mirror of
				https://github.com/python/cpython.git
				synced 2025-11-03 23:21:29 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			658 lines
		
	
	
	
		
			21 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			658 lines
		
	
	
	
		
			21 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
"""Random variable generators.
 | 
						|
 | 
						|
    integers
 | 
						|
    --------
 | 
						|
           uniform within range
 | 
						|
 | 
						|
    sequences
 | 
						|
    ---------
 | 
						|
           pick random element
 | 
						|
           generate random permutation
 | 
						|
 | 
						|
    distributions on the real line:
 | 
						|
    ------------------------------
 | 
						|
           uniform
 | 
						|
           normal (Gaussian)
 | 
						|
           lognormal
 | 
						|
           negative exponential
 | 
						|
           gamma
 | 
						|
           beta
 | 
						|
 | 
						|
    distributions on the circle (angles 0 to 2pi)
 | 
						|
    ---------------------------------------------
 | 
						|
           circular uniform
 | 
						|
           von Mises
 | 
						|
 | 
						|
Translated from anonymously contributed C/C++ source.
 | 
						|
 | 
						|
Multi-threading note:  the random number generator used here is not thread-
 | 
						|
safe; it is possible that two calls return the same random value.  However,
 | 
						|
you can instantiate a different instance of Random() in each thread to get
 | 
						|
generators that don't share state, then use .setstate() and .jumpahead() to
 | 
						|
move the generators to disjoint segments of the full period.  For example,
 | 
						|
 | 
						|
def create_generators(num, delta, firstseed=None):
 | 
						|
    ""\"Return list of num distinct generators.
 | 
						|
    Each generator has its own unique segment of delta elements from
 | 
						|
    Random.random()'s full period.
 | 
						|
    Seed the first generator with optional arg firstseed (default is
 | 
						|
    None, to seed from current time).
 | 
						|
    ""\"
 | 
						|
 | 
						|
    from random import Random
 | 
						|
    g = Random(firstseed)
 | 
						|
    result = [g]
 | 
						|
    for i in range(num - 1):
 | 
						|
        laststate = g.getstate()
 | 
						|
        g = Random()
 | 
						|
        g.setstate(laststate)
 | 
						|
        g.jumpahead(delta)
 | 
						|
        result.append(g)
 | 
						|
    return result
 | 
						|
 | 
						|
gens = create_generators(10, 1000000)
 | 
						|
 | 
						|
That creates 10 distinct generators, which can be passed out to 10 distinct
 | 
						|
threads.  The generators don't share state so can be called safely in
 | 
						|
parallel.  So long as no thread calls its g.random() more than a million
 | 
						|
times (the second argument to create_generators), the sequences seen by
 | 
						|
each thread will not overlap.
 | 
						|
 | 
						|
The period of the underlying Wichmann-Hill generator is 6,953,607,871,644,
 | 
						|
and that limits how far this technique can be pushed.
 | 
						|
 | 
						|
Just for fun, note that since we know the period, .jumpahead() can also be
 | 
						|
used to "move backward in time":
 | 
						|
 | 
						|
>>> g = Random(42)  # arbitrary
 | 
						|
>>> g.random()
 | 
						|
0.25420336316883324
 | 
						|
>>> g.jumpahead(6953607871644L - 1) # move *back* one
 | 
						|
>>> g.random()
 | 
						|
0.25420336316883324
 | 
						|
"""
