mirror of
				https://github.com/python/cpython.git
				synced 2025-10-31 13:41:24 +00:00 
			
		
		
		
	 05f2f0ac92
			
		
	
	
		05f2f0ac92
		
			
		
	
	
	
	
		
			
			* Add mimalloc v2.12 Modified src/alloc.c to remove include of alloc-override.c and not compile new handler. Did not include the following files: - include/mimalloc-new-delete.h - include/mimalloc-override.h - src/alloc-override-osx.c - src/alloc-override.c - src/static.c - src/region.c mimalloc is thread safe and shares a single heap across all runtimes, therefore finalization and getting global allocated blocks across all runtimes is different. * mimalloc: minimal changes for use in Python: - remove debug spam for freeing large allocations - use same bytes (0xDD) for freed allocations in CPython and mimalloc This is important for the test_capi debug memory tests * Don't export mimalloc symbol in libpython. * Enable mimalloc as Python allocator option. * Add mimalloc MIT license. * Log mimalloc in Lib/test/pythoninfo.py. * Document new mimalloc support. * Use macro defs for exports as done in: https://github.com/python/cpython/pull/31164/ Co-authored-by: Sam Gross <colesbury@gmail.com> Co-authored-by: Christian Heimes <christian@python.org> Co-authored-by: Victor Stinner <vstinner@python.org>
		
			
				
	
	
		
			622 lines
		
	
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			622 lines
		
	
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* ----------------------------------------------------------------------------
 | |
| Copyright (c) 2018-2023, Microsoft Research, Daan Leijen
 | |
| This is free software; you can redistribute it and/or modify it under the
 | |
| terms of the MIT license. A copy of the license can be found in the file
 | |
| "LICENSE" at the root of this distribution.
 | |
| -----------------------------------------------------------------------------*/
 | |
| 
 | |
| // This file is included in `src/prim/prim.c`
 | |
| 
 | |
| #include "mimalloc.h"
 | |
| #include "mimalloc/internal.h"
 | |
| #include "mimalloc/atomic.h"
 | |
| #include "mimalloc/prim.h"
 | |
| #include <stdio.h>   // fputs, stderr
 | |
| 
 | |
| 
 | |
| //---------------------------------------------
 | |
| // Dynamically bind Windows API points for portability
 | |
| //---------------------------------------------
 | |
| 
 | |
| // We use VirtualAlloc2 for aligned allocation, but it is only supported on Windows 10 and Windows Server 2016.
 | |
| // So, we need to look it up dynamically to run on older systems. (use __stdcall for 32-bit compatibility)
 | |
| // NtAllocateVirtualAllocEx is used for huge OS page allocation (1GiB)
 | |
| // We define a minimal MEM_EXTENDED_PARAMETER ourselves in order to be able to compile with older SDK's.
 | |
| typedef enum MI_MEM_EXTENDED_PARAMETER_TYPE_E {
 | |
|   MiMemExtendedParameterInvalidType = 0,
 | |
|   MiMemExtendedParameterAddressRequirements,
 | |
|   MiMemExtendedParameterNumaNode,
 | |
|   MiMemExtendedParameterPartitionHandle,
 | |
|   MiMemExtendedParameterUserPhysicalHandle,
 | |
|   MiMemExtendedParameterAttributeFlags,
 | |
|   MiMemExtendedParameterMax
 | |
| } MI_MEM_EXTENDED_PARAMETER_TYPE;
 | |
| 
 | |
| typedef struct DECLSPEC_ALIGN(8) MI_MEM_EXTENDED_PARAMETER_S {
 | |
|   struct { DWORD64 Type : 8; DWORD64 Reserved : 56; } Type;
 | |
|   union  { DWORD64 ULong64; PVOID Pointer; SIZE_T Size; HANDLE Handle; DWORD ULong; } Arg;
 | |
| } MI_MEM_EXTENDED_PARAMETER;
 | |
| 
 | |
| typedef struct MI_MEM_ADDRESS_REQUIREMENTS_S {
 | |
|   PVOID  LowestStartingAddress;
 | |
|   PVOID  HighestEndingAddress;
 | |
|   SIZE_T Alignment;
 | |
| } MI_MEM_ADDRESS_REQUIREMENTS;
 | |
| 
 | |
| #define MI_MEM_EXTENDED_PARAMETER_NONPAGED_HUGE   0x00000010
 | |
| 
 | |
| #include <winternl.h>
 | |
