mirror of
				https://github.com/python/cpython.git
				synced 2025-10-31 13:41:24 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1859 lines
		
	
	
	
		
			60 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			1859 lines
		
	
	
	
		
			60 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | ||
| Basic statistics module.
 | ||
| 
 | ||
| This module provides functions for calculating statistics of data, including
 | ||
| averages, variance, and standard deviation.
 | ||
| 
 | ||
| Calculating averages
 | ||
| --------------------
 | ||
| 
 | ||
| ==================  ==================================================
 | ||
| Function            Description
 | ||
| ==================  ==================================================
 | ||
| mean                Arithmetic mean (average) of data.
 | ||
| fmean               Fast, floating-point arithmetic mean.
 | ||
| geometric_mean      Geometric mean of data.
 | ||
| harmonic_mean       Harmonic mean of data.
 | ||
| median              Median (middle value) of data.
 | ||
| median_low          Low median of data.
 | ||
| median_high         High median of data.
 | ||
| median_grouped      Median, or 50th percentile, of grouped data.
 | ||
| mode                Mode (most common value) of data.
 | ||
| multimode           List of modes (most common values of data).
 | ||
| quantiles           Divide data into intervals with equal probability.
 | ||
| ==================  ==================================================
 | ||
| 
 | ||
| Calculate the arithmetic mean ("the average") of data:
 | ||
| 
 | ||
| >>> mean([-1.0, 2.5, 3.25, 5.75])
 | ||
| 2.625
 | ||
| 
 | ||
| 
 | ||
| Calculate the standard median of discrete data:
 | ||
| 
 | ||
| >>> median([2, 3, 4, 5])
 | ||
| 3.5
 | ||
| 
 | ||
| 
 | ||
| Calculate the median, or 50th percentile, of data grouped into class intervals
 | ||
| centred on the data values provided. E.g. if your data points are rounded to
 | ||
| the nearest whole number:
 | ||
| 
 | ||
| >>> median_grouped([2, 2, 3, 3, 3, 4])  #doctest: +ELLIPSIS
 | ||
| 2.8333333333...
 | ||
| 
 | ||
| This should be interpreted in this way: you have two data points in the class
 | ||
| interval 1.5-2.5, three data points in the class interval 2.5-3.5, and one in
 | ||
| the class interval 3.5-4.5. The median of these data points is 2.8333...
 | ||
| 
 | ||
| 
 | ||
| Calculating variability or spread
 | ||
| ---------------------------------
 | ||
| 
 | ||
| ==================  =============================================
 | ||
| Function            Description
 | ||
| ==================  =============================================
 | ||
| pvariance           Population variance of data.
 | ||
| variance            Sample variance of data.
 | ||
| pstdev              Population standard deviation of data.
 | ||
| stdev               Sample standard deviation of data.
 | ||
| ==================  =============================================
 | ||
| 
 | ||
| Calculate the standard deviation of sample data:
 | ||
| 
 | ||
| >>> stdev([2.5, 3.25, 5.5, 11.25, 11.75])  #doctest: +ELLIPSIS
 | ||
| 4.38961843444...
 | ||
| 
 | ||
| If you have previously calculated the mean, you can pass it as the optional
 | ||
| second argument to the four "spread" functions to avoid recalculating it:
 | ||
| 
 | ||
| >>> data = [1, 2, 2, 4, 4, 4, 5, 6]
 | ||
| >>> mu = mean(data)
 | ||
| >>> pvariance(data, mu)
 | ||
| 2.5
 | ||
| 
 | ||
| 
 | ||
| Statistics for relations between two inputs
 | ||
| -------------------------------------------
 | ||
| 
 | ||
| ==================  ====================================================
 | ||
| Function            Description
 | ||
| ==================  ====================================================
 | ||
| covariance          Sample covariance for two variables.
 | ||
| correlation         Pearson's correlation coefficient for two variables.
 | ||
| linear_regression   Intercept and slope for simple linear regression.
 | ||
| ==================  ====================================================
 | ||
| 
 | ||
| Calculate covariance, Pearson's correlation, and simple linear regression
 | ||
| for two inputs:
 | ||
| 
 | ||
| >>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
 | ||
| >>> y = [1, 2, 3, 1, 2, 3, 1, 2, 3]
 | ||
| >>> covariance(x, y)
 | ||
| 0.75
 | ||
| >>> correlation(x, y)  #doctest: +ELLIPSIS
 | ||
| 0.31622776601...
 | ||
| >>> linear_regression(x, y)  #doctest:
 | ||
| LinearRegression(slope=0.1, intercept=1.5)
 | ||
| 
 | ||
| 
 | ||
| Exceptions
 | ||
| ----------
 | ||
| 
 | ||
| A single exception is defined: StatisticsError is a subclass of ValueError.
 | ||
| 
 | ||
| """
 | ||
| 
 | ||
| __all__ = [
 | ||
|     'NormalDist',
 | ||
|     'StatisticsError',
 | ||
|     'correlation',
 | ||
|     'covariance',
 | ||
|     'fmean',
 | ||
|     'geometric_mean',
 | ||
|     'harmonic_mean',
 | ||
|     'kde',
 | ||
|     'kde_random',
 | ||
|     'linear_regression',
 | ||
|     'mean',
 | ||
|     'median',
 | ||
|     'median_grouped',
 | ||
|     'median_high',
 | ||
|     'median_low',
 | ||
|     'mode',
 | ||
|     'multimode',
 | ||
|     'pstdev',
 | ||
|     'pvariance',
 | ||
|     'quantiles',
 | ||
|     'stdev',
 | ||
|     'variance',
 | ||
| ]
 | ||
| 
 | ||
| import math
 | ||
| import numbers
 | ||
| import random
 | ||
| import sys
 | ||
| 
 | ||
| from fractions import Fraction
 | ||
| from decimal import Decimal
 | ||
| from itertools import count, groupby, repeat
 | ||
| from bisect import bisect_left, bisect_right
 | ||
| from math import hypot, sqrt, fabs, exp, erf, tau, log, fsum, sumprod
 | ||
| from math import isfinite, isinf, pi, cos, sin, tan, cosh, asin, atan, acos
 | ||
| from functools import reduce
 | ||
| from operator import itemgetter
 | ||
| from collections import Counter, namedtuple, defaultdict
 | ||
| 
 | ||
| _SQRT2 = sqrt(2.0)
 | ||
| _random = random
 | ||
| 
 | ||
| ## Exceptions ##############################################################
 | ||
| 
 | ||
| class StatisticsError(ValueError):
 | ||
|     pass
 | ||
| 
 | ||
| 
 | ||
| ## Measures of central tendency (averages) #################################
 | ||
| 
 | ||
| def mean(data):
 | ||
|     """Return the sample arithmetic mean of data.
 | ||
| 
 | ||
|     >>> mean([1, 2, 3, 4, 4])
 | ||
|     2.8
 | ||
| 
 | ||
|     >>> from fractions import Fraction as F
 | ||
|     >>> mean([F(3, 7), F(1, 21), F(5, 3), F(1, 3)])
 | ||
|     Fraction(13, 21)
 | ||
| 
 | ||
|     >>> from decimal import Decimal as D
 | ||
|     >>> mean([D("0.5"), D("0.75"), D("0.625"), D("0.375")])
 | ||
|     Decimal('0.5625')
 | ||
| 
 | ||
|     If ``data`` is empty, StatisticsError will be raised.
 | ||
| 
 | ||
|     """
 | ||
|     T, total, n = _sum(data)
 | ||
|     if n < 1:
 | ||
|         raise StatisticsError('mean requires at least one data point')
 | ||
|     return _convert(total / n, T)
 | ||
| 
 | ||
| 
 | ||
| def fmean(data, weights=None):
 | ||
|     """Convert data to floats and compute the arithmetic mean.
 | ||
| 
 | ||
|     This runs faster than the mean() function and it always returns a float.
 | ||
|     If the input dataset is empty, it raises a StatisticsError.
 | ||
| 
 | ||
|     >>> fmean([3.5, 4.0, 5.25])
 | ||
|     4.25
 | ||
| 
 | ||
|     """
 | ||
|     if weights is None:
 | ||
| 
 | ||
|         try:
 | ||
|             n = len(data)
 | ||
|         except TypeError:
 | ||
|             # Handle iterators that do not define __len__().
 | ||
|             counter = count()
 | ||
|             total = fsum(map(itemgetter(0), zip(data, counter)))
 | ||
|             n = next(counter)
 | ||
|         else:
 | ||
|             total = fsum(data)
 | ||
| 
 | ||
|         if not n:
 | ||
|             raise StatisticsError('fmean requires at least one data point')
 | ||
| 
 | ||
|         return total / n
 | ||
| 
 | ||
|     if not isinstance(weights, (list, tuple)):
 | ||
|         weights = list(weights)
 | ||
| 
 | ||
|     try:
 | ||
|         num = sumprod(data, weights)
 | ||
|     except ValueError:
 | ||
|         raise StatisticsError('data and weights must be the same length')
 | ||
| 
 | ||
|     den = fsum(weights)
 | ||
| 
 | ||
|     if not den:
 | ||
|         raise StatisticsError('sum of weights must be non-zero')
 | ||
| 
 | ||
|     return num / den
 | ||
| 
 | ||
| 
 | ||
| def geometric_mean(data):
 | ||
|     """Convert data to floats and compute the geometric mean.
 | ||
| 
 | ||
|     Raises a StatisticsError if the input dataset is empty
 | ||
|     or if it contains a negative value.
 | ||
| 
 | ||
|     Returns zero if the product of inputs is zero.
 | ||
| 
 | ||
|     No special efforts are made to achieve exact results.
 | ||
|     (However, this may change in the future.)
 | ||
| 
 | ||
|     >>> round(geometric_mean([54, 24, 36]), 9)
 | ||
|     36.0
 | ||
| 
 | ||
|     """
 | ||
|     n = 0
 | ||
|     found_zero = False
 | ||
| 
 | ||
|     def count_positive(iterable):
 | ||
|         nonlocal n, found_zero
 | ||
|         for n, x in enumerate(iterable, start=1):
 | ||
|             if x > 0.0 or math.isnan(x):
 | ||
|                 yield x
 | ||
|             elif x == 0.0:
 | ||
|                 found_zero = True
 | ||
|             else:
 | ||
|                 raise StatisticsError('No negative inputs allowed', x)
 | ||
|     total = fsum(map(log, count_positive(data)))
 | ||
| 
 | ||
|     if not n:
 | ||
|         raise StatisticsError('Must have a non-empty dataset')
 | ||
|     if math.isnan(total):
 | ||
|         return math.nan
 | ||
|     if found_zero:
 | ||
|         return math.nan if total == math.inf else 0.0
 | ||
| 
 | ||
|     return exp(total / n)
 | ||
| 
 | ||
| 
 | ||
| def harmonic_mean(data, weights=None):
 | ||
|     """Return the harmonic mean of data.
 | ||
| 
 | ||
|     The harmonic mean is the reciprocal of the arithmetic mean of the
 | ||
|     reciprocals of the data.  It can be used for averaging ratios or
 | ||
|     rates, for example speeds.