 | 
						|
# XXX The docstring sucks.
 | 
						|
 | 
						|
from math import log as _log, exp as _exp, pi as _pi, e as _e
 | 
						|
from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
 | 
						|
 | 
						|
def _verify(name, expected):
 | 
						|
    computed = eval(name)
 | 
						|
    if abs(computed - expected) > 1e-7:
 | 
						|
        raise ValueError(
 | 
						|
            "computed value for %s deviates too much "
 | 
						|
            "(computed %g, expected %g)" % (name, computed, expected))
 | 
						|
 | 
						|
NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0)
 | 
						|
_verify('NV_MAGICCONST', 1.71552776992141)
 | 
						|
 | 
						|
TWOPI = 2.0*_pi
 | 
						|
_verify('TWOPI', 6.28318530718)
 | 
						|
 | 
						|
LOG4 = _log(4.0)
 | 
						|
_verify('LOG4', 1.38629436111989)
 | 
						|
 | 
						|
SG_MAGICCONST = 1.0 + _log(4.5)
 | 
						|
_verify('SG_MAGICCONST', 2.50407739677627)
 | 
						|
 | 
						|
del _verify
 | 
						|
 | 
						|
# Translated by Guido van Rossum from C source provided by
 | 
						|
# Adrian Baddeley.
 | 
						|
 | 
						|
class Random:
 | 
						|
 | 
						|
    VERSION = 1     # used by getstate/setstate
 | 
						|
 | 
						|
    def __init__(self, x=None):
 | 
						|
        """Initialize an instance.
 | 
						|
 | 
						|
        Optional argument x controls seeding, as for Random.seed().
 | 
						|
        """
 | 
						|
 | 
						|
        self.seed(x)
 | 
						|
        self.gauss_next = None
 | 
						|
 | 
						|
## -------------------- core generator -------------------
 | 
						|
 | 
						|
    # Specific to Wichmann-Hill generator.  Subclasses wishing to use a
 | 
						|
    # different core generator should override the seed(), random(),
 | 
						|
    # getstate(), setstate() and jumpahead() methods.
 | 
						|
 | 
						|
    def seed(self, a=None):
 | 
						|
        """Initialize internal state from hashable object.
 | 
						|
 | 
						|
        None or no argument seeds from current time.
 | 
						|
 | 
						|
        If a is not None or an int or long, hash(a) is used instead.
 | 
						|
 | 
						|
        If a is an int or long, a is used directly.  Distinct values between
 | 
						|
        0 and 27814431486575L inclusive are guaranteed to yield distinct
 | 
						|
        internal states (this guarantee is specific to the default
 | 
						|
        Wichmann-Hill generator).
 | 
						|
        """
 | 
						|
 | 
						|
        if a is None:
 | 
						|
            # Initialize from current time
 | 
						|
            import time
 | 
						|
            a = long(time.time() * 256)
 | 
						|
 | 
						|
        if type(a) not in (type(3), type(3L)):
 | 
						|
            a = hash(a)
 | 
						|
 | 
						|
        a, x = divmod(a, 30268)
 | 
						|
        a, y = divmod(a, 30306)
 | 
						|
        a, z = divmod(a, 30322)
 | 
						|
        self._seed = int(x)+1, int(y)+1, int(z)+1
 | 
						|
 | 
						|
    def random(self):
 | 
						|
        """Get the next random number in the range [0.0, 1.0)."""
 | 
						|
 | 
						|
        # Wichman-Hill random number generator.
 | 
						|
        #
 | 
						|
        # Wichmann, B. A. & Hill, I. D. (1982)
 | 
						|
        # Algorithm AS 183:
 | 
						|
        # An efficient and portable pseudo-random number generator
 | 
						|
        # Applied Statistics 31 (1982) 188-190
 | 
						|
        #
 | 
						|
        # see also:
 | 
						|
        #        Correction to Algorithm AS 183
 | 
						|
        #        Applied Statistics 33 (1984) 123
 | 
						|
        #
 | 
						|
        #        McLeod, A. I. (1985)
 | 
						|
        #        A remark on Algorithm AS 183
 | 
						|
        #        Applied Statistics 34 (1985),198-200
 | 
						|
 | 
						|
        # This part is thread-unsafe:
 | 
						|
        # BEGIN CRITICAL SECTION
 | 
						|
        x, y, z = self._seed
 | 
						|
        x = (171 * x) % 30269
 | 
						|
        y = (172 * y) % 30307
 | 
						|
        z = (170 * z) % 30323
 | 
						|
        self._seed = x, y, z
 | 
						|
        # END CRITICAL SECTION
 | 
						|
 | 
						|
        # Note:  on a platform using IEEE-754 double arithmetic, this can
 | 
						|
        # never return 0.0 (asserted by Tim; proof too long for a comment).
 | 
						|
        return (x/30269.0 + y/30307.0 + z/30323.0) % 1.0
 | 
						|
 | 
						|
    def getstate(self):
 | 
						|
        """Return internal state; can be passed to setstate() later."""