| typedef PVOID    (__stdcall *PVirtualAlloc2)(HANDLE, PVOID, SIZE_T, ULONG, ULONG, MI_MEM_EXTENDED_PARAMETER*, ULONG);
 | |
| typedef NTSTATUS (__stdcall *PNtAllocateVirtualMemoryEx)(HANDLE, PVOID*, SIZE_T*, ULONG, ULONG, MI_MEM_EXTENDED_PARAMETER*, ULONG);
 | |
| static PVirtualAlloc2 pVirtualAlloc2 = NULL;
 | |
| static PNtAllocateVirtualMemoryEx pNtAllocateVirtualMemoryEx = NULL;
 | |
| 
 | |
| // Similarly, GetNumaProcesorNodeEx is only supported since Windows 7
 | |
| typedef struct MI_PROCESSOR_NUMBER_S { WORD Group; BYTE Number; BYTE Reserved; } MI_PROCESSOR_NUMBER;
 | |
| 
 | |
| typedef VOID (__stdcall *PGetCurrentProcessorNumberEx)(MI_PROCESSOR_NUMBER* ProcNumber);
 | |
| typedef BOOL (__stdcall *PGetNumaProcessorNodeEx)(MI_PROCESSOR_NUMBER* Processor, PUSHORT NodeNumber);
 | |
| typedef BOOL (__stdcall* PGetNumaNodeProcessorMaskEx)(USHORT Node, PGROUP_AFFINITY ProcessorMask);
 | |
| typedef BOOL (__stdcall *PGetNumaProcessorNode)(UCHAR Processor, PUCHAR NodeNumber);
 | |
| static PGetCurrentProcessorNumberEx pGetCurrentProcessorNumberEx = NULL;
 | |
| static PGetNumaProcessorNodeEx      pGetNumaProcessorNodeEx = NULL;
 | |
| static PGetNumaNodeProcessorMaskEx  pGetNumaNodeProcessorMaskEx = NULL;
 | |
| static PGetNumaProcessorNode        pGetNumaProcessorNode = NULL;
 | |
| 
 | |
| //---------------------------------------------
 | |
| // Enable large page support dynamically (if possible)
 | |
| //---------------------------------------------
 | |
| 
 | |
| static bool win_enable_large_os_pages(size_t* large_page_size)
 | |
| {
 | |
|   static bool large_initialized = false;
 | |
|   if (large_initialized) return (_mi_os_large_page_size() > 0);
 | |
|   large_initialized = true;
 | |
| 
 | |
|   // Try to see if large OS pages are supported
 | |
|   // To use large pages on Windows, we first need access permission
 | |
|   // Set "Lock pages in memory" permission in the group policy editor
 | |
|   // <https://devblogs.microsoft.com/oldnewthing/20110128-00/?p=11643>
 | |
|   unsigned long err = 0;
 | |
|   HANDLE token = NULL;
 | |
|   BOOL ok = OpenProcessToken(GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY, &token);
 | |
|   if (ok) {
 | |
|     TOKEN_PRIVILEGES tp;
 | |
|     ok = LookupPrivilegeValue(NULL, TEXT("SeLockMemoryPrivilege"), &tp.Privileges[0].Luid);
 | |
|     if (ok) {
 | |
|       tp.PrivilegeCount = 1;
 | |
|       tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
 | |
|       ok = AdjustTokenPrivileges(token, FALSE, &tp, 0, (PTOKEN_PRIVILEGES)NULL, 0);
 | |
|       if (ok) {
 | |
|         err = GetLastError();
 | |
|         ok = (err == ERROR_SUCCESS);
 | |
|         if (ok && large_page_size != NULL) {
 | |
|           *large_page_size = GetLargePageMinimum();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     CloseHandle(token);
 | |
|   }
 | |
|   if (!ok) {
 | |
|     if (err == 0) err = GetLastError();
 | |
|     _mi_warning_message("cannot enable large OS page support, error %lu\n", err);
 | |
|   }
 | |
|   return (ok!=0);
 | |
| }
 | |
| 
 | |
| 
 | |
| //---------------------------------------------
 | |
| // Initialize
 | |
| //---------------------------------------------
 | |
| 
 | |
| void _mi_prim_mem_init( mi_os_mem_config_t* config )
 | |
| {
 | |
|   config->has_overcommit = false;
 | |
|   config->must_free_whole = true;
 | |
|   config->has_virtual_reserve = true;
 | |
|   // get the page size
 | |
|   SYSTEM_INFO si;
 | |
|   GetSystemInfo(&si);
 | |
|   if (si.dwPageSize > 0) { config->page_size = si.dwPageSize; }
 | |
|   if (si.dwAllocationGranularity > 0) { config->alloc_granularity = si.dwAllocationGranularity; }
 | |
|   // get the VirtualAlloc2 function
 | |
|   HINSTANCE  hDll;
 | |
|   hDll = LoadLibrary(TEXT("kernelbase.dll"));
 | |
|   if (hDll != NULL) {
 | |