 | ||
| 
 | ||
|     Suppose a car travels 40 km/hr for 5 km and then speeds-up to
 | ||
|     60 km/hr for another 5 km. What is the average speed?
 | ||
| 
 | ||
|         >>> harmonic_mean([40, 60])
 | ||
|         48.0
 | ||
| 
 | ||
|     Suppose a car travels 40 km/hr for 5 km, and when traffic clears,
 | ||
|     speeds-up to 60 km/hr for the remaining 30 km of the journey. What
 | ||
|     is the average speed?
 | ||
| 
 | ||
|         >>> harmonic_mean([40, 60], weights=[5, 30])
 | ||
|         56.0
 | ||
| 
 | ||
|     If ``data`` is empty, or any element is less than zero,
 | ||
|     ``harmonic_mean`` will raise ``StatisticsError``.
 | ||
| 
 | ||
|     """
 | ||
|     if iter(data) is data:
 | ||
|         data = list(data)
 | ||
| 
 | ||
|     errmsg = 'harmonic mean does not support negative values'
 | ||
| 
 | ||
|     n = len(data)
 | ||
|     if n < 1:
 | ||
|         raise StatisticsError('harmonic_mean requires at least one data point')
 | ||
|     elif n == 1 and weights is None:
 | ||
|         x = data[0]
 | ||
|         if isinstance(x, (numbers.Real, Decimal)):
 | ||
|             if x < 0:
 | ||
|                 raise StatisticsError(errmsg)
 | ||
|             return x
 | ||
|         else:
 | ||
|             raise TypeError('unsupported type')
 | ||
| 
 | ||
|     if weights is None:
 | ||
|         weights = repeat(1, n)
 | ||
|         sum_weights = n
 | ||
|     else:
 | ||
|         if iter(weights) is weights:
 | ||
|             weights = list(weights)
 | ||
|         if len(weights) != n:
 | ||
|             raise StatisticsError('Number of weights does not match data size')
 | ||
|         _, sum_weights, _ = _sum(w for w in _fail_neg(weights, errmsg))
 | ||
| 
 | ||
|     try:
 | ||
|         data = _fail_neg(data, errmsg)
 | ||
|         T, total, count = _sum(w / x if w else 0 for w, x in zip(weights, data))
 | ||
|     except ZeroDivisionError:
 | ||
|         return 0
 | ||
| 
 | ||
|     if total <= 0:
 | ||
|         raise StatisticsError('Weighted sum must be positive')
 | ||
| 
 | ||
|     return _convert(sum_weights / total, T)
 | ||
| 
 | ||
| 
 | ||
| def median(data):
 | ||
|     """Return the median (middle value) of numeric data.
 | ||
| 
 | ||
|     When the number of data points is odd, return the middle data point.
 | ||
|     When the number of data points is even, the median is interpolated by
 | ||
|     taking the average of the two middle values:
 | ||
| 
 | ||
|     >>> median([1, 3, 5])
 | ||
|     3
 | ||
|     >>> median([1, 3, 5, 7])
 | ||
|     4.0
 | ||
| 
 | ||
|     """
 | ||
|     data = sorted(data)
 | ||
|     n = len(data)
 | ||
|     if n == 0:
 | ||
|         raise StatisticsError("no median for empty data")
 | ||
|     if n % 2 == 1:
 | ||
|         return data[n // 2]
 | ||
|     else:
 | ||
|         i = n // 2
 | ||
|         return (data[i - 1] + data[i]) / 2
 | ||
| 
 | ||
| 
 | ||
| def median_low(data):
 | ||
|     """Return the low median of numeric data.
 | ||
| 
 | ||
|     When the number of data points is odd, the middle value is returned.
 | ||
|     When it is even, the smaller of the two middle values is returned.
 | ||
| 
 | ||
|     >>> median_low([1, 3, 5])
 | ||
|     3
 | ||
|     >>> median_low([1, 3, 5, 7])
 | ||
|     3
 | ||
| 
 | ||
|     """
 | ||
|     # Potentially the sorting step could be replaced with a quickselect.
 | ||
|     # However, it would require an excellent implementation to beat our
 | ||
|     # highly optimized builtin sort.
 | ||
|     data = sorted(data)
 | ||
|     n = len(data)
 | ||
|     if n == 0:
 | ||
|         raise StatisticsError("no median for empty data")
 | ||
|     if n % 2 == 1:
 | ||
|         return data[n // 2]
 | ||
|     else:
 | ||
|         return data[n // 2 - 1]
 | ||
| 
 | ||
| 
 | ||
| def median_high(data):
 | ||
|     """Return the high median of data.
 | ||
| 
 | ||
|     When the number of data points is odd, the middle value is returned.
 | ||
|     When it is even, the larger of the two middle values is returned.
 | ||
| 
 | ||
|     >>> median_high([1, 3, 5])
 | ||
|     3
 | ||
|     >>> median_high([1, 3, 5, 7])
 | ||
|     5
 | ||
| 
 | ||
|     """
 | ||
|     data = sorted(data)
 | ||
|     n = len(data)
 | ||
|     if n == 0:
 | ||
|         raise StatisticsError("no median for empty data")
 | ||
|     return data[n // 2]
 | ||
| 
 | ||
| 
 | ||
| def median_grouped(data, interval=1.0):
 | ||
|     """Estimates the median for numeric data binned around the midpoints
 | ||
|     of consecutive, fixed-width intervals.
 | ||
| 
 | ||
|     The *data* can be any iterable of numeric data with each value being
 | ||
|     exactly the midpoint of a bin.  At least one value must be present.
 | ||
| 
 | ||
|     The *interval* is width of each bin.
 | ||
| 
 | ||
|     For example, demographic information may have been summarized into
 | ||
|     consecutive ten-year age groups with each group being represented
 | ||
|     by the 5-year midpoints of the intervals:
 | ||
| 
 | ||
|         >>> demographics = Counter({
 | ||
|         ...    25: 172,   # 20 to 30 years old
 | ||
|         ...    35: 484,   # 30 to 40 years old
 | ||
|         ...    45: 387,   # 40 to 50 years old
 | ||
|         ...    55:  22,   # 50 to 60 years old
 | ||
|         ...    65:   6,   # 60 to 70 years old
 | ||
|         ... })
 | ||
| 
 | ||
|     The 50th percentile (median) is the 536th person out of the 1071
 | ||
|     member cohort.  That person is in the 30 to 40 year old age group.
 | ||
| 
 | ||
|     The regular median() function would assume that everyone in the
 | ||
|     tricenarian age group was exactly 35 years old.  A more tenable
 | ||
|     assumption is that the 484 members of that age group are evenly
 | ||
|     distributed between 30 and 40.  For that, we use median_grouped().
 | ||
| 
 | ||
|         >>> data = list(demographics.elements())
 | ||
|         >>> median(data)
 | ||
|         35
 | ||
|         >>> round(median_grouped(data, interval=10), 1)
 | ||
|         37.5
 | ||
| 
 | ||
|     The caller is responsible for making sure the data points are separated
 | ||
|     by exact multiples of *interval*.  This is essential for getting a
 | ||
|     correct result.  The function does not check this precondition.
 | ||
| 
 | ||
|     Inputs may be any numeric type that can be coerced to a float during
 | ||
|     the interpolation step.
 | ||
| 
 | ||
|     """
 | ||
|     data = sorted(data)
 | ||
|     n = len(data)
 | ||
|     if not n:
 | ||
|         raise StatisticsError("no median for empty data")
 | ||
| 
 | ||
|     # Find the value at the midpoint. Remember this corresponds to the
 | ||
|     # midpoint of the class interval.
 | ||
|     x = data[n // 2]
 | ||
| 
 | ||
|     # Using O(log n) bisection, find where all the x values occur in the data.
 | ||
|     # All x will lie within data[i:j].
 | ||
|     i = bisect_left(data, x)
 | ||
|     j = bisect_right(data, x, lo=i)
 | ||
| 
 | ||
|     # Coerce to floats, raising a TypeError if not possible
 | ||
|     try:
 | ||
|         interval = float(interval)
 | ||
|         x = float(x)
 | ||
|     except ValueError:
 | ||
|         raise TypeError(f'Value cannot be converted to a float')
 | ||
| 
 | ||
|     # Interpolate the median using the formula found at:
 | ||
|     # https://www.cuemath.com/data/median-of-grouped-data/
 | ||
|     L = x - interval / 2.0    # Lower limit of the median interval
 | ||
|     cf = i                    # Cumulative frequency of the preceding interval
 | ||
|     f = j - i                 # Number of elements in the median internal
 | ||
|     return L + interval * (n / 2 - cf) / f
 | ||
| 
 | ||
| 
 | ||
| def mode(data):
 | ||
|     """Return the most common data point from discrete or nominal data.
 | ||
| 
 | ||
|     ``mode`` assumes discrete data, and returns a single value. This is the
 | ||
|     standard treatment of the mode as commonly taught in schools:
 | ||
| 
 | ||
|         >>> mode([1, 1, 2, 3, 3, 3, 3, 4])
 | ||
|         3
 | ||
| 
 | ||
|     This also works with nominal (non-numeric) data:
 | ||
| 
 | ||
|         >>> mode(["red", "blue", "blue", "red", "green", "red", "red"])
 | ||
|         'red'
 | ||
| 
 | ||
|     If there are multiple modes with same frequency, return the first one
 | ||
|     encountered:
 | ||
| 
 | ||
|         >>> mode(['red', 'red', 'green', 'blue', 'blue'])
 | ||
|         'red'
 | ||
| 
 | ||
|     If *data* is empty, ``mode``, raises StatisticsError.
 | ||
| 
 | ||
|     """
 | ||
|     pairs = Counter(iter(data)).most_common(1)
 | ||
|     try:
 | ||
|         return pairs[0][0]
 | ||
|     except IndexError:
 | ||
|         raise StatisticsError('no mode for empty data') from None
 | ||
| 
 | ||
| 
 | ||
| def multimode(data):
 | ||
|     """Return a list of the most frequently occurring values.
 | ||
| 
 | ||
|     Will return more than one result if there are multiple modes
 | ||
|     or an empty list if *data* is empty.
 | ||
| 
 | ||
|     >>> multimode('aabbbbbbbbcc')
 | ||
|     ['b']
 | ||
|     >>> multimode('aabbbbccddddeeffffgg')
 | ||
|     ['b', 'd', 'f']
 | ||
|     >>> multimode('')
 | ||
|     []
 | ||
| 
 | ||
|     """
 | ||
|     counts = Counter(iter(data))
 | ||
|     if not counts:
 | ||
|         return []
 | ||
|     maxcount = max(counts.values())
 | ||
|     return [value for value, count in counts.items() if count == maxcount]
 | ||
| 
 | ||
| 
 | ||
| ## Measures of spread ######################################################
 | ||
| 
 | ||
| def variance(data, xbar=None):
 | ||
|     """Return the sample variance of data.
 | ||
| 
 | ||
|     data should be an iterable of Real-valued numbers, with at least two
 | ||
|     values. The optional argument xbar, if given, should be the mean of
 | ||
|     the data. If it is missing or None, the mean is automatically calculated.
 | ||
| 
 | ||
|     Use this function when your data is a sample from a population. To
 | ||
|     calculate the variance from the entire population, see ``pvariance``.