 | 
						|
        return self.VERSION, self._seed, self.gauss_next
 | 
						|
 | 
						|
    def setstate(self, state):
 | 
						|
        """Restore internal state from object returned by getstate()."""
 | 
						|
        version = state[0]
 | 
						|
        if version == 1:
 | 
						|
            version, self._seed, self.gauss_next = state
 | 
						|
        else:
 | 
						|
            raise ValueError("state with version %s passed to "
 | 
						|
                             "Random.setstate() of version %s" %
 | 
						|
                             (version, self.VERSION))
 | 
						|
 | 
						|
    def jumpahead(self, n):
 | 
						|
        """Act as if n calls to random() were made, but quickly.
 | 
						|
 | 
						|
        n is an int, greater than or equal to 0.
 | 
						|
 | 
						|
        Example use:  If you have 2 threads and know that each will
 | 
						|
        consume no more than a million random numbers, create two Random
 | 
						|
        objects r1 and r2, then do
 | 
						|
            r2.setstate(r1.getstate())
 | 
						|
            r2.jumpahead(1000000)
 | 
						|
        Then r1 and r2 will use guaranteed-disjoint segments of the full
 | 
						|
        period.
 | 
						|
        """
 | 
						|
 | 
						|
        if not n >= 0:
 | 
						|
            raise ValueError("n must be >= 0")
 | 
						|
        x, y, z = self._seed
 | 
						|
        x = int(x * pow(171, n, 30269)) % 30269
 | 
						|
        y = int(y * pow(172, n, 30307)) % 30307
 | 
						|
        z = int(z * pow(170, n, 30323)) % 30323
 | 
						|
        self._seed = x, y, z
 | 
						|
 | 
						|
    def __whseed(self, x=0, y=0, z=0):
 | 
						|
        """Set the Wichmann-Hill seed from (x, y, z).
 | 
						|
 | 
						|
        These must be integers in the range [0, 256).
 | 
						|
        """
 | 
						|
 | 
						|
        if not type(x) == type(y) == type(z) == type(0):
 | 
						|
            raise TypeError('seeds must be integers')
 | 
						|
        if not (0 <= x < 256 and 0 <= y < 256 and 0 <= z < 256):
 | 
						|
            raise ValueError('seeds must be in range(0, 256)')
 | 
						|
        if 0 == x == y == z:
 | 
						|
            # Initialize from current time
 | 
						|
            import time
 | 
						|
            t = long(time.time() * 256)
 | 
						|
            t = int((t&0xffffff) ^ (t>>24))
 | 
						|
            t, x = divmod(t, 256)
 | 
						|
            t, y = divmod(t, 256)
 | 
						|
            t, z = divmod(t, 256)
 | 
						|
        # Zero is a poor seed, so substitute 1
 | 
						|
        self._seed = (x or 1, y or 1, z or 1)
 | 
						|
 | 
						|
    def whseed(self, a=None):
 | 
						|
        """Seed from hashable object's hash code.
 | 
						|
 | 
						|
        None or no argument seeds from current time.  It is not guaranteed
 | 
						|
        that objects with distinct hash codes lead to distinct internal
 | 
						|
        states.
 | 
						|
 | 
						|
        This is obsolete, provided for compatibility with the seed routine
 | 
						|
        used prior to Python 2.1.  Use the .seed() method instead.