|     // use VirtualAlloc2FromApp if possible as it is available to Windows store apps
 | |
|     pVirtualAlloc2 = (PVirtualAlloc2)(void (*)(void))GetProcAddress(hDll, "VirtualAlloc2FromApp");
 | |
|     if (pVirtualAlloc2==NULL) pVirtualAlloc2 = (PVirtualAlloc2)(void (*)(void))GetProcAddress(hDll, "VirtualAlloc2");
 | |
|     FreeLibrary(hDll);
 | |
|   }
 | |
|   // NtAllocateVirtualMemoryEx is used for huge page allocation
 | |
|   hDll = LoadLibrary(TEXT("ntdll.dll"));
 | |
|   if (hDll != NULL) {
 | |
|     pNtAllocateVirtualMemoryEx = (PNtAllocateVirtualMemoryEx)(void (*)(void))GetProcAddress(hDll, "NtAllocateVirtualMemoryEx");
 | |
|     FreeLibrary(hDll);
 | |
|   }
 | |
|   // Try to use Win7+ numa API
 | |
|   hDll = LoadLibrary(TEXT("kernel32.dll"));
 | |
|   if (hDll != NULL) {
 | |
|     pGetCurrentProcessorNumberEx = (PGetCurrentProcessorNumberEx)(void (*)(void))GetProcAddress(hDll, "GetCurrentProcessorNumberEx");
 | |
|     pGetNumaProcessorNodeEx = (PGetNumaProcessorNodeEx)(void (*)(void))GetProcAddress(hDll, "GetNumaProcessorNodeEx");
 | |
|     pGetNumaNodeProcessorMaskEx = (PGetNumaNodeProcessorMaskEx)(void (*)(void))GetProcAddress(hDll, "GetNumaNodeProcessorMaskEx");
 | |
|     pGetNumaProcessorNode = (PGetNumaProcessorNode)(void (*)(void))GetProcAddress(hDll, "GetNumaProcessorNode");
 | |
|     FreeLibrary(hDll);
 | |
|   }
 | |
|   if (mi_option_is_enabled(mi_option_allow_large_os_pages) || mi_option_is_enabled(mi_option_reserve_huge_os_pages)) {
 | |
|     win_enable_large_os_pages(&config->large_page_size);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| //---------------------------------------------
 | |
| // Free
 | |
| //---------------------------------------------
 | |
| 
 | |
| int _mi_prim_free(void* addr, size_t size ) {
 | |
|   MI_UNUSED(size);
 | |
|   DWORD errcode = 0;
 | |
|   bool err = (VirtualFree(addr, 0, MEM_RELEASE) == 0);
 | |
|   if (err) { errcode = GetLastError(); }
 | |
|   if (errcode == ERROR_INVALID_ADDRESS) {
 | |
|     // In mi_os_mem_alloc_aligned the fallback path may have returned a pointer inside
 | |
|     // the memory region returned by VirtualAlloc; in that case we need to free using
 | |
|     // the start of the region.
 | |
|     MEMORY_BASIC_INFORMATION info = { 0 };
 | |
|     VirtualQuery(addr, &info, sizeof(info));
 | |
|     if (info.AllocationBase < addr && ((uint8_t*)addr - (uint8_t*)info.AllocationBase) < (ptrdiff_t)MI_SEGMENT_SIZE) {
 | |
|       errcode = 0;
 | |
|       err = (VirtualFree(info.AllocationBase, 0, MEM_RELEASE) == 0);
 | |
|       if (err) { errcode = GetLastError(); }
 | |
|     }
 | |
|   }
 | |
|   return (int)errcode;
 | |
| }
 | |
| 
 | |
| 
 | |
| //---------------------------------------------
 | |
| // VirtualAlloc
 | |
| //---------------------------------------------
 | |
| 
 | |
| static void* win_virtual_alloc_prim(void* addr, size_t size, size_t try_alignment, DWORD flags) {
 | |
|   #if (MI_INTPTR_SIZE >= 8)
 | |
|   // on 64-bit systems, try to use the virtual address area after 2TiB for 4MiB aligned allocations
 | |
|   if (addr == NULL) {
 | |
|     void* hint = _mi_os_get_aligned_hint(try_alignment,size);
 | |
|     if (hint != NULL) {
 | |
|       void* p = VirtualAlloc(hint, size, flags, PAGE_READWRITE);
 | |
|       if (p != NULL) return p;
 | |
|       _mi_verbose_message("warning: unable to allocate hinted aligned OS memory (%zu bytes, error code: 0x%x, address: %p, alignment: %zu, flags: 0x%x)\n", size, GetLastError(), hint, try_alignment, flags);
 | |
|       // fall through on error
 | |
|     }
 | |
|   }
 | |
|   #endif
 | |
|   // on modern Windows try use VirtualAlloc2 for aligned allocation
 | |
|   if (try_alignment > 1 && (try_alignment % _mi_os_page_size()) == 0 && pVirtualAlloc2 != NULL) {
 | |
|     MI_MEM_ADDRESS_REQUIREMENTS reqs = { 0, 0, 0 };
