mirror of
				https://github.com/python/cpython.git
				synced 2025-11-04 07:31:38 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			5293 lines
		
	
	
	
		
			179 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			5293 lines
		
	
	
	
		
			179 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# Copyright (c) 2004 Python Software Foundation.
 | 
						|
# All rights reserved.
 | 
						|
 | 
						|
# Written by Eric Price <eprice at tjhsst.edu>
 | 
						|
#    and Facundo Batista <facundo at taniquetil.com.ar>
 | 
						|
#    and Raymond Hettinger <python at rcn.com>
 | 
						|
#    and Aahz <aahz at pobox.com>
 | 
						|
#    and Tim Peters
 | 
						|
 | 
						|
# This module is currently Py2.3 compatible and should be kept that way
 | 
						|
# unless a major compelling advantage arises.  IOW, 2.3 compatibility is
 | 
						|
# strongly preferred, but not guaranteed.
 | 
						|
 | 
						|
# Also, this module should be kept in sync with the latest updates of
 | 
						|
# the IBM specification as it evolves.  Those updates will be treated
 | 
						|
# as bug fixes (deviation from the spec is a compatibility, usability
 | 
						|
# bug) and will be backported.  At this point the spec is stabilizing
 | 
						|
# and the updates are becoming fewer, smaller, and less significant.
 | 
						|
 | 
						|
"""
 | 
						|
This is a Py2.3 implementation of decimal floating point arithmetic based on
 | 
						|
the General Decimal Arithmetic Specification:
 | 
						|
 | 
						|
    www2.hursley.ibm.com/decimal/decarith.html
 | 
						|
 | 
						|
and IEEE standard 854-1987:
 | 
						|
 | 
						|
    www.cs.berkeley.edu/~ejr/projects/754/private/drafts/854-1987/dir.html
 | 
						|
 | 
						|
Decimal floating point has finite precision with arbitrarily large bounds.
 | 
						|
 | 
						|
The purpose of this module is to support arithmetic using familiar
 | 
						|
"schoolhouse" rules and to avoid some of the tricky representation
 | 
						|
issues associated with binary floating point.  The package is especially
 | 
						|
useful for financial applications or for contexts where users have
 | 
						|
expectations that are at odds with binary floating point (for instance,
 | 
						|
in binary floating point, 1.00 % 0.1 gives 0.09999999999999995 instead
 | 
						|
of the expected Decimal("0.00") returned by decimal floating point).
 | 
						|
 | 
						|
Here are some examples of using the decimal module:
 | 
						|
 | 
						|
>>> from decimal import *
 | 
						|
>>> setcontext(ExtendedContext)
 | 
						|
>>> Decimal(0)
 | 
						|
Decimal("0")
 | 
						|
>>> Decimal("1")
 | 
						|
Decimal("1")
 | 
						|
>>> Decimal("-.0123")
 | 
						|
Decimal("-0.0123")
 | 
						|
>>> Decimal(123456)
 | 
						|
Decimal("123456")
 | 
						|
>>> Decimal("123.45e12345678901234567890")
 | 
						|
Decimal("1.2345E+12345678901234567892")
 | 
						|
>>> Decimal("1.33") + Decimal("1.27")
 | 
						|
Decimal("2.60")
 | 
						|
>>> Decimal("12.34") + Decimal("3.87") - Decimal("18.41")
 | 
						|
Decimal("-2.20")
 | 
						|
>>> dig = Decimal(1)
 | 
						|
>>> print dig / Decimal(3)
 | 
						|
0.333333333
 | 
						|
>>> getcontext().prec = 18
 | 
						|
>>> print dig / Decimal(3)
 | 
						|
0.333333333333333333
 | 
						|
>>> print dig.sqrt()
 | 
						|
1
 | 
						|
>>> print Decimal(3).sqrt()
 | 
						|
1.73205080756887729
 | 
						|
>>> print Decimal(3) ** 123
 | 
						|
4.85192780976896427E+58
 | 
						|
>>> inf = Decimal(1) / Decimal(0)
 | 
						|
>>> print inf
 | 
						|
Infinity
 | 
						|
>>> neginf = Decimal(-1) / Decimal(0)
 | 
						|
>>> print neginf
 | 
						|
-Infinity
 | 
						|
>>> print neginf + inf
 | 
						|
NaN
 | 
						|
>>> print neginf * inf
 | 
						|
-Infinity
 | 
						|
>>> print dig / 0
 | 
						|
Infinity
 | 
						|
>>> getcontext().traps[DivisionByZero] = 1
 | 
						|
>>> print dig / 0
 | 
						|
Traceback (most recent call last):
 | 
						|
  ...
 | 
						|
  ...
 | 
						|
  ...
 | 
						|
DivisionByZero: x / 0
 | 
						|
>>> c = Context()
 | 
						|
>>> c.traps[InvalidOperation] = 0
 | 
						|
>>> print c.flags[InvalidOperation]
 | 
						|
0
 | 
						|
>>> c.divide(Decimal(0), Decimal(0))
 | 
						|
Decimal("NaN")
 | 
						|
>>> c.traps[InvalidOperation] = 1
 | 
						|
>>> print c.flags[InvalidOperation]
 | 
						|
1
 | 
						|
>>> c.flags[InvalidOperation] = 0
 | 
						|
>>> print c.flags[InvalidOperation]
 | 
						|
0
 | 
						|
>>> print c.divide(Decimal(0), Decimal(0))
 | 
						|
Traceback (most recent call last):
 | 
						|
  ...
 | 
						|
  ...
 | 
						|
  ...
 | 
						|
InvalidOperation: 0 / 0
 | 
						|
>>> print c.flags[InvalidOperation]
 | 
						|
1
 | 
						|
>>> c.flags[InvalidOperation] = 0
 | 
						|
>>> c.traps[InvalidOperation] = 0
 | 
						|
>>> print c.divide(Decimal(0), Decimal(0))
 | 
						|
NaN
 | 
						|
>>> print c.flags[InvalidOperation]
 | 
						|
1
 | 
						|
>>>
 | 
						|
"""
 | 
						|
 | 
						|
__all__ = [
 | 
						|
    # Two major classes
 | 
						|
    'Decimal', 'Context',
 | 
						|
 | 
						|
    # Contexts
 | 
						|
    'DefaultContext', 'BasicContext', 'ExtendedContext',
 | 
						|
 | 
						|
    # Exceptions
 | 
						|
    'DecimalException', 'Clamped', 'InvalidOperation', 'DivisionByZero',
 | 
						|
    'Inexact', 'Rounded', 'Subnormal', 'Overflow', 'Underflow',
 | 
						|
 | 
						|
    # Constants for use in setting up contexts
 | 
						|
    'ROUND_DOWN', 'ROUND_HALF_UP', 'ROUND_HALF_EVEN', 'ROUND_CEILING',
 | 
						|
    'ROUND_FLOOR', 'ROUND_UP', 'ROUND_HALF_DOWN', 'ROUND_05UP',
 | 
						|
 | 
						|
    # Functions for manipulating contexts
 | 
						|
    'setcontext', 'getcontext', 'localcontext'
 | 
						|
]
 | 
						|
 | 
						|
import copy as _copy
 | 
						|
 | 
						|
# Rounding
 | 
						|
ROUND_DOWN = 'ROUND_DOWN'
 | 
						|
ROUND_HALF_UP = 'ROUND_HALF_UP'
 | 
						|
ROUND_HALF_EVEN = 'ROUND_HALF_EVEN'
 | 
						|
ROUND_CEILING = 'ROUND_CEILING'
 | 
						|
ROUND_FLOOR = 'ROUND_FLOOR'
 | 
						|
ROUND_UP = 'ROUND_UP'
 | 
						|
ROUND_HALF_DOWN = 'ROUND_HALF_DOWN'
 | 
						|
ROUND_05UP = 'ROUND_05UP'
 | 
						|
 | 
						|
# Rounding decision (not part of the public API)
 | 
						|
NEVER_ROUND = 'NEVER_ROUND'    # Round in division (non-divmod), sqrt ONLY
 | 
						|
ALWAYS_ROUND = 'ALWAYS_ROUND'  # Every operation rounds at end.
 | 
						|
 | 
						|
# Errors
 | 
						|
 | 
						|
class DecimalException(ArithmeticError):
 | 
						|
    """Base exception class.
 | 
						|
 | 
						|
    Used exceptions derive from this.
 | 
						|
    If an exception derives from another exception besides this (such as
 | 
						|
    Underflow (Inexact, Rounded, Subnormal) that indicates that it is only
 | 
						|
    called if the others are present.  This isn't actually used for
 | 
						|
    anything, though.
 | 
						|
 | 
						|
    handle  -- Called when context._raise_error is called and the
 | 
						|
               trap_enabler is set.  First argument is self, second is the
 | 
						|
               context.  More arguments can be given, those being after
 | 
						|
               the explanation in _raise_error (For example,
 | 
						|
               context._raise_error(NewError, '(-x)!', self._sign) would
 | 
						|
               call NewError().handle(context, self._sign).)
 | 
						|
 | 
						|
    To define a new exception, it should be sufficient to have it derive
 | 
						|
    from DecimalException.
 | 
						|
    """
 | 
						|
    def handle(self, context, *args):
 | 
						|
        pass
 | 
						|
 | 
						|
 | 
						|
class Clamped(DecimalException):
 | 
						|
    """Exponent of a 0 changed to fit bounds.
 | 
						|
 | 
						|
    This occurs and signals clamped if the exponent of a result has been
 | 
						|
    altered in order to fit the constraints of a specific concrete
 | 
						|
    representation.  This may occur when the exponent of a zero result would
 | 
						|
    be outside the bounds of a representation, or when a large normal
 | 
						|
    number would have an encoded exponent that cannot be represented.  In
 | 
						|
    this latter case, the exponent is reduced to fit and the corresponding
 | 
						|
    number of zero digits are appended to the coefficient ("fold-down").
 | 
						|
    """
 | 
						|
 | 
						|
 | 
						|
class InvalidOperation(DecimalException):
 | 
						|
    """An invalid operation was performed.
 | 
						|
 | 
						|
    Various bad things cause this:
 | 
						|
 | 
						|
    Something creates a signaling NaN
 | 
						|
    -INF + INF
 | 
						|
    0 * (+-)INF
 | 
						|
    (+-)INF / (+-)INF
 | 
						|
    x % 0
 | 
						|
    (+-)INF % x
 | 
						|
    x._rescale( non-integer )
 | 
						|
    sqrt(-x) , x > 0
 | 
						|
    0 ** 0
 | 
						|
    x ** (non-integer)
 | 
						|
    x ** (+-)INF
 | 
						|
    An operand is invalid
 | 
						|
 | 
						|
    The result of the operation after these is a quiet positive NaN,
 | 
						|
    except when the cause is a signaling NaN, in which case the result is
 | 
						|
    also a quiet NaN, but with the original sign, and an optional
 | 
						|
    diagnostic information.