 | ||
| 
 | ||
|     Examples:
 | ||
| 
 | ||
|     >>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]
 | ||
|     >>> variance(data)
 | ||
|     1.3720238095238095
 | ||
| 
 | ||
|     If you have already calculated the mean of your data, you can pass it as
 | ||
|     the optional second argument ``xbar`` to avoid recalculating it:
 | ||
| 
 | ||
|     >>> m = mean(data)
 | ||
|     >>> variance(data, m)
 | ||
|     1.3720238095238095
 | ||
| 
 | ||
|     This function does not check that ``xbar`` is actually the mean of
 | ||
|     ``data``. Giving arbitrary values for ``xbar`` may lead to invalid or
 | ||
|     impossible results.
 | ||
| 
 | ||
|     Decimals and Fractions are supported:
 | ||
| 
 | ||
|     >>> from decimal import Decimal as D
 | ||
|     >>> variance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
 | ||
|     Decimal('31.01875')
 | ||
| 
 | ||
|     >>> from fractions import Fraction as F
 | ||
|     >>> variance([F(1, 6), F(1, 2), F(5, 3)])
 | ||
|     Fraction(67, 108)
 | ||
| 
 | ||
|     """
 | ||
|     # http://mathworld.wolfram.com/SampleVariance.html
 | ||
| 
 | ||
|     T, ss, c, n = _ss(data, xbar)
 | ||
|     if n < 2:
 | ||
|         raise StatisticsError('variance requires at least two data points')
 | ||
|     return _convert(ss / (n - 1), T)
 | ||
| 
 | ||
| 
 | ||
| def pvariance(data, mu=None):
 | ||
|     """Return the population variance of ``data``.
 | ||
| 
 | ||
|     data should be a sequence or iterable of Real-valued numbers, with at least one
 | ||
|     value. The optional argument mu, if given, should be the mean of
 | ||
|     the data. If it is missing or None, the mean is automatically calculated.
 | ||
| 
 | ||
|     Use this function to calculate the variance from the entire population.
 | ||
|     To estimate the variance from a sample, the ``variance`` function is
 | ||
|     usually a better choice.
 | ||
| 
 | ||
|     Examples:
 | ||
| 
 | ||
|     >>> data = [0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25]
 | ||
|     >>> pvariance(data)
 | ||
|     1.25
 | ||
| 
 | ||
|     If you have already calculated the mean of the data, you can pass it as
 | ||
|     the optional second argument to avoid recalculating it:
 | ||
| 
 | ||
|     >>> mu = mean(data)
 | ||
|     >>> pvariance(data, mu)
 | ||
|     1.25
 | ||
| 
 | ||
|     Decimals and Fractions are supported:
 | ||
| 
 | ||
|     >>> from decimal import Decimal as D
 | ||
|     >>> pvariance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
 | ||
|     Decimal('24.815')
 | ||
| 
 | ||
|     >>> from fractions import Fraction as F
 | ||
|     >>> pvariance([F(1, 4), F(5, 4), F(1, 2)])
 | ||
|     Fraction(13, 72)
 | ||
| 
 | ||
|     """
 | ||
|     # http://mathworld.wolfram.com/Variance.html
 | ||
| 
 | ||
|     T, ss, c, n = _ss(data, mu)
 | ||
|     if n < 1:
 | ||
|         raise StatisticsError('pvariance requires at least one data point')
 | ||
|     return _convert(ss / n, T)
 | ||
| 
 | ||
| 
 | ||
| def stdev(data, xbar=None):
 | ||
|     """Return the square root of the sample variance.
 | ||
| 
 | ||
|     See ``variance`` for arguments and other details.
 | ||
| 
 | ||
|     >>> stdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
 | ||
|     1.0810874155219827
 | ||
| 
 | ||
|     """
 | ||
|     T, ss, c, n = _ss(data, xbar)
 | ||
|     if n < 2:
 | ||
|         raise StatisticsError('stdev requires at least two data points')
 | ||
|     mss = ss / (n - 1)
 | ||
|     if issubclass(T, Decimal):
 | ||
|         return _decimal_sqrt_of_frac(mss.numerator, mss.denominator)
 | ||
|     return _float_sqrt_of_frac(mss.numerator, mss.denominator)
 | ||
| 
 | ||
| 
 | ||
| def pstdev(data, mu=None):
 | ||
|     """Return the square root of the population variance.
 | ||
| 
 | ||
|     See ``pvariance`` for arguments and other details.
 | ||
| 
 | ||
|     >>> pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
 | ||
|     0.986893273527251
 | ||
| 
 | ||
|     """
 | ||
|     T, ss, c, n = _ss(data, mu)
 | ||
|     if n < 1:
 | ||
|         raise StatisticsError('pstdev requires at least one data point')
 | ||
|     mss = ss / n
 | ||
|     if issubclass(T, Decimal):
 | ||
|         return _decimal_sqrt_of_frac(mss.numerator, mss.denominator)
 | ||
|     return _float_sqrt_of_frac(mss.numerator, mss.denominator)
 | ||
| 
 | ||
| 
 | ||
| ## Statistics for relations between two inputs #############################
 | ||
| 
 | ||
| def covariance(x, y, /):
 | ||
|     """Covariance
 | ||
| 
 | ||
|     Return the sample covariance of two inputs *x* and *y*. Covariance
 | ||
|     is a measure of the joint variability of two inputs.
 | ||
| 
 | ||
|     >>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
 | ||
|     >>> y = [1, 2, 3, 1, 2, 3, 1, 2, 3]
 | ||
|     >>> covariance(x, y)
 | ||
|     0.75
 | ||
|     >>> z = [9, 8, 7, 6, 5, 4, 3, 2, 1]
 | ||
|     >>> covariance(x, z)
 | ||
|     -7.5
 | ||
|     >>> covariance(z, x)
 | ||
|     -7.5
 | ||
| 
 | ||
|     """
 | ||
|     # https://en.wikipedia.org/wiki/Covariance
 | ||
|     n = len(x)
 | ||
|     if len(y) != n:
 | ||
|         raise StatisticsError('covariance requires that both inputs have same number of data points')
 | ||
|     if n < 2:
 | ||
|         raise StatisticsError('covariance requires at least two data points')
 | ||
|     xbar = fsum(x) / n
 | ||
|     ybar = fsum(y) / n
 | ||
|     sxy = sumprod((xi - xbar for xi in x), (yi - ybar for yi in y))
 | ||
|     return sxy / (n - 1)
 | ||
| 
 | ||
| 
 | ||
| def correlation(x, y, /, *, method='linear'):
 | ||
|     """Pearson's correlation coefficient
 | ||
| 
 | ||
|     Return the Pearson's correlation coefficient for two inputs. Pearson's
 | ||
|     correlation coefficient *r* takes values between -1 and +1. It measures
 | ||
|     the strength and direction of a linear relationship.
 | ||
| 
 | ||
|     >>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
 | ||
|     >>> y = [9, 8, 7, 6, 5, 4, 3, 2, 1]
 | ||
|     >>> correlation(x, x)
 | ||
|     1.0
 | ||
|     >>> correlation(x, y)
 | ||
|     -1.0
 | ||
| 
 | ||
|     If *method* is "ranked", computes Spearman's rank correlation coefficient
 | ||
|     for two inputs.  The data is replaced by ranks.  Ties are averaged
 | ||
|     so that equal values receive the same rank.  The resulting coefficient
 | ||
|     measures the strength of a monotonic relationship.
 | ||
| 
 | ||
|     Spearman's rank correlation coefficient is appropriate for ordinal
 | ||
|     data or for continuous data that doesn't meet the linear proportion
 | ||
|     requirement for Pearson's correlation coefficient.
 | ||
| 
 | ||
|     """
 | ||
|     # https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
 | ||
|     # https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
 | ||
|     n = len(x)
 | ||
|     if len(y) != n:
 | ||
|         raise StatisticsError('correlation requires that both inputs have same number of data points')
 | ||
|     if n < 2:
 | ||
|         raise StatisticsError('correlation requires at least two data points')
 | ||
|     if method not in {'linear', 'ranked'}:
 | ||
|         raise ValueError(f'Unknown method: {method!r}')
 | ||
| 
 | ||
|     if method == 'ranked':
 | ||
|         start = (n - 1) / -2            # Center rankings around zero
 | ||
|         x = _rank(x, start=start)
 | ||
|         y = _rank(y, start=start)
 | ||
|     else:
 | ||
|         xbar = fsum(x) / n
 | ||
|         ybar = fsum(y) / n
 | ||
|         x = [xi - xbar for xi in x]
 | ||
|         y = [yi - ybar for yi in y]
 | ||
| 
 | ||
|     sxy = sumprod(x, y)
 | ||
|     sxx = sumprod(x, x)
 | ||
|     syy = sumprod(y, y)
 | ||
| 
 | ||
|     try:
 | ||
|         return sxy / _sqrtprod(sxx, syy)
 | ||
|     except ZeroDivisionError:
 | ||
|         raise StatisticsError('at least one of the inputs is constant')
 | ||
| 
 | ||
| 
 | ||
| LinearRegression = namedtuple('LinearRegression', ('slope', 'intercept'))
 | ||
| 
 | ||
| 
 | ||
| def linear_regression(x, y, /, *, proportional=False):
 | ||
|     """Slope and intercept for simple linear regression.
 | ||
| 
 | ||
|     Return the slope and intercept of simple linear regression
 | ||
|     parameters estimated using ordinary least squares. Simple linear
 | ||
|     regression describes relationship between an independent variable
 | ||
|     *x* and a dependent variable *y* in terms of a linear function:
 | ||
| 
 | ||
|         y = slope * x + intercept + noise
 | ||
| 
 | ||
|     where *slope* and *intercept* are the regression parameters that are
 | ||
|     estimated, and noise represents the variability of the data that was
 | ||
|     not explained by the linear regression (it is equal to the
 | ||
|     difference between predicted and actual values of the dependent
 | ||
|     variable).
 | ||
| 
 | ||
|     The parameters are returned as a named tuple.
 | ||
| 
 | ||
|     >>> x = [1, 2, 3, 4, 5]
 | ||
|     >>> noise = NormalDist().samples(5, seed=42)
 | ||
|     >>> y = [3 * x[i] + 2 + noise[i] for i in range(5)]
 | ||
|     >>> linear_regression(x, y)  #doctest: +ELLIPSIS
 | ||
|     LinearRegression(slope=3.17495..., intercept=1.00925...)
 | ||
| 
 | ||
|     If *proportional* is true, the independent variable *x* and the
 | ||
|     dependent variable *y* are assumed to be directly proportional.
 | ||
|     The data is fit to a line passing through the origin.
