)
 | 
						|
 | 
						|
 | 
						|
class _TypingEllipsis:
 | 
						|
    """Internal placeholder for ... (ellipsis)."""
 | 
						|
 | 
						|
 | 
						|
_TYPING_INTERNALS = frozenset({
 | 
						|
    '__parameters__', '__orig_bases__',  '__orig_class__',
 | 
						|
    '_is_protocol', '_is_runtime_protocol', '__protocol_attrs__',
 | 
						|
    '__callable_proto_members_only__', '__type_params__',
 | 
						|
})
 | 
						|
 | 
						|
_SPECIAL_NAMES = frozenset({
 | 
						|
    '__abstractmethods__', '__annotations__', '__dict__', '__doc__',
 | 
						|
    '__init__', '__module__', '__new__', '__slots__',
 | 
						|
    '__subclasshook__', '__weakref__', '__class_getitem__'
 | 
						|
})
 | 
						|
 | 
						|
# These special attributes will be not collected as protocol members.
 | 
						|
EXCLUDED_ATTRIBUTES = _TYPING_INTERNALS | _SPECIAL_NAMES | {'_MutableMapping__marker'}
 | 
						|
 | 
						|
 | 
						|
def _get_protocol_attrs(cls):
 | 
						|
    """Collect protocol members from a protocol class objects.
 | 
						|
 | 
						|
    This includes names actually defined in the class dictionary, as well
 | 
						|
    as names that appear in annotations. Special names (above) are skipped.
 | 
						|
    """
 | 
						|
    attrs = set()
 | 
						|
    for base in cls.__mro__[:-1]:  # without object
 | 
						|
        if base.__name__ in {'Protocol', 'Generic'}:
 | 
						|
            continue
 | 
						|
        annotations = getattr(base, '__annotations__', {})
 | 
						|
        for attr in (*base.__dict__, *annotations):
 | 
						|
            if not attr.startswith('_abc_') and attr not in EXCLUDED_ATTRIBUTES:
 | 
						|
                attrs.add(attr)
 | 
						|
    return attrs
 | 
						|
 | 
						|
 | 
						|
def _no_init_or_replace_init(self, *args, **kwargs):
 | 
						|
    cls = type(self)
 | 
						|
 | 
						|
    if cls._is_protocol:
 | 
						|
        raise TypeError('Protocols cannot be instantiated')
 | 
						|
 | 
						|
    # Already using a custom `__init__`. No need to calculate correct
 | 
						|
    # `__init__` to call. This can lead to RecursionError. See bpo-45121.
 | 
						|
    if cls.__init__ is not _no_init_or_replace_init:
 | 
						|
        return
 | 
						|
 | 
						|
    # Initially, `__init__` of a protocol subclass is set to `_no_init_or_replace_init`.
 | 
						|
    # The first instantiation of the subclass will call `_no_init_or_replace_init` which
 | 
						|
    # searches for a proper new `__init__` in the MRO. The new `__init__`
 | 
						|
    # replaces the subclass' old `__init__` (ie `_no_init_or_replace_init`). Subsequent
 | 
						|
    # instantiation of the protocol subclass will thus use the new
 | 
						|
    # `__init__` and no longer call `_no_init_or_replace_init`.
 | 
						|
    for base in cls.__mro__:
 | 
						|
        init = base.__dict__.get('__init__', _no_init_or_replace_init)
 | 
						|
        if init is not _no_init_or_replace_init:
 | 
						|
            cls.__init__ = init
 | 
						|
            break
 | 
						|
    else:
 | 
						|
        # should not happen
 | 
						|
        cls.__init__ = object.__init__
 | 
						|
 | 
						|
    cls.__init__(self, *args, **kwargs)
 | 
						|
 | 
						|
 | 
						|
def _caller(depth=1, default='__main__'):
 | 
						|
    try:
 | 
						|
        return sys._getframemodulename(depth + 1) or default
 | 
						|
    except AttributeError:  # For platforms without _getframemodulename()
 | 
						|
        pass
 | 
						|
    try:
 | 
						|
        return sys._getframe(depth + 1).f_globals.get('__name__', default)
 | 
						|
    except (AttributeError, ValueError):  # For platforms without _getframe()
 | 
						|
        pass
 | 
						|
    return None
 | 
						|
 | 
						|
def _allow_reckless_class_checks(depth=3):
 | 
						|
    """Allow instance and class checks for special stdlib modules.
 | 
						|
 | 
						|
    The abc and functools modules indiscriminately call isinstance() and
 | 
						|
    issubclass() on the whole MRO of a user class, which may contain protocols.
 | 
						|
    """
 | 
						|
    return _caller(depth) in {'abc', 'functools', None}
 | 
						|
 | 
						|
 | 
						|
_PROTO_ALLOWLIST = {
 | 
						|
    'collections.abc': [
 | 
						|
        'Callable', 'Awaitable', 'Iterable', 'Iterator', 'AsyncIterable',
 | 
						|
        'Hashable', 'Sized', 'Container', 'Collection', 'Reversible', 'Buffer',
 | 
						|
    ],
 | 
						|
    'contextlib': ['AbstractContextManager', 'AbstractAsyncContextManager'],
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
@functools.cache
 | 
						|
def _lazy_load_getattr_static():
 | 
						|
    # Import getattr_static lazily so as not to slow down the import of typing.py
 | 
						|
    # Cache the result so we don't slow down _ProtocolMeta.__instancecheck__ unnecessarily
 | 
						|
    from inspect import getattr_static
 | 
						|
    return getattr_static
 | 
						|
 | 
						|
 | 
						|
_cleanups.append(_lazy_load_getattr_static.cache_clear)
 | 
						|
 | 
						|
def _pickle_psargs(psargs):
 | 
						|
    return ParamSpecArgs, (psargs.__origin__,)
 | 
						|
 | 
						|
copyreg.pickle(ParamSpecArgs, _pickle_psargs)
 | 
						|
 | 
						|
def _pickle_pskwargs(pskwargs):
 | 
						|
    return ParamSpecKwargs, (pskwargs.__origin__,)
 | 
						|
 | 
						|
copyreg.pickle(ParamSpecKwargs, _pickle_pskwargs)
 | 
						|
 | 
						|
del _pickle_psargs, _pickle_pskwargs
 | 
						|
 | 
						|
 | 
						|
class _ProtocolMeta(ABCMeta):
 | 
						|
    # This metaclass is somewhat unfortunate,
 | 
						|
    # but is necessary for several reasons...
 | 
						|
    def __init__(cls, *args, **kwargs):
 | 
						|
        super().__init__(*args, **kwargs)
 | 
						|
        if getattr(cls, "_is_protocol", False):
 | 
						|
            cls.__protocol_attrs__ = _get_protocol_attrs(cls)
 | 
						|
            # PEP 544 prohibits using issubclass()
 | 
						|
            # with protocols that have non-method members.
 | 
						|
            cls.__callable_proto_members_only__ = all(
 | 
						|
                callable(getattr(cls, attr, None)) for attr in cls.__protocol_attrs__
 | 
						|
            )
 | 
						|
 | 
						|
    def __subclasscheck__(cls, other):
 | 
						|
        if (
 | 
						|
            getattr(cls, '_is_protocol', False)
 | 
						|
            and not cls.__callable_proto_members_only__
 | 
						|
            and not _allow_reckless_class_checks(depth=2)
 | 
						|
        ):
 | 
						|
            raise TypeError(
 | 
						|
                "Protocols with non-method members don't support issubclass()"
 | 
						|
            )
 | 
						|
        return super().__subclasscheck__(other)
 | 
						|
 | 
						|
    def __instancecheck__(cls, instance):
 | 
						|
        # We need this method for situations where attributes are
 | 
						|
        # assigned in __init__.
 | 
						|
        if not getattr(cls, "_is_protocol", False):
 | 
						|
            # i.e., it's a concrete subclass of a protocol
 | 
						|
            return super().__instancecheck__(instance)
 | 
						|
 | 
						|
        if (
 | 
						|
            not getattr(cls, '_is_runtime_protocol', False) and
 | 
						|
            not _allow_reckless_class_checks(depth=2)
 | 
						|
        ):
 | 
						|
            raise TypeError("Instance and class checks can only be used with"
 | 
						|
                            " @runtime_checkable protocols")
 | 
						|
 | 
						|
        if super().__instancecheck__(instance):
 | 
						|
            return True
 | 
						|
 | 
						|
        getattr_static = _lazy_load_getattr_static()
 | 
						|
        for attr in cls.__protocol_attrs__:
 | 
						|
            try:
 | 
						|
                val = getattr_static(instance, attr)
 | 
						|
            except AttributeError:
 | 
						|
                break
 | 
						|
            if val is None and callable(getattr(cls, attr, None)):
 | 
						|
                break
 | 
						|
        else:
 | 
						|
            return True
 | 
						|
 | 
						|
        return False
 | 
						|
 | 
						|
 | 
						|
class Protocol(Generic, metaclass=_ProtocolMeta):
 | 
						|
    """Base class for protocol classes.
 | 
						|
 | 
						|
    Protocol classes are defined as::
 | 
						|
 | 
						|
        class Proto(Protocol):
 | 
						|
            def meth(self) -> int:
 | 
						|
                ...
 | 
						|
 | 
						|
    Such classes are primarily used with static type checkers that recognize
 | 
						|
    structural subtyping (static duck-typing), for example::
 | 
						|
 | 
						|
        class C:
 | 
						|
            def meth(self) -> int:
 | 
						|
                return 0
 | 
						|
 | 
						|
        def func(x: Proto) -> int:
 | 
						|
            return x.meth()
 | 
						|
 | 
						|
        func(C())  # Passes static type check
 | 
						|
 | 
						|
    See PEP 544 for details. Protocol classes decorated with
 | 
						|
    @typing.runtime_checkable act as simple-minded runtime protocols that check
 | 
						|
    only the presence of given attributes, ignoring their type signatures.