 | 
						|
    """
 | 
						|
    def handle(self, context, *args):
 | 
						|
        if args:
 | 
						|
            if args[0] == 1:  # sNaN, must drop 's' but keep diagnostics
 | 
						|
                ans = Decimal((args[1]._sign, args[1]._int, 'n'))
 | 
						|
                return ans._fix_nan(context)
 | 
						|
            elif args[0] == 2:
 | 
						|
                return Decimal( (args[1], args[2], 'n') )
 | 
						|
        return NaN
 | 
						|
 | 
						|
 | 
						|
class ConversionSyntax(InvalidOperation):
 | 
						|
    """Trying to convert badly formed string.
 | 
						|
 | 
						|
    This occurs and signals invalid-operation if an string is being
 | 
						|
    converted to a number and it does not conform to the numeric string
 | 
						|
    syntax.  The result is [0,qNaN].
 | 
						|
    """
 | 
						|
    def handle(self, context, *args):
 | 
						|
        return NaN
 | 
						|
 | 
						|
class DivisionByZero(DecimalException, ZeroDivisionError):
 | 
						|
    """Division by 0.
 | 
						|
 | 
						|
    This occurs and signals division-by-zero if division of a finite number
 | 
						|
    by zero was attempted (during a divide-integer or divide operation, or a
 | 
						|
    power operation with negative right-hand operand), and the dividend was
 | 
						|
    not zero.
 | 
						|
 | 
						|
    The result of the operation is [sign,inf], where sign is the exclusive
 | 
						|
    or of the signs of the operands for divide, or is 1 for an odd power of
 | 
						|
    -0, for power.
 | 
						|
    """
 | 
						|
 | 
						|
    def handle(self, context, sign, *args):
 | 
						|
        return Infsign[sign]
 | 
						|
 | 
						|
class DivisionImpossible(InvalidOperation):
 | 
						|
    """Cannot perform the division adequately.
 | 
						|
 | 
						|
    This occurs and signals invalid-operation if the integer result of a
 | 
						|
    divide-integer or remainder operation had too many digits (would be
 | 
						|
    longer than precision).  The result is [0,qNaN].
 | 
						|
    """
 | 
						|
 | 
						|
    def handle(self, context, *args):
 | 
						|
        return NaN
 | 
						|
 | 
						|
class DivisionUndefined(InvalidOperation, ZeroDivisionError):
 | 
						|
    """Undefined result of division.
 | 
						|
 | 
						|
    This occurs and signals invalid-operation if division by zero was
 | 
						|
    attempted (during a divide-integer, divide, or remainder operation), and
 | 
						|
    the dividend is also zero.  The result is [0,qNaN].
 | 
						|
    """
 | 
						|
 | 
						|
    def handle(self, context, *args):
 | 
						|
        return NaN
 | 
						|
 | 
						|
class Inexact(DecimalException):
 | 
						|
    """Had to round, losing information.
 | 
						|
 | 
						|
    This occurs and signals inexact whenever the result of an operation is
 | 
						|
    not exact (that is, it needed to be rounded and any discarded digits
 | 
						|
    were non-zero), or if an overflow or underflow condition occurs.  The
 | 
						|
    result in all cases is unchanged.
 | 
						|
 | 
						|
    The inexact signal may be tested (or trapped) to determine if a given
 | 
						|
    operation (or sequence of operations) was inexact.
 | 
						|
    """
 | 
						|
    pass
 | 
						|
 | 
						|
class InvalidContext(InvalidOperation):
 | 
						|
    """Invalid context.  Unknown rounding, for example.
 | 
						|
 | 
						|
    This occurs and signals invalid-operation if an invalid context was
 | 
						|
    detected during an operation.  This can occur if contexts are not checked
 | 
						|
    on creation and either the precision exceeds the capability of the
 | 
						|
    underlying concrete representation or an unknown or unsupported rounding
 | 
						|
    was specified.  These aspects of the context need only be checked when
 | 
						|
    the values are required to be used.  The result is [0,qNaN].
 | 
						|
    """
 | 
						|
 | 
						|
    def handle(self, context, *args):
 | 
						|
        return NaN
 | 
						|
 | 
						|
class Rounded(DecimalException):
 | 
						|
    """Number got rounded (not  necessarily changed during rounding).
 | 
						|
 | 
						|
    This occurs and signals rounded whenever the result of an operation is
 | 
						|
    rounded (that is, some zero or non-zero digits were discarded from the
 | 
						|
    coefficient), or if an overflow or underflow condition occurs.  The
 | 
						|
    result in all cases is unchanged.
 | 
						|
 | 
						|
    The rounded signal may be tested (or trapped) to determine if a given
 | 
						|
    operation (or sequence of operations) caused a loss of precision.
 | 
						|
    """
 | 
						|
    pass
 | 
						|
 | 
						|
class Subnormal(DecimalException):
 | 
						|
    """Exponent < Emin before rounding.
 | 
						|
 | 
						|
    This occurs and signals subnormal whenever the result of a conversion or
 | 
						|
    operation is subnormal (that is, its adjusted exponent is less than
 | 
						|
    Emin, before any rounding).  The result in all cases is unchanged.
 | 
						|
 | 
						|
    The subnormal signal may be tested (or trapped) to determine if a given
 | 
						|
    or operation (or sequence of operations) yielded a subnormal result.
 | 
						|
    """
 | 
						|
    pass
 | 
						|
 | 
						|
class Overflow(Inexact, Rounded):
 | 
						|
    """Numerical overflow.
 | 
						|
 | 
						|
    This occurs and signals overflow if the adjusted exponent of a result
 | 
						|
    (from a conversion or from an operation that is not an attempt to divide
 | 
						|
    by zero), after rounding, would be greater than the largest value that
 | 
						|
    can be handled by the implementation (the value Emax).
 | 
						|
 | 
						|
    The result depends on the rounding mode:
 | 
						|
 | 
						|
    For round-half-up and round-half-even (and for round-half-down and
 | 
						|
    round-up, if implemented), the result of the operation is [sign,inf],
 | 
						|
    where sign is the sign of the intermediate result.  For round-down, the
 | 
						|
    result is the largest finite number that can be represented in the
 | 
						|
    current precision, with the sign of the intermediate result.  For
 | 
						|
    round-ceiling, the result is the same as for round-down if the sign of
 | 
						|
    the intermediate result is 1, or is [0,inf] otherwise.  For round-floor,
 | 
						|
    the result is the same as for round-down if the sign of the intermediate
 | 
						|
    result is 0, or is [1,inf] otherwise.  In all cases, Inexact and Rounded
 | 
						|
    will also be raised.
 | 
						|
   """
 | 
						|
 | 
						|
    def handle(self, context, sign, *args):
 | 
						|
        if context.rounding in (ROUND_HALF_UP, ROUND_HALF_EVEN,
 | 
						|
                                ROUND_HALF_DOWN, ROUND_UP):
 | 
						|
            return Infsign[sign]
 | 
						|
        if sign == 0:
 | 
						|
            if context.rounding == ROUND_CEILING:
 | 
						|
                return Infsign[sign]
 | 
						|
            return Decimal((sign, (9,)*context.prec,
 | 
						|
                            context.Emax-context.prec+1))
 | 
						|
        if sign == 1:
 | 
						|
            if context.rounding == ROUND_FLOOR:
 | 
						|
                return Infsign[sign]
 | 
						|
            return Decimal( (sign, (9,)*context.prec,
 | 
						|
                             context.Emax-context.prec+1))
 | 
						|
 | 
						|
 | 
						|
class Underflow(Inexact, Rounded, Subnormal):
 | 
						|
    """Numerical underflow with result rounded to 0.
 | 
						|
 | 
						|
    This occurs and signals underflow if a result is inexact and the
 | 
						|
    adjusted exponent of the result would be smaller (more negative) than
 | 
						|
    the smallest value that can be handled by the implementation (the value
 | 
						|
    Emin).  That is, the result is both inexact and subnormal.
 | 
						|
 | 
						|
    The result after an underflow will be a subnormal number rounded, if
 | 
						|
    necessary, so that its exponent is not less than Etiny.  This may result
 | 
						|
    in 0 with the sign of the intermediate result and an exponent of Etiny.
 | 
						|
 | 
						|
    In all cases, Inexact, Rounded, and Subnormal will also be raised.
 | 
						|
    """
 | 
						|
 | 
						|
# List of public traps and flags
 | 
						|
_signals = [Clamped, DivisionByZero, Inexact, Overflow, Rounded,
 | 
						|
           Underflow, InvalidOperation, Subnormal]
 | 
						|
 | 
						|
# Map conditions (per the spec) to signals
 | 
						|
_condition_map = {ConversionSyntax:InvalidOperation,
 | 
						|
                  DivisionImpossible:InvalidOperation,
 | 
						|
                  DivisionUndefined:InvalidOperation,
 | 
						|
                  InvalidContext:InvalidOperation}
 | 
						|
 | 
						|
##### Context Functions ##################################################
 | 
						|
 | 
						|
# The getcontext() and setcontext() function manage access to a thread-local
 | 
						|
# current context.  Py2.4 offers direct support for thread locals.  If that
 | 
						|
# is not available, use threading.currentThread() which is slower but will
 | 
						|
# work for older Pythons.  If threads are not part of the build, create a
 | 
						|
# mock threading object with threading.local() returning the module namespace.
 | 
						|
 | 
						|
try:
 | 
						|
    import threading
 | 
						|
except ImportError:
 | 
						|
    # Python was compiled without threads; create a mock object instead
 | 
						|
    import sys
 | 
						|
    class MockThreading(object):
 | 
						|
        def local(self, sys=sys):
 | 
						|
            return sys.modules[__name__]
 | 
						|
    threading = MockThreading()
 | 
						|
    del sys, MockThreading
 | 
						|
 | 
						|
try:
 | 
						|
    threading.local
 | 
						|
 | 
						|
except AttributeError:
 | 
						|
 | 
						|
    # To fix reloading, force it to create a new context
 | 
						|
    # Old contexts have different exceptions in their dicts, making problems.
 | 
						|
    if hasattr(threading.currentThread(), '__decimal_context__'):
 | 
						|
        del threading.currentThread().__decimal_context__
 | 
						|
 | 
						|
    def setcontext(context):
 | 
						|
        """Set this thread's context to context."""
 | 
						|
        if context in (DefaultContext, BasicContext, ExtendedContext):
 | 
						|
            context = context.copy()
 | 
						|
            context.clear_flags()
 | 
						|
        threading.currentThread().__decimal_context__ = context
 | 
						|
 | 
						|
    def getcontext():
 | 
						|
        """Returns this thread's context.
 | 
						|
 | 
						|
        If this thread does not yet have a context, returns
 | 
						|
        a new context and sets this thread's context.
 | 
						|
        New contexts are copies of DefaultContext.