 | 
						|
        """
 | 
						|
 | 
						|
        if a is None:
 | 
						|
            self.__whseed()
 | 
						|
            return
 | 
						|
        a = hash(a)
 | 
						|
        a, x = divmod(a, 256)
 | 
						|
        a, y = divmod(a, 256)
 | 
						|
        a, z = divmod(a, 256)
 | 
						|
        x = (x + a) % 256 or 1
 | 
						|
        y = (y + a) % 256 or 1
 | 
						|
        z = (z + a) % 256 or 1
 | 
						|
        self.__whseed(x, y, z)
 | 
						|
 | 
						|
## ---- Methods below this point do not need to be overridden when
 | 
						|
## ---- subclassing for the purpose of using a different core generator.
 | 
						|
 | 
						|
## -------------------- pickle support  -------------------
 | 
						|
 | 
						|
    def __getstate__(self): # for pickle
 | 
						|
        return self.getstate()
 | 
						|
 | 
						|
    def __setstate__(self, state):  # for pickle
 | 
						|
        self.setstate(state)
 | 
						|
 | 
						|
## -------------------- integer methods  -------------------
 | 
						|
 | 
						|
    def randrange(self, start, stop=None, step=1, int=int, default=None):
 | 
						|
        """Choose a random item from range(start, stop[, step]).
 | 
						|
 | 
						|
        This fixes the problem with randint() which includes the
 | 
						|
        endpoint; in Python this is usually not what you want.
 | 
						|
        Do not supply the 'int' and 'default' arguments.
 | 
						|
        """
 | 
						|
 | 
						|
        # This code is a bit messy to make it fast for the
 | 
						|
        # common case while still doing adequate error checking
 | 
						|
        istart = int(start)
 | 
						|
        if istart != start:
 | 
						|
            raise ValueError, "non-integer arg 1 for randrange()"
 | 
						|
        if stop is default:
 | 
						|
            if istart > 0:
 | 
						|
                return int(self.random() * istart)
 | 
						|
            raise ValueError, "empty range for randrange()"
 | 
						|
        istop = int(stop)
 | 
						|
        if istop != stop:
 | 
						|
            raise ValueError, "non-integer stop for randrange()"
 | 
						|
        if step == 1:
 | 
						|
            if istart < istop:
 | 
						|
                return istart + int(self.random() *
 | 
						|
                                   (istop - istart))
 | 
						|
            raise ValueError, "empty range for randrange()"
 | 
						|
        istep = int(step)
 | 
						|
        if istep != step:
 | 
						|
            raise ValueError, "non-integer step for randrange()"
 | 
						|
        if istep > 0:
 | 
						|
            n = (istop - istart + istep - 1) / istep
 | 
						|
        elif istep < 0:
 | 
						|
            n = (istop - istart + istep + 1) / istep
 | 
						|
        else:
 | 
						|
            raise ValueError, "zero step for randrange()"
 | 
						|
 | 
						|
        if n <= 0:
 | 
						|
            raise ValueError, "empty range for randrange()"
 | 
						|
        return istart + istep*int(self.random() * n)
 | 
						|
 | 
						|
    def randint(self, a, b):
 | 
						|
        """Return random integer in range [a, b], including both end points.
 | 
						|
 | 
						|
        (Deprecated; use randrange(a, b+1).)
 | 
						|
        """
 | 
						|
 | 
						|
        return self.randrange(a, b+1)
 | 
						|
 | 
						|
## -------------------- sequence methods  -------------------
 | 
						|
 | 
						|
    def choice(self, seq):
 | 
						|
        """Choose a random element from a non-empty sequence."""
 | 
						|
        return seq[int(self.random() * len(seq))]
 | 
						|
 | 
						|
    def shuffle(self, x, random=None, int=int):
 | 
						|
        """x, random=random.random -> shuffle list x in place; return None.
 | 
						|
 | 
						|
        Optional arg random is a 0-argument function returning a random
 | 
						|
        float in [0.0, 1.0); by default, the standard random.random.
 | 
						|
 | 
						|
        Note that for even rather small len(x), the total number of
 | 
						|
        permutations of x is larger than the period of most random number
 | 
						|
        generators; this implies that "most" permutations of a long
 | 
						|
        sequence can never be generated.