 | 
						|
    Protocol classes can be generic, they are defined as::
 | 
						|
 | 
						|
        class GenProto(Protocol[T]):
 | 
						|
            def meth(self) -> T:
 | 
						|
                ...
 | 
						|
    """
 | 
						|
    __slots__ = ()
 | 
						|
    _is_protocol = True
 | 
						|
    _is_runtime_protocol = False
 | 
						|
 | 
						|
    def __init_subclass__(cls, *args, **kwargs):
 | 
						|
        super().__init_subclass__(*args, **kwargs)
 | 
						|
 | 
						|
        # Determine if this is a protocol or a concrete subclass.
 | 
						|
        if not cls.__dict__.get('_is_protocol', False):
 | 
						|
            cls._is_protocol = any(b is Protocol for b in cls.__bases__)
 | 
						|
 | 
						|
        # Set (or override) the protocol subclass hook.
 | 
						|
        def _proto_hook(other):
 | 
						|
            if not cls.__dict__.get('_is_protocol', False):
 | 
						|
                return NotImplemented
 | 
						|
 | 
						|
            # First, perform various sanity checks.
 | 
						|
            if not getattr(cls, '_is_runtime_protocol', False):
 | 
						|
                if _allow_reckless_class_checks():
 | 
						|
                    return NotImplemented
 | 
						|
                raise TypeError("Instance and class checks can only be used with"
 | 
						|
                                " @runtime_checkable protocols")
 | 
						|
 | 
						|
            if not isinstance(other, type):
 | 
						|
                # Same error message as for issubclass(1, int).
 | 
						|
                raise TypeError('issubclass() arg 1 must be a class')
 | 
						|
 | 
						|
            # Second, perform the actual structural compatibility check.
 | 
						|
            for attr in cls.__protocol_attrs__:
 | 
						|
                for base in other.__mro__:
 | 
						|
                    # Check if the members appears in the class dictionary...
 | 
						|
                    if attr in base.__dict__:
 | 
						|
                        if base.__dict__[attr] is None:
 | 
						|
                            return NotImplemented
 | 
						|
                        break
 | 
						|
 | 
						|
                    # ...or in annotations, if it is a sub-protocol.
 | 
						|
                    annotations = getattr(base, '__annotations__', {})
 | 
						|
                    if (isinstance(annotations, collections.abc.Mapping) and
 | 
						|
                            attr in annotations and
 | 
						|
                            issubclass(other, Generic) and getattr(other, '_is_protocol', False)):
 | 
						|
                        break
 | 
						|
                else:
 | 
						|
                    return NotImplemented
 | 
						|
            return True
 | 
						|
 | 
						|
        if '__subclasshook__' not in cls.__dict__:
 | 
						|
            cls.__subclasshook__ = _proto_hook
 | 
						|
 | 
						|
        # We have nothing more to do for non-protocols...
 | 
						|
        if not cls._is_protocol:
 | 
						|
            return
 | 
						|
 | 
						|
        # ... otherwise check consistency of bases, and prohibit instantiation.
 | 
						|
        for base in cls.__bases__:
 | 
						|
            if not (base in (object, Generic) or
 | 
						|
                    base.__module__ in _PROTO_ALLOWLIST and
 | 
						|
                    base.__name__ in _PROTO_ALLOWLIST[base.__module__] or
 | 
						|
                    issubclass(base, Generic) and getattr(base, '_is_protocol', False)):
 | 
						|
                raise TypeError('Protocols can only inherit from other'
 | 
						|
                                ' protocols, got %r' % base)
 | 
						|
        if cls.__init__ is Protocol.__init__:
 | 
						|
            cls.__init__ = _no_init_or_replace_init
 | 
						|
 | 
						|
 | 
						|
class _AnnotatedAlias(_NotIterable, _GenericAlias, _root=True):
 | 
						|
    """Runtime representation of an annotated type.
 | 
						|
 | 
						|
    At its core 'Annotated[t, dec1, dec2, ...]' is an alias for the type 't'
 | 
						|
    with extra annotations. The alias behaves like a normal typing alias,
 | 
						|
    instantiating is the same as instantiating the underlying type, binding
 | 
						|
    it to types is also the same.
 | 
						|
 | 
						|
    The metadata itself is stored in a '__metadata__' attribute as a tuple.
 | 
						|
    """
 | 
						|
    def __init__(self, origin, metadata):
 | 
						|
        if isinstance(origin, _AnnotatedAlias):
 | 
						|
            metadata = origin.__metadata__ + metadata
 | 
						|
            origin = origin.__origin__
 | 
						|
        super().__init__(origin, origin, name='Annotated')
 | 
						|
        self.__metadata__ = metadata
 | 
						|
 | 
						|
    def copy_with(self, params):
 | 
						|
        assert len(params) == 1
 | 
						|
        new_type = params[0]
 | 
						|
        return _AnnotatedAlias(new_type, self.__metadata__)
 | 
						|
 | 
						|
    def __repr__(self):
 | 
						|
        return "typing.Annotated[{}, {}]".format(
 | 
						|
            _type_repr(self.__origin__),
 | 
						|
            ", ".join(repr(a) for a in self.__metadata__)
 | 
						|
        )
 | 
						|
 | 
						|
    def __reduce__(self):
 | 
						|
        return operator.getitem, (
 | 
						|
            Annotated, (self.__origin__,) + self.__metadata__
 | 
						|
        )
 | 
						|
 | 
						|
    def __eq__(self, other):
 | 
						|
        if not isinstance(other, _AnnotatedAlias):
 | 
						|
            return NotImplemented
 | 
						|
        return (self.__origin__ == other.__origin__
 | 
						|
                and self.__metadata__ == other.__metadata__)
 | 
						|
 | 
						|
    def __hash__(self):
 | 
						|
        return hash((self.__origin__, self.__metadata__))
 | 
						|
 | 
						|
    def __getattr__(self, attr):
 | 
						|
        if attr in {'__name__', '__qualname__'}:
 | 
						|
            return 'Annotated'
 | 
						|
        return super().__getattr__(attr)
 | 
						|
 | 
						|
    def __mro_entries__(self, bases):
 | 
						|
        return (self.__origin__,)
 | 
						|
 | 
						|
 | 
						|
class Annotated:
 | 
						|
    """Add context specific metadata to a type.
 | 
						|
 | 
						|
    Example: Annotated[int, runtime_check.Unsigned] indicates to the
 | 
						|
    hypothetical runtime_check module that this type is an unsigned int.
 | 
						|
    Every other consumer of this type can ignore this metadata and treat
 | 
						|
    this type as int.
 | 
						|
 | 
						|
    The first argument to Annotated must be a valid type.
 | 
						|
 | 
						|
    Details:
 | 
						|
 | 
						|
    - It's an error to call `Annotated` with less than two arguments.
 | 
						|
    - Access the metadata via the ``__metadata__`` attribute::
 | 
						|
 | 
						|
        Annotated[int, '$'].__metadata__ == ('$',)
 | 
						|
 | 
						|
    - Nested Annotated are flattened::
 | 
						|
 | 
						|
        Annotated[Annotated[T, Ann1, Ann2], Ann3] == Annotated[T, Ann1, Ann2, Ann3]
 | 
						|
 | 
						|
    - Instantiating an annotated type is equivalent to instantiating the
 | 
						|
    underlying type::
 | 
						|
 | 
						|
        Annotated[C, Ann1](5) == C(5)
 | 
						|
 | 
						|
    - Annotated can be used as a generic type alias::
 | 
						|
 | 
						|
        Optimized = Annotated[T, runtime.Optimize()]
 | 
						|
        Optimized[int] == Annotated[int, runtime.Optimize()]
 | 
						|
 | 
						|
        OptimizedList = Annotated[List[T], runtime.Optimize()]
 | 
						|
        OptimizedList[int] == Annotated[List[int], runtime.Optimize()]
 | 
						|
 | 
						|
    - Annotated cannot be used with an unpacked TypeVarTuple::
 | 
						|
 | 
						|
        Annotated[*Ts, Ann1]  # NOT valid
 | 
						|
 | 
						|
      This would be equivalent to
 | 
						|
 | 
						|
        Annotated[T1, T2, T3, ..., Ann1]
 | 
						|
 | 
						|
      where T1, T2 etc. are TypeVars, which would be invalid, because
 | 
						|
      only one type should be passed to Annotated.
 | 
						|
    """
 | 
						|
 | 
						|
    __slots__ = ()
 | 
						|
 | 
						|
    def __new__(cls, *args, **kwargs):
 | 
						|
        raise TypeError("Type Annotated cannot be instantiated.")
 | 
						|
 | 
						|
    @_tp_cache
 | 
						|
    def __class_getitem__(cls, params):
 | 
						|
        if not isinstance(params, tuple) or len(params) < 2:
 | 
						|
            raise TypeError("Annotated[...] should be used "
 | 
						|
                            "with at least two arguments (a type and an "
 | 
						|
                            "annotation).")
 | 
						|
        if _is_unpacked_typevartuple(params[0]):
 | 
						|
            raise TypeError("Annotated[...] should not be used with an "
 | 
						|
                            "unpacked TypeVarTuple")
 | 
						|
        msg = "Annotated[t, ...]: t must be a type."
 | 
						|
        origin = _type_check(params[0], msg, allow_special_forms=True)
 | 
						|
        metadata = tuple(params[1:])
 | 
						|
        return _AnnotatedAlias(origin, metadata)
 | 
						|
 | 
						|
    def __init_subclass__(cls, *args, **kwargs):
 | 
						|
        raise TypeError(
 | 
						|
            "Cannot subclass {}.Annotated".format(cls.__module__)
 | 
						|
        )
 | 
						|
 | 
						|
 | 
						|
def runtime_checkable(cls):
 | 
						|
    """Mark a protocol class as a runtime protocol.