 | 
						|
        """
 | 
						|
        try:
 | 
						|
            return threading.currentThread().__decimal_context__
 | 
						|
        except AttributeError:
 | 
						|
            context = Context()
 | 
						|
            threading.currentThread().__decimal_context__ = context
 | 
						|
            return context
 | 
						|
 | 
						|
else:
 | 
						|
 | 
						|
    local = threading.local()
 | 
						|
    if hasattr(local, '__decimal_context__'):
 | 
						|
        del local.__decimal_context__
 | 
						|
 | 
						|
    def getcontext(_local=local):
 | 
						|
        """Returns this thread's context.
 | 
						|
 | 
						|
        If this thread does not yet have a context, returns
 | 
						|
        a new context and sets this thread's context.
 | 
						|
        New contexts are copies of DefaultContext.
 | 
						|
        """
 | 
						|
        try:
 | 
						|
            return _local.__decimal_context__
 | 
						|
        except AttributeError:
 | 
						|
            context = Context()
 | 
						|
            _local.__decimal_context__ = context
 | 
						|
            return context
 | 
						|
 | 
						|
    def setcontext(context, _local=local):
 | 
						|
        """Set this thread's context to context."""
 | 
						|
        if context in (DefaultContext, BasicContext, ExtendedContext):
 | 
						|
            context = context.copy()
 | 
						|
            context.clear_flags()
 | 
						|
        _local.__decimal_context__ = context
 | 
						|
 | 
						|
    del threading, local        # Don't contaminate the namespace
 | 
						|
 | 
						|
def localcontext(ctx=None):
 | 
						|
    """Return a context manager for a copy of the supplied context
 | 
						|
 | 
						|
    Uses a copy of the current context if no context is specified
 | 
						|
    The returned context manager creates a local decimal context
 | 
						|
    in a with statement:
 | 
						|
        def sin(x):
 | 
						|
             with localcontext() as ctx:
 | 
						|
                 ctx.prec += 2
 | 
						|
                 # Rest of sin calculation algorithm
 | 
						|
                 # uses a precision 2 greater than normal
 | 
						|
             return +s  # Convert result to normal precision
 | 
						|
 | 
						|
         def sin(x):
 | 
						|
             with localcontext(ExtendedContext):
 | 
						|
                 # Rest of sin calculation algorithm
 | 
						|
                 # uses the Extended Context from the
 | 
						|
                 # General Decimal Arithmetic Specification
 | 
						|
             return +s  # Convert result to normal context
 | 
						|
 | 
						|
    """
 | 
						|
    # The string below can't be included in the docstring until Python 2.6
 | 
						|
    # as the doctest module doesn't understand __future__ statements
 | 
						|
    """
 | 
						|
    >>> from __future__ import with_statement
 | 
						|
    >>> print getcontext().prec
 | 
						|
    28
 | 
						|
    >>> with localcontext():
 | 
						|
    ...     ctx = getcontext()
 | 
						|
    ...     ctx.prec += 2
 | 
						|
    ...     print ctx.prec
 | 
						|
    ...
 | 
						|
    30
 | 
						|
    >>> with localcontext(ExtendedContext):
 | 
						|
    ...     print getcontext().prec
 | 
						|
    ...
 | 
						|
    9
 | 
						|
    >>> print getcontext().prec
 | 
						|
    28
 | 
						|
    """
 | 
						|
    if ctx is None: ctx = getcontext()
 | 
						|
    return _ContextManager(ctx)
 | 
						|
 | 
						|
 | 
						|
##### Decimal class #######################################################
 | 
						|
 | 
						|
class Decimal(object):
 | 
						|
    """Floating point class for decimal arithmetic."""
 | 
						|
 | 
						|
    __slots__ = ('_exp','_int','_sign', '_is_special')
 | 
						|
    # Generally, the value of the Decimal instance is given by
 | 
						|
    #  (-1)**_sign * _int * 10**_exp
 | 
						|
    # Special values are signified by _is_special == True
 | 
						|
 | 
						|
    # We're immutable, so use __new__ not __init__
 | 
						|
    def __new__(cls, value="0", context=None):
 | 
						|
        """Create a decimal point instance.
 | 
						|
 | 
						|
        >>> Decimal('3.14')              # string input
 | 
						|
        Decimal("3.14")
 | 
						|
        >>> Decimal((0, (3, 1, 4), -2))  # tuple (sign, digit_tuple, exponent)
 | 
						|
        Decimal("3.14")
 | 
						|
        >>> Decimal(314)                 # int or long
 | 
						|
        Decimal("314")
 | 
						|
        >>> Decimal(Decimal(314))        # another decimal instance
 | 
						|
        Decimal("314")
 | 
						|
        """
 | 
						|
 | 
						|
        self = object.__new__(cls)
 | 
						|
        self._is_special = False
 | 
						|
 | 
						|
        # From an internal working value
 | 
						|
        if isinstance(value, _WorkRep):
 | 
						|
            self._sign = value.sign
 | 
						|
            self._int = tuple(map(int, str(value.int)))
 | 
						|
            self._exp = int(value.exp)
 | 
						|
            return self
 | 
						|
 | 
						|
        # From another decimal
 | 
						|
        if isinstance(value, Decimal):
 | 
						|
            self._exp  = value._exp
 | 
						|
            self._sign = value._sign
 | 
						|
            self._int  = value._int
 | 
						|
            self._is_special  = value._is_special
 | 
						|
            return self
 | 
						|
 | 
						|
        # From an integer
 | 
						|
        if isinstance(value, (int,long)):
 | 
						|
            if value >= 0:
 | 
						|
                self._sign = 0
 | 
						|
            else:
 | 
						|
                self._sign = 1
 | 
						|
            self._exp = 0
 | 
						|
            self._int = tuple(map(int, str(abs(value))))
 | 
						|
            return self
 | 
						|
 | 
						|
        # tuple/list conversion (possibly from as_tuple())
 | 
						|
        if isinstance(value, (list,tuple)):
 | 
						|
            if len(value) != 3:
 | 
						|
                raise ValueError('Invalid arguments')
 | 
						|
            if value[0] not in (0,1):
 | 
						|
                raise ValueError('Invalid sign')
 | 
						|
            for digit in value[1]:
 | 
						|
                if not isinstance(digit, (int,long)) or digit < 0:
 | 
						|
                    raise ValueError("The second value in the tuple must be "
 | 
						|
                                "composed of non negative integer elements.")
 | 
						|
            self._sign = value[0]
 | 
						|
            self._int  = tuple(value[1])
 | 
						|
            if value[2] in ('F','n','N'):
 | 
						|
                self._exp = value[2]
 | 
						|
                self._is_special = True
 | 
						|
            else:
 | 
						|
                self._exp  = int(value[2])
 | 
						|
            return self
 | 
						|
 | 
						|
        if isinstance(value, float):
 | 
						|
            raise TypeError("Cannot convert float to Decimal.  " +
 | 
						|
                            "First convert the float to a string")
 | 
						|
 | 
						|
        # Other argument types may require the context during interpretation
 | 
						|
        if context is None:
 | 
						|
            context = getcontext()
 | 
						|
 | 
						|
        # From a string
 | 
						|
        # REs insist on real strings, so we can too.
 | 
						|
        if isinstance(value, basestring):
 | 
						|
            if _isinfinity(value):
 | 
						|
                self._exp = 'F'
 | 
						|
                self._int = (0,)
 | 
						|
                self._is_special = True
 | 
						|
                if _isinfinity(value) == 1:
 | 
						|
                    self._sign = 0
 | 
						|
                else:
 | 
						|
                    self._sign = 1
 | 
						|
                return self
 | 
						|
            if _isnan(value):
 | 
						|
                sig, sign, diag = _isnan(value)
 | 
						|
                self._is_special = True
 | 
						|
                if sig == 1:
 | 
						|
                    self._exp = 'n'  # qNaN
 | 
						|
                else:  # sig == 2
 | 
						|
                    self._exp = 'N'  # sNaN
 | 
						|
                self._sign = sign
 | 
						|
                self._int = tuple(map(int, diag))  # Diagnostic info
 | 
						|
                return self
 | 
						|
            try:
 | 
						|
                self._sign, self._int, self._exp = _string2exact(value)
 | 
						|
            except ValueError:
 | 
						|
                self._is_special = True
 | 
						|
                return context._raise_error(ConversionSyntax,
 | 
						|
                                   "Invalid literal for Decimal: %r" % value)
 | 
						|
            return self
 | 
						|
 | 
						|
        raise TypeError("Cannot convert %r to Decimal" % value)
 | 
						|
 | 
						|
    def _isnan(self):
 | 
						|
        """Returns whether the number is not actually one.
 | 
						|
 | 
						|
        0 if a number
 | 
						|
        1 if NaN  (it could be a normal quiet NaN or a phantom one)
 | 
						|
        2 if sNaN
 | 
						|
        """
 | 
						|
        if self._is_special:
 | 
						|
            exp = self._exp
 | 
						|
            if exp == 'n':
 | 
						|
                return 1
 | 
						|
            elif exp == 'N':
 | 
						|
                return 2
 | 
						|
        return 0
 | 
						|
 | 
						|
    def _isinfinity(self):
 | 
						|
        """Returns whether the number is infinite
 | 
						|
 | 
						|
        0 if finite or not a number
 | 
						|
        1 if +INF
 | 
						|
        -1 if -INF
 | 
						|
        """
 | 
						|
        if self._exp == 'F':
 | 
						|
            if self._sign:
 | 
						|
                return -1
 | 
						|
            return 1
 | 
						|
        return 0
 | 
						|
 | 
						|
    def _check_nans(self, other=None, context=None):
 | 
						|
        """Returns whether the number is not actually one.
 | 
						|
 | 
						|
        if self, other are sNaN, signal
 | 
						|
        if self, other are NaN return nan
 | 
						|
        return 0
 | 
						|
 | 
						|
        Done before operations.
 | 
						|
        """
 | 
						|
 | 
						|
        self_is_nan = self._isnan()
 | 
						|
        if other is None:
 | 
						|
            other_is_nan = False
 | 
						|
        else:
 | 
						|
            other_is_nan = other._isnan()
 | 
						|
 | 
						|
        if self_is_nan or other_is_nan:
 | 
						|
            if context is None:
 | 
						|
                context = getcontext()
 | 
						|
 | 
						|
            if self_is_nan == 2:
 | 
						|
                return context._raise_error(InvalidOperation, 'sNaN',
 | 
						|
                                        1, self)
 | 
						|
            if other_is_nan == 2:
 | 
						|
                return context._raise_error(InvalidOperation, 'sNaN',
 | 
						|
                                        1, other)
 | 
						|
            if self_is_nan:
 | 
						|
                return self._fix_nan(context)
 | 
						|
 | 
						|
            return other._fix_nan(context)
 | 
						|
        return 0
 | 
						|
 | 
						|
    def __nonzero__(self):
 | 
						|
        """Is the number non-zero?