 | |
|     reqs.Alignment = try_alignment;
 | |
|     MI_MEM_EXTENDED_PARAMETER param = { {0, 0}, {0} };
 | |
|     param.Type.Type = MiMemExtendedParameterAddressRequirements;
 | |
|     param.Arg.Pointer = &reqs;
 | |
|     void* p = (*pVirtualAlloc2)(GetCurrentProcess(), addr, size, flags, PAGE_READWRITE, ¶m, 1);
 | |
|     if (p != NULL) return p;
 | |
|     _mi_warning_message("unable to allocate aligned OS memory (%zu bytes, error code: 0x%x, address: %p, alignment: %zu, flags: 0x%x)\n", size, GetLastError(), addr, try_alignment, flags);
 | |
|     // fall through on error
 | |
|   }
 | |
|   // last resort
 | |
|   return VirtualAlloc(addr, size, flags, PAGE_READWRITE);
 | |
| }
 | |
| 
 | |
| static void* win_virtual_alloc(void* addr, size_t size, size_t try_alignment, DWORD flags, bool large_only, bool allow_large, bool* is_large) {
 | |
|   mi_assert_internal(!(large_only && !allow_large));
 | |
|   static _Atomic(size_t) large_page_try_ok; // = 0;
 | |
|   void* p = NULL;
 | |
|   // Try to allocate large OS pages (2MiB) if allowed or required.
 | |
|   if ((large_only || _mi_os_use_large_page(size, try_alignment))
 | |
|       && allow_large && (flags&MEM_COMMIT)!=0 && (flags&MEM_RESERVE)!=0) {
 | |
|     size_t try_ok = mi_atomic_load_acquire(&large_page_try_ok);
 | |
|     if (!large_only && try_ok > 0) {
 | |
|       // if a large page allocation fails, it seems the calls to VirtualAlloc get very expensive.
 | |
|       // therefore, once a large page allocation failed, we don't try again for `large_page_try_ok` times.
 | |
|       mi_atomic_cas_strong_acq_rel(&large_page_try_ok, &try_ok, try_ok - 1);
 | |
|     }
 | |
|     else {
 | |
|       // large OS pages must always reserve and commit.
 | |
|       *is_large = true;
 | |
|       p = win_virtual_alloc_prim(addr, size, try_alignment, flags | MEM_LARGE_PAGES);
 | |
|       if (large_only) return p;
 | |
|       // fall back to non-large page allocation on error (`p == NULL`).
 | |
|       if (p == NULL) {
 | |
|         mi_atomic_store_release(&large_page_try_ok,10UL);  // on error, don't try again for the next N allocations
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   // Fall back to regular page allocation
 | |
|   if (p == NULL) {
 | |
|     *is_large = ((flags&MEM_LARGE_PAGES) != 0);
 | |
|     p = win_virtual_alloc_prim(addr, size, try_alignment, flags);
 | |
|   }
 | |
|   //if (p == NULL) { _mi_warning_message("unable to allocate OS memory (%zu bytes, error code: 0x%x, address: %p, alignment: %zu, flags: 0x%x, large only: %d, allow large: %d)\n", size, GetLastError(), addr, try_alignment, flags, large_only, allow_large); }
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| int _mi_prim_alloc(size_t size, size_t try_alignment, bool commit, bool allow_large, bool* is_large, bool* is_zero, void** addr) {
 | |
|   mi_assert_internal(size > 0 && (size % _mi_os_page_size()) == 0);
 | |
|   mi_assert_internal(commit || !allow_large);
 | |
|   mi_assert_internal(try_alignment > 0);
 | |
|   *is_zero = true;
 | |
|   int flags = MEM_RESERVE;
 | |
|   if (commit) { flags |= MEM_COMMIT; }
 | |
|   *addr = win_virtual_alloc(NULL, size, try_alignment, flags, false, allow_large, is_large);
 | |
|   return (*addr != NULL ? 0 : (int)GetLastError());
 | |
| }
 | |
| 
 | |
| 
 | |
| //---------------------------------------------
 | |
| // Commit/Reset/Protect
 | |
| //---------------------------------------------
 | |
| #ifdef _MSC_VER
 | |
| #pragma warning(disable:6250)   // suppress warning calling VirtualFree without MEM_RELEASE (for decommit)
 | |
| #endif
 | |
| 
 | |
| int _mi_prim_commit(void* addr, size_t size, bool* is_zero) {
 | |
|   *is_zero = false;
 | |
|   /*
 | |
|   // zero'ing only happens on an initial commit... but checking upfront seems expensive..