 | 
						|
 | 
						|
    Such protocol can be used with isinstance() and issubclass().
 | 
						|
    Raise TypeError if applied to a non-protocol class.
 | 
						|
    This allows a simple-minded structural check very similar to
 | 
						|
    one trick ponies in collections.abc such as Iterable.
 | 
						|
    For example::
 | 
						|
 | 
						|
        @runtime_checkable
 | 
						|
        class Closable(Protocol):
 | 
						|
            def close(self): ...
 | 
						|
 | 
						|
        assert isinstance(open('/some/file'), Closable)
 | 
						|
 | 
						|
    Warning: this will check only the presence of the required methods,
 | 
						|
    not their type signatures!
 | 
						|
    """
 | 
						|
    if not issubclass(cls, Generic) or not getattr(cls, '_is_protocol', False):
 | 
						|
        raise TypeError('@runtime_checkable can be only applied to protocol classes,'
 | 
						|
                        ' got %r' % cls)
 | 
						|
    cls._is_runtime_protocol = True
 | 
						|
    return cls
 | 
						|
 | 
						|
 | 
						|
def cast(typ, val):
 | 
						|
    """Cast a value to a type.
 | 
						|
 | 
						|
    This returns the value unchanged.  To the type checker this
 | 
						|
    signals that the return value has the designated type, but at
 | 
						|
    runtime we intentionally don't check anything (we want this
 | 
						|
    to be as fast as possible).
 | 
						|
    """
 | 
						|
    return val
 | 
						|
 | 
						|
 | 
						|
def assert_type(val, typ, /):
 | 
						|
    """Ask a static type checker to confirm that the value is of the given type.
 | 
						|
 | 
						|
    At runtime this does nothing: it returns the first argument unchanged with no
 | 
						|
    checks or side effects, no matter the actual type of the argument.
 | 
						|
 | 
						|
    When a static type checker encounters a call to assert_type(), it
 | 
						|
    emits an error if the value is not of the specified type::
 | 
						|
 | 
						|
        def greet(name: str) -> None:
 | 
						|
            assert_type(name, str)  # ok
 | 
						|
            assert_type(name, int)  # type checker error
 | 
						|
 | 
						|
    """
 | 
						|
    return val
 | 
						|
 | 
						|
 | 
						|
_allowed_types = (types.FunctionType, types.BuiltinFunctionType,
 | 
						|
                  types.MethodType, types.ModuleType,
 | 
						|
                  WrapperDescriptorType, MethodWrapperType, MethodDescriptorType)
 | 
						|
 | 
						|
 | 
						|
def get_type_hints(obj, globalns=None, localns=None, include_extras=False):
 | 
						|
    """Return type hints for an object.
 | 
						|
 | 
						|
    This is often the same as obj.__annotations__, but it handles
 | 
						|
    forward references encoded as string literals and recursively replaces all
 | 
						|
    'Annotated[T, ...]' with 'T' (unless 'include_extras=True').
 | 
						|
 | 
						|
    The argument may be a module, class, method, or function. The annotations
 | 
						|
    are returned as a dictionary. For classes, annotations include also
 | 
						|
    inherited members.
 | 
						|
 | 
						|
    TypeError is raised if the argument is not of a type that can contain
 | 
						|
    annotations, and an empty dictionary is returned if no annotations are
 | 
						|
    present.
 | 
						|
 | 
						|
    BEWARE -- the behavior of globalns and localns is counterintuitive
 | 
						|
    (unless you are familiar with how eval() and exec() work).  The
 | 
						|
    search order is locals first, then globals.
 | 
						|
 | 
						|
    - If no dict arguments are passed, an attempt is made to use the
 | 
						|
      globals from obj (or the respective module's globals for classes),
 | 
						|
      and these are also used as the locals.  If the object does not appear
 | 
						|
      to have globals, an empty dictionary is used.  For classes, the search
 | 
						|
      order is globals first then locals.
 | 
						|
 | 
						|
    - If one dict argument is passed, it is used for both globals and
 | 
						|
      locals.
 | 
						|
 | 
						|
    - If two dict arguments are passed, they specify globals and
 | 
						|
      locals, respectively.
 | 
						|
    """
 | 
						|
 | 
						|
    if getattr(obj, '__no_type_check__', None):
 | 
						|
        return {}
 | 
						|
    # Classes require a special treatment.
 | 
						|
    if isinstance(obj, type):
 | 
						|
        hints = {}
 | 
						|
        for base in reversed(obj.__mro__):
 | 
						|
            if globalns is None:
 | 
						|
                base_globals = getattr(sys.modules.get(base.__module__, None), '__dict__', {})
 | 
						|
            else:
 | 
						|
                base_globals = globalns
 | 
						|
            ann = base.__dict__.get('__annotations__', {})
 | 
						|
            if isinstance(ann, types.GetSetDescriptorType):
 | 
						|
                ann = {}
 | 
						|
            base_locals = dict(vars(base)) if localns is None else localns
 | 
						|
            if localns is None and globalns is None:
 | 
						|
                # This is surprising, but required.  Before Python 3.10,
 | 
						|
                # get_type_hints only evaluated the globalns of
 | 
						|
                # a class.  To maintain backwards compatibility, we reverse
 | 
						|
                # the globalns and localns order so that eval() looks into
 | 
						|
                # *base_globals* first rather than *base_locals*.
 | 
						|
                # This only affects ForwardRefs.
 | 
						|
                base_globals, base_locals = base_locals, base_globals
 | 
						|
            for name, value in ann.items():
 | 
						|
                if value is None:
 | 
						|
                    value = type(None)
 | 
						|
                if isinstance(value, str):
 | 
						|
                    value = ForwardRef(value, is_argument=False, is_class=True)
 | 
						|
                value = _eval_type(value, base_globals, base_locals)
 | 
						|
                hints[name] = value
 | 
						|
        return hints if include_extras else {k: _strip_annotations(t) for k, t in hints.items()}
 | 
						|
 | 
						|
    if globalns is None:
 | 
						|
        if isinstance(obj, types.ModuleType):
 | 
						|
            globalns = obj.__dict__
 | 
						|
        else:
 | 
						|
            nsobj = obj
 | 
						|
            # Find globalns for the unwrapped object.
 | 
						|
            while hasattr(nsobj, '__wrapped__'):
 | 
						|
                nsobj = nsobj.__wrapped__
 | 
						|
            globalns = getattr(nsobj, '__globals__', {})
 | 
						|
        if localns is None:
 | 
						|
            localns = globalns
 | 
						|
    elif localns is None:
 | 
						|
        localns = globalns
 | 
						|
    hints = getattr(obj, '__annotations__', None)
 | 
						|
    if hints is None:
 | 
						|
        # Return empty annotations for something that _could_ have them.
 | 
						|
        if isinstance(obj, _allowed_types):
 | 
						|
            return {}
 | 
						|
        else:
 | 
						|
            raise TypeError('{!r} is not a module, class, method, '
 | 
						|
                            'or function.'.format(obj))
 | 
						|
    hints = dict(hints)
 | 
						|
    for name, value in hints.items():
 | 
						|
        if value is None:
 | 
						|
            value = type(None)
 | 
						|
        if isinstance(value, str):
 | 
						|
            # class-level forward refs were handled above, this must be either
 | 
						|
            # a module-level annotation or a function argument annotation
 | 
						|
            value = ForwardRef(
 | 
						|
                value,
 | 
						|
                is_argument=not isinstance(obj, types.ModuleType),
 | 
						|
                is_class=False,
 | 
						|
            )
 | 
						|
        hints[name] = _eval_type(value, globalns, localns)
 | 
						|
    return hints if include_extras else {k: _strip_annotations(t) for k, t in hints.items()}
 | 
						|
 | 
						|
 | 
						|
def _strip_annotations(t):
 | 
						|
    """Strips the annotations from a given type.
 | 
						|
    """
 | 
						|
    if isinstance(t, _AnnotatedAlias):
 | 
						|
        return _strip_annotations(t.__origin__)
 | 
						|
    if hasattr(t, "__origin__") and t.__origin__ in (Required, NotRequired):
 | 
						|
        return _strip_annotations(t.__args__[0])
 | 
						|
    if isinstance(t, _GenericAlias):
 | 
						|
        stripped_args = tuple(_strip_annotations(a) for a in t.__args__)
 | 
						|
        if stripped_args == t.__args__:
 | 
						|
            return t
 | 
						|
        return t.copy_with(stripped_args)
 | 
						|
    if isinstance(t, GenericAlias):
 | 
						|
        stripped_args = tuple(_strip_annotations(a) for a in t.__args__)
 | 
						|
        if stripped_args == t.__args__:
 | 
						|
            return t
 | 
						|
        return GenericAlias(t.__origin__, stripped_args)
 | 
						|
    if isinstance(t, types.UnionType):
 | 
						|
        stripped_args = tuple(_strip_annotations(a) for a in t.__args__)
 | 
						|
        if stripped_args == t.__args__:
 | 
						|
            return t
 | 
						|
        return functools.reduce(operator.or_, stripped_args)
 | 
						|
 | 
						|
    return t
 | 
						|
 | 
						|
 | 
						|
def get_origin(tp):
 | 
						|
    """Get the unsubscripted version of a type.