 | 
						|
 | 
						|
        0 if self == 0
 | 
						|
        1 if self != 0
 | 
						|
        """
 | 
						|
        if self._is_special:
 | 
						|
            return True
 | 
						|
        return sum(self._int) != 0
 | 
						|
 | 
						|
    def __cmp__(self, other):
 | 
						|
        other = _convert_other(other)
 | 
						|
        if other is NotImplemented:
 | 
						|
            # Never return NotImplemented
 | 
						|
            return 1
 | 
						|
 | 
						|
        if self._is_special or other._is_special:
 | 
						|
            # check for nans, without raising on a signaling nan
 | 
						|
            if self._isnan() or other._isnan():
 | 
						|
                return 1  # Comparison involving NaN's always reports self > other
 | 
						|
 | 
						|
            # INF = INF
 | 
						|
            return cmp(self._isinfinity(), other._isinfinity())
 | 
						|
 | 
						|
        # check for zeros;  note that cmp(0, -0) should return 0
 | 
						|
        if not self:
 | 
						|
            if not other:
 | 
						|
                return 0
 | 
						|
            else:
 | 
						|
                return -((-1)**other._sign)
 | 
						|
        if not other:
 | 
						|
            return (-1)**self._sign
 | 
						|
 | 
						|
        # If different signs, neg one is less
 | 
						|
        if other._sign < self._sign:
 | 
						|
            return -1
 | 
						|
        if self._sign < other._sign:
 | 
						|
            return 1
 | 
						|
 | 
						|
        self_adjusted = self.adjusted()
 | 
						|
        other_adjusted = other.adjusted()
 | 
						|
        if self_adjusted == other_adjusted:
 | 
						|
            self_padded = self._int + (0,)*(self._exp - other._exp)
 | 
						|
            other_padded = other._int + (0,)*(other._exp - self._exp)
 | 
						|
            return cmp(self_padded, other_padded) * (-1)**self._sign
 | 
						|
        elif self_adjusted > other_adjusted:
 | 
						|
            return (-1)**self._sign
 | 
						|
        else: # self_adjusted < other_adjusted
 | 
						|
            return -((-1)**self._sign)
 | 
						|
 | 
						|
    def __eq__(self, other):
 | 
						|
        if not isinstance(other, (Decimal, int, long)):
 | 
						|
            return NotImplemented
 | 
						|
        return self.__cmp__(other) == 0
 | 
						|
 | 
						|
    def __ne__(self, other):
 | 
						|
        if not isinstance(other, (Decimal, int, long)):
 | 
						|
            return NotImplemented
 | 
						|
        return self.__cmp__(other) != 0
 | 
						|
 | 
						|
    def compare(self, other, context=None):
 | 
						|
        """Compares one to another.
 | 
						|
 | 
						|
        -1 => a < b
 | 
						|
        0  => a = b
 | 
						|
        1  => a > b
 | 
						|
        NaN => one is NaN
 | 
						|
        Like __cmp__, but returns Decimal instances.
 | 
						|
        """
 | 
						|
        other = _convert_other(other, raiseit=True)
 | 
						|
 | 
						|
        # Compare(NaN, NaN) = NaN
 | 
						|
        if (self._is_special or other and other._is_special):
 | 
						|
            ans = self._check_nans(other, context)
 | 
						|
            if ans:
 | 
						|
                return ans
 | 
						|
 | 
						|
        return Decimal(self.__cmp__(other))
 | 
						|
 | 
						|
    def __hash__(self):
 | 
						|
        """x.__hash__() <==> hash(x)"""
 | 
						|
        # Decimal integers must hash the same as the ints
 | 
						|
        # Non-integer decimals are normalized and hashed as strings
 | 
						|
        # Normalization assures that hash(100E-1) == hash(10)
 | 
						|
        if self._is_special:
 | 
						|
            if self._isnan():
 | 
						|
                raise TypeError('Cannot hash a NaN value.')
 | 
						|
            return hash(str(self))
 | 
						|
        if not self:
 | 
						|
            return 0
 | 
						|
        if self._isinteger():
 | 
						|
            op = _WorkRep(self.to_integral_value())
 | 
						|
            # to make computation feasible for Decimals with large
 | 
						|
            # exponent, we use the fact that hash(n) == hash(m) for
 | 
						|
            # any two nonzero integers n and m such that (i) n and m
 | 
						|
            # have the same sign, and (ii) n is congruent to m modulo
 | 
						|
            # 2**64-1.  So we can replace hash((-1)**s*c*10**e) with
 | 
						|
            # hash((-1)**s*c*pow(10, e, 2**64-1).
 | 
						|
            return hash((-1)**op.sign*op.int*pow(10, op.exp, 2**64-1))
 | 
						|
        return hash(str(self.normalize()))
 | 
						|
 | 
						|
    def as_tuple(self):
 | 
						|
        """Represents the number as a triple tuple.
 | 
						|
 | 
						|
        To show the internals exactly as they are.
 | 
						|
        """
 | 
						|
        return (self._sign, self._int, self._exp)
 | 
						|
 | 
						|
    def __repr__(self):
 | 
						|
        """Represents the number as an instance of Decimal."""
 | 
						|
        # Invariant:  eval(repr(d)) == d
 | 
						|
        return 'Decimal("%s")' % str(self)
 | 
						|
 | 
						|
    def __str__(self, eng=False, context=None):
 | 
						|
        """Return string representation of the number in scientific notation.
 | 
						|
 | 
						|
        Captures all of the information in the underlying representation.
 | 
						|
        """
 | 
						|
 | 
						|
        if self._is_special:
 | 
						|
            if self._isnan():
 | 
						|
                minus = '-'*self._sign
 | 
						|
                if self._int == (0,):
 | 
						|
                    info = ''
 | 
						|
                else:
 | 
						|
                    info = ''.join(map(str, self._int))
 | 
						|
                if self._isnan() == 2:
 | 
						|
                    return minus + 'sNaN' + info
 | 
						|
                return minus + 'NaN' + info
 | 
						|
            if self._isinfinity():
 | 
						|
                minus = '-'*self._sign
 | 
						|
                return minus + 'Infinity'
 | 
						|
 | 
						|
        if context is None:
 | 
						|
            context = getcontext()
 | 
						|
 | 
						|
        tmp = map(str, self._int)
 | 
						|
        numdigits = len(self._int)
 | 
						|
        leftdigits = self._exp + numdigits
 | 
						|
        if eng and not self:  # self = 0eX wants 0[.0[0]]eY, not [[0]0]0eY
 | 
						|
            if self._exp < 0 and self._exp >= -6:  # short, no need for e/E
 | 
						|
                s = '-'*self._sign + '0.' + '0'*(abs(self._exp))
 | 
						|
                return s
 | 
						|
            # exp is closest mult. of 3 >= self._exp
 | 
						|
            exp = ((self._exp - 1)// 3 + 1) * 3
 | 
						|
            if exp != self._exp:
 | 
						|
                s = '0.'+'0'*(exp - self._exp)
 | 
						|
            else:
 | 
						|
                s = '0'
 | 
						|
            if exp != 0:
 | 
						|
                if context.capitals:
 | 
						|
                    s += 'E'
 | 
						|
                else:
 | 
						|
                    s += 'e'
 | 
						|
                if exp > 0:
 | 
						|
                    s += '+'  # 0.0e+3, not 0.0e3
 | 
						|
                s += str(exp)
 | 
						|
            s = '-'*self._sign + s
 | 
						|
            return s
 | 
						|
        if eng:
 | 
						|
            dotplace = (leftdigits-1)%3+1
 | 
						|
            adjexp = leftdigits -1 - (leftdigits-1)%3
 | 
						|
        else:
 | 
						|
            adjexp = leftdigits-1
 | 
						|
            dotplace = 1
 | 
						|
        if self._exp == 0:
 | 
						|
            pass
 | 
						|
        elif self._exp < 0 and adjexp >= 0:
 | 
						|
            tmp.insert(leftdigits, '.')
 | 
						|
        elif self._exp < 0 and adjexp >= -6:
 | 
						|
            tmp[0:0] = ['0'] * int(-leftdigits)
 | 
						|
            tmp.insert(0, '0.')
 | 
						|
        else:
 | 
						|
            if numdigits > dotplace:
 | 
						|
                tmp.insert(dotplace, '.')
 | 
						|
            elif numdigits < dotplace:
 | 
						|
                tmp.extend(['0']*(dotplace-numdigits))
 | 
						|
            if adjexp:
 | 
						|
                if not context.capitals:
 | 
						|
                    tmp.append('e')
 | 
						|
                else:
 | 
						|
                    tmp.append('E')
 | 
						|
                    if adjexp > 0:
 | 
						|
                        tmp.append('+')
 | 
						|
                tmp.append(str(adjexp))
 | 
						|
        if eng:
 | 
						|
            while tmp[0:1] == ['0']:
 | 
						|
                tmp[0:1] = []
 | 
						|
            if len(tmp) == 0 or tmp[0] == '.' or tmp[0].lower() == 'e':
 | 
						|
                tmp[0:0] = ['0']
 | 
						|
        if self._sign:
 | 
						|
            tmp.insert(0, '-')
 | 
						|
 | 
						|
        return ''.join(tmp)
 | 
						|
 | 
						|
    def to_eng_string(self, context=None):
 | 
						|
        """Convert to engineering-type string.
 | 
						|
 | 
						|
        Engineering notation has an exponent which is a multiple of 3, so there
 | 
						|
        are up to 3 digits left of the decimal place.
 | 
						|
 | 
						|
        Same rules for when in exponential and when as a value as in __str__.
 | 
						|
        """
 | 
						|
        return self.__str__(eng=True, context=context)
 | 
						|
 | 
						|
    def __neg__(self, context=None):
 | 
						|
        """Returns a copy with the sign switched.
 | 
						|
 | 
						|
        Rounds, if it has reason.
 | 
						|
        """
 | 
						|
        if self._is_special:
 | 
						|
            ans = self._check_nans(context=context)
 | 
						|
            if ans:
 | 
						|
                return ans
 | 
						|
 | 
						|
        if not self:
 | 
						|
            # -Decimal('0') is Decimal('0'), not Decimal('-0')
 | 
						|
            ans = self.copy_sign(Dec_0)
 | 
						|
        else:
 | 
						|
            ans = self.copy_negate()
 | 
						|
 | 
						|
        if context is None:
 | 
						|
            context = getcontext()
 | 
						|
        if context._rounding_decision == ALWAYS_ROUND:
 | 
						|
            return ans._fix(context)
 | 
						|
        return ans
 | 
						|
 | 
						|
    def __pos__(self, context=None):
 | 
						|
        """Returns a copy, unless it is a sNaN.