 | 
						|
        """
 | 
						|
 | 
						|
        if random is None:
 | 
						|
            random = self.random
 | 
						|
        for i in xrange(len(x)-1, 0, -1):
 | 
						|
            # pick an element in x[:i+1] with which to exchange x[i]
 | 
						|
            j = int(random() * (i+1))
 | 
						|
            x[i], x[j] = x[j], x[i]
 | 
						|
 | 
						|
## -------------------- real-valued distributions  -------------------
 | 
						|
 | 
						|
## -------------------- uniform distribution -------------------
 | 
						|
 | 
						|
    def uniform(self, a, b):
 | 
						|
        """Get a random number in the range [a, b)."""
 | 
						|
        return a + (b-a) * self.random()
 | 
						|
 | 
						|
## -------------------- normal distribution --------------------
 | 
						|
 | 
						|
    def normalvariate(self, mu, sigma):
 | 
						|
        # mu = mean, sigma = standard deviation
 | 
						|
 | 
						|
        # Uses Kinderman and Monahan method. Reference: Kinderman,
 | 
						|
        # A.J. and Monahan, J.F., "Computer generation of random
 | 
						|
        # variables using the ratio of uniform deviates", ACM Trans
 | 
						|
        # Math Software, 3, (1977), pp257-260.
 | 
						|
 | 
						|
        random = self.random
 | 
						|
        while 1:
 | 
						|
            u1 = random()
 | 
						|
            u2 = random()
 | 
						|
            z = NV_MAGICCONST*(u1-0.5)/u2
 | 
						|
            zz = z*z/4.0
 | 
						|
            if zz <= -_log(u2):
 | 
						|
                break
 | 
						|
        return mu + z*sigma
 | 
						|
 | 
						|
## -------------------- lognormal distribution --------------------
 | 
						|
 | 
						|
    def lognormvariate(self, mu, sigma):
 | 
						|
        return _exp(self.normalvariate(mu, sigma))
 | 
						|
 | 
						|
## -------------------- circular uniform --------------------
 | 
						|
 | 
						|
    def cunifvariate(self, mean, arc):
 | 
						|
        # mean: mean angle (in radians between 0 and pi)
 | 
						|
        # arc:  range of distribution (in radians between 0 and pi)
 | 
						|
 | 
						|
        return (mean + arc * (self.random() - 0.5)) % _pi
 | 
						|
 | 
						|
## -------------------- exponential distribution --------------------
 | 
						|
 | 
						|
    def expovariate(self, lambd):
 | 
						|
        # lambd: rate lambd = 1/mean
 | 
						|
        # ('lambda' is a Python reserved word)
 | 
						|
 | 
						|
        random = self.random
 | 
						|
        u = random()
 | 
						|
        while u <= 1e-7:
 | 
						|
            u = random()
 | 
						|
        return -_log(u)/lambd
 | 
						|
 | 
						|
## -------------------- von Mises distribution --------------------
 | 
						|
 | 
						|
    def vonmisesvariate(self, mu, kappa):