 | ||
| 
 | ||
|     Since the *intercept* will always be 0.0, the underlying linear
 | ||
|     function simplifies to:
 | ||
| 
 | ||
|         y = slope * x + noise
 | ||
| 
 | ||
|     >>> y = [3 * x[i] + noise[i] for i in range(5)]
 | ||
|     >>> linear_regression(x, y, proportional=True)  #doctest: +ELLIPSIS
 | ||
|     LinearRegression(slope=2.90475..., intercept=0.0)
 | ||
| 
 | ||
|     """
 | ||
|     # https://en.wikipedia.org/wiki/Simple_linear_regression
 | ||
|     n = len(x)
 | ||
|     if len(y) != n:
 | ||
|         raise StatisticsError('linear regression requires that both inputs have same number of data points')
 | ||
|     if n < 2:
 | ||
|         raise StatisticsError('linear regression requires at least two data points')
 | ||
| 
 | ||
|     if not proportional:
 | ||
|         xbar = fsum(x) / n
 | ||
|         ybar = fsum(y) / n
 | ||
|         x = [xi - xbar for xi in x]  # List because used three times below
 | ||
|         y = (yi - ybar for yi in y)  # Generator because only used once below
 | ||
| 
 | ||
|     sxy = sumprod(x, y) + 0.0        # Add zero to coerce result to a float
 | ||
|     sxx = sumprod(x, x)
 | ||
| 
 | ||
|     try:
 | ||
|         slope = sxy / sxx   # equivalent to:  covariance(x, y) / variance(x)
 | ||
|     except ZeroDivisionError:
 | ||
|         raise StatisticsError('x is constant')
 | ||
| 
 | ||
|     intercept = 0.0 if proportional else ybar - slope * xbar
 | ||
|     return LinearRegression(slope=slope, intercept=intercept)
 | ||
| 
 | ||
| 
 | ||
| ## Kernel Density Estimation ###############################################
 | ||
| 
 | ||
| _kernel_specs = {}
 | ||
| 
 | ||
| def register(*kernels):
 | ||
|     "Load the kernel's pdf, cdf, invcdf, and support into _kernel_specs."
 | ||
|     def deco(builder):
 | ||
|         spec = dict(zip(('pdf', 'cdf', 'invcdf', 'support'), builder()))
 | ||
|         for kernel in kernels:
 | ||
|             _kernel_specs[kernel] = spec
 | ||
|         return builder
 | ||
|     return deco
 | ||
| 
 | ||
| @register('normal', 'gauss')
 | ||
| def normal_kernel():
 | ||
|     sqrt2pi = sqrt(2 * pi)
 | ||
|     sqrt2 = sqrt(2)
 | ||
|     pdf = lambda t: exp(-1/2 * t * t) / sqrt2pi
 | ||
|     cdf = lambda t: 1/2 * (1.0 + erf(t / sqrt2))
 | ||
|     invcdf = lambda t: _normal_dist_inv_cdf(t, 0.0, 1.0)
 | ||
|     support = None
 | ||
|     return pdf, cdf, invcdf, support
 | ||
| 
 | ||
| @register('logistic')
 | ||
| def logistic_kernel():
 | ||
|     # 1.0 / (exp(t) + 2.0 + exp(-t))
 | ||
|     pdf = lambda t: 1/2 / (1.0 + cosh(t))
 | ||
|     cdf = lambda t: 1.0 - 1.0 / (exp(t) + 1.0)
 | ||
|     invcdf = lambda p: log(p / (1.0 - p))
 | ||
|     support = None
 | ||
|     return pdf, cdf, invcdf, support
 | ||
| 
 | ||
| @register('sigmoid')
 | ||
| def sigmoid_kernel():
 | ||
|     # (2/pi) / (exp(t) + exp(-t))
 | ||
|     c1 = 1 / pi
 | ||
|     c2 = 2 / pi
 | ||
|     c3 = pi / 2
 | ||
|     pdf = lambda t: c1 / cosh(t)
 | ||
|     cdf = lambda t: c2 * atan(exp(t))
 | ||
|     invcdf = lambda p: log(tan(p * c3))
 | ||
|     support = None
 | ||
|     return pdf, cdf, invcdf, support
 | ||
| 
 | ||
| @register('rectangular', 'uniform')
 | ||
| def rectangular_kernel():
 | ||
|     pdf = lambda t: 1/2
 | ||
|     cdf = lambda t: 1/2 * t + 1/2
 | ||
|     invcdf = lambda p: 2.0 * p - 1.0
 | ||
|     support = 1.0
 | ||
|     return pdf, cdf, invcdf, support
 | ||
| 
 | ||
| @register('triangular')
 | ||
| def triangular_kernel():
 | ||
|     pdf = lambda t: 1.0 - abs(t)
 | ||
|     cdf = lambda t: t*t * (1/2 if t < 0.0 else -1/2) + t + 1/2
 | ||
|     invcdf = lambda p: sqrt(2.0*p) - 1.0 if p < 1/2 else 1.0 - sqrt(2.0 - 2.0*p)
 | ||
|     support = 1.0
 | ||
|     return pdf, cdf, invcdf, support
 | ||
| 
 | ||
| @register('parabolic', 'epanechnikov')
 | ||
| def parabolic_kernel():
 | ||
|     pdf = lambda t: 3/4 * (1.0 - t * t)
 | ||
|     cdf = lambda t: sumprod((-1/4, 3/4, 1/2), (t**3, t, 1.0))
 | ||
|     invcdf = lambda p: 2.0 * cos((acos(2.0*p - 1.0) + pi) / 3.0)
 | ||
|     support = 1.0
 | ||
|     return pdf, cdf, invcdf, support
 | ||
| 
 | ||
| def _newton_raphson(f_inv_estimate, f, f_prime, tolerance=1e-12):
 | ||
|     def f_inv(y):
 | ||
|         "Return x such that f(x) ≈ y within the specified tolerance."
 | ||
|         x = f_inv_estimate(y)
 | ||
|         while abs(diff := f(x) - y) > tolerance:
 | ||
|             x -= diff / f_prime(x)
 | ||
|         return x
 | ||
|     return f_inv
 | ||
| 
 | ||
| def _quartic_invcdf_estimate(p):
 | ||
|     # A handrolled piecewise approximation. There is no magic here.
 | ||
|     sign, p = (1.0, p) if p <= 1/2 else (-1.0, 1.0 - p)
 | ||
|     if p < 0.0106:
 | ||
|         return ((2.0 * p) ** 0.3838 - 1.0) * sign
 | ||
|     x = (2.0 * p) ** 0.4258865685331 - 1.0
 | ||
|     if p < 0.499:
 | ||
|         x += 0.026818732 * sin(7.101753784 * p + 2.73230839482953)
 | ||
|     return x * sign
 | ||
| 
 | ||
| @register('quartic', 'biweight')
 | ||
| def quartic_kernel():
 | ||
|     pdf = lambda t: 15/16 * (1.0 - t * t) ** 2
 | ||
|     cdf = lambda t: sumprod((3/16, -5/8, 15/16, 1/2),
 | ||
|                             (t**5, t**3, t, 1.0))
 | ||
|     invcdf = _newton_raphson(_quartic_invcdf_estimate, f=cdf, f_prime=pdf)
 | ||
|     support = 1.0
 | ||
|     return pdf, cdf, invcdf, support
 | ||
| 
 | ||
| def _triweight_invcdf_estimate(p):
 | ||
|     # A handrolled piecewise approximation. There is no magic here.
 | ||
|     sign, p = (1.0, p) if p <= 1/2 else (-1.0, 1.0 - p)
 | ||
|     x = (2.0 * p) ** 0.3400218741872791 - 1.0
 | ||
|     if 0.00001 < p < 0.499:
 | ||
|         x -= 0.033 * sin(1.07 * tau * (p - 0.035))
 | ||
|     return x * sign
 | ||
| 
 | ||
| @register('triweight')
 | ||
| def triweight_kernel():
 | ||
|     pdf = lambda t: 35/32 * (1.0 - t * t) ** 3
 | ||
|     cdf = lambda t: sumprod((-5/32, 21/32, -35/32, 35/32, 1/2),
 | ||
|                             (t**7, t**5, t**3, t, 1.0))
 | ||
|     invcdf = _newton_raphson(_triweight_invcdf_estimate, f=cdf, f_prime=pdf)
 | ||
|     support = 1.0
 | ||
|     return pdf, cdf, invcdf, support
 | ||
| 
 | ||
| @register('cosine')
 | ||
| def cosine_kernel():
 | ||
|     c1 = pi / 4
 | ||
|     c2 = pi / 2
 | ||
|     pdf = lambda t: c1 * cos(c2 * t)
 | ||
|     cdf = lambda t: 1/2 * sin(c2 * t) + 1/2
 | ||
|     invcdf = lambda p: 2.0 * asin(2.0 * p - 1.0) / pi
 | ||
|     support = 1.0
 | ||
|     return pdf, cdf, invcdf, support
 | ||
| 
 | ||
| del register, normal_kernel, logistic_kernel, sigmoid_kernel
 | ||
| del rectangular_kernel, triangular_kernel, parabolic_kernel
 | ||
| del quartic_kernel, triweight_kernel, cosine_kernel
 | ||
| 
 | ||
| 
 | ||
| def kde(data, h, kernel='normal', *, cumulative=False):
 | ||
|     """Kernel Density Estimation:  Create a continuous probability density
 | ||
|     function or cumulative distribution function from discrete samples.
 | ||
| 
 | ||
|     The basic idea is to smooth the data using a kernel function
 | ||
|     to help draw inferences about a population from a sample.
 | ||
| 
 | ||
|     The degree of smoothing is controlled by the scaling parameter h
 | ||
|     which is called the bandwidth.  Smaller values emphasize local
 | ||
|     features while larger values give smoother results.
 | ||
| 
 | ||
|     The kernel determines the relative weights of the sample data
 | ||
|     points.  Generally, the choice of kernel shape does not matter
 | ||
|     as much as the more influential bandwidth smoothing parameter.
 | ||
| 
 | ||
|     Kernels that give some weight to every sample point:
 | ||
| 
 | ||
|        normal (gauss)
 | ||
|        logistic
 | ||
|        sigmoid
 | ||
| 
 | ||
|     Kernels that only give weight to sample points within
 | ||
|     the bandwidth:
 | ||
| 
 | ||
|        rectangular (uniform)
 | ||
|        triangular
 | ||
|        parabolic (epanechnikov)
 | ||
|        quartic (biweight)
 | ||
|        triweight
 | ||
|        cosine
 | ||
| 
 | ||
|     If *cumulative* is true, will return a cumulative distribution function.
 | ||
| 
 | ||
|     A StatisticsError will be raised if the data sequence is empty.
 | ||
| 
 | ||
|     Example
 | ||
|     -------
 | ||
| 
 | ||
|     Given a sample of six data points, construct a continuous
 | ||
|     function that estimates the underlying probability density:
 | ||
| 
 | ||
|         >>> sample = [-2.1, -1.3, -0.4, 1.9, 5.1, 6.2]
 | ||
|         >>> f_hat = kde(sample, h=1.5)
 | ||
| 
 | ||
|     Compute the area under the curve:
 | ||
| 
 | ||
|         >>> area = sum(f_hat(x) for x in range(-20, 20))
 | ||
|         >>> round(area, 4)
 | ||
|         1.0
 | ||
| 
 | ||
|     Plot the estimated probability density function at
 | ||
|     evenly spaced points from -6 to 10:
 | ||
| 
 | ||
|         >>> for x in range(-6, 11):
 | ||
|         ...     density = f_hat(x)
 | ||
|         ...     plot = ' ' * int(density * 400) + 'x'
 | ||
|         ...     print(f'{x:2}: {density:.3f} {plot}')
 | ||
|         ...