 | 
						|
 | 
						|
        Rounds the number (if more then precision digits)
 | 
						|
        """
 | 
						|
        if self._is_special:
 | 
						|
            ans = self._check_nans(context=context)
 | 
						|
            if ans:
 | 
						|
                return ans
 | 
						|
 | 
						|
        if not self:
 | 
						|
            # + (-0) = 0
 | 
						|
            ans = self.copy_sign(Dec_0)
 | 
						|
        else:
 | 
						|
            ans = Decimal(self)
 | 
						|
 | 
						|
        if context is None:
 | 
						|
            context = getcontext()
 | 
						|
        if context._rounding_decision == ALWAYS_ROUND:
 | 
						|
            return ans._fix(context)
 | 
						|
        return ans
 | 
						|
 | 
						|
    def __abs__(self, round=1, context=None):
 | 
						|
        """Returns the absolute value of self.
 | 
						|
 | 
						|
        If the second argument is 0, do not round.
 | 
						|
        """
 | 
						|
        if self._is_special:
 | 
						|
            ans = self._check_nans(context=context)
 | 
						|
            if ans:
 | 
						|
                return ans
 | 
						|
 | 
						|
        if not round:
 | 
						|
            if context is None:
 | 
						|
                context = getcontext()
 | 
						|
            context = context._shallow_copy()
 | 
						|
            context._set_rounding_decision(NEVER_ROUND)
 | 
						|
 | 
						|
        if self._sign:
 | 
						|
            ans = self.__neg__(context=context)
 | 
						|
        else:
 | 
						|
            ans = self.__pos__(context=context)
 | 
						|
 | 
						|
        return ans
 | 
						|
 | 
						|
    def __add__(self, other, context=None):
 | 
						|
        """Returns self + other.
 | 
						|
 | 
						|
        -INF + INF (or the reverse) cause InvalidOperation errors.
 | 
						|
        """
 | 
						|
        other = _convert_other(other)
 | 
						|
        if other is NotImplemented:
 | 
						|
            return other
 | 
						|
 | 
						|
        if context is None:
 | 
						|
            context = getcontext()
 | 
						|
 | 
						|
        if self._is_special or other._is_special:
 | 
						|
            ans = self._check_nans(other, context)
 | 
						|
            if ans:
 | 
						|
                return ans
 | 
						|
 | 
						|
            if self._isinfinity():
 | 
						|
                # If both INF, same sign => same as both, opposite => error.
 | 
						|
                if self._sign != other._sign and other._isinfinity():
 | 
						|
                    return context._raise_error(InvalidOperation, '-INF + INF')
 | 
						|
                return Decimal(self)
 | 
						|
            if other._isinfinity():
 | 
						|
                return Decimal(other)  # Can't both be infinity here
 | 
						|
 | 
						|
        shouldround = context._rounding_decision == ALWAYS_ROUND
 | 
						|
 | 
						|
        exp = min(self._exp, other._exp)
 | 
						|
        negativezero = 0
 | 
						|
        if context.rounding == ROUND_FLOOR and self._sign != other._sign:
 | 
						|
            # If the answer is 0, the sign should be negative, in this case.
 | 
						|
            negativezero = 1
 | 
						|
 | 
						|
        if not self and not other:
 | 
						|
            sign = min(self._sign, other._sign)
 | 
						|
            if negativezero:
 | 
						|
                sign = 1
 | 
						|
            ans = Decimal( (sign, (0,), exp))
 | 
						|
            if shouldround:
 | 
						|
                ans = ans._fix(context)
 | 
						|
            return ans
 | 
						|
        if not self:
 | 
						|
            exp = max(exp, other._exp - context.prec-1)
 | 
						|
            ans = other._rescale(exp, context.rounding)
 | 
						|
            if shouldround:
 | 
						|
                ans = ans._fix(context)
 | 
						|
            return ans
 | 
						|
        if not other:
 | 
						|
            exp = max(exp, self._exp - context.prec-1)
 | 
						|
            ans = self._rescale(exp, context.rounding)
 | 
						|
            if shouldround:
 | 
						|
                ans = ans._fix(context)
 | 
						|
            return ans
 | 
						|
 | 
						|
        op1 = _WorkRep(self)
 | 
						|
        op2 = _WorkRep(other)
 | 
						|
        op1, op2 = _normalize(op1, op2, shouldround, context.prec)
 | 
						|
 | 
						|
        result = _WorkRep()
 | 
						|
        if op1.sign != op2.sign:
 | 
						|
            # Equal and opposite
 | 
						|
            if op1.int == op2.int:
 | 
						|
                ans = Decimal((negativezero, (0,), exp))
 | 
						|
                if shouldround:
 | 
						|
                    ans = ans._fix(context)
 | 
						|
                return ans
 | 
						|
            if op1.int < op2.int:
 | 
						|
                op1, op2 = op2, op1
 | 
						|
                # OK, now abs(op1) > abs(op2)
 | 
						|
            if op1.sign == 1:
 | 
						|
                result.sign = 1
 | 
						|
                op1.sign, op2.sign = op2.sign, op1.sign
 | 
						|
            else:
 | 
						|
                result.sign = 0
 | 
						|
                # So we know the sign, and op1 > 0.
 | 
						|
        elif op1.sign == 1:
 | 
						|
            result.sign = 1
 | 
						|
            op1.sign, op2.sign = (0, 0)
 | 
						|
        else:
 | 
						|
            result.sign = 0
 | 
						|
        # Now, op1 > abs(op2) > 0
 | 
						|
 | 
						|
        if op2.sign == 0:
 | 
						|
            result.int = op1.int + op2.int
 | 
						|
        else:
 | 
						|
            result.int = op1.int - op2.int
 | 
						|
 | 
						|
        result.exp = op1.exp
 | 
						|
        ans = Decimal(result)
 | 
						|
        if shouldround:
 | 
						|
            ans = ans._fix(context)
 | 
						|
        return ans
 | 
						|
 | 
						|
    __radd__ = __add__
 | 
						|
 | 
						|
    def __sub__(self, other, context=None):
 | 
						|
        """Return self - other"""
 | 
						|
        other = _convert_other(other)
 | 
						|
        if other is NotImplemented:
 | 
						|
            return other
 | 
						|
 | 
						|
        if self._is_special or other._is_special:
 | 
						|
            ans = self._check_nans(other, context=context)
 | 
						|
            if ans:
 | 
						|
                return ans
 | 
						|
 | 
						|
        # self - other is computed as self + other.copy_negate()
 | 
						|
        return self.__add__(other.copy_negate(), context=context)
 | 
						|
 | 
						|
    def __rsub__(self, other, context=None):
 | 
						|
        """Return other - self"""
 | 
						|
        other = _convert_other(other)
 | 
						|
        if other is NotImplemented:
 | 
						|
            return other
 | 
						|
 | 
						|
        return other.__sub__(self, context=context)
 | 
						|
 | 
						|
    def _increment(self):
 | 
						|
        """Special case of add, adding 1eExponent
 | 
						|
 | 
						|
        Since it is common, (rounding, for example) this adds
 | 
						|
        (sign)*one E self._exp to the number more efficiently than add.
 | 
						|
 | 
						|
        Assumes that self is nonspecial.
 | 
						|
 | 
						|
        For example:
 | 
						|
        Decimal('5.624e10')._increment() == Decimal('5.625e10')
 | 
						|
        """
 | 
						|
        L = list(self._int)
 | 
						|
        L[-1] += 1
 | 
						|
        spot = len(L)-1
 | 
						|
        while L[spot] == 10:
 | 
						|
            L[spot] = 0
 | 
						|
            if spot == 0:
 | 
						|
                L[0:0] = [1]
 | 
						|
                break
 | 
						|
            L[spot-1] += 1
 | 
						|
            spot -= 1
 | 
						|
        return Decimal((self._sign, L, self._exp))
 | 
						|
 | 
						|
    def __mul__(self, other, context=None):
 | 
						|
        """Return self * other.
 | 
						|
 | 
						|
        (+-) INF * 0 (or its reverse) raise InvalidOperation.
 | 
						|
        """
 | 
						|
        other = _convert_other(other)
 | 
						|
        if other is NotImplemented:
 | 
						|
            return other
 | 
						|
 | 
						|
        if context is None:
 | 
						|
            context = getcontext()
 | 
						|
 | 
						|
        resultsign = self._sign ^ other._sign
 | 
						|
 | 
						|
        if self._is_special or other._is_special:
 | 
						|
            ans = self._check_nans(other, context)
 | 
						|
            if ans:
 | 
						|
                return ans
 | 
						|
 | 
						|
            if self._isinfinity():
 | 
						|
                if not other:
 | 
						|
                    return context._raise_error(InvalidOperation, '(+-)INF * 0')
 | 
						|
                return Infsign[resultsign]
 | 
						|
 | 
						|
            if other._isinfinity():
 | 
						|
                if not self:
 | 
						|
                    return context._raise_error(InvalidOperation, '0 * (+-)INF')
 | 
						|
                return Infsign[resultsign]
 | 
						|
 | 
						|
        resultexp = self._exp + other._exp
 | 
						|
        shouldround = context._rounding_decision == ALWAYS_ROUND
 | 
						|
 | 
						|
        # Special case for multiplying by zero
 | 
						|
        if not self or not other:
 | 
						|
            ans = Decimal((resultsign, (0,), resultexp))
 | 
						|
            if shouldround:
 | 
						|
                # Fixing in case the exponent is out of bounds
 | 
						|
                ans = ans._fix(context)
 | 
						|
            return ans
 | 
						|
 | 
						|
        # Special case for multiplying by power of 10
 | 
						|
        if self._int == (1,):
 | 
						|
            ans = Decimal((resultsign, other._int, resultexp))
 | 
						|
            if shouldround:
 | 
						|
                ans = ans._fix(context)
 | 
						|
            return ans
 | 
						|
        if other._int == (1,):
 | 
						|
            ans = Decimal((resultsign, self._int, resultexp))
 | 
						|
            if shouldround:
 | 
						|
                ans = ans._fix(context)
 | 
						|
            return ans
 | 
						|
 | 
						|
        op1 = _WorkRep(self)
 | 
						|
        op2 = _WorkRep(other)
 | 
						|
 | 
						|
        ans = Decimal((resultsign, map(int, str(op1.int * op2.int)), resultexp))
 | 
						|
        if shouldround:
 | 
						|
            ans = ans._fix(context)
 | 
						|
 | 
						|
        return ans
 | 
						|
    __rmul__ = __mul__
 | 
						|
 | 
						|
    def __div__(self, other, context=None):
 | 
						|
        """Return self / other."""