 | 
						|
 | 
						|
    This supports generic types, Callable, Tuple, Union, Literal, Final, ClassVar
 | 
						|
    and Annotated. Return None for unsupported types. Examples::
 | 
						|
 | 
						|
        get_origin(Literal[42]) is Literal
 | 
						|
        get_origin(int) is None
 | 
						|
        get_origin(ClassVar[int]) is ClassVar
 | 
						|
        get_origin(Generic) is Generic
 | 
						|
        get_origin(Generic[T]) is Generic
 | 
						|
        get_origin(Union[T, int]) is Union
 | 
						|
        get_origin(List[Tuple[T, T]][int]) == list
 | 
						|
        get_origin(P.args) is P
 | 
						|
    """
 | 
						|
    if isinstance(tp, _AnnotatedAlias):
 | 
						|
        return Annotated
 | 
						|
    if isinstance(tp, (_BaseGenericAlias, GenericAlias,
 | 
						|
                       ParamSpecArgs, ParamSpecKwargs)):
 | 
						|
        return tp.__origin__
 | 
						|
    if tp is Generic:
 | 
						|
        return Generic
 | 
						|
    if isinstance(tp, types.UnionType):
 | 
						|
        return types.UnionType
 | 
						|
    return None
 | 
						|
 | 
						|
 | 
						|
def get_args(tp):
 | 
						|
    """Get type arguments with all substitutions performed.
 | 
						|
 | 
						|
    For unions, basic simplifications used by Union constructor are performed.
 | 
						|
    Examples::
 | 
						|
        get_args(Dict[str, int]) == (str, int)
 | 
						|
        get_args(int) == ()
 | 
						|
        get_args(Union[int, Union[T, int], str][int]) == (int, str)
 | 
						|
        get_args(Union[int, Tuple[T, int]][str]) == (int, Tuple[str, int])
 | 
						|
        get_args(Callable[[], T][int]) == ([], int)
 | 
						|
    """
 | 
						|
    if isinstance(tp, _AnnotatedAlias):
 | 
						|
        return (tp.__origin__,) + tp.__metadata__
 | 
						|
    if isinstance(tp, (_GenericAlias, GenericAlias)):
 | 
						|
        res = tp.__args__
 | 
						|
        if _should_unflatten_callable_args(tp, res):
 | 
						|
            res = (list(res[:-1]), res[-1])
 | 
						|
        return res
 | 
						|
    if isinstance(tp, types.UnionType):
 | 
						|
        return tp.__args__
 | 
						|
    return ()
 | 
						|
 | 
						|
 | 
						|
def is_typeddict(tp):
 | 
						|
    """Check if an annotation is a TypedDict class
 | 
						|
 | 
						|
    For example::
 | 
						|
        class Film(TypedDict):
 | 
						|
            title: str
 | 
						|
            year: int
 | 
						|
 | 
						|
        is_typeddict(Film)  # => True
 | 
						|
        is_typeddict(Union[list, str])  # => False
 | 
						|
    """
 | 
						|
    return isinstance(tp, _TypedDictMeta)
 | 
						|
 | 
						|
 | 
						|
_ASSERT_NEVER_REPR_MAX_LENGTH = 100
 | 
						|
 | 
						|
 | 
						|
def assert_never(arg: Never, /) -> Never:
 | 
						|
    """Statically assert that a line of code is unreachable.
 | 
						|
 | 
						|
    Example::
 | 
						|
 | 
						|
        def int_or_str(arg: int | str) -> None:
 | 
						|
            match arg:
 | 
						|
                case int():
 | 
						|
                    print("It's an int")
 | 
						|
                case str():
 | 
						|
                    print("It's a str")
 | 
						|
                case _:
 | 
						|
                    assert_never(arg)
 | 
						|
 | 
						|
    If a type checker finds that a call to assert_never() is
 | 
						|
    reachable, it will emit an error.
 | 
						|
 | 
						|
    At runtime, this throws an exception when called.
 | 
						|
 | 
						|
    """
 | 
						|
    value = repr(arg)
 | 
						|
    if len(value) > _ASSERT_NEVER_REPR_MAX_LENGTH:
 | 
						|
        value = value[:_ASSERT_NEVER_REPR_MAX_LENGTH] + '...'
 | 
						|
    raise AssertionError(f"Expected code to be unreachable, but got: {value}")
 | 
						|
 | 
						|
 | 
						|
def no_type_check(arg):
 | 
						|
    """Decorator to indicate that annotations are not type hints.
 | 
						|
 | 
						|
    The argument must be a class or function; if it is a class, it
 | 
						|
    applies recursively to all methods and classes defined in that class
 | 
						|
    (but not to methods defined in its superclasses or subclasses).
 | 
						|
 | 
						|
    This mutates the function(s) or class(es) in place.
 | 
						|
    """
 | 
						|
    if isinstance(arg, type):
 | 
						|
        for key in dir(arg):
 | 
						|
            obj = getattr(arg, key)
 | 
						|
            if (
 | 
						|
                not hasattr(obj, '__qualname__')
 | 
						|
                or obj.__qualname__ != f'{arg.__qualname__}.{obj.__name__}'
 | 
						|
                or getattr(obj, '__module__', None) != arg.__module__
 | 
						|
            ):
 | 
						|
                # We only modify objects that are defined in this type directly.
 | 
						|
                # If classes / methods are nested in multiple layers,
 | 
						|
                # we will modify them when processing their direct holders.
 | 
						|
                continue
 | 
						|
            # Instance, class, and static methods:
 | 
						|
            if isinstance(obj, types.FunctionType):
 | 
						|
                obj.__no_type_check__ = True
 | 
						|
            if isinstance(obj, types.MethodType):
 | 
						|
                obj.__func__.__no_type_check__ = True
 | 
						|
            # Nested types:
 | 
						|
            if isinstance(obj, type):
 | 
						|
                no_type_check(obj)
 | 
						|
    try:
 | 
						|
        arg.__no_type_check__ = True
 | 
						|
    except TypeError:  # built-in classes
 | 
						|
        pass
 | 
						|
    return arg
 | 
						|
 | 
						|
 | 
						|
def no_type_check_decorator(decorator):
 | 
						|
    """Decorator to give another decorator the @no_type_check effect.
 | 
						|
 | 
						|
    This wraps the decorator with something that wraps the decorated
 | 
						|
    function in @no_type_check.
 | 
						|
    """
 | 
						|
 | 
						|
    @functools.wraps(decorator)
 | 
						|
    def wrapped_decorator(*args, **kwds):
 | 
						|
        func = decorator(*args, **kwds)
 | 
						|
        func = no_type_check(func)
 | 
						|
        return func
 | 
						|
 | 
						|
    return wrapped_decorator
 | 
						|
 | 
						|
 | 
						|
def _overload_dummy(*args, **kwds):
 | 
						|
    """Helper for @overload to raise when called."""
 | 
						|
    raise NotImplementedError(
 | 
						|
        "You should not call an overloaded function. "
 | 
						|
        "A series of @overload-decorated functions "
 | 
						|
        "outside a stub module should always be followed "
 | 
						|
        "by an implementation that is not @overload-ed.")
 | 
						|
 | 
						|
 | 
						|
# {module: {qualname: {firstlineno: func}}}
 | 
						|
_overload_registry = defaultdict(functools.partial(defaultdict, dict))
 | 
						|
 | 
						|
 | 
						|
def overload(func):
 | 
						|
    """Decorator for overloaded functions/methods.
 | 
						|
 | 
						|
    In a stub file, place two or more stub definitions for the same
 | 
						|
    function in a row, each decorated with @overload.  For example:
 | 
						|
 | 
						|
      @overload
 | 
						|
      def utf8(value: None) -> None: ...
 | 
						|
      @overload
 | 
						|
      def utf8(value: bytes) -> bytes: ...
 | 
						|
      @overload
 | 
						|
      def utf8(value: str) -> bytes: ...
 | 
						|
 | 
						|
    In a non-stub file (i.e. a regular .py file), do the same but
 | 
						|
    follow it with an implementation.  The implementation should *not*
 | 
						|
    be decorated with @overload.  For example:
 | 
						|
 | 
						|
      @overload
 | 
						|
      def utf8(value: None) -> None: ...
 | 
						|
      @overload
 | 
						|
      def utf8(value: bytes) -> bytes: ...
 | 
						|
      @overload
 | 
						|
      def utf8(value: str) -> bytes: ...
 | 
						|
      def utf8(value):
 | 
						|
          # implementation goes here
 | 
						|
 | 
						|
    The overloads for a function can be retrieved at runtime using the
 | 
						|
    get_overloads() function.
 | 
						|
    """
 | 
						|
    # classmethod and staticmethod
 | 
						|
    f = getattr(func, "__func__", func)
 | 
						|
    try:
 | 
						|
        _overload_registry[f.__module__][f.__qualname__][f.__code__.co_firstlineno] = func
 | 
						|
    except AttributeError:
 | 
						|
        # Not a normal function; ignore.
 | 
						|
        pass
 | 
						|
    return _overload_dummy
 | 
						|
 | 
						|
 | 
						|
def get_overloads(func):
 | 
						|
    """Return all defined overloads for *func* as a sequence."""
 | 
						|
    # classmethod and staticmethod
 | 
						|
    f = getattr(func, "__func__", func)
 | 
						|
    if f.__module__ not in _overload_registry:
 | 
						|
        return []
 | 
						|
    mod_dict = _overload_registry[f.__module__]
 | 
						|
    if f.__qualname__ not in mod_dict:
 | 
						|
        return []
 | 
						|
    return list(mod_dict[f.__qualname__].values())
 | 
						|
 | 
						|
 | 
						|
def clear_overloads():
 | 
						|
    """Clear all overloads in the registry."""
 | 
						|
    _overload_registry.clear()
 | 
						|
 | 
						|
 | 
						|
def final(f):
 | 
						|
    """A decorator to indicate final methods and final classes.