 | |
|   _MEMORY_BASIC_INFORMATION meminfo; _mi_memzero_var(meminfo);
 | |
|   if (VirtualQuery(addr, &meminfo, size) > 0) {
 | |
|     if ((meminfo.State & MEM_COMMIT) == 0) {
 | |
|       *is_zero = true;
 | |
|     }
 | |
|   }
 | |
|   */
 | |
|   // commit
 | |
|   void* p = VirtualAlloc(addr, size, MEM_COMMIT, PAGE_READWRITE);
 | |
|   if (p == NULL) return (int)GetLastError();
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| int _mi_prim_decommit(void* addr, size_t size, bool* needs_recommit) {
 | |
|   BOOL ok = VirtualFree(addr, size, MEM_DECOMMIT);
 | |
|   *needs_recommit = true;  // for safety, assume always decommitted even in the case of an error.
 | |
|   return (ok ? 0 : (int)GetLastError());
 | |
| }
 | |
| 
 | |
| int _mi_prim_reset(void* addr, size_t size) {
 | |
|   void* p = VirtualAlloc(addr, size, MEM_RESET, PAGE_READWRITE);
 | |
|   mi_assert_internal(p == addr);
 | |
|   #if 0
 | |
|   if (p != NULL) {
 | |
|     VirtualUnlock(addr,size); // VirtualUnlock after MEM_RESET removes the memory directly from the working set
 | |
|   }
 | |
|   #endif
 | |
|   return (p != NULL ? 0 : (int)GetLastError());
 | |
| }
 | |
| 
 | |
| int _mi_prim_protect(void* addr, size_t size, bool protect) {
 | |
|   DWORD oldprotect = 0;
 | |
|   BOOL ok = VirtualProtect(addr, size, protect ? PAGE_NOACCESS : PAGE_READWRITE, &oldprotect);
 | |
|   return (ok ? 0 : (int)GetLastError());
 | |
| }
 | |
| 
 | |
| 
 | |
| //---------------------------------------------
 | |
| // Huge page allocation
 | |
| //---------------------------------------------
 | |
| 
 | |
| static void* _mi_prim_alloc_huge_os_pagesx(void* hint_addr, size_t size, int numa_node)
 | |
| {
 | |
|   const DWORD flags = MEM_LARGE_PAGES | MEM_COMMIT | MEM_RESERVE;
 | |
| 
 | |
|   win_enable_large_os_pages(NULL);
 | |
| 
 | |
|   MI_MEM_EXTENDED_PARAMETER params[3] = { {{0,0},{0}},{{0,0},{0}},{{0,0},{0}} };
 | |
|   // on modern Windows try use NtAllocateVirtualMemoryEx for 1GiB huge pages
 | |
|   static bool mi_huge_pages_available = true;
 | |
|   if (pNtAllocateVirtualMemoryEx != NULL && mi_huge_pages_available) {
 | |
|     params[0].Type.Type = MiMemExtendedParameterAttributeFlags;
 | |
|     params[0].Arg.ULong64 = MI_MEM_EXTENDED_PARAMETER_NONPAGED_HUGE;
 | |
|     ULONG param_count = 1;
 | |
|     if (numa_node >= 0) {
 | |
|       param_count++;
 | |
|       params[1].Type.Type = MiMemExtendedParameterNumaNode;
 | |
|       params[1].Arg.ULong = (unsigned)numa_node;
 | |
|     }
 | |
|     SIZE_T psize = size;
 | |
|     void* base = hint_addr;
 | |
|     NTSTATUS err = (*pNtAllocateVirtualMemoryEx)(GetCurrentProcess(), &base, &psize, flags, PAGE_READWRITE, params, param_count);
 | |
|     if (err == 0 && base != NULL) {
 | |
|       return base;
 | |
|     }
 | |
|     else {
 | |
|       // fall back to regular large pages
 | |
|       mi_huge_pages_available = false; // don't try further huge pages
 | |
|       _mi_warning_message("unable to allocate using huge (1GiB) pages, trying large (2MiB) pages instead (status 0x%lx)\n", err);
 | |
|     }
 | |
|   }
 | |
|   // on modern Windows try use VirtualAlloc2 for numa aware large OS page allocation
 | |
|   if (pVirtualAlloc2 != NULL && numa_node >= 0) {
 | |
|     params[0].Type.Type = MiMemExtendedParameterNumaNode;
 | |
|     params[0].Arg.ULong = (unsigned)numa_node;
 | |
|     return (*pVirtualAlloc2)(GetCurrentProcess(), hint_addr, size, flags, PAGE_READWRITE, params, 1);
 | |
|   }
 | |
| 
 | |
|   // otherwise use regular virtual alloc on older windows
 | |
|   return VirtualAlloc(hint_addr, size, flags, PAGE_READWRITE);
 | |
| }
 | |
| 
 | |
| int _mi_prim_alloc_huge_os_pages(void* hint_addr, size_t size, int numa_node, bool* is_zero, void** addr) {
 | |
|   *is_zero = true;