 | 
						|
        # mu:    mean angle (in radians between 0 and 2*pi)
 | 
						|
        # kappa: concentration parameter kappa (>= 0)
 | 
						|
        # if kappa = 0 generate uniform random angle
 | 
						|
 | 
						|
        # Based upon an algorithm published in: Fisher, N.I.,
 | 
						|
        # "Statistical Analysis of Circular Data", Cambridge
 | 
						|
        # University Press, 1993.
 | 
						|
 | 
						|
        # Thanks to Magnus Kessler for a correction to the
 | 
						|
        # implementation of step 4.
 | 
						|
 | 
						|
        random = self.random
 | 
						|
        if kappa <= 1e-6:
 | 
						|
            return TWOPI * random()
 | 
						|
 | 
						|
        a = 1.0 + _sqrt(1.0 + 4.0 * kappa * kappa)
 | 
						|
        b = (a - _sqrt(2.0 * a))/(2.0 * kappa)
 | 
						|
        r = (1.0 + b * b)/(2.0 * b)
 | 
						|
 | 
						|
        while 1:
 | 
						|
            u1 = random()
 | 
						|
 | 
						|
            z = _cos(_pi * u1)
 | 
						|
            f = (1.0 + r * z)/(r + z)
 | 
						|
            c = kappa * (r - f)
 | 
						|
 | 
						|
            u2 = random()
 | 
						|
 | 
						|
            if not (u2 >= c * (2.0 - c) and u2 > c * _exp(1.0 - c)):
 | 
						|
                break
 | 
						|
 | 
						|
        u3 = random()
 | 
						|
        if u3 > 0.5:
 | 
						|
            theta = (mu % TWOPI) + _acos(f)
 | 
						|
        else:
 | 
						|
            theta = (mu % TWOPI) - _acos(f)
 | 
						|
 | 
						|
        return theta
 | 
						|
 | 
						|
## -------------------- gamma distribution --------------------
 | 
						|
 | 
						|
    def gammavariate(self, alpha, beta):
 | 
						|
        # beta times standard gamma
 | 
						|
        ainv = _sqrt(2.0 * alpha - 1.0)
 | 
						|
        return beta * self.stdgamma(alpha, ainv, alpha - LOG4, alpha + ainv)
 | 
						|
 | 
						|
    def stdgamma(self, alpha, ainv, bbb, ccc):
 | 
						|
        # ainv = sqrt(2 * alpha - 1)
 | 
						|
        # bbb = alpha - log(4)
 | 
						|
        # ccc = alpha + ainv
 | 
						|
 | 
						|
        random = self.random
 | 
						|
        if alpha <= 0.0:
 | 
						|
            raise ValueError, 'stdgamma: alpha must be > 0.0'
 | 
						|
 | 
						|
        if alpha > 1.0:
 | 
						|
 | 
						|
            # Uses R.C.H. Cheng, "The generation of Gamma
 | 
						|
            # variables with non-integral shape parameters",
 | 
						|
            # Applied Statistics, (1977), 26, No. 1, p71-74
 | 
						|
 | 
						|
            while 1:
 | 
						|
                u1 = random()
 | 
						|
                u2 = random()
 | 
						|
                v = _log(u1/(1.0-u1))/ainv
 | 
						|
                x = alpha*_exp(v)
 | 
						|
                z = u1*u1*u2
 | 
						|
                r = bbb+ccc*v-x
 | 
						|
                if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z):
 | 
						|
                    return x
 | 
						|
 | 
						|
        elif alpha == 1.0:
 | 
						|
            # expovariate(1)
 | 
						|
            u = random()
 | 
						|
            while u <= 1e-7:
 | 
						|
                u = random()
 | 
						|
            return -_log(u)
 | 
						|
 | 
						|
        else:   # alpha is between 0 and 1 (exclusive)
 | 
						|
 | 
						|
            # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
 | 
						|
 | 
						|
            while 1:
 | 
						|
                u = random()
 | 
						|
                b = (_e + alpha)/_e
 | 
						|
                p = b*u
 | 
						|
                if p <= 1.0:
 | 
						|
                    x = pow(p, 1.0/alpha)
 | 
						|
                else:
 | 
						|
                    # p > 1
 | 
						|
                    x = -_log((b-p)/alpha)
 | 
						|
                u1 = random()
 | 
						|
                if not (((p <= 1.0) and (u1 > _exp(-x))) or
 | 
						|
                          ((p > 1)  and  (u1 > pow(x, alpha - 1.0)))):
 | 
						|
                    break
 | 
						|
            return x
 | 
						|
 | 
						|
 | 
						|
## -------------------- Gauss (faster alternative) --------------------
 | 
						|
 | 
						|
    def gauss(self, mu, sigma):