 | 
						|
 | 
						|
    Use this decorator to indicate to type checkers that the decorated
 | 
						|
    method cannot be overridden, and decorated class cannot be subclassed.
 | 
						|
    For example:
 | 
						|
 | 
						|
      class Base:
 | 
						|
          @final
 | 
						|
          def done(self) -> None:
 | 
						|
              ...
 | 
						|
      class Sub(Base):
 | 
						|
          def done(self) -> None:  # Error reported by type checker
 | 
						|
                ...
 | 
						|
 | 
						|
      @final
 | 
						|
      class Leaf:
 | 
						|
          ...
 | 
						|
      class Other(Leaf):  # Error reported by type checker
 | 
						|
          ...
 | 
						|
 | 
						|
    There is no runtime checking of these properties. The decorator
 | 
						|
    sets the ``__final__`` attribute to ``True`` on the decorated object
 | 
						|
    to allow runtime introspection.
 | 
						|
    """
 | 
						|
    try:
 | 
						|
        f.__final__ = True
 | 
						|
    except (AttributeError, TypeError):
 | 
						|
        # Skip the attribute silently if it is not writable.
 | 
						|
        # AttributeError happens if the object has __slots__ or a
 | 
						|
        # read-only property, TypeError if it's a builtin class.
 | 
						|
        pass
 | 
						|
    return f
 | 
						|
 | 
						|
 | 
						|
# Some unconstrained type variables.  These were initially used by the container types.
 | 
						|
# They were never meant for export and are now unused, but we keep them around to
 | 
						|
# avoid breaking compatibility with users who import them.
 | 
						|
T = TypeVar('T')  # Any type.
 | 
						|
KT = TypeVar('KT')  # Key type.
 | 
						|
VT = TypeVar('VT')  # Value type.
 | 
						|
T_co = TypeVar('T_co', covariant=True)  # Any type covariant containers.
 | 
						|
V_co = TypeVar('V_co', covariant=True)  # Any type covariant containers.
 | 
						|
VT_co = TypeVar('VT_co', covariant=True)  # Value type covariant containers.
 | 
						|
T_contra = TypeVar('T_contra', contravariant=True)  # Ditto contravariant.
 | 
						|
# Internal type variable used for Type[].
 | 
						|
CT_co = TypeVar('CT_co', covariant=True, bound=type)
 | 
						|
 | 
						|
 | 
						|
# A useful type variable with constraints.  This represents string types.
 | 
						|
# (This one *is* for export!)
 | 
						|
AnyStr = TypeVar('AnyStr', bytes, str)
 | 
						|
 | 
						|
 | 
						|
# Various ABCs mimicking those in collections.abc.
 | 
						|
_alias = _SpecialGenericAlias
 | 
						|
 | 
						|
Hashable = _alias(collections.abc.Hashable, 0)  # Not generic.
 | 
						|
Awaitable = _alias(collections.abc.Awaitable, 1)
 | 
						|
Coroutine = _alias(collections.abc.Coroutine, 3)
 | 
						|
AsyncIterable = _alias(collections.abc.AsyncIterable, 1)
 | 
						|
AsyncIterator = _alias(collections.abc.AsyncIterator, 1)
 | 
						|
Iterable = _alias(collections.abc.Iterable, 1)
 | 
						|
Iterator = _alias(collections.abc.Iterator, 1)
 | 
						|
Reversible = _alias(collections.abc.Reversible, 1)
 | 
						|
Sized = _alias(collections.abc.Sized, 0)  # Not generic.
 | 
						|
Container = _alias(collections.abc.Container, 1)
 | 
						|
Collection = _alias(collections.abc.Collection, 1)
 | 
						|
Callable = _CallableType(collections.abc.Callable, 2)
 | 
						|
Callable.__doc__ = \
 | 
						|
    """Callable type; Callable[[int], str] is a function of (int) -> str.
 | 
						|
 | 
						|
    The subscription syntax must always be used with exactly two
 | 
						|
    values: the argument list and the return type.  The argument list
 | 
						|
    must be a list of types or ellipsis; the return type must be a single type.
 | 
						|
 | 
						|
    There is no syntax to indicate optional or keyword arguments,
 | 
						|
    such function types are rarely used as callback types.
 | 
						|
    """
 | 
						|
AbstractSet = _alias(collections.abc.Set, 1, name='AbstractSet')
 | 
						|
MutableSet = _alias(collections.abc.MutableSet, 1)
 | 
						|
# NOTE: Mapping is only covariant in the value type.
 | 
						|
Mapping = _alias(collections.abc.Mapping, 2)
 | 
						|
MutableMapping = _alias(collections.abc.MutableMapping, 2)
 | 
						|
Sequence = _alias(collections.abc.Sequence, 1)
 | 
						|
MutableSequence = _alias(collections.abc.MutableSequence, 1)
 | 
						|
ByteString = _DeprecatedGenericAlias(
 | 
						|
    collections.abc.ByteString, 0, removal_version=(3, 14)  # Not generic.
 | 
						|
)
 | 
						|
# Tuple accepts variable number of parameters.
 | 
						|
Tuple = _TupleType(tuple, -1, inst=False, name='Tuple')
 | 
						|
Tuple.__doc__ = \
 | 
						|
    """Tuple type; Tuple[X, Y] is the cross-product type of X and Y.
 | 
						|
 | 
						|
    Example: Tuple[T1, T2] is a tuple of two elements corresponding
 | 
						|
    to type variables T1 and T2.  Tuple[int, float, str] is a tuple
 | 
						|
    of an int, a float and a string.
 | 
						|
 | 
						|
    To specify a variable-length tuple of homogeneous type, use Tuple[T, ...].
 | 
						|
    """
 | 
						|
List = _alias(list, 1, inst=False, name='List')
 | 
						|
Deque = _alias(collections.deque, 1, name='Deque')
 | 
						|
Set = _alias(set, 1, inst=False, name='Set')
 | 
						|
FrozenSet = _alias(frozenset, 1, inst=False, name='FrozenSet')
 | 
						|
MappingView = _alias(collections.abc.MappingView, 1)
 | 
						|
KeysView = _alias(collections.abc.KeysView, 1)
 | 
						|
ItemsView = _alias(collections.abc.ItemsView, 2)
 | 
						|
ValuesView = _alias(collections.abc.ValuesView, 1)
 | 
						|
ContextManager = _alias(contextlib.AbstractContextManager, 1, name='ContextManager')
 | 
						|
AsyncContextManager = _alias(contextlib.AbstractAsyncContextManager, 1, name='AsyncContextManager')
 | 
						|
Dict = _alias(dict, 2, inst=False, name='Dict')
 | 
						|
DefaultDict = _alias(collections.defaultdict, 2, name='DefaultDict')
 | 
						|
OrderedDict = _alias(collections.OrderedDict, 2)
 | 
						|
Counter = _alias(collections.Counter, 1)
 | 
						|
ChainMap = _alias(collections.ChainMap, 2)
 | 
						|
Generator = _alias(collections.abc.Generator, 3)
 | 
						|
AsyncGenerator = _alias(collections.abc.AsyncGenerator, 2)
 | 
						|
Type = _alias(type, 1, inst=False, name='Type')
 | 
						|
Type.__doc__ = \
 | 
						|
    """A special construct usable to annotate class objects.
 | 
						|
 | 
						|
    For example, suppose we have the following classes::
 | 
						|
 | 
						|
      class User: ...  # Abstract base for User classes
 | 
						|
      class BasicUser(User): ...
 | 
						|
      class ProUser(User): ...
 | 
						|
      class TeamUser(User): ...
 | 
						|
 | 
						|
    And a function that takes a class argument that's a subclass of
 | 
						|
    User and returns an instance of the corresponding class::
 | 
						|
 | 
						|
      U = TypeVar('U', bound=User)
 | 
						|
      def new_user(user_class: Type[U]) -> U:
 | 
						|
          user = user_class()
 | 
						|
          # (Here we could write the user object to a database)
 | 
						|
          return user
 | 
						|
 | 
						|
      joe = new_user(BasicUser)
 | 
						|
 | 
						|
    At this point the type checker knows that joe has type BasicUser.
 | 
						|
    """
 | 
						|
 | 
						|
 | 
						|
@runtime_checkable
 | 
						|
class SupportsInt(Protocol):
 | 
						|
    """An ABC with one abstract method __int__."""
 | 
						|
    __slots__ = ()
 | 
						|
 | 
						|
    @abstractmethod
 | 
						|
    def __int__(self) -> int:
 | 
						|
        pass
 | 
						|
 | 
						|
 | 
						|
@runtime_checkable
 | 
						|
class SupportsFloat(Protocol):
 | 
						|
    """An ABC with one abstract method __float__."""
 | 
						|
    __slots__ = ()
 | 
						|
 | 
						|
    @abstractmethod
 | 
						|
    def __float__(self) -> float:
 | 
						|
        pass
 | 
						|
 | 
						|
 | 
						|
@runtime_checkable
 | 
						|
class SupportsComplex(Protocol):
 | 
						|
    """An ABC with one abstract method __complex__."""
 | 
						|
    __slots__ = ()
 | 
						|
 | 
						|
    @abstractmethod
 | 
						|
    def __complex__(self) -> complex:
 | 
						|
        pass
 | 
						|
 | 
						|
 | 
						|
@runtime_checkable
 | 
						|
class SupportsBytes(Protocol):
 | 
						|
    """An ABC with one abstract method __bytes__."""
 | 
						|
    __slots__ = ()
 | 
						|
 | 
						|
    @abstractmethod
 | 
						|
    def __bytes__(self) -> bytes:
 | 
						|
        pass
 | 
						|
 | 
						|
 | 
						|
@runtime_checkable
 | 
						|
class SupportsIndex(Protocol):
 | 
						|
    """An ABC with one abstract method __index__."""