 | |
|   *addr = _mi_prim_alloc_huge_os_pagesx(hint_addr,size,numa_node);
 | |
|   return (*addr != NULL ? 0 : (int)GetLastError());
 | |
| }
 | |
| 
 | |
| 
 | |
| //---------------------------------------------
 | |
| // Numa nodes
 | |
| //---------------------------------------------
 | |
| 
 | |
| size_t _mi_prim_numa_node(void) {
 | |
|   USHORT numa_node = 0;
 | |
|   if (pGetCurrentProcessorNumberEx != NULL && pGetNumaProcessorNodeEx != NULL) {
 | |
|     // Extended API is supported
 | |
|     MI_PROCESSOR_NUMBER pnum;
 | |
|     (*pGetCurrentProcessorNumberEx)(&pnum);
 | |
|     USHORT nnode = 0;
 | |
|     BOOL ok = (*pGetNumaProcessorNodeEx)(&pnum, &nnode);
 | |
|     if (ok) { numa_node = nnode; }
 | |
|   }
 | |
|   else if (pGetNumaProcessorNode != NULL) {
 | |
|     // Vista or earlier, use older API that is limited to 64 processors. Issue #277
 | |
|     DWORD pnum = GetCurrentProcessorNumber();
 | |
|     UCHAR nnode = 0;
 | |
|     BOOL ok = pGetNumaProcessorNode((UCHAR)pnum, &nnode);
 | |
|     if (ok) { numa_node = nnode; }
 | |
|   }
 | |
|   return numa_node;
 | |
| }
 | |
| 
 | |
| size_t _mi_prim_numa_node_count(void) {
 | |
|   ULONG numa_max = 0;
 | |
|   GetNumaHighestNodeNumber(&numa_max);
 | |
|   // find the highest node number that has actual processors assigned to it. Issue #282
 | |
|   while(numa_max > 0) {
 | |
|     if (pGetNumaNodeProcessorMaskEx != NULL) {
 | |
|       // Extended API is supported
 | |
|       GROUP_AFFINITY affinity;
 | |
|       if ((*pGetNumaNodeProcessorMaskEx)((USHORT)numa_max, &affinity)) {
 | |
|         if (affinity.Mask != 0) break;  // found the maximum non-empty node
 | |
|       }
 | |
|     }
 | |
|     else {
 | |
|       // Vista or earlier, use older API that is limited to 64 processors.
 | |
|       ULONGLONG mask;
 | |
|       if (GetNumaNodeProcessorMask((UCHAR)numa_max, &mask)) {
 | |
|         if (mask != 0) break; // found the maximum non-empty node
 | |
|       };
 | |
|     }
 | |
|     // max node was invalid or had no processor assigned, try again
 | |
|     numa_max--;
 | |
|   }
 | |
|   return ((size_t)numa_max + 1);
 | |
| }
 | |
| 
 | |
| 
 | |
| //----------------------------------------------------------------
 | |
| // Clock
 | |
| //----------------------------------------------------------------
 | |
| 
 | |
| static mi_msecs_t mi_to_msecs(LARGE_INTEGER t) {
 | |
|   static LARGE_INTEGER mfreq; // = 0
 | |
|   if (mfreq.QuadPart == 0LL) {
 | |
|     LARGE_INTEGER f;
 | |
|     QueryPerformanceFrequency(&f);
 | |
|     mfreq.QuadPart = f.QuadPart/1000LL;
 | |
|     if (mfreq.QuadPart == 0) mfreq.QuadPart = 1;
 | |
|   }
 | |
|   return (mi_msecs_t)(t.QuadPart / mfreq.QuadPart);
 | |
| }
 | |
| 
 | |
| mi_msecs_t _mi_prim_clock_now(void) {
 | |
|   LARGE_INTEGER t;
 | |
|   QueryPerformanceCounter(&t);
 | |
|   return mi_to_msecs(t);
 | |
| }
 | |
| 
 | |
| 
 | |
| //----------------------------------------------------------------
 | |
| // Process Info
 | |
| //----------------------------------------------------------------
 | |
| 
 | |
| #include <windows.h>
 | |
| #include <psapi.h>
 | |
| 
 | |
| static mi_msecs_t filetime_msecs(const FILETIME* ftime) {
 | |
|   ULARGE_INTEGER i;
 | |
|   i.LowPart = ftime->dwLowDateTime;
 | |
|   i.HighPart = ftime->dwHighDateTime;
 | |
|   mi_msecs_t msecs = (i.QuadPart / 10000); // FILETIME is in 100 nano seconds
 | |
|   return msecs;
 | |
| }
 | |
| 
 | |
| typedef BOOL (WINAPI *PGetProcessMemoryInfo)(HANDLE, PPROCESS_MEMORY_COUNTERS, DWORD);
 | |
| static PGetProcessMemoryInfo pGetProcessMemoryInfo = NULL;
 | |
| 
 | |
| void _mi_prim_process_info(mi_process_info_t* pinfo)
 | |
| {
 | |
|   FILETIME ct;
 | |
|   FILETIME ut;
 | |
|   FILETIME st;
 | |
|   FILETIME et;
 | |