 | 
						|
        other = _convert_other(other)
 | 
						|
        if other is NotImplemented:
 | 
						|
            return NotImplemented
 | 
						|
 | 
						|
        if context is None:
 | 
						|
            context = getcontext()
 | 
						|
 | 
						|
        sign = self._sign ^ other._sign
 | 
						|
 | 
						|
        if self._is_special or other._is_special:
 | 
						|
            ans = self._check_nans(other, context)
 | 
						|
            if ans:
 | 
						|
                return ans
 | 
						|
 | 
						|
            if self._isinfinity() and other._isinfinity():
 | 
						|
                return context._raise_error(InvalidOperation, '(+-)INF/(+-)INF')
 | 
						|
 | 
						|
            if self._isinfinity():
 | 
						|
                return Infsign[sign]
 | 
						|
 | 
						|
            if other._isinfinity():
 | 
						|
                context._raise_error(Clamped, 'Division by infinity')
 | 
						|
                return Decimal((sign, (0,), context.Etiny()))
 | 
						|
 | 
						|
        # Special cases for zeroes
 | 
						|
        if not other:
 | 
						|
            if not self:
 | 
						|
                return context._raise_error(DivisionUndefined, '0 / 0')
 | 
						|
            return context._raise_error(DivisionByZero, 'x / 0', sign)
 | 
						|
 | 
						|
        if not self:
 | 
						|
            exp = self._exp - other._exp
 | 
						|
            coeff = 0
 | 
						|
        else:
 | 
						|
            # OK, so neither = 0, INF or NaN
 | 
						|
            shift = len(other._int) - len(self._int) + context.prec + 1
 | 
						|
            exp = self._exp - other._exp - shift
 | 
						|
            op1 = _WorkRep(self)
 | 
						|
            op2 = _WorkRep(other)
 | 
						|
            if shift >= 0:
 | 
						|
                coeff, remainder = divmod(op1.int * 10**shift, op2.int)
 | 
						|
            else:
 | 
						|
                coeff, remainder = divmod(op1.int, op2.int * 10**-shift)
 | 
						|
            if remainder:
 | 
						|
                # result is not exact; adjust to ensure correct rounding
 | 
						|
                if coeff % 5 == 0:
 | 
						|
                    coeff += 1
 | 
						|
            else:
 | 
						|
                # result is exact; get as close to ideal exponent as possible
 | 
						|
                ideal_exp = self._exp - other._exp
 | 
						|
                while exp < ideal_exp and coeff % 10 == 0:
 | 
						|
                    coeff //= 10
 | 
						|
                    exp += 1
 | 
						|
 | 
						|
        ans = Decimal((sign, map(int, str(coeff)), exp))
 | 
						|
        return ans._fix(context)
 | 
						|
 | 
						|
    __truediv__ = __div__
 | 
						|
 | 
						|
    def _divide(self, other, context):
 | 
						|
        """Return (self // other, self % other), to context.prec precision.
 | 
						|
 | 
						|
        Assumes that neither self nor other is a NaN, that self is not
 | 
						|
        infinite and that other is nonzero.
 | 
						|
        """
 | 
						|
        sign = self._sign ^ other._sign
 | 
						|
        if other._isinfinity():
 | 
						|
            ideal_exp = self._exp
 | 
						|
        else:
 | 
						|
            ideal_exp = min(self._exp, other._exp)
 | 
						|
 | 
						|
        expdiff = self.adjusted() - other.adjusted()
 | 
						|
        if not self or other._isinfinity() or expdiff <= -2:
 | 
						|
            return (Decimal((sign, (0,), 0)),
 | 
						|
                    self._rescale(ideal_exp, context.rounding))
 | 
						|
        if expdiff <= context.prec:
 | 
						|
            op1 = _WorkRep(self)
 | 
						|
            op2 = _WorkRep(other)
 | 
						|
            if op1.exp >= op2.exp:
 | 
						|
                op1.int *= 10**(op1.exp - op2.exp)
 | 
						|
            else:
 | 
						|
                op2.int *= 10**(op2.exp - op1.exp)
 | 
						|
            q, r = divmod(op1.int, op2.int)
 | 
						|
            if q < 10**context.prec:
 | 
						|
                return (Decimal((sign, map(int, str(q)), 0)),
 | 
						|
                        Decimal((self._sign, map(int, str(r)), ideal_exp)))
 | 
						|
 | 
						|
        # Here the quotient is too large to be representable
 | 
						|
        ans = context._raise_error(DivisionImpossible,
 | 
						|
                                   'quotient too large in //, % or divmod')
 | 
						|
        return ans, ans
 | 
						|
 | 
						|
    def __rdiv__(self, other, context=None):
 | 
						|
        """Swaps self/other and returns __div__."""
 | 
						|
        other = _convert_other(other)
 | 
						|
        if other is NotImplemented:
 | 
						|
            return other
 | 
						|
        return other.__div__(self, context=context)
 | 
						|
    __rtruediv__ = __rdiv__
 | 
						|
 | 
						|
    def __divmod__(self, other, context=None):
 | 
						|
        """
 | 
						|
        Return (self // other, self % other)
 | 
						|
        """
 | 
						|
        other = _convert_other(other)
 | 
						|
        if other is NotImplemented:
 | 
						|
            return other
 | 
						|
 | 
						|
        if context is None:
 | 
						|
            context = getcontext()
 | 
						|
 | 
						|
        ans = self._check_nans(other, context)
 | 
						|
        if ans:
 | 
						|
            return (ans, ans)
 | 
						|
 | 
						|
        sign = self._sign ^ other._sign
 | 
						|
        if self._isinfinity():
 | 
						|
            if other._isinfinity():
 | 
						|
                ans = context._raise_error(InvalidOperation, 'divmod(INF, INF)')
 | 
						|
                return ans, ans
 | 
						|
            else:
 | 
						|
                return (Infsign[sign],
 | 
						|
                        context._raise_error(InvalidOperation, 'INF % x'))
 | 
						|
 | 
						|
        if not other:
 | 
						|
            if not self:
 | 
						|
                ans = context._raise_error(DivisionUndefined, 'divmod(0, 0)')
 | 
						|
                return ans, ans
 | 
						|
            else:
 | 
						|
                return (context._raise_error(DivisionByZero, 'x // 0', sign),
 | 
						|
                        context._raise_error(InvalidOperation, 'x % 0'))
 | 
						|
 | 
						|
        quotient, remainder = self._divide(other, context)
 | 
						|
        if context._rounding_decision == ALWAYS_ROUND:
 | 
						|
            remainder = remainder._fix(context)
 | 
						|
        return quotient, remainder
 | 
						|
 | 
						|
    def __rdivmod__(self, other, context=None):
 | 
						|
        """Swaps self/other and returns __divmod__."""
 | 
						|
        other = _convert_other(other)
 | 
						|
        if other is NotImplemented:
 | 
						|
            return other
 | 
						|
        return other.__divmod__(self, context=context)
 | 
						|
 | 
						|
    def __mod__(self, other, context=None):
 | 
						|
        """
 | 
						|
        self % other
 | 
						|
        """
 | 
						|
        other = _convert_other(other)
 | 
						|
        if other is NotImplemented:
 | 
						|
            return other
 | 
						|
 | 
						|
        if context is None:
 | 
						|
            context = getcontext()
 | 
						|
 | 
						|
        ans = self._check_nans(other, context)
 | 
						|
        if ans:
 | 
						|
            return ans
 | 
						|
 | 
						|
        if self._isinfinity():
 | 
						|
            return context._raise_error(InvalidOperation, 'INF % x')
 | 
						|
        elif not other:
 | 
						|
            if self:
 | 
						|
                return context._raise_error(InvalidOperation, 'x % 0')
 | 
						|
            else:
 | 
						|
                return context._raise_error(DivisionUndefined, '0 % 0')
 | 
						|
 | 
						|
        remainder = self._divide(other, context)[1]
 | 
						|
        if context._rounding_decision == ALWAYS_ROUND:
 | 
						|
            remainder = remainder._fix(context)
 | 
						|
        return remainder
 | 
						|
 | 
						|
    def __rmod__(self, other, context=None):
 | 
						|
        """Swaps self/other and returns __mod__."""
 | 
						|
        other = _convert_other(other)
 | 
						|
        if other is NotImplemented:
 | 
						|
            return other
 | 
						|
        return other.__mod__(self, context=context)
 | 
						|
 | 
						|
    def remainder_near(self, other, context=None):
 | 
						|
        """
 | 
						|
        Remainder nearest to 0-  abs(remainder-near) <= other/2
 | 
						|
        """
 | 
						|
        if context is None:
 | 
						|
            context = getcontext()
 | 
						|
 | 
						|
        other = _convert_other(other, raiseit=True)
 | 
						|
 | 
						|
        ans = self._check_nans(other, context)
 | 
						|
        if ans:
 | 
						|
            return ans
 | 
						|
 | 
						|
        # self == +/-infinity -> InvalidOperation
 | 
						|
        if self._isinfinity():
 | 
						|
            return context._raise_error(InvalidOperation,
 | 
						|
                                        'remainder_near(infinity, x)')
 | 
						|
 | 
						|
        # other == 0 -> either InvalidOperation or DivisionUndefined
 | 
						|
        if not other:
 | 
						|
            if self:
 | 
						|
                return context._raise_error(InvalidOperation,
 | 
						|
                                            'remainder_near(x, 0)')
 | 
						|
            else:
 | 
						|
                return context._raise_error(DivisionUndefined,
 | 
						|
                                            'remainder_near(0, 0)')
 | 
						|
 | 
						|
        # other = +/-infinity -> remainder = self
 | 
						|
        if other._isinfinity():
 | 
						|
            ans = Decimal(self)
 | 
						|
            return ans._fix(context)
 | 
						|
 | 
						|
        # self = 0 -> remainder = self, with ideal exponent
 | 
						|
        ideal_exponent = min(self._exp, other._exp)
 | 
						|
        if not self:
 | 
						|
            ans = Decimal((self._sign, (0,), ideal_exponent))
 | 
						|
            return ans._fix(context)
 | 
						|
 | 
						|
        # catch most cases of large or small quotient
 | 
						|
        expdiff = self.adjusted() - other.adjusted()
 | 
						|
        if expdiff >= context.prec + 1:
 | 
						|
            # expdiff >= prec+1 => abs(self/other) > 10**prec
 | 
						|
            return context._raise_error(DivisionImpossible)
 | 
						|
        if expdiff <= -2:
 | 
						|
            # expdiff <= -2 => abs(self/other) < 0.1
 | 
						|
            ans = self._rescale(ideal_exponent, context.rounding)
 | 
						|
            return ans._fix(context)
 | 
						|
 | 
						|
        # adjust both arguments to have the same exponent, then divide
 | 
						|
        op1 = _WorkRep(self)
 | 
						|
        op2 = _WorkRep(other)
 | 
						|
        if op1.exp >= op2.exp:
 | 
						|
            op1.int *= 10**(op1.exp - op2.exp)
 | 
						|
        else:
 | 
						|
            op2.int *= 10**(op2.exp - op1.exp)
 | 
						|
        q, r = divmod(op1.int, op2.int)
 | 
						|
        # remainder is r*10**ideal_exponent; other is +/-op2.int *
 | 
						|
        # 10**ideal_exponent.   Apply correction to ensure that
 | 
						|
        # abs(remainder) <= abs(other)/2
 | 
						|
        if 2*r + (q&1) > op2.int:
 | 
						|
            r -= op2.int
 | 
						|
            q += 1
 | 
						|
 | 
						|
        if q >= 10**context.prec:
 | 
						|
            return context._raise_error(DivisionImpossible)
 | 
						|
 | 
						|
        # result has same sign as self unless r is negative
 | 
						|
        sign = self._sign
 | 
						|
        if r < 0:
 | 
						|
            sign = 1-sign
 | 
						|
            r = -r
 | 
						|
 | 
						|
        ans = Decimal((sign, map(int, str(r)), ideal_exponent))
 | 
						|
        return ans._fix(context)
 | 
						|
 | 
						|
    def __floordiv__(self, other, context=None):
 | 
						|
        """self // other"""
 | 
						|
        other = _convert_other(other)
 | 
						|
        if other is NotImplemented:
 | 
						|
            return other
 | 
						|
 | 
						|
        if context is None:
 | 
						|
            context = getcontext()
 | 
						|
 | 
						|
        ans = self._check_nans(other, context)
 | 
						|
        if ans:
 | 
						|
            return ans
 | 
						|
 | 
						|
        if self._isinfinity():
 | 
						|
            if other._isinfinity():
 | 
						|
                return context._raise_error(InvalidOperation, 'INF // INF')
 | 
						|
            else:
 | 
						|
                return Infsign[self._sign ^ other._sign]
 | 
						|
 | 
						|
        if not other:
 | 
						|
            if self:
 | 
						|
                return context._raise_error(DivisionByZero, 'x // 0',
 | 
						|
                                            self._sign ^ other._sign)
 | 
						|
            else:
 | 
						|
                return context._raise_error(DivisionUndefined, '0 // 0')
 | 
						|
 | 
						|
        return self._divide(other, context)[0]
 | 
						|
 | 
						|
    def __rfloordiv__(self, other, context=None):
 | 
						|
        """Swaps self/other and returns __floordiv__."""