 | 
						|
 | 
						|
        # When x and y are two variables from [0, 1), uniformly
 | 
						|
        # distributed, then
 | 
						|
        #
 | 
						|
        #    cos(2*pi*x)*sqrt(-2*log(1-y))
 | 
						|
        #    sin(2*pi*x)*sqrt(-2*log(1-y))
 | 
						|
        #
 | 
						|
        # are two *independent* variables with normal distribution
 | 
						|
        # (mu = 0, sigma = 1).
 | 
						|
        # (Lambert Meertens)
 | 
						|
        # (corrected version; bug discovered by Mike Miller, fixed by LM)
 | 
						|
 | 
						|
        # Multithreading note: When two threads call this function
 | 
						|
        # simultaneously, it is possible that they will receive the
 | 
						|
        # same return value.  The window is very small though.  To
 | 
						|
        # avoid this, you have to use a lock around all calls.  (I
 | 
						|
        # didn't want to slow this down in the serial case by using a
 | 
						|
        # lock here.)
 | 
						|
 | 
						|
        random = self.random
 | 
						|
        z = self.gauss_next
 | 
						|
        self.gauss_next = None
 | 
						|
        if z is None:
 | 
						|
            x2pi = random() * TWOPI
 | 
						|
            g2rad = _sqrt(-2.0 * _log(1.0 - random()))
 | 
						|
            z = _cos(x2pi) * g2rad
 | 
						|
            self.gauss_next = _sin(x2pi) * g2rad
 | 
						|
 | 
						|
        return mu + z*sigma
 | 
						|
 | 
						|
## -------------------- beta --------------------
 | 
						|
## See
 | 
						|
## http://sourceforge.net/bugs/?func=detailbug&bug_id=130030&group_id=5470
 | 
						|
## for Ivan Frohne's insightful analysis of why the original implementation:
 | 
						|
##
 | 
						|
##    def betavariate(self, alpha, beta):
 | 
						|
##        # Discrete Event Simulation in C, pp 87-88.
 | 
						|
##
 | 
						|
##        y = self.expovariate(alpha)
 | 
						|
##        z = self.expovariate(1.0/beta)
 | 
						|
##        return z/(y+z)
 | 
						|
##
 | 
						|
## was dead wrong, and how it probably got that way.
 | 
						|
 | 
						|
    def betavariate(self, alpha, beta):
 | 
						|
        # This version due to Janne Sinkkonen, and matches all the std
 | 
						|
        # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
 | 
						|
        y = self.gammavariate(alpha, 1.)
 | 
						|
        if y == 0:
 | 
						|
            return 0.0
 | 
						|
        else:
 | 
						|
            return y / (y + self.gammavariate(beta, 1.))
 | 
						|
 | 
						|
## -------------------- Pareto --------------------
 | 
						|
 | 
						|
    def paretovariate(self, alpha):
 | 
						|
        # Jain, pg. 495
 | 
						|
 | 
						|
        u = self.random()
 | 
						|
        return 1.0 / pow(u, 1.0/alpha)
 | 
						|
 | 
						|
## -------------------- Weibull --------------------
 | 
						|
 | 
						|
    def weibullvariate(self, alpha, beta):
 | 
						|
        # Jain, pg. 499; bug fix courtesy Bill Arms
 | 
						|
 | 
						|
        u = self.random()
 | 
						|
        return alpha * pow(-_log(u), 1.0/beta)
 | 
						|
 | 
						|
## -------------------- test program --------------------
 | 
						|
 | 
						|
def _test_generator(n, funccall):
 | 
						|
    import time
 | 
						|
    print n, 'times', funccall
 | 
						|
    code = compile(funccall, funccall, 'eval')
 | 
						|
    sum = 0.0
 | 
						|
    sqsum = 0.0
 | 
						|
    smallest = 1e10
 | 
						|
    largest = -1e10
 | 
						|
    t0 = time.time()
 | 
						|