|   GetProcessTimes(GetCurrentProcess(), &ct, &et, &st, &ut);
 | |
|   pinfo->utime = filetime_msecs(&ut);
 | |
|   pinfo->stime = filetime_msecs(&st);
 | |
| 
 | |
|   // load psapi on demand
 | |
|   if (pGetProcessMemoryInfo == NULL) {
 | |
|     HINSTANCE hDll = LoadLibrary(TEXT("psapi.dll"));
 | |
|     if (hDll != NULL) {
 | |
|       pGetProcessMemoryInfo = (PGetProcessMemoryInfo)(void (*)(void))GetProcAddress(hDll, "GetProcessMemoryInfo");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // get process info
 | |
|   PROCESS_MEMORY_COUNTERS info;
 | |
|   memset(&info, 0, sizeof(info));
 | |
|   if (pGetProcessMemoryInfo != NULL) {
 | |
|     pGetProcessMemoryInfo(GetCurrentProcess(), &info, sizeof(info));
 | |
|   }
 | |
|   pinfo->current_rss    = (size_t)info.WorkingSetSize;
 | |
|   pinfo->peak_rss       = (size_t)info.PeakWorkingSetSize;
 | |
|   pinfo->current_commit = (size_t)info.PagefileUsage;
 | |
|   pinfo->peak_commit    = (size_t)info.PeakPagefileUsage;
 | |
|   pinfo->page_faults    = (size_t)info.PageFaultCount;
 | |
| }
 | |
| 
 | |
| //----------------------------------------------------------------
 | |
| // Output
 | |
| //----------------------------------------------------------------
 | |
| 
 | |
| void _mi_prim_out_stderr( const char* msg )
 | |
| {
 | |
|   // on windows with redirection, the C runtime cannot handle locale dependent output
 | |
|   // after the main thread closes so we use direct console output.
 | |
|   if (!_mi_preloading()) {
 | |
|     // _cputs(msg);  // _cputs cannot be used at is aborts if it fails to lock the console
 | |
|     static HANDLE hcon = INVALID_HANDLE_VALUE;
 | |
|     static bool hconIsConsole;
 | |
|     if (hcon == INVALID_HANDLE_VALUE) {
 | |
|       CONSOLE_SCREEN_BUFFER_INFO sbi;
 | |
|       hcon = GetStdHandle(STD_ERROR_HANDLE);
 | |
|       hconIsConsole = ((hcon != INVALID_HANDLE_VALUE) && GetConsoleScreenBufferInfo(hcon, &sbi));
 | |
|     }
 | |
|     const size_t len = _mi_strlen(msg);
 | |
|     if (len > 0 && len < UINT32_MAX) {
 | |
|       DWORD written = 0;
 | |
|       if (hconIsConsole) {
 | |
|         WriteConsoleA(hcon, msg, (DWORD)len, &written, NULL);
 | |
|       }
 | |
|       else if (hcon != INVALID_HANDLE_VALUE) {
 | |
|         // use direct write if stderr was redirected
 | |
|         WriteFile(hcon, msg, (DWORD)len, &written, NULL);
 | |
|       }
 | |
|       else {
 | |
|         // finally fall back to fputs after all
 | |
|         fputs(msg, stderr);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| //----------------------------------------------------------------
 | |
| // Environment
 | |
| //----------------------------------------------------------------
 | |
| 
 | |
| // On Windows use GetEnvironmentVariable instead of getenv to work
 | |
| // reliably even when this is invoked before the C runtime is initialized.
 | |
| // i.e. when `_mi_preloading() == true`.
 | |
| // Note: on windows, environment names are not case sensitive.
 | |
| bool _mi_prim_getenv(const char* name, char* result, size_t result_size) {
 | |
|   result[0] = 0;
 | |
|   size_t len = GetEnvironmentVariableA(name, result, (DWORD)result_size);
 | |
|   return (len > 0 && len < result_size);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //----------------------------------------------------------------
 | |
| // Random
 | |
| //----------------------------------------------------------------
 | |
| 
 | |
| #if defined(MI_USE_RTLGENRANDOM) // || defined(__cplusplus)
 | |
| // We prefer to use BCryptGenRandom instead of (the unofficial) RtlGenRandom but when using
 | |
| // dynamic overriding, we observed it can raise an exception when compiled with C++, and
 | |
| // sometimes deadlocks when also running under the VS debugger.