 | 
						|
        other = _convert_other(other)
 | 
						|
        if other is NotImplemented:
 | 
						|
            return other
 | 
						|
        return other.__floordiv__(self, context=context)
 | 
						|
 | 
						|
    def __float__(self):
 | 
						|
        """Float representation."""
 | 
						|
        return float(str(self))
 | 
						|
 | 
						|
    def __int__(self):
 | 
						|
        """Converts self to an int, truncating if necessary."""
 | 
						|
        if self._is_special:
 | 
						|
            if self._isnan():
 | 
						|
                context = getcontext()
 | 
						|
                return context._raise_error(InvalidContext)
 | 
						|
            elif self._isinfinity():
 | 
						|
                raise OverflowError("Cannot convert infinity to long")
 | 
						|
        s = (-1)**self._sign
 | 
						|
        if self._exp >= 0:
 | 
						|
            return s*int(''.join(map(str, self._int)))*10**self._exp
 | 
						|
        else:
 | 
						|
            return s*int(''.join(map(str, self._int))[:self._exp] or '0')
 | 
						|
 | 
						|
    def __long__(self):
 | 
						|
        """Converts to a long.
 | 
						|
 | 
						|
        Equivalent to long(int(self))
 | 
						|
        """
 | 
						|
        return long(self.__int__())
 | 
						|
 | 
						|
    def _fix_nan(self, context):
 | 
						|
        """Decapitate the payload of a NaN to fit the context"""
 | 
						|
        payload = self._int
 | 
						|
 | 
						|
        # maximum length of payload is precision if _clamp=0,
 | 
						|
        # precision-1 if _clamp=1.
 | 
						|
        max_payload_len = context.prec - context._clamp
 | 
						|
        if len(payload) > max_payload_len:
 | 
						|
            pos = len(payload)-max_payload_len
 | 
						|
            while pos < len(payload) and payload[pos] == 0:
 | 
						|
                pos += 1
 | 
						|
            payload = payload[pos:]
 | 
						|
            return Decimal((self._sign, payload, self._exp))
 | 
						|
        return Decimal(self)
 | 
						|
 | 
						|
    def _fix(self, context):
 | 
						|
        """Round if it is necessary to keep self within prec precision.
 | 
						|
 | 
						|
        Rounds and fixes the exponent.  Does not raise on a sNaN.
 | 
						|
 | 
						|
        Arguments:
 | 
						|
        self - Decimal instance
 | 
						|
        context - context used.
 | 
						|
        """
 | 
						|
 | 
						|
        if context is None:
 | 
						|
            context = getcontext()
 | 
						|
 | 
						|
        if self._is_special:
 | 
						|
            if self._isnan():
 | 
						|
                # decapitate payload if necessary
 | 
						|
                return self._fix_nan(context)
 | 
						|
            else:
 | 
						|
                # self is +/-Infinity; return unaltered
 | 
						|
                return Decimal(self)
 | 
						|
 | 
						|
        # if self is zero then exponent should be between Etiny and
 | 
						|
        # Emax if _clamp==0, and between Etiny and Etop if _clamp==1.
 | 
						|
        Etiny = context.Etiny()
 | 
						|
        Etop = context.Etop()
 | 
						|
        if not self:
 | 
						|
            exp_max = [context.Emax, Etop][context._clamp]
 | 
						|
            new_exp = min(max(self._exp, Etiny), exp_max)
 | 
						|
            if new_exp != self._exp:
 | 
						|
                context._raise_error(Clamped)
 | 
						|
                return Decimal((self._sign, (0,), new_exp))
 | 
						|
            else:
 | 
						|
                return Decimal(self)
 | 
						|
 | 
						|
        # exp_min is the smallest allowable exponent of the result,
 | 
						|
        # equal to max(self.adjusted()-context.prec+1, Etiny)
 | 
						|
        exp_min = len(self._int) + self._exp - context.prec
 | 
						|
        if exp_min > Etop:
 | 
						|
            # overflow: exp_min > Etop iff self.adjusted() > Emax
 | 
						|
            context._raise_error(Inexact)
 | 
						|
            context._raise_error(Rounded)
 | 
						|
            return context._raise_error(Overflow, 'above Emax', self._sign)
 | 
						|
        self_is_subnormal = exp_min < Etiny
 | 
						|
        if self_is_subnormal:
 | 
						|
            context._raise_error(Subnormal)
 | 
						|
            exp_min = Etiny
 | 
						|
 | 
						|
        # round if self has too many digits
 | 
						|
        if self._exp < exp_min:
 | 
						|
            context._raise_error(Rounded)
 | 
						|
            ans = self._rescale(exp_min, context.rounding)
 | 
						|
            if ans != self:
 | 
						|
                context._raise_error(Inexact)
 | 
						|
                if self_is_subnormal:
 | 
						|
                    context._raise_error(Underflow)
 | 
						|
                    if not ans:
 | 
						|
                        # raise Clamped on underflow to 0
 | 
						|
                        context._raise_error(Clamped)
 | 
						|
                elif len(ans._int) == context.prec+1:
 | 
						|
                    # we get here only if rescaling rounds the
 | 
						|
                    # cofficient up to exactly 10**context.prec
 | 
						|
                    if ans._exp < Etop:
 | 
						|
                        ans = Decimal((ans._sign, ans._int[:-1], ans._exp+1))
 | 
						|
                    else:
 | 
						|
                        # Inexact and Rounded have already been raised
 | 
						|
                        ans = context._raise_error(Overflow, 'above Emax',
 | 
						|
                                                   self._sign)
 | 
						|
            return ans
 | 
						|
 | 
						|
        # fold down if _clamp == 1 and self has too few digits
 | 
						|
        if context._clamp == 1 and self._exp > Etop:
 | 
						|
            context._raise_error(Clamped)
 | 
						|
            self_padded = self._int + (0,)*(self._exp - Etop)
 | 
						|
            return Decimal((self._sign, self_padded, Etop))
 | 
						|
 | 
						|
        # here self was representable to begin with; return unchanged
 | 
						|
        return Decimal(self)
 | 
						|
 | 
						|
    _pick_rounding_function = {}
 | 
						|
 | 
						|
    # for each of the rounding functions below:
 | 
						|
    #   self is a finite, nonzero Decimal
 | 
						|
    #   prec is an integer satisfying 0 <= prec < len(self._int)
 | 
						|
    # the rounded result will have exponent self._exp + len(self._int) - prec;
 | 
						|
 | 
						|
    def _round_down(self, prec):
 | 
						|
        """Also known as round-towards-0, truncate."""
 | 
						|
        newexp = self._exp + len(self._int) - prec
 | 
						|
        return Decimal((self._sign, self._int[:prec] or (0,), newexp))
 | 
						|
 | 
						|
    def _round_up(self, prec):
 | 
						|
        """Rounds away from 0."""
 | 
						|
        newexp = self._exp + len(self._int) - prec
 | 
						|
        tmp = Decimal((self._sign, self._int[:prec] or (0,), newexp))
 | 
						|
        for digit in self._int[prec:]:
 | 
						|
            if digit != 0:
 | 
						|
                return tmp._increment()
 | 
						|
        return tmp
 | 
						|
 | 
						|
    def _round_half_up(self, prec):
 | 
						|
        """Rounds 5 up (away from 0)"""
 | 
						|
        if self._int[prec] >= 5:
 | 
						|
            return self._round_up(prec)
 | 
						|
        else:
 | 
						|
            return self._round_down(prec)
 | 
						|
 | 
						|
    def _round_half_down(self, prec):
 | 
						|
        """Round 5 down"""
 | 
						|
        if self._int[prec] == 5:
 | 
						|
            for digit in self._int[prec+1:]:
 | 
						|
                if digit != 0:
 | 
						|
                    break
 | 
						|
            else:
 | 
						|
                return self._round_down(prec)
 | 
						|
        return self._round_half_up(prec)
 | 
						|
 | 
						|
    def _round_half_even(self, prec):
 | 
						|
        """Round 5 to even, rest to nearest."""
 | 
						|
        if prec and self._int[prec-1] & 1:
 | 
						|
            return self._round_half_up(prec)
 | 
						|
        else:
 | 
						|
            return self._round_half_down(prec)
 | 
						|
 | 
						|
    def _round_ceiling(self, prec):
 | 
						|
        """Rounds up (not away from 0 if negative.)"""
 | 
						|
        if self._sign:
 | 
						|
            return self._round_down(prec)
 | 
						|
        else:
 | 
						|
            return self._round_up(prec)
 | 
						|
 | 
						|
    def _round_floor(self, prec):
 | 
						|
        """Rounds down (not towards 0 if negative)"""
 | 
						|
        if not self._sign:
 | 
						|
            return self._round_down(prec)
 | 
						|
        else:
 | 
						|
            return self._round_up(prec)
 | 
						|
 | 
						|
    def _round_05up(self, prec):
 | 
						|
        """Round down unless digit prec-1 is 0 or 5."""