 | ||
|         -6: 0.002 x
 | ||
|         -5: 0.009    x
 | ||
|         -4: 0.031             x
 | ||
|         -3: 0.070                             x
 | ||
|         -2: 0.111                                             x
 | ||
|         -1: 0.125                                                   x
 | ||
|          0: 0.110                                            x
 | ||
|          1: 0.086                                   x
 | ||
|          2: 0.068                            x
 | ||
|          3: 0.059                        x
 | ||
|          4: 0.066                           x
 | ||
|          5: 0.082                                 x
 | ||
|          6: 0.082                                 x
 | ||
|          7: 0.058                        x
 | ||
|          8: 0.028            x
 | ||
|          9: 0.009    x
 | ||
|         10: 0.002 x
 | ||
| 
 | ||
|     Estimate P(4.5 < X <= 7.5), the probability that a new sample value
 | ||
|     will be between 4.5 and 7.5:
 | ||
| 
 | ||
|         >>> cdf = kde(sample, h=1.5, cumulative=True)
 | ||
|         >>> round(cdf(7.5) - cdf(4.5), 2)
 | ||
|         0.22
 | ||
| 
 | ||
|     References
 | ||
|     ----------
 | ||
| 
 | ||
|     Kernel density estimation and its application:
 | ||
|     https://www.itm-conferences.org/articles/itmconf/pdf/2018/08/itmconf_sam2018_00037.pdf
 | ||
| 
 | ||
|     Kernel functions in common use:
 | ||
|     https://en.wikipedia.org/wiki/Kernel_(statistics)#kernel_functions_in_common_use
 | ||
| 
 | ||
|     Interactive graphical demonstration and exploration:
 | ||
|     https://demonstrations.wolfram.com/KernelDensityEstimation/
 | ||
| 
 | ||
|     Kernel estimation of cumulative distribution function of a random variable with bounded support
 | ||
|     https://www.econstor.eu/bitstream/10419/207829/1/10.21307_stattrans-2016-037.pdf
 | ||
| 
 | ||
|     """
 | ||
| 
 | ||
|     n = len(data)
 | ||
|     if not n:
 | ||
|         raise StatisticsError('Empty data sequence')
 | ||
| 
 | ||
|     if not isinstance(data[0], (int, float)):
 | ||
|         raise TypeError('Data sequence must contain ints or floats')
 | ||
| 
 | ||
|     if h <= 0.0:
 | ||
|         raise StatisticsError(f'Bandwidth h must be positive, not {h=!r}')
 | ||
| 
 | ||
|     kernel_spec = _kernel_specs.get(kernel)
 | ||
|     if kernel_spec is None:
 | ||
|         raise StatisticsError(f'Unknown kernel name: {kernel!r}')
 | ||
|     K = kernel_spec['pdf']
 | ||
|     W = kernel_spec['cdf']
 | ||
|     support = kernel_spec['support']
 | ||
| 
 | ||
|     if support is None:
 | ||
| 
 | ||
|         def pdf(x):
 | ||
|             return sum(K((x - x_i) / h) for x_i in data) / (len(data) * h)
 | ||
| 
 | ||
|         def cdf(x):
 | ||
|             return sum(W((x - x_i) / h) for x_i in data) / len(data)
 | ||
| 
 | ||
|     else:
 | ||
| 
 | ||
|         sample = sorted(data)
 | ||
|         bandwidth = h * support
 | ||
| 
 | ||
|         def pdf(x):
 | ||
|             nonlocal n, sample
 | ||
|             if len(data) != n:
 | ||
|                 sample = sorted(data)
 | ||
|                 n = len(data)
 | ||
|             i = bisect_left(sample, x - bandwidth)
 | ||
|             j = bisect_right(sample, x + bandwidth)
 | ||
|             supported = sample[i : j]
 | ||
|             return sum(K((x - x_i) / h) for x_i in supported) / (n * h)
 | ||
| 
 | ||
|         def cdf(x):
 | ||
|             nonlocal n, sample
 | ||
|             if len(data) != n:
 | ||
|                 sample = sorted(data)
 | ||
|                 n = len(data)
 | ||
|             i = bisect_left(sample, x - bandwidth)
 | ||
|             j = bisect_right(sample, x + bandwidth)
 | ||
|             supported = sample[i : j]
 | ||
|             return sum((W((x - x_i) / h) for x_i in supported), i) / n
 | ||
| 
 | ||
|     if cumulative:
 | ||
|         cdf.__doc__ = f'CDF estimate with {h=!r} and {kernel=!r}'
 | ||
|         return cdf
 | ||
| 
 | ||
|     else:
 | ||
|         pdf.__doc__ = f'PDF estimate with {h=!r} and {kernel=!r}'
 | ||
|         return pdf
 | ||
| 
 | ||
| 
 | ||
| def kde_random(data, h, kernel='normal', *, seed=None):
 | ||
|     """Return a function that makes a random selection from the estimated
 | ||
|     probability density function created by kde(data, h, kernel).
 | ||
| 
 | ||
|     Providing a *seed* allows reproducible selections within a single
 | ||
|     thread.  The seed may be an integer, float, str, or bytes.
 | ||
| 
 | ||
|     A StatisticsError will be raised if the *data* sequence is empty.
 | ||
| 
 | ||
|     Example:
 | ||
| 
 | ||
|     >>> data = [-2.1, -1.3, -0.4, 1.9, 5.1, 6.2]
 | ||
|     >>> rand = kde_random(data, h=1.5, seed=8675309)
 | ||
|     >>> new_selections = [rand() for i in range(10)]
 | ||
|     >>> [round(x, 1) for x in new_selections]
 | ||
|     [0.7, 6.2, 1.2, 6.9, 7.0, 1.8, 2.5, -0.5, -1.8, 5.6]
 | ||
| 
 | ||
|     """
 | ||
|     n = len(data)
 | ||
|     if not n:
 | ||
|         raise StatisticsError('Empty data sequence')
 | ||
| 
 | ||
|     if not isinstance(data[0], (int, float)):
 | ||
|         raise TypeError('Data sequence must contain ints or floats')
 | ||
| 
 | ||
|     if h <= 0.0:
 | ||
|         raise StatisticsError(f'Bandwidth h must be positive, not {h=!r}')
 | ||
| 
 | ||
|     kernel_spec = _kernel_specs.get(kernel)
 | ||
|     if kernel_spec is None:
 | ||
|         raise StatisticsError(f'Unknown kernel name: {kernel!r}')
 | ||
|     invcdf = kernel_spec['invcdf']
 | ||
| 
 | ||
|     prng = _random.Random(seed)
 | ||
|     random = prng.random
 | ||
|     choice = prng.choice
 | ||
| 
 | ||
|     def rand():
 | ||
|         return choice(data) + h * invcdf(random())
 | ||
| 
 | ||
|     rand.__doc__ = f'Random KDE selection with {h=!r} and {kernel=!r}'
 | ||
| 
 | ||
|     return rand
 | ||
| 
 | ||
| 
 | ||
| ## Quantiles ###############################################################
 | ||
| 
 | ||
| # There is no one perfect way to compute quantiles.  Here we offer
 | ||
| # two methods that serve common needs.  Most other packages
 | ||
| # surveyed offered at least one or both of these two, making them
 | ||
| # "standard" in the sense of "widely-adopted and reproducible".
 | ||
| # They are also easy to explain, easy to compute manually, and have
 | ||
| # straight-forward interpretations that aren't surprising.
 | ||
| 
 | ||
| # The default method is known as "R6", "PERCENTILE.EXC", or "expected
 | ||
| # value of rank order statistics". The alternative method is known as
 | ||
| # "R7", "PERCENTILE.INC", or "mode of rank order statistics".
 | ||
| 
 | ||
| # For sample data where there is a positive probability for values
 | ||
| # beyond the range of the data, the R6 exclusive method is a
 | ||
| # reasonable choice.  Consider a random sample of nine values from a
 | ||
| # population with a uniform distribution from 0.0 to 1.0.  The
 | ||
| # distribution of the third ranked sample point is described by
 | ||
| # betavariate(alpha=3, beta=7) which has mode=0.250, median=0.286, and
 | ||
| # mean=0.300.  Only the latter (which corresponds with R6) gives the
 | ||
| # desired cut point with 30% of the population falling below that
 | ||
| # value, making it comparable to a result from an inv_cdf() function.
 | ||
| # The R6 exclusive method is also idempotent.
 | ||
| 
 | ||
| # For describing population data where the end points are known to
 | ||
| # be included in the data, the R7 inclusive method is a reasonable
 | ||
| # choice.  Instead of the mean, it uses the mode of the beta
 | ||
| # distribution for the interior points.  Per Hyndman & Fan, "One nice
 | ||
| # property is that the vertices of Q7(p) divide the range into n - 1
 | ||
| # intervals, and exactly 100p% of the intervals lie to the left of
 | ||
| # Q7(p) and 100(1 - p)% of the intervals lie to the right of Q7(p)."
 | ||
| 
 | ||
| # If needed, other methods could be added.  However, for now, the
 | ||
| # position is that fewer options make for easier choices and that
 | ||
| # external packages can be used for anything more advanced.
 | ||
| 
 | ||
| def quantiles(data, *, n=4, method='exclusive'):
 | ||
|     """Divide *data* into *n* continuous intervals with equal probability.
 | ||
| 
 | ||
|     Returns a list of (n - 1) cut points separating the intervals.
 | ||
| 
 | ||
|     Set *n* to 4 for quartiles (the default).  Set *n* to 10 for deciles.
 | ||
|     Set *n* to 100 for percentiles which gives the 99 cuts points that
 | ||
|     separate *data* in to 100 equal sized groups.
 | ||
| 
 | ||
|     The *data* can be any iterable containing sample.
 | ||
|     The cut points are linearly interpolated between data points.
 | ||
| 
 | ||
|     If *method* is set to *inclusive*, *data* is treated as population
 | ||
|     data.  The minimum value is treated as the 0th percentile and the
 | ||
|     maximum value is treated as the 100th percentile.
 | ||
| 
 | ||
|     """
 | ||
|     if n < 1:
 | ||
|         raise StatisticsError('n must be at least 1')
 | ||
| 
 | ||
|     data = sorted(data)
 | ||
| 
 | ||
|     ld = len(data)
 | ||
|     if ld < 2:
 | ||
|         if ld == 1:
 | ||
|             return data * (n - 1)
 | ||
|         raise StatisticsError('must have at least one data point')
 | ||
| 
 | ||
|     if method == 'inclusive':
 | ||
|         m = ld - 1
 | ||
|         result = []
 | ||
|         for i in range(1, n):
 | ||
|             j, delta = divmod(i * m, n)
 | ||
|             interpolated = (data[j] * (n - delta) + data[j + 1] * delta) / n
 | ||
|             result.append(interpolated)
 | ||
|         return result
 | ||
| 
 | ||
|     if method == 'exclusive':
 | ||
|         m = ld + 1
 | ||
|         result = []
 | ||
|         for i in range(1, n):
 | ||
|             j = i * m // n                               # rescale i to m/n
 | ||
|             j = 1 if j < 1 else ld-1 if j > ld-1 else j  # clamp to 1 .. ld-1
 | ||
|             delta = i*m - j*n                            # exact integer math
 | ||
|             interpolated = (data[j - 1] * (n - delta) + data[j] * delta) / n
 | ||
|             result.append(interpolated)
 | ||
|         return result
 | ||
| 
 | ||
|     raise ValueError(f'Unknown method: {method!r}')
 | ||
| 
 | ||
| 
 | ||
| ## Normal Distribution #####################################################
 | ||
| 
 | ||
| def _normal_dist_inv_cdf(p, mu, sigma):
 | ||
|     # There is no closed-form solution to the inverse CDF for the normal
 | ||
|     # distribution, so we use a rational approximation instead:
 | ||
|     # Wichura, M.J. (1988). "Algorithm AS241: The Percentage Points of the
 | ||
|     # Normal Distribution".  Applied Statistics. Blackwell Publishing. 37
 | ||
|     # (3): 477–484. doi:10.2307/2347330. JSTOR 2347330.