 | |
| // In contrast, issue #623 implies that on Windows Server 2019 we need to use BCryptGenRandom.
 | |
| // To be continued..
 | |
| #pragma comment (lib,"advapi32.lib")
 | |
| #define RtlGenRandom  SystemFunction036
 | |
| mi_decl_externc BOOLEAN NTAPI RtlGenRandom(PVOID RandomBuffer, ULONG RandomBufferLength);
 | |
| 
 | |
| bool _mi_prim_random_buf(void* buf, size_t buf_len) {
 | |
|   return (RtlGenRandom(buf, (ULONG)buf_len) != 0);
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| #ifndef BCRYPT_USE_SYSTEM_PREFERRED_RNG
 | |
| #define BCRYPT_USE_SYSTEM_PREFERRED_RNG 0x00000002
 | |
| #endif
 | |
| 
 | |
| typedef LONG (NTAPI *PBCryptGenRandom)(HANDLE, PUCHAR, ULONG, ULONG);
 | |
| static  PBCryptGenRandom pBCryptGenRandom = NULL;
 | |
| 
 | |
| bool _mi_prim_random_buf(void* buf, size_t buf_len) {
 | |
|   if (pBCryptGenRandom == NULL) {
 | |
|     HINSTANCE hDll = LoadLibrary(TEXT("bcrypt.dll"));
 | |
|     if (hDll != NULL) {
 | |
|       pBCryptGenRandom = (PBCryptGenRandom)(void (*)(void))GetProcAddress(hDll, "BCryptGenRandom");
 | |
|     }
 | |
|     if (pBCryptGenRandom == NULL) return false;
 | |
|   }
 | |
|   return (pBCryptGenRandom(NULL, (PUCHAR)buf, (ULONG)buf_len, BCRYPT_USE_SYSTEM_PREFERRED_RNG) >= 0);
 | |
| }
 | |
| 
 | |
| #endif  // MI_USE_RTLGENRANDOM
 | |
| 
 | |
| //----------------------------------------------------------------
 | |
| // Thread init/done
 | |
| //----------------------------------------------------------------
 | |
| 
 | |
| #if !defined(MI_SHARED_LIB)
 | |
| 
 | |
| // use thread local storage keys to detect thread ending
 | |
| #include <fibersapi.h>
 | |
| #if (_WIN32_WINNT < 0x600)  // before Windows Vista
 | |
| WINBASEAPI DWORD WINAPI FlsAlloc( _In_opt_ PFLS_CALLBACK_FUNCTION lpCallback );
 | |
| WINBASEAPI PVOID WINAPI FlsGetValue( _In_ DWORD dwFlsIndex );
 | |
| WINBASEAPI BOOL  WINAPI FlsSetValue( _In_ DWORD dwFlsIndex, _In_opt_ PVOID lpFlsData );
 | |
| WINBASEAPI BOOL  WINAPI FlsFree(_In_ DWORD dwFlsIndex);
 | |
| #endif
 | |
| 
 | |
| static DWORD mi_fls_key = (DWORD)(-1);
 | |
| 
 | |
| static void NTAPI mi_fls_done(PVOID value) {
 | |
|   mi_heap_t* heap = (mi_heap_t*)value;
 | |
|   if (heap != NULL) {
 | |
|     _mi_thread_done(heap);
 | |
|     FlsSetValue(mi_fls_key, NULL);  // prevent recursion as _mi_thread_done may set it back to the main heap, issue #672
 | |
|   }
 | |
| }
 | |
| 
 | |
| void _mi_prim_thread_init_auto_done(void) {
 | |
|   mi_fls_key = FlsAlloc(&mi_fls_done);
 | |
| }
 | |
| 
 | |
| void _mi_prim_thread_done_auto_done(void) {
 | |
|   // call thread-done on all threads (except the main thread) to prevent
 | |
|   // dangling callback pointer if statically linked with a DLL; Issue #208
 | |
|   FlsFree(mi_fls_key);
 | |
| }
 | |
| 
 | |
| void _mi_prim_thread_associate_default_heap(mi_heap_t* heap) {
 | |
|   mi_assert_internal(mi_fls_key != (DWORD)(-1));
 | |
|   FlsSetValue(mi_fls_key, heap);
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| // Dll; nothing to do as in that case thread_done is handled through the DLL_THREAD_DETACH event.
 | |
| 
 | |
| void _mi_prim_thread_init_auto_done(void) {
 | |
| }
 | |
| 
 | |
| void _mi_prim_thread_done_auto_done(void) {
 | |
| }
 | |
| 
 | |
| void _mi_prim_thread_associate_default_heap(mi_heap_t* heap) {
 | |
|   MI_UNUSED(heap);
 | |
| }
 | |
| 
 | |
| #endif
 |