 | 
						|
    __slots__ = ()
 | 
						|
 | 
						|
    @abstractmethod
 | 
						|
    def __index__(self) -> int:
 | 
						|
        pass
 | 
						|
 | 
						|
 | 
						|
@runtime_checkable
 | 
						|
class SupportsAbs[T](Protocol):
 | 
						|
    """An ABC with one abstract method __abs__ that is covariant in its return type."""
 | 
						|
    __slots__ = ()
 | 
						|
 | 
						|
    @abstractmethod
 | 
						|
    def __abs__(self) -> T:
 | 
						|
        pass
 | 
						|
 | 
						|
 | 
						|
@runtime_checkable
 | 
						|
class SupportsRound[T](Protocol):
 | 
						|
    """An ABC with one abstract method __round__ that is covariant in its return type."""
 | 
						|
    __slots__ = ()
 | 
						|
 | 
						|
    @abstractmethod
 | 
						|
    def __round__(self, ndigits: int = 0) -> T:
 | 
						|
        pass
 | 
						|
 | 
						|
 | 
						|
def _make_nmtuple(name, types, module, defaults = ()):
 | 
						|
    fields = [n for n, t in types]
 | 
						|
    types = {n: _type_check(t, f"field {n} annotation must be a type")
 | 
						|
             for n, t in types}
 | 
						|
    nm_tpl = collections.namedtuple(name, fields,
 | 
						|
                                    defaults=defaults, module=module)
 | 
						|
    nm_tpl.__annotations__ = nm_tpl.__new__.__annotations__ = types
 | 
						|
    return nm_tpl
 | 
						|
 | 
						|
 | 
						|
# attributes prohibited to set in NamedTuple class syntax
 | 
						|
_prohibited = frozenset({'__new__', '__init__', '__slots__', '__getnewargs__',
 | 
						|
                         '_fields', '_field_defaults',
 | 
						|
                         '_make', '_replace', '_asdict', '_source'})
 | 
						|
 | 
						|
_special = frozenset({'__module__', '__name__', '__annotations__'})
 | 
						|
 | 
						|
 | 
						|
class NamedTupleMeta(type):
 | 
						|
 | 
						|
    def __new__(cls, typename, bases, ns):
 | 
						|
        assert _NamedTuple in bases
 | 
						|
        for base in bases:
 | 
						|
            if base is not _NamedTuple and base is not Generic:
 | 
						|
                raise TypeError(
 | 
						|
                    'can only inherit from a NamedTuple type and Generic')
 | 
						|
        bases = tuple(tuple if base is _NamedTuple else base for base in bases)
 | 
						|
        types = ns.get('__annotations__', {})
 | 
						|
        default_names = []
 | 
						|
        for field_name in types:
 | 
						|
            if field_name in ns:
 | 
						|
                default_names.append(field_name)
 | 
						|
            elif default_names:
 | 
						|
                raise TypeError(f"Non-default namedtuple field {field_name} "
 | 
						|
                                f"cannot follow default field"
 | 
						|
                                f"{'s' if len(default_names) > 1 else ''} "
 | 
						|
                                f"{', '.join(default_names)}")
 | 
						|
        nm_tpl = _make_nmtuple(typename, types.items(),
 | 
						|
                               defaults=[ns[n] for n in default_names],
 | 
						|
                               module=ns['__module__'])
 | 
						|
        nm_tpl.__bases__ = bases
 | 
						|
        if Generic in bases:
 | 
						|
            class_getitem = _generic_class_getitem
 | 
						|
            nm_tpl.__class_getitem__ = classmethod(class_getitem)
 | 
						|
        # update from user namespace without overriding special namedtuple attributes
 | 
						|
        for key in ns:
 | 
						|
            if key in _prohibited:
 | 
						|
                raise AttributeError("Cannot overwrite NamedTuple attribute " + key)
 | 
						|
            elif key not in _special and key not in nm_tpl._fields:
 | 
						|
                setattr(nm_tpl, key, ns[key])
 | 
						|
        if Generic in bases:
 | 
						|
            nm_tpl.__init_subclass__()
 | 
						|
        return nm_tpl
 | 
						|
 | 
						|
 | 
						|
def NamedTuple(typename, fields=None, /, **kwargs):
 | 
						|
    """Typed version of namedtuple.
 | 
						|
 | 
						|
    Usage::
 | 
						|
 | 
						|
        class Employee(NamedTuple):
 | 
						|
            name: str
 | 
						|
            id: int
 | 
						|
 | 
						|
    This is equivalent to::
 | 
						|
 | 
						|
        Employee = collections.namedtuple('Employee', ['name', 'id'])
 | 
						|
 | 
						|
    The resulting class has an extra __annotations__ attribute, giving a
 | 
						|
    dict that maps field names to types.  (The field names are also in
 | 
						|
    the _fields attribute, which is part of the namedtuple API.)
 | 
						|
    Alternative equivalent keyword syntax is also accepted::
 | 
						|
 | 
						|
        Employee = NamedTuple('Employee', name=str, id=int)
 | 
						|
 | 
						|
    """
 | 
						|
    if fields is None:
 | 
						|
        fields = kwargs.items()
 | 
						|
    elif kwargs:
 | 
						|
        raise TypeError("Either list of fields or keywords"
 | 
						|
                        " can be provided to NamedTuple, not both")
 | 
						|
    nt = _make_nmtuple(typename, fields, module=_caller())
 | 
						|
    nt.__orig_bases__ = (NamedTuple,)
 | 
						|
    return nt
 | 
						|
 | 
						|
_NamedTuple = type.__new__(NamedTupleMeta, 'NamedTuple', (), {})
 | 
						|
 | 
						|
def _namedtuple_mro_entries(bases):
 | 
						|
    assert NamedTuple in bases
 | 
						|
    return (_NamedTuple,)
 | 
						|
 | 
						|
NamedTuple.__mro_entries__ = _namedtuple_mro_entries
 | 
						|
 | 
						|
 | 
						|
class _TypedDictMeta(type):
 | 
						|
    def __new__(cls, name, bases, ns, total=True):
 | 
						|
        """Create new typed dict class object.
 | 
						|
 | 
						|
        This method is called when TypedDict is subclassed,
 | 
						|
        or when TypedDict is instantiated. This way
 | 
						|
        TypedDict supports all three syntax forms described in its docstring.
 | 
						|
        Subclasses and instances of TypedDict return actual dictionaries.
 | 
						|
        """
 | 
						|
        for base in bases:
 | 
						|
            if type(base) is not _TypedDictMeta and base is not Generic:
 | 
						|
                raise TypeError('cannot inherit from both a TypedDict type '
 | 
						|
                                'and a non-TypedDict base class')
 | 
						|
 | 
						|
        if any(issubclass(b, Generic) for b in bases):
 | 
						|
            generic_base = (Generic,)
 | 
						|
        else:
 | 
						|
            generic_base = ()
 | 
						|
 | 
						|
        tp_dict = type.__new__(_TypedDictMeta, name, (*generic_base, dict), ns)
 | 
						|
 | 
						|
        if not hasattr(tp_dict, '__orig_bases__'):
 | 
						|
            tp_dict.__orig_bases__ = bases
 | 
						|
 | 
						|
        annotations = {}
 | 
						|
        own_annotations = ns.get('__annotations__', {})
 | 
						|
        msg = "TypedDict('Name', {f0: t0, f1: t1, ...}); each t must be a type"
 | 
						|
        own_annotations = {
 | 
						|
            n: _type_check(tp, msg, module=tp_dict.__module__)
 | 
						|
            for n, tp in own_annotations.items()
 | 
						|
        }
 | 
						|
        required_keys = set()
 | 
						|
        optional_keys = set()
 | 
						|
 | 
						|
        for base in bases:
 | 
						|
            annotations.update(base.__dict__.get('__annotations__', {}))
 | 
						|
            required_keys.update(base.__dict__.get('__required_keys__', ()))
 | 
						|
            optional_keys.update(base.__dict__.get('__optional_keys__', ()))
 | 
						|
 | 
						|
        annotations.update(own_annotations)
 | 
						|
        for annotation_key, annotation_type in own_annotations.items():
 | 
						|
            annotation_origin = get_origin(annotation_type)
 | 
						|
            if annotation_origin is Annotated:
 | 
						|
                annotation_args = get_args(annotation_type)
 | 
						|
                if annotation_args:
 | 
						|
                    annotation_type = annotation_args[0]
 | 
						|
                    annotation_origin = get_origin(annotation_type)
 | 
						|
 | 
						|
            if annotation_origin is Required:
 | 
						|
                required_keys.add(annotation_key)
 | 
						|
            elif annotation_origin is NotRequired:
 | 
						|
                optional_keys.add(annotation_key)
 | 
						|
            elif total:
 | 
						|
                required_keys.add(annotation_key)
 | 
						|
            else:
 | 
						|
                optional_keys.add(annotation_key)
 | 
						|
 | 
						|
        tp_dict.__annotations__ = annotations
 | 
						|
        tp_dict.__required_keys__ = frozenset(required_keys)
 | 
						|
        tp_dict.__optional_keys__ = frozenset(optional_keys)
 | 
						|
        if not hasattr(tp_dict, '__total__'):
 | 
						|
            tp_dict.__total__ = total
 | 
						|
        return tp_dict
 | 
						|
 | 
						|
    __call__ = dict  # static method
 | 
						|
 | 
						|
    def __subclasscheck__(cls, other):
 | 
						|
        # Typed dicts are only for static structural subtyping.
 | 
						|
        raise TypeError('TypedDict does not support instance and class checks')
 | 
						|
 | 
						|
    __instancecheck__ = __subclasscheck__
 | 
						|
 | 
						|
 | 
						|
def TypedDict(typename, fields=None, /, *, total=True):
 | 
						|
    """A simple typed namespace. At runtime it is equivalent to a plain dict.