 | ||
|     q = p - 0.5
 | ||
| 
 | ||
|     if fabs(q) <= 0.425:
 | ||
|         r = 0.180625 - q * q
 | ||
|         # Hash sum: 55.88319_28806_14901_4439
 | ||
|         num = (((((((2.50908_09287_30122_6727e+3 * r +
 | ||
|                      3.34305_75583_58812_8105e+4) * r +
 | ||
|                      6.72657_70927_00870_0853e+4) * r +
 | ||
|                      4.59219_53931_54987_1457e+4) * r +
 | ||
|                      1.37316_93765_50946_1125e+4) * r +
 | ||
|                      1.97159_09503_06551_4427e+3) * r +
 | ||
|                      1.33141_66789_17843_7745e+2) * r +
 | ||
|                      3.38713_28727_96366_6080e+0) * q
 | ||
|         den = (((((((5.22649_52788_52854_5610e+3 * r +
 | ||
|                      2.87290_85735_72194_2674e+4) * r +
 | ||
|                      3.93078_95800_09271_0610e+4) * r +
 | ||
|                      2.12137_94301_58659_5867e+4) * r +
 | ||
|                      5.39419_60214_24751_1077e+3) * r +
 | ||
|                      6.87187_00749_20579_0830e+2) * r +
 | ||
|                      4.23133_30701_60091_1252e+1) * r +
 | ||
|                      1.0)
 | ||
|         x = num / den
 | ||
|         return mu + (x * sigma)
 | ||
| 
 | ||
|     r = p if q <= 0.0 else 1.0 - p
 | ||
|     r = sqrt(-log(r))
 | ||
|     if r <= 5.0:
 | ||
|         r = r - 1.6
 | ||
|         # Hash sum: 49.33206_50330_16102_89036
 | ||
|         num = (((((((7.74545_01427_83414_07640e-4 * r +
 | ||
|                      2.27238_44989_26918_45833e-2) * r +
 | ||
|                      2.41780_72517_74506_11770e-1) * r +
 | ||
|                      1.27045_82524_52368_38258e+0) * r +
 | ||
|                      3.64784_83247_63204_60504e+0) * r +
 | ||
|                      5.76949_72214_60691_40550e+0) * r +
 | ||
|                      4.63033_78461_56545_29590e+0) * r +
 | ||
|                      1.42343_71107_49683_57734e+0)
 | ||
|         den = (((((((1.05075_00716_44416_84324e-9 * r +
 | ||
|                      5.47593_80849_95344_94600e-4) * r +
 | ||
|                      1.51986_66563_61645_71966e-2) * r +
 | ||
|                      1.48103_97642_74800_74590e-1) * r +
 | ||
|                      6.89767_33498_51000_04550e-1) * r +
 | ||
|                      1.67638_48301_83803_84940e+0) * r +
 | ||
|                      2.05319_16266_37758_82187e+0) * r +
 | ||
|                      1.0)
 | ||
|     else:
 | ||
|         r = r - 5.0
 | ||
|         # Hash sum: 47.52583_31754_92896_71629
 | ||
|         num = (((((((2.01033_43992_92288_13265e-7 * r +
 | ||
|                      2.71155_55687_43487_57815e-5) * r +
 | ||
|                      1.24266_09473_88078_43860e-3) * r +
 | ||
|                      2.65321_89526_57612_30930e-2) * r +
 | ||
|                      2.96560_57182_85048_91230e-1) * r +
 | ||
|                      1.78482_65399_17291_33580e+0) * r +
 | ||
|                      5.46378_49111_64114_36990e+0) * r +
 | ||
|                      6.65790_46435_01103_77720e+0)
 | ||
|         den = (((((((2.04426_31033_89939_78564e-15 * r +
 | ||
|                      1.42151_17583_16445_88870e-7) * r +
 | ||
|                      1.84631_83175_10054_68180e-5) * r +
 | ||
|                      7.86869_13114_56132_59100e-4) * r +
 | ||
|                      1.48753_61290_85061_48525e-2) * r +
 | ||
|                      1.36929_88092_27358_05310e-1) * r +
 | ||
|                      5.99832_20655_58879_37690e-1) * r +
 | ||
|                      1.0)
 | ||
| 
 | ||
|     x = num / den
 | ||
|     if q < 0.0:
 | ||
|         x = -x
 | ||
| 
 | ||
|     return mu + (x * sigma)
 | ||
| 
 | ||
| 
 | ||
| # If available, use C implementation
 | ||
| try:
 | ||
|     from _statistics import _normal_dist_inv_cdf
 | ||
| except ImportError:
 | ||
|     pass
 | ||
| 
 | ||
| 
 | ||
| class NormalDist:
 | ||
|     "Normal distribution of a random variable"
 | ||
|     # https://en.wikipedia.org/wiki/Normal_distribution
 | ||
|     # https://en.wikipedia.org/wiki/Variance#Properties
 | ||
| 
 | ||
|     __slots__ = {
 | ||
|         '_mu': 'Arithmetic mean of a normal distribution',
 | ||
|         '_sigma': 'Standard deviation of a normal distribution',
 | ||
|     }
 | ||
| 
 | ||
|     def __init__(self, mu=0.0, sigma=1.0):
 | ||
|         "NormalDist where mu is the mean and sigma is the standard deviation."
 | ||
|         if sigma < 0.0:
 | ||
|             raise StatisticsError('sigma must be non-negative')
 | ||
|         self._mu = float(mu)
 | ||
|         self._sigma = float(sigma)
 | ||
| 
 | ||
|     @classmethod
 | ||
|     def from_samples(cls, data):
 | ||
|         "Make a normal distribution instance from sample data."
 | ||
|         return cls(*_mean_stdev(data))
 | ||
| 
 | ||
|     def samples(self, n, *, seed=None):
 | ||
|         "Generate *n* samples for a given mean and standard deviation."
 | ||
|         rnd = random.random if seed is None else random.Random(seed).random
 | ||
|         inv_cdf = _normal_dist_inv_cdf
 | ||
|         mu = self._mu
 | ||
|         sigma = self._sigma
 | ||
|         return [inv_cdf(rnd(), mu, sigma) for _ in repeat(None, n)]
 | ||
| 
 | ||
|     def pdf(self, x):
 | ||
|         "Probability density function.  P(x <= X < x+dx) / dx"
 | ||
|         variance = self._sigma * self._sigma
 | ||
|         if not variance:
 | ||
|             raise StatisticsError('pdf() not defined when sigma is zero')
 | ||
|         diff = x - self._mu
 | ||
|         return exp(diff * diff / (-2.0 * variance)) / sqrt(tau * variance)
 | ||
| 
 | ||
|     def cdf(self, x):
 | ||
|         "Cumulative distribution function.  P(X <= x)"
 | ||
|         if not self._sigma:
 | ||
|             raise StatisticsError('cdf() not defined when sigma is zero')
 | ||
|         return 0.5 * (1.0 + erf((x - self._mu) / (self._sigma * _SQRT2)))
 | ||
| 
 | ||
|     def inv_cdf(self, p):
 | ||
|         """Inverse cumulative distribution function.  x : P(X <= x) = p
 | ||
| 
 | ||
|         Finds the value of the random variable such that the probability of
 | ||
|         the variable being less than or equal to that value equals the given
 | ||
|         probability.
 | ||
| 
 | ||
|         This function is also called the percent point function or quantile
 | ||
|         function.
 | ||
|         """
 | ||
|         if p <= 0.0 or p >= 1.0:
 | ||
|             raise StatisticsError('p must be in the range 0.0 < p < 1.0')
 | ||
|         return _normal_dist_inv_cdf(p, self._mu, self._sigma)
 | ||
| 
 | ||
|     def quantiles(self, n=4):
 | ||
|         """Divide into *n* continuous intervals with equal probability.
 | ||
| 
 | ||
|         Returns a list of (n - 1) cut points separating the intervals.
 | ||
| 
 | ||
|         Set *n* to 4 for quartiles (the default).  Set *n* to 10 for deciles.
 | ||
|         Set *n* to 100 for percentiles which gives the 99 cuts points that
 | ||
|         separate the normal distribution in to 100 equal sized groups.
 | ||
|         """
 | ||
|         return [self.inv_cdf(i / n) for i in range(1, n)]
 | ||
| 
 | ||
|     def overlap(self, other):
 | ||
|         """Compute the overlapping coefficient (OVL) between two normal distributions.
 | ||
| 
 | ||
|         Measures the agreement between two normal probability distributions.
 | ||
|         Returns a value between 0.0 and 1.0 giving the overlapping area in
 | ||
|         the two underlying probability density functions.
 | ||
| 
 | ||
|             >>> N1 = NormalDist(2.4, 1.6)
 | ||
|             >>> N2 = NormalDist(3.2, 2.0)
 | ||
|             >>> N1.overlap(N2)
 | ||
|             0.8035050657330205
 | ||
|         """
 | ||
|         # See: "The overlapping coefficient as a measure of agreement between
 | ||
|         # probability distributions and point estimation of the overlap of two
 | ||
|         # normal densities" -- Henry F. Inman and Edwin L. Bradley Jr
 | ||
|         # http://dx.doi.org/10.1080/03610928908830127
 | ||
|         if not isinstance(other, NormalDist):
 | ||
|             raise TypeError('Expected another NormalDist instance')
 | ||
|         X, Y = self, other
 | ||
|         if (Y._sigma, Y._mu) < (X._sigma, X._mu):  # sort to assure commutativity
 | ||
|             X, Y = Y, X
 | ||
|         X_var, Y_var = X.variance, Y.variance
 | ||
|         if not X_var or not Y_var:
 | ||
|             raise StatisticsError('overlap() not defined when sigma is zero')
 | ||
|         dv = Y_var - X_var
 | ||
|         dm = fabs(Y._mu - X._mu)
 | ||
|         if not dv:
 | ||
|             return 1.0 - erf(dm / (2.0 * X._sigma * _SQRT2))
 | ||
|         a = X._mu * Y_var - Y._mu * X_var
 | ||
|         b = X._sigma * Y._sigma * sqrt(dm * dm + dv * log(Y_var / X_var))
 | ||
|         x1 = (a + b) / dv
 | ||
|         x2 = (a - b) / dv
 | ||
|         return 1.0 - (fabs(Y.cdf(x1) - X.cdf(x1)) + fabs(Y.cdf(x2) - X.cdf(x2)))
 | ||
| 
 | ||
|     def zscore(self, x):
 | ||
|         """Compute the Standard Score.  (x - mean) / stdev
 | ||
| 
 | ||
|         Describes *x* in terms of the number of standard deviations
 | ||
|         above or below the mean of the normal distribution.