    for i in range(n):
 | 
						|
        x = eval(code)
 | 
						|
        sum = sum + x
 | 
						|
        sqsum = sqsum + x*x
 | 
						|
        smallest = min(x, smallest)
 | 
						|
        largest = max(x, largest)
 | 
						|
    t1 = time.time()
 | 
						|
    print round(t1-t0, 3), 'sec,',
 | 
						|
    avg = sum/n
 | 
						|
    stddev = _sqrt(sqsum/n - avg*avg)
 | 
						|
    print 'avg %g, stddev %g, min %g, max %g' % \
 | 
						|
              (avg, stddev, smallest, largest)
 | 
						|
 | 
						|
def _test(N=200):
 | 
						|
    print 'TWOPI         =', TWOPI
 | 
						|
    print 'LOG4          =', LOG4
 | 
						|
    print 'NV_MAGICCONST =', NV_MAGICCONST
 | 
						|
    print 'SG_MAGICCONST =', SG_MAGICCONST
 | 
						|
    _test_generator(N, 'random()')
 | 
						|
    _test_generator(N, 'normalvariate(0.0, 1.0)')
 | 
						|
    _test_generator(N, 'lognormvariate(0.0, 1.0)')
 | 
						|
    _test_generator(N, 'cunifvariate(0.0, 1.0)')
 | 
						|
    _test_generator(N, 'expovariate(1.0)')
 | 
						|
    _test_generator(N, 'vonmisesvariate(0.0, 1.0)')
 | 
						|
    _test_generator(N, 'gammavariate(0.5, 1.0)')
 | 
						|
    _test_generator(N, 'gammavariate(0.9, 1.0)')
 | 
						|
    _test_generator(N, 'gammavariate(1.0, 1.0)')
 | 
						|
    _test_generator(N, 'gammavariate(2.0, 1.0)')
 | 
						|
    _test_generator(N, 'gammavariate(20.0, 1.0)')
 | 
						|
    _test_generator(N, 'gammavariate(200.0, 1.0)')
 | 
						|
    _test_generator(N, 'gauss(0.0, 1.0)')
 | 
						|
    _test_generator(N, 'betavariate(3.0, 3.0)')
 | 
						|
    _test_generator(N, 'paretovariate(1.0)')
 | 
						|
    _test_generator(N, 'weibullvariate(1.0, 1.0)')
 | 
						|
 | 
						|
    # Test jumpahead.
 | 
						|
    s = getstate()
 | 
						|
    jumpahead(N)
 | 
						|
    r1 = random()
 | 
						|
    # now do it the slow way
 | 
						|
    setstate(s)
 | 
						|
    for i in range(N):
 | 
						|
        random()
 | 
						|
    r2 = random()
 | 
						|
    if r1 != r2:
 | 
						|
        raise ValueError("jumpahead test failed " + `(N, r1, r2)`)
 | 
						|
 | 
						|
# Create one instance, seeded from current time, and export its methods
 | 
						|
# as module-level functions.  The functions are not threadsafe, and state
 | 
						|
# is shared across all uses (both in the user's code and in the Python
 | 
						|
# libraries), but that's fine for most programs and is easier for the
 | 
						|
# casual user than making them instantiate their own Random() instance.
 | 
						|
_inst = Random()
 | 
						|
seed = _inst.seed
 | 
						|
random = _inst.random
 | 
						|
uniform = _inst.uniform
 | 
						|
randint = _inst.randint
 | 
						|
choice = _inst.choice
 | 
						|
randrange = _inst.randrange
 | 
						|
shuffle = _inst.shuffle
 | 
						|
normalvariate = _inst.normalvariate
 | 
						|
lognormvariate = _inst.lognormvariate
 | 
						|
cunifvariate = _inst.cunifvariate
 | 
						|
expovariate = _inst.expovariate
 | 
						|
vonmisesvariate = _inst.vonmisesvariate
 | 
						|
gammavariate = _inst.gammavariate
 | 
						|
stdgamma = _inst.stdgamma
 | 
						|
gauss = _inst.gauss
 | 
						|
betavariate = _inst.betavariate
 | 
						|
paretovariate = _inst.paretovariate
 | 
						|
weibullvariate = _inst.weibullvariate
 | 
						|
getstate = _inst.getstate
 | 
						|
setstate = _inst.setstate
 | 
						|
jumpahead = _inst.jumpahead
 | 
						|
whseed = _inst.whseed
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    _test()
 |