 | 
						|
 | 
						|
    TypedDict creates a dictionary type that expects all of its
 | 
						|
    instances to have a certain set of keys, where each key is
 | 
						|
    associated with a value of a consistent type. This expectation
 | 
						|
    is not checked at runtime but is only enforced by type checkers.
 | 
						|
    Usage::
 | 
						|
 | 
						|
        class Point2D(TypedDict):
 | 
						|
            x: int
 | 
						|
            y: int
 | 
						|
            label: str
 | 
						|
 | 
						|
        a: Point2D = {'x': 1, 'y': 2, 'label': 'good'}  # OK
 | 
						|
        b: Point2D = {'z': 3, 'label': 'bad'}           # Fails type check
 | 
						|
 | 
						|
        assert Point2D(x=1, y=2, label='first') == dict(x=1, y=2, label='first')
 | 
						|
 | 
						|
    The type info can be accessed via the Point2D.__annotations__ dict, and
 | 
						|
    the Point2D.__required_keys__ and Point2D.__optional_keys__ frozensets.
 | 
						|
    TypedDict supports an additional equivalent form::
 | 
						|
 | 
						|
        Point2D = TypedDict('Point2D', {'x': int, 'y': int, 'label': str})
 | 
						|
 | 
						|
    By default, all keys must be present in a TypedDict. It is possible
 | 
						|
    to override this by specifying totality.
 | 
						|
    Usage::
 | 
						|
 | 
						|
        class point2D(TypedDict, total=False):
 | 
						|
            x: int
 | 
						|
            y: int
 | 
						|
 | 
						|
    This means that a point2D TypedDict can have any of the keys omitted.A type
 | 
						|
    checker is only expected to support a literal False or True as the value of
 | 
						|
    the total argument. True is the default, and makes all items defined in the
 | 
						|
    class body be required.
 | 
						|
    """
 | 
						|
    if fields is None:
 | 
						|
        fields = {}
 | 
						|
 | 
						|
    ns = {'__annotations__': dict(fields)}
 | 
						|
    module = _caller()
 | 
						|
    if module is not None:
 | 
						|
        # Setting correct module is necessary to make typed dict classes pickleable.
 | 
						|
        ns['__module__'] = module
 | 
						|
 | 
						|
    td = _TypedDictMeta(typename, (), ns, total=total)
 | 
						|
    td.__orig_bases__ = (TypedDict,)
 | 
						|
    return td
 | 
						|
 | 
						|
_TypedDict = type.__new__(_TypedDictMeta, 'TypedDict', (), {})
 | 
						|
TypedDict.__mro_entries__ = lambda bases: (_TypedDict,)
 | 
						|
 | 
						|
 | 
						|
@_SpecialForm
 | 
						|
def Required(self, parameters):
 | 
						|
    """A special typing construct to mark a key of a total=False TypedDict
 | 
						|
    as required. For example:
 | 
						|
 | 
						|
        class Movie(TypedDict, total=False):
 | 
						|
            title: Required[str]
 | 
						|
            year: int
 | 
						|
 | 
						|
        m = Movie(
 | 
						|
            title='The Matrix',  # typechecker error if key is omitted
 | 
						|
            year=1999,
 | 
						|
        )
 | 
						|
 | 
						|
    There is no runtime checking that a required key is actually provided
 | 
						|
    when instantiating a related TypedDict.
 | 
						|
    """
 | 
						|
    item = _type_check(parameters, f'{self._name} accepts only a single type.')
 | 
						|
    return _GenericAlias(self, (item,))
 | 
						|
 | 
						|
 | 
						|
@_SpecialForm
 | 
						|
def NotRequired(self, parameters):
 | 
						|
    """A special typing construct to mark a key of a TypedDict as
 | 
						|
    potentially missing. For example:
 | 
						|
 | 
						|
        class Movie(TypedDict):
 | 
						|
            title: str
 | 
						|
            year: NotRequired[int]
 | 
						|
 | 
						|
        m = Movie(
 | 
						|
            title='The Matrix',  # typechecker error if key is omitted
 | 
						|
            year=1999,
 | 
						|
        )
 | 
						|
    """
 | 
						|
    item = _type_check(parameters, f'{self._name} accepts only a single type.')
 | 
						|
    return _GenericAlias(self, (item,))
 | 
						|
 | 
						|
 | 
						|
class NewType:
 | 
						|
    """NewType creates simple unique types with almost zero
 | 
						|
    runtime overhead. NewType(name, tp) is considered a subtype of tp
 | 
						|
    by static type checkers. At runtime, NewType(name, tp) returns
 | 
						|
    a dummy callable that simply returns its argument. Usage::
 | 
						|
 | 
						|
        UserId = NewType('UserId', int)
 | 
						|
 | 
						|
        def name_by_id(user_id: UserId) -> str:
 | 
						|
            ...
 | 
						|
 | 
						|
        UserId('user')          # Fails type check
 | 
						|
 | 
						|
        name_by_id(42)          # Fails type check
 | 
						|
        name_by_id(UserId(42))  # OK
 | 
						|
 | 
						|
        num = UserId(5) + 1     # type: int
 | 
						|
    """
 | 
						|
 | 
						|
    __call__ = _idfunc
 | 
						|
 | 
						|
    def __init__(self, name, tp):
 | 
						|
        self.__qualname__ = name
 | 
						|
        if '.' in name:
 | 
						|
            name = name.rpartition('.')[-1]
 | 
						|
        self.__name__ = name
 | 
						|
        self.__supertype__ = tp
 | 
						|
        def_mod = _caller()
 | 
						|
        if def_mod != 'typing':
 | 
						|
            self.__module__ = def_mod
 | 
						|
 | 
						|
    def __mro_entries__(self, bases):
 | 
						|
        # We defined __mro_entries__ to get a better error message
 | 
						|
        # if a user attempts to subclass a NewType instance. bpo-46170
 | 
						|
        superclass_name = self.__name__
 | 
						|
 | 
						|
        class Dummy:
 | 
						|
            def __init_subclass__(cls):
 | 
						|
                subclass_name = cls.__name__
 | 
						|
                raise TypeError(
 | 
						|
                    f"Cannot subclass an instance of NewType. Perhaps you were looking for: "
 | 
						|
                    f"`{subclass_name} = NewType({subclass_name!r}, {superclass_name})`"
 | 
						|
                )
 | 
						|
 | 
						|
        return (Dummy,)
 | 
						|
 | 
						|
    def __repr__(self):
 | 
						|
        return f'{self.__module__}.{self.__qualname__}'
 | 
						|
 | 
						|
    def __reduce__(self):
 | 
						|
        return self.__qualname__
 | 
						|
 | 
						|
    def __or__(self, other):
 | 
						|
        return Union[self, other]
 | 
						|
 | 
						|
    def __ror__(self, other):
 | 
						|
        return Union[other, self]
 | 
						|
 | 
						|
 | 
						|
# Python-version-specific alias (Python 2: unicode; Python 3: str)
 | 
						|
Text = str
 | 
						|
 | 
						|
 | 
						|
# Constant that's True when type checking, but False here.
 | 
						|
TYPE_CHECKING = False
 | 
						|
 | 
						|
 | 
						|
class IO(Generic[AnyStr]):
 | 
						|
    """Generic base class for TextIO and BinaryIO.
 | 
						|
 | 
						|
    This is an abstract, generic version of the return of open().
 | 
						|
 | 
						|
    NOTE: This does not distinguish between the different possible
 | 
						|
    classes (text vs. binary, read vs. write vs. read/write,
 | 
						|
    append-only, unbuffered).  The TextIO and BinaryIO subclasses
 | 
						|
    below capture the distinctions between text vs. binary, which is
 | 
						|
    pervasive in the interface; however we currently do not offer a
 | 
						|
    way to track the other distinctions in the type system.
 | 
						|
    """
 | 
						|
 | 
						|
    __slots__ = ()
 | 
						|
 | 
						|
    @property
 | 
						|
    @abstractmethod
 | 
						|
    def mode(self) -> str:
 | 
						|
        pass
 | 
						|
 | 
						|
    @property
 | 
						|
    @abstractmethod
 | 
						|
    def name(self) -> str:
 | 
						|
        pass
 | 
						|
 | 
						|
    @abstractmethod
 | 
						|
    def close(self) -> None:
 | 
						|
        pass
 | 
						|
 | 
						|
    @property
 | 
						|
    @abstractmethod
 | 
						|
    def closed(self) -> bool:
 | 
						|
        pass
 | 
						|
 | 
						|
    @abstractmethod
 | 
						|
    def fileno(self) -> int:
 | 
						|
        pass
 | 
						|
 | 
						|
    @abstractmethod
 | 
						|
    def flush(self) -> None:
 | 
						|
        pass
 | 
						|
 | 
						|
    @abstractmethod
 | 
						|
    def isatty(self) -> bool:
 | 
						|
        pass
 | 
						|
 | 
						|
    @abstractmethod
 | 
						|
    def read(self, n: int = -1) -> AnyStr:
 | 
						|
        pass
 | 
						|
 | 
						|
    @abstractmethod
 | 
						|
    def readable(self) -> bool:
 | 
						|
        pass
 | 
						|
 | 
						|
    @abstractmethod
 | 
						|
    def readline(self, limit: int = -1) -> AnyStr:
 | 
						|
        pass
 | 
						|
 | 
						|
    @abstractmethod
 | 
						|
    def readlines(self, hint: int = -1) -> List[AnyStr]:
 | 
						|
        pass
 | 
						|
 | 
						|
    @abstractmethod
 | 
						|
    def seek(self, offset: int, whence: int = 0) -> int:
 | 
						|
        pass
 | 
						|
 | 
						|
    @abstractmethod
 | 
						|
    def seekable(self) -> bool:
 | 
						|
        pass
 | 
						|
 | 
						|
    @abstractmethod
 | 
						|
    def tell(self) -> int:
 | 
						|
        pass
 | 
						|
 | 
						|
    @abstractmethod
 | 
						|
    def truncate(self, size: int = None) -> int:
 | 
						|
        pass
 | 
						|
 | 
						|
    @abstractmethod
 | 
						|
    def writable(self) -> bool:
 | 
						|
        pass
 | 
						|
 | 
						|
    @abstractmethod
 | 
						|
    def write(self, s: AnyStr) -> int:
 | 
						|
        pass
 | 
						|
 | 
						|
    @abstractmethod
 | 
						|
    def writelines(self, lines: List[AnyStr]) -> None:
 | 
						|
        pass
 | 
						|
 | 
						|
    @abstractmethod
 | 
						|
    def __enter__(self) -> 'IO[AnyStr]':
 | 
						|
        pass
 | 
						|
 | 
						|
    @abstractmethod
 | 
						|
    def __exit__(self, type, value, traceback) -> None:
 | 
						|
        pass
 | 
						|
 | 
						|
 | 
						|
class BinaryIO(IO[bytes]):
 | 
						|
    """Typed version of the return of open() in binary mode."""