 | ||
|         """
 | ||
|         # https://www.statisticshowto.com/probability-and-statistics/z-score/
 | ||
|         if not self._sigma:
 | ||
|             raise StatisticsError('zscore() not defined when sigma is zero')
 | ||
|         return (x - self._mu) / self._sigma
 | ||
| 
 | ||
|     @property
 | ||
|     def mean(self):
 | ||
|         "Arithmetic mean of the normal distribution."
 | ||
|         return self._mu
 | ||
| 
 | ||
|     @property
 | ||
|     def median(self):
 | ||
|         "Return the median of the normal distribution"
 | ||
|         return self._mu
 | ||
| 
 | ||
|     @property
 | ||
|     def mode(self):
 | ||
|         """Return the mode of the normal distribution
 | ||
| 
 | ||
|         The mode is the value x where which the probability density
 | ||
|         function (pdf) takes its maximum value.
 | ||
|         """
 | ||
|         return self._mu
 | ||
| 
 | ||
|     @property
 | ||
|     def stdev(self):
 | ||
|         "Standard deviation of the normal distribution."
 | ||
|         return self._sigma
 | ||
| 
 | ||
|     @property
 | ||
|     def variance(self):
 | ||
|         "Square of the standard deviation."
 | ||
|         return self._sigma * self._sigma
 | ||
| 
 | ||
|     def __add__(x1, x2):
 | ||
|         """Add a constant or another NormalDist instance.
 | ||
| 
 | ||
|         If *other* is a constant, translate mu by the constant,
 | ||
|         leaving sigma unchanged.
 | ||
| 
 | ||
|         If *other* is a NormalDist, add both the means and the variances.
 | ||
|         Mathematically, this works only if the two distributions are
 | ||
|         independent or if they are jointly normally distributed.
 | ||
|         """
 | ||
|         if isinstance(x2, NormalDist):
 | ||
|             return NormalDist(x1._mu + x2._mu, hypot(x1._sigma, x2._sigma))
 | ||
|         return NormalDist(x1._mu + x2, x1._sigma)
 | ||
| 
 | ||
|     def __sub__(x1, x2):
 | ||
|         """Subtract a constant or another NormalDist instance.
 | ||
| 
 | ||
|         If *other* is a constant, translate by the constant mu,
 | ||
|         leaving sigma unchanged.
 | ||
| 
 | ||
|         If *other* is a NormalDist, subtract the means and add the variances.
 | ||
|         Mathematically, this works only if the two distributions are
 | ||
|         independent or if they are jointly normally distributed.
 | ||
|         """
 | ||
|         if isinstance(x2, NormalDist):
 | ||
|             return NormalDist(x1._mu - x2._mu, hypot(x1._sigma, x2._sigma))
 | ||
|         return NormalDist(x1._mu - x2, x1._sigma)
 | ||
| 
 | ||
|     def __mul__(x1, x2):
 | ||
|         """Multiply both mu and sigma by a constant.
 | ||
| 
 | ||
|         Used for rescaling, perhaps to change measurement units.
 | ||
|         Sigma is scaled with the absolute value of the constant.
 | ||
|         """
 | ||
|         return NormalDist(x1._mu * x2, x1._sigma * fabs(x2))
 | ||
| 
 | ||
|     def __truediv__(x1, x2):
 | ||
|         """Divide both mu and sigma by a constant.
 | ||
| 
 | ||
|         Used for rescaling, perhaps to change measurement units.
 | ||
|         Sigma is scaled with the absolute value of the constant.
 | ||
|         """
 | ||
|         return NormalDist(x1._mu / x2, x1._sigma / fabs(x2))
 | ||
| 
 | ||
|     def __pos__(x1):
 | ||
|         "Return a copy of the instance."
 | ||
|         return NormalDist(x1._mu, x1._sigma)
 | ||
| 
 | ||
|     def __neg__(x1):
 | ||
|         "Negates mu while keeping sigma the same."
 | ||
|         return NormalDist(-x1._mu, x1._sigma)
 | ||
| 
 | ||
|     __radd__ = __add__
 | ||
| 
 | ||
|     def __rsub__(x1, x2):
 | ||
|         "Subtract a NormalDist from a constant or another NormalDist."
 | ||
|         return -(x1 - x2)
 | ||
| 
 | ||
|     __rmul__ = __mul__
 | ||
| 
 | ||
|     def __eq__(x1, x2):
 | ||
|         "Two NormalDist objects are equal if their mu and sigma are both equal."
 | ||
|         if not isinstance(x2, NormalDist):
 | ||
|             return NotImplemented
 | ||
|         return x1._mu == x2._mu and x1._sigma == x2._sigma
 | ||
| 
 | ||
|     def __hash__(self):
 | ||
|         "NormalDist objects hash equal if their mu and sigma are both equal."
 | ||
|         return hash((self._mu, self._sigma))
 | ||
| 
 | ||
|     def __repr__(self):
 | ||
|         return f'{type(self).__name__}(mu={self._mu!r}, sigma={self._sigma!r})'
 | ||
| 
 | ||
|     def __getstate__(self):
 | ||
|         return self._mu, self._sigma
 | ||
| 
 | ||
|     def __setstate__(self, state):
 | ||
|         self._mu, self._sigma = state
 | ||
| 
 | ||
| 
 | ||
| ## Private utilities #######################################################
 | ||
| 
 | ||
| def _sum(data):
 | ||
|     """_sum(data) -> (type, sum, count)
 | ||
| 
 | ||
|     Return a high-precision sum of the given numeric data as a fraction,
 | ||
|     together with the type to be converted to and the count of items.
 | ||
| 
 | ||
|     Examples
 | ||
|     --------
 | ||
| 
 | ||
|     >>> _sum([3, 2.25, 4.5, -0.5, 0.25])
 | ||
|     (<class 'float'>, Fraction(19, 2), 5)
 | ||
| 
 | ||
|     Some sources of round-off error will be avoided:
 | ||
| 
 | ||
|     # Built-in sum returns zero.
 | ||
|     >>> _sum([1e50, 1, -1e50] * 1000)
 | ||
|     (<class 'float'>, Fraction(1000, 1), 3000)
 | ||
| 
 | ||
|     Fractions and Decimals are also supported:
 | ||
| 
 | ||
|     >>> from fractions import Fraction as F
 | ||
|     >>> _sum([F(2, 3), F(7, 5), F(1, 4), F(5, 6)])
 | ||
|     (<class 'fractions.Fraction'>, Fraction(63, 20), 4)
 | ||
| 
 | ||
|     >>> from decimal import Decimal as D
 | ||
|     >>> data = [D("0.1375"), D("0.2108"), D("0.3061"), D("0.0419")]
 | ||
|     >>> _sum(data)
 | ||
|     (<class 'decimal.Decimal'>, Fraction(6963, 10000), 4)
 | ||
| 
 | ||
|     Mixed types are currently treated as an error, except that int is
 | ||
|     allowed.
 | ||
| 
 | ||
|     """
 | ||
|     count = 0
 | ||
|     types = set()
 | ||
|     types_add = types.add
 | ||
|     partials = {}
 | ||
|     partials_get = partials.get
 | ||
|     for typ, values in groupby(data, type):
 | ||
|         types_add(typ)
 | ||
|         for n, d in map(_exact_ratio, values):
 | ||
|             count += 1
 | ||
|             partials[d] = partials_get(d, 0) + n
 | ||
|     if None in partials:
 | ||
|         # The sum will be a NAN or INF. We can ignore all the finite
 | ||
|         # partials, and just look at this special one.
 | ||
|         total = partials[None]
 | ||
|         assert not _isfinite(total)
 | ||
|     else:
 | ||
|         # Sum all the partial sums using builtin sum.
 | ||
|         total = sum(Fraction(n, d) for d, n in partials.items())
 | ||
|     T = reduce(_coerce, types, int)  # or raise TypeError
 | ||
|     return (T, total, count)
 | ||
| 
 | ||
| 
 | ||
| def _ss(data, c=None):
 | ||
|     """Return the exact mean and sum of square deviations of sequence data.
 | ||
| 
 | ||
|     Calculations are done in a single pass, allowing the input to be an iterator.
 | ||
| 
 | ||
|     If given *c* is used the mean; otherwise, it is calculated from the data.
 | ||
|     Use the *c* argument with care, as it can lead to garbage results.
 | ||
| 
 | ||
|     """
 | ||
|     if c is not None:
 | ||
|         T, ssd, count = _sum((d := x - c) * d for x in data)
 | ||
|         return (T, ssd, c, count)
 | ||
| 
 | ||
|     count = 0
 | ||
|     types = set()
 | ||
|     types_add = types.add
 | ||
|     sx_partials = defaultdict(int)
 | ||
|     sxx_partials = defaultdict(int)
 | ||
|     for typ, values in groupby(data, type):
 | ||
|         types_add(typ)
 | ||
|         for n, d in map(_exact_ratio, values):
 | ||
|             count += 1
 | ||
|             sx_partials[d] += n
 | ||
|             sxx_partials[d] += n * n
 | ||
| 
 | ||
|     if not count:
 | ||
|         ssd = c = Fraction(0)
 | ||
|     elif None in sx_partials:
 | ||
|         # The sum will be a NAN or INF. We can ignore all the finite
 | ||
|         # partials, and just look at this special one.
 | ||
|         ssd = c = sx_partials[None]
 | ||
|         assert not _isfinite(ssd)
 | ||
|     else:
 | ||
|         sx = sum(Fraction(n, d) for d, n in sx_partials.items())
 | ||
|         sxx = sum(Fraction(n, d*d) for d, n in sxx_partials.items())
 | ||
|         # This formula has poor numeric properties for floats,
 | ||
|         # but with fractions it is exact.
 | ||
|         ssd = (count * sxx - sx * sx) / count
 | ||
|         c = sx / count
 | ||
| 
 | ||
|     T = reduce(_coerce, types, int)  # or raise TypeError
 | ||
|     return (T, ssd, c, count)
 | ||
| 
 | ||
| 
 | ||
| def _isfinite(x):
 | ||
|     try:
 | ||
|         return x.is_finite()  # Likely a Decimal.
 | ||
|     except AttributeError:
 | ||
|         return math.isfinite(x)  # Coerces to float first.
 | ||
| 
 | ||
| 
 | ||
| def _coerce(T, S):
 | ||
|     """Coerce types T and S to a common type, or raise TypeError.
 | ||
| 
 | ||
|     Coercion rules are currently an implementation detail. See the CoerceTest
 | ||
|     test class in test_statistics for details.
 | ||
| 
 | ||
|     """
 | ||
|     # See http://bugs.python.org/issue24068.