 | 
						|
 | 
						|
    __slots__ = ()
 | 
						|
 | 
						|
    @abstractmethod
 | 
						|
    def write(self, s: Union[bytes, bytearray]) -> int:
 | 
						|
        pass
 | 
						|
 | 
						|
    @abstractmethod
 | 
						|
    def __enter__(self) -> 'BinaryIO':
 | 
						|
        pass
 | 
						|
 | 
						|
 | 
						|
class TextIO(IO[str]):
 | 
						|
    """Typed version of the return of open() in text mode."""
 | 
						|
 | 
						|
    __slots__ = ()
 | 
						|
 | 
						|
    @property
 | 
						|
    @abstractmethod
 | 
						|
    def buffer(self) -> BinaryIO:
 | 
						|
        pass
 | 
						|
 | 
						|
    @property
 | 
						|
    @abstractmethod
 | 
						|
    def encoding(self) -> str:
 | 
						|
        pass
 | 
						|
 | 
						|
    @property
 | 
						|
    @abstractmethod
 | 
						|
    def errors(self) -> Optional[str]:
 | 
						|
        pass
 | 
						|
 | 
						|
    @property
 | 
						|
    @abstractmethod
 | 
						|
    def line_buffering(self) -> bool:
 | 
						|
        pass
 | 
						|
 | 
						|
    @property
 | 
						|
    @abstractmethod
 | 
						|
    def newlines(self) -> Any:
 | 
						|
        pass
 | 
						|
 | 
						|
    @abstractmethod
 | 
						|
    def __enter__(self) -> 'TextIO':
 | 
						|
        pass
 | 
						|
 | 
						|
 | 
						|
Pattern = _alias(stdlib_re.Pattern, 1)
 | 
						|
Match = _alias(stdlib_re.Match, 1)
 | 
						|
 | 
						|
 | 
						|
def reveal_type[T](obj: T, /) -> T:
 | 
						|
    """Reveal the inferred type of a variable.
 | 
						|
 | 
						|
    When a static type checker encounters a call to ``reveal_type()``,
 | 
						|
    it will emit the inferred type of the argument::
 | 
						|
 | 
						|
        x: int = 1
 | 
						|
        reveal_type(x)
 | 
						|
 | 
						|
    Running a static type checker (e.g., ``mypy``) on this example
 | 
						|
    will produce output similar to 'Revealed type is "builtins.int"'.
 | 
						|
 | 
						|
    At runtime, the function prints the runtime type of the
 | 
						|
    argument and returns it unchanged.
 | 
						|
 | 
						|
    """
 | 
						|
    print(f"Runtime type is {type(obj).__name__!r}", file=sys.stderr)
 | 
						|
    return obj
 | 
						|
 | 
						|
 | 
						|
class _IdentityCallable(Protocol):
 | 
						|
    def __call__[T](self, arg: T, /) -> T:
 | 
						|
        ...
 | 
						|
 | 
						|
 | 
						|
def dataclass_transform(
 | 
						|
    *,
 | 
						|
    eq_default: bool = True,
 | 
						|
    order_default: bool = False,
 | 
						|
    kw_only_default: bool = False,
 | 
						|
    frozen_default: bool = False,
 | 
						|
    field_specifiers: tuple[type[Any] | Callable[..., Any], ...] = (),
 | 
						|
    **kwargs: Any,
 | 
						|
) -> _IdentityCallable:
 | 
						|
    """Decorator that marks a function, class, or metaclass as providing
 | 
						|
    dataclass-like behavior.
 | 
						|
 | 
						|
    Example usage with a decorator function:
 | 
						|
 | 
						|
        T = TypeVar("T")
 | 
						|
 | 
						|
        @dataclass_transform()
 | 
						|
        def create_model(cls: type[T]) -> type[T]:
 | 
						|
            ...
 | 
						|
            return cls
 | 
						|
 | 
						|
        @create_model
 | 
						|
        class CustomerModel:
 | 
						|
            id: int
 | 
						|
            name: str
 | 
						|
 | 
						|
    On a base class:
 | 
						|
 | 
						|
        @dataclass_transform()
 | 
						|
        class ModelBase: ...
 | 
						|
 | 
						|
        class CustomerModel(ModelBase):
 | 
						|
            id: int
 | 
						|
            name: str
 | 
						|
 | 
						|
    On a metaclass:
 | 
						|
 | 
						|
        @dataclass_transform()
 | 
						|
        class ModelMeta(type): ...
 | 
						|
 | 
						|
        class ModelBase(metaclass=ModelMeta): ...
 | 
						|
 | 
						|
        class CustomerModel(ModelBase):
 | 
						|
            id: int
 | 
						|
            name: str
 | 
						|
 | 
						|
    The ``CustomerModel`` classes defined above will
 | 
						|
    be treated by type checkers similarly to classes created with
 | 
						|
    ``@dataclasses.dataclass``.
 | 
						|
    For example, type checkers will assume these classes have
 | 
						|
    ``__init__`` methods that accept ``id`` and ``name``.
 | 
						|
 | 
						|
    The arguments to this decorator can be used to customize this behavior:
 | 
						|
    - ``eq_default`` indicates whether the ``eq`` parameter is assumed to be
 | 
						|
        ``True`` or ``False`` if it is omitted by the caller.
 | 
						|
    - ``order_default`` indicates whether the ``order`` parameter is
 | 
						|
        assumed to be True or False if it is omitted by the caller.
 | 
						|
    - ``kw_only_default`` indicates whether the ``kw_only`` parameter is
 | 
						|
        assumed to be True or False if it is omitted by the caller.
 | 
						|
    - ``frozen_default`` indicates whether the ``frozen`` parameter is
 | 
						|
        assumed to be True or False if it is omitted by the caller.
 | 
						|
    - ``field_specifiers`` specifies a static list of supported classes
 | 
						|
        or functions that describe fields, similar to ``dataclasses.field()``.
 | 
						|
    - Arbitrary other keyword arguments are accepted in order to allow for
 | 
						|
        possible future extensions.
 | 
						|
 | 
						|
    At runtime, this decorator records its arguments in the
 | 
						|
    ``__dataclass_transform__`` attribute on the decorated object.
 | 
						|
    It has no other runtime effect.
 | 
						|
 | 
						|
    See PEP 681 for more details.
 | 
						|
    """
 | 
						|
    def decorator(cls_or_fn):
 | 
						|
        cls_or_fn.__dataclass_transform__ = {
 | 
						|
            "eq_default": eq_default,
 | 
						|
            "order_default": order_default,
 | 
						|
            "kw_only_default": kw_only_default,
 | 
						|
            "frozen_default": frozen_default,
 | 
						|
            "field_specifiers": field_specifiers,
 | 
						|
            "kwargs": kwargs,
 | 
						|
        }
 | 
						|
        return cls_or_fn
 | 
						|
    return decorator
 | 
						|
 | 
						|
 | 
						|
type _Func = Callable[..., Any]
 | 
						|
 | 
						|
 | 
						|
def override[F: _Func](method: F, /) -> F:
 | 
						|
    """Indicate that a method is intended to override a method in a base class.
 | 
						|
 | 
						|
    Usage:
 | 
						|
 | 
						|
        class Base:
 | 
						|
            def method(self) -> None: ...
 | 
						|
                pass
 | 
						|
 | 
						|
        class Child(Base):
 | 
						|
            @override
 | 
						|
            def method(self) -> None:
 | 
						|
                super().method()
 | 
						|
 | 
						|
    When this decorator is applied to a method, the type checker will
 | 
						|
    validate that it overrides a method or attribute with the same name on a
 | 
						|
    base class.  This helps prevent bugs that may occur when a base class is
 | 
						|
    changed without an equivalent change to a child class.
 | 
						|
 | 
						|
    There is no runtime checking of this property. The decorator sets the
 | 
						|
    ``__override__`` attribute to ``True`` on the decorated object to allow
 | 
						|
    runtime introspection.
 | 
						|
 | 
						|
    See PEP 698 for details.
 | 
						|
 | 
						|
    """
 | 
						|
    try:
 | 
						|
        method.__override__ = True
 | 
						|
    except (AttributeError, TypeError):
 | 
						|
        # Skip the attribute silently if it is not writable.
 | 
						|
        # AttributeError happens if the object has __slots__ or a
 | 
						|
        # read-only property, TypeError if it's a builtin class.
 | 
						|
        pass
 | 
						|
    return method
 |