 | ||
|     assert T is not bool, "initial type T is bool"
 | ||
|     # If the types are the same, no need to coerce anything. Put this
 | ||
|     # first, so that the usual case (no coercion needed) happens as soon
 | ||
|     # as possible.
 | ||
|     if T is S:  return T
 | ||
|     # Mixed int & other coerce to the other type.
 | ||
|     if S is int or S is bool:  return T
 | ||
|     if T is int:  return S
 | ||
|     # If one is a (strict) subclass of the other, coerce to the subclass.
 | ||
|     if issubclass(S, T):  return S
 | ||
|     if issubclass(T, S):  return T
 | ||
|     # Ints coerce to the other type.
 | ||
|     if issubclass(T, int):  return S
 | ||
|     if issubclass(S, int):  return T
 | ||
|     # Mixed fraction & float coerces to float (or float subclass).
 | ||
|     if issubclass(T, Fraction) and issubclass(S, float):
 | ||
|         return S
 | ||
|     if issubclass(T, float) and issubclass(S, Fraction):
 | ||
|         return T
 | ||
|     # Any other combination is disallowed.
 | ||
|     msg = "don't know how to coerce %s and %s"
 | ||
|     raise TypeError(msg % (T.__name__, S.__name__))
 | ||
| 
 | ||
| 
 | ||
| def _exact_ratio(x):
 | ||
|     """Return Real number x to exact (numerator, denominator) pair.
 | ||
| 
 | ||
|     >>> _exact_ratio(0.25)
 | ||
|     (1, 4)
 | ||
| 
 | ||
|     x is expected to be an int, Fraction, Decimal or float.
 | ||
| 
 | ||
|     """
 | ||
|     try:
 | ||
|         return x.as_integer_ratio()
 | ||
|     except AttributeError:
 | ||
|         pass
 | ||
|     except (OverflowError, ValueError):
 | ||
|         # float NAN or INF.
 | ||
|         assert not _isfinite(x)
 | ||
|         return (x, None)
 | ||
| 
 | ||
|     try:
 | ||
|         # x may be an Integral ABC.
 | ||
|         return (x.numerator, x.denominator)
 | ||
|     except AttributeError:
 | ||
|         msg = f"can't convert type '{type(x).__name__}' to numerator/denominator"
 | ||
|         raise TypeError(msg)
 | ||
| 
 | ||
| 
 | ||
| def _convert(value, T):
 | ||
|     """Convert value to given numeric type T."""
 | ||
|     if type(value) is T:
 | ||
|         # This covers the cases where T is Fraction, or where value is
 | ||
|         # a NAN or INF (Decimal or float).
 | ||
|         return value
 | ||
|     if issubclass(T, int) and value.denominator != 1:
 | ||
|         T = float
 | ||
|     try:
 | ||
|         # FIXME: what do we do if this overflows?
 | ||
|         return T(value)
 | ||
|     except TypeError:
 | ||
|         if issubclass(T, Decimal):
 | ||
|             return T(value.numerator) / T(value.denominator)
 | ||
|         else:
 | ||
|             raise
 | ||
| 
 | ||
| 
 | ||
| def _fail_neg(values, errmsg='negative value'):
 | ||
|     """Iterate over values, failing if any are less than zero."""
 | ||
|     for x in values:
 | ||
|         if x < 0:
 | ||
|             raise StatisticsError(errmsg)
 | ||
|         yield x
 | ||
| 
 | ||
| 
 | ||
| def _rank(data, /, *, key=None, reverse=False, ties='average', start=1) -> list[float]:
 | ||
|     """Rank order a dataset. The lowest value has rank 1.
 | ||
| 
 | ||
|     Ties are averaged so that equal values receive the same rank:
 | ||
| 
 | ||
|         >>> data = [31, 56, 31, 25, 75, 18]
 | ||
|         >>> _rank(data)
 | ||
|         [3.5, 5.0, 3.5, 2.0, 6.0, 1.0]
 | ||
| 
 | ||
|     The operation is idempotent:
 | ||
| 
 | ||
|         >>> _rank([3.5, 5.0, 3.5, 2.0, 6.0, 1.0])
 | ||
|         [3.5, 5.0, 3.5, 2.0, 6.0, 1.0]
 | ||
| 
 | ||
|     It is possible to rank the data in reverse order so that the
 | ||
|     highest value has rank 1.  Also, a key-function can extract
 | ||
|     the field to be ranked:
 | ||
| 
 | ||
|         >>> goals = [('eagles', 45), ('bears', 48), ('lions', 44)]
 | ||
|         >>> _rank(goals, key=itemgetter(1), reverse=True)
 | ||
|         [2.0, 1.0, 3.0]
 | ||
| 
 | ||
|     Ranks are conventionally numbered starting from one; however,
 | ||
|     setting *start* to zero allows the ranks to be used as array indices:
 | ||
| 
 | ||
|         >>> prize = ['Gold', 'Silver', 'Bronze', 'Certificate']
 | ||
|         >>> scores = [8.1, 7.3, 9.4, 8.3]
 | ||
|         >>> [prize[int(i)] for i in _rank(scores, start=0, reverse=True)]
 | ||
|         ['Bronze', 'Certificate', 'Gold', 'Silver']
 | ||
| 
 | ||
|     """
 | ||
|     # If this function becomes public at some point, more thought
 | ||
|     # needs to be given to the signature.  A list of ints is
 | ||
|     # plausible when ties is "min" or "max".  When ties is "average",
 | ||
|     # either list[float] or list[Fraction] is plausible.
 | ||
| 
 | ||
|     # Default handling of ties matches scipy.stats.mstats.spearmanr.
 | ||
|     if ties != 'average':
 | ||
|         raise ValueError(f'Unknown tie resolution method: {ties!r}')
 | ||
|     if key is not None:
 | ||
|         data = map(key, data)
 | ||
|     val_pos = sorted(zip(data, count()), reverse=reverse)
 | ||
|     i = start - 1
 | ||
|     result = [0] * len(val_pos)
 | ||
|     for _, g in groupby(val_pos, key=itemgetter(0)):
 | ||
|         group = list(g)
 | ||
|         size = len(group)
 | ||
|         rank = i + (size + 1) / 2
 | ||
|         for value, orig_pos in group:
 | ||
|             result[orig_pos] = rank
 | ||
|         i += size
 | ||
|     return result
 | ||
| 
 | ||
| 
 | ||
| def _integer_sqrt_of_frac_rto(n: int, m: int) -> int:
 | ||
|     """Square root of n/m, rounded to the nearest integer using round-to-odd."""
 | ||
|     # Reference: https://www.lri.fr/~melquion/doc/05-imacs17_1-expose.pdf
 | ||
|     a = math.isqrt(n // m)
 | ||
|     return a | (a*a*m != n)
 | ||
| 
 | ||
| 
 | ||
| # For 53 bit precision floats, the bit width used in
 | ||
| # _float_sqrt_of_frac() is 109.
 | ||
| _sqrt_bit_width: int = 2 * sys.float_info.mant_dig + 3
 | ||
| 
 | ||
| 
 | ||
| def _float_sqrt_of_frac(n: int, m: int) -> float:
 | ||
|     """Square root of n/m as a float, correctly rounded."""
 | ||
|     # See principle and proof sketch at: https://bugs.python.org/msg407078
 | ||
|     q = (n.bit_length() - m.bit_length() - _sqrt_bit_width) // 2
 | ||
|     if q >= 0:
 | ||
|         numerator = _integer_sqrt_of_frac_rto(n, m << 2 * q) << q
 | ||
|         denominator = 1
 | ||
|     else:
 | ||
|         numerator = _integer_sqrt_of_frac_rto(n << -2 * q, m)
 | ||
|         denominator = 1 << -q
 | ||
|     return numerator / denominator   # Convert to float
 | ||
| 
 | ||
| 
 | ||
| def _decimal_sqrt_of_frac(n: int, m: int) -> Decimal:
 | ||
|     """Square root of n/m as a Decimal, correctly rounded."""
 | ||
|     # Premise:  For decimal, computing (n/m).sqrt() can be off
 | ||
|     #           by 1 ulp from the correctly rounded result.
 | ||
|     # Method:   Check the result, moving up or down a step if needed.
 | ||
|     if n <= 0:
 | ||
|         if not n:
 | ||
|             return Decimal('0.0')
 | ||
|         n, m = -n, -m
 | ||
| 
 | ||
|     root = (Decimal(n) / Decimal(m)).sqrt()
 | ||
|     nr, dr = root.as_integer_ratio()
 | ||
| 
 | ||
|     plus = root.next_plus()
 | ||
|     np, dp = plus.as_integer_ratio()
 | ||
|     # test: n / m > ((root + plus) / 2) ** 2
 | ||
|     if 4 * n * (dr*dp)**2 > m * (dr*np + dp*nr)**2:
 | ||
|         return plus
 | ||
| 
 | ||
|     minus = root.next_minus()
 | ||
|     nm, dm = minus.as_integer_ratio()
 | ||
|     # test: n / m < ((root + minus) / 2) ** 2
 | ||
|     if 4 * n * (dr*dm)**2 < m * (dr*nm + dm*nr)**2:
 | ||
|         return minus
 | ||
| 
 | ||
|     return root
 | ||
| 
 | ||
| 
 | ||
| def _mean_stdev(data):
 | ||
|     """In one pass, compute the mean and sample standard deviation as floats."""
 | ||
|     T, ss, xbar, n = _ss(data)
 | ||
|     if n < 2:
 | ||
|         raise StatisticsError('stdev requires at least two data points')
 | ||
|     mss = ss / (n - 1)
 | ||
|     try:
 | ||
|         return float(xbar), _float_sqrt_of_frac(mss.numerator, mss.denominator)
 | ||
|     except AttributeError:
 | ||
|         # Handle Nans and Infs gracefully
 | ||
|         return float(xbar), float(xbar) / float(ss)
 | ||
| 
 | ||
| 
 | ||
| def _sqrtprod(x: float, y: float) -> float:
 | ||
|     "Return sqrt(x * y) computed with improved accuracy and without overflow/underflow."
 | ||
| 
 | ||
|     h = sqrt(x * y)
 | ||
| 
 | ||
|     if not isfinite(h):
 | ||
|         if isinf(h) and not isinf(x) and not isinf(y):
 | ||
|             # Finite inputs overflowed, so scale down, and recompute.
 | ||
|             scale = 2.0 ** -512  # sqrt(1 / sys.float_info.max)
 | ||
|             return _sqrtprod(scale * x, scale * y) / scale
 | ||
|         return h
 | ||
| 
 | ||
|     if not h:
 | ||
|         if x and y:
 | ||
|             # Non-zero inputs underflowed, so scale up, and recompute.
 | ||
|             # Scale:  1 / sqrt(sys.float_info.min * sys.float_info.epsilon)
 | ||
|             scale = 2.0 ** 537
 | ||
|             return _sqrtprod(scale * x, scale * y) / scale
 | ||
|         return h
 | ||
| 
 | ||
|     # Improve accuracy with a differential correction.
 | ||
|     # https://www.wolframalpha.com/input/?i=Maclaurin+series+sqrt%28h**2+%2B+x%29+at+x%3D0
 | ||
|     d = sumprod((x, h), (y, -h))
 | ||
|     return h + d / (2.0 * h)
 | 