 | 
						|
        if prec == 0 or self._int[prec-1] in (0, 5):
 | 
						|
            return self._round_up(prec)
 | 
						|
        else:
 | 
						|
            return self._round_down(prec)
 | 
						|
 | 
						|
    def fma(self, other, third, context=None):
 | 
						|
        """Fused multiply-add.
 | 
						|
 | 
						|
        Returns self*other+third with no rounding of the intermediate
 | 
						|
        product self*other.
 | 
						|
 | 
						|
        self and other are multiplied together, with no rounding of
 | 
						|
        the result.  The third operand is then added to the result,
 | 
						|
        and a single final rounding is performed.
 | 
						|
        """
 | 
						|
 | 
						|
        other = _convert_other(other, raiseit=True)
 | 
						|
        third = _convert_other(third, raiseit=True)
 | 
						|
 | 
						|
        if context is None:
 | 
						|
            context = getcontext()
 | 
						|
 | 
						|
        # do self*other in fresh context with no traps and no rounding
 | 
						|
        mul_context = Context(traps=[], flags=[],
 | 
						|
                              _rounding_decision=NEVER_ROUND)
 | 
						|
        product = self.__mul__(other, mul_context)
 | 
						|
 | 
						|
        if mul_context.flags[InvalidOperation]:
 | 
						|
            # reraise in current context
 | 
						|
            return context._raise_error(InvalidOperation,
 | 
						|
                                        'invalid multiplication in fma',
 | 
						|
                                        1, product)
 | 
						|
 | 
						|
        ans = product.__add__(third, context)
 | 
						|
        return ans
 | 
						|
 | 
						|
    def _power_modulo(self, other, modulo, context=None):
 | 
						|
        """Three argument version of __pow__"""
 | 
						|
 | 
						|
        # if can't convert other and modulo to Decimal, raise
 | 
						|
        # TypeError; there's no point returning NotImplemented (no
 | 
						|
        # equivalent of __rpow__ for three argument pow)
 | 
						|
        other = _convert_other(other, raiseit=True)
 | 
						|
        modulo = _convert_other(modulo, raiseit=True)
 | 
						|
 | 
						|
        if context is None:
 | 
						|
            context = getcontext()
 | 
						|
 | 
						|
        # deal with NaNs: if there are any sNaNs then first one wins,
 | 
						|
        # (i.e. behaviour for NaNs is identical to that of fma)
 | 
						|
        self_is_nan = self._isnan()
 | 
						|
        other_is_nan = other._isnan()
 | 
						|
        modulo_is_nan = modulo._isnan()
 | 
						|
        if self_is_nan or other_is_nan or modulo_is_nan:
 | 
						|
            if self_is_nan == 2:
 | 
						|
                return context._raise_error(InvalidOperation, 'sNaN',
 | 
						|
                                        1, self)
 | 
						|
            if other_is_nan == 2:
 | 
						|
                return context._raise_error(InvalidOperation, 'sNaN',
 | 
						|
                                        1, other)
 | 
						|
            if modulo_is_nan == 2:
 | 
						|
                return context._raise_error(InvalidOperation, 'sNaN',
 | 
						|
                                        1, modulo)
 | 
						|
            if self_is_nan:
 | 
						|
                return self._fix_nan(context)
 | 
						|
            if other_is_nan:
 | 
						|
                return other._fix_nan(context)
 | 
						|
            return modulo._fix_nan(context)
 | 
						|
 | 
						|
        # check inputs: we apply same restrictions as Python's pow()
 | 
						|
        if not (self._isinteger() and
 | 
						|
                other._isinteger() and
 | 
						|
                modulo._isinteger()):
 | 
						|
            return context._raise_error(InvalidOperation,
 | 
						|
                                        'pow() 3rd argument not allowed '
 | 
						|
                                        'unless all arguments are integers')
 | 
						|
        if other < 0:
 | 
						|
            return context._raise_error(InvalidOperation,
 | 
						|
                                        'pow() 2nd argument cannot be '
 | 
						|
                                        'negative when 3rd argument specified')
 | 
						|
        if not modulo:
 | 
						|
            return context._raise_error(InvalidOperation,
 | 
						|
                                        'pow() 3rd argument cannot be 0')
 | 
						|
 | 
						|
        # additional restriction for decimal: the modulus must be less
 | 
						|
        # than 10**prec in absolute value
 | 
						|
        if modulo.adjusted() >= context.prec:
 | 
						|
            return context._raise_error(InvalidOperation,
 | 
						|
                                        'insufficient precision: pow() 3rd '
 | 
						|
                                        'argument must not have more than '
 | 
						|
                                        'precision digits')
 | 
						|
 | 
						|
        # define 0**0 == NaN, for consistency with two-argument pow
 | 
						|
        # (even though it hurts!)
 | 
						|
        if not other and not self:
 | 
						|
            return context._raise_error(InvalidOperation,
 | 
						|
                                        'at least one of pow() 1st argument '
 | 
						|
                                        'and 2nd argument must be nonzero ;'
 | 
						|
                                        '0**0 is not defined')
 | 
						|
 | 
						|
        # compute sign of result
 | 
						|
        if other._iseven():
 | 
						|
            sign = 0
 | 
						|
        else:
 | 
						|
            sign = self._sign
 | 
						|
 | 
						|
        # convert modulo to a Python integer, and self and other to
 | 
						|
        # Decimal integers (i.e. force their exponents to be >= 0)
 | 
						|
        modulo = abs(int(modulo))
 | 
						|
        base = _WorkRep(self.to_integral_value())
 | 
						|
        exponent = _WorkRep(other.to_integral_value())
 | 
						|
 | 
						|
        # compute result using integer pow()
 | 
						|
        base = (base.int % modulo * pow(10, base.exp, modulo)) % modulo
 | 
						|
        for i in xrange(exponent.exp):
 | 
						|
            base = pow(base, 10, modulo)
 | 
						|
        base = pow(base, exponent.int, modulo)
 | 
						|
 | 
						|
        return Decimal((sign, map(int, str(base)), 0))
 | 
						|
 | 
						|
    def _power_exact(self, other, p):
 | 
						|
        """Attempt to compute self**other exactly.
 | 
						|
 | 
						|
        Given Decimals self and other and an integer p, attempt to
 | 
						|
        compute an exact result for the power self**other, with p
 | 
						|
        digits of precision.  Return None if self**other is not
 | 
						|
        exactly representable in p digits.
 | 
						|
 | 
						|
        Assumes that elimination of special cases has already been
 | 
						|
        performed: self and other must both be nonspecial; self must
 | 
						|
        be positive and not numerically equal to 1; other must be
 | 
						|
        nonzero.  For efficiency, other._exp should not be too large,
 | 
						|
        so that 10**abs(other._exp) is a feasible calculation."""
 | 
						|
 | 
						|
        # In the comments below, we write x for the value of self and
 | 
						|
        # y for the value of other.  Write x = xc*10**xe and y =
 | 
						|
        # yc*10**ye.
 | 
						|
 | 
						|
        # The main purpose of this method is to identify the *failure*
 | 
						|
        # of x**y to be exactly representable with as little effort as
 | 
						|
        # possible.  So we look for cheap and easy tests that
 | 
						|
        # eliminate the possibility of x**y being exact.  Only if all
 | 
						|
        # these tests are passed do we go on to actually compute x**y.
 | 
						|
 | 
						|
        # Here's the main idea.  First normalize both x and y.  We
 | 
						|
        # express y as a rational m/n, with m and n relatively prime
 | 
						|
        # and n>0.  Then for x**y to be exactly representable (at
 | 
						|
        # *any* precision), xc must be the nth power of a positive
 | 
						|
        # integer and xe must be divisible by n.  If m is negative
 | 
						|
        # then additionally xc must be a power of either 2 or 5, hence
 | 
						|
        # a power of 2**n or 5**n.
 | 
						|
        #
 | 
						|
        # There's a limit to how small |y| can be: if y=m/n as above
 | 
						|
        # then:
 | 
						|
        #
 | 
						|
        #  (1) if xc != 1 then for the result to be representable we
 | 
						|
        #      need xc**(1/n) >= 2, and hence also xc**|y| >= 2.  So
 | 
						|
        #      if |y| <= 1/nbits(xc) then xc < 2**nbits(xc) <=
 | 
						|
        #      2**(1/|y|), hence xc**|y| < 2 and the result is not
 | 
						|
        #      representable.
 | 
						|
        #
 | 
						|
        #  (2) if xe != 0, |xe|*(1/n) >= 1, so |xe|*|y| >= 1.  Hence if
 | 
						|
        #      |y| < 1/|xe| then the result is not representable.
 | 
						|
        #
 | 
						|
        # Note that since x is not equal to 1, at least one of (1) and
 | 
						|
        # (2) must apply.  Now |y| < 1/nbits(xc) iff |yc|*nbits(xc) <
 | 
						|
        # 10**-ye iff len(str(|yc|*nbits(xc)) <= -ye.
 | 
						|
        #
 | 
						|
        # There's also a limit to how large y can be, at least if it's
 | 
						|
        # positive: the normalized result will have coefficient xc**y,
 | 
						|
        # so if it's representable then xc**y < 10**p, and y <
 | 
						|
        # p/log10(xc).  Hence if y*log10(xc) >= p then the result is
 | 
						|
        # not exactly representable.
 | 
						|
 | 
						|
        # if len(str(abs(yc*xe)) <= -ye then abs(yc*xe) < 10**-ye,
 | 
						|
        # so |y| < 1/xe and the result is not representable.
 | 
						|
        # Similarly, len(str(abs(yc)*xc_bits)) <= -ye implies |y|
 | 
						|
        # < 1/nbits(xc).
 | 
						|
 | 
						|
        x = _WorkRep(self)
 | 
						|
        xc, xe = x.int, x.exp
 | 
						|
        while xc % 10 == 0:
 | 
						|
            xc //= 10
 | 
						|
            xe += 1
 | 
						|
 | 
						|
        y = _WorkRep(other)
 | 
						|
        yc, ye = y.int, y.exp
 | 
						|
        while yc % 10 == 0:
 | 
						|
            yc //= 10
 | 
						|
            ye += 1
 | 
						|
 | 
						|
        # case where xc == 1: result is 10**(xe*y), with xe*y
 | 
						|
        # required to be an integer
 | 
						|
        if xc == 1:
 | 
						|
            if ye >= 0:
 | 
						|
                exponent = xe*yc*10**ye
 | 
						|
            else:
 | 
						|
                exponent, remainder = divmod(xe*yc, 10**-ye)
 | 
						|
                if remainder:
 | 
						|
                    return None
 | 
						|
            if y.sign == 1:
 | 
						|
                exponent = -exponent
 | 
						|
            # if other is a nonnegative integer, use ideal exponent
 | 
						|
            if other._isinteger() and other._sign == 0:
 | 
						|
                ideal_exponent = self._exp*int(other)
 | 
						|
                zeros = min(exponent-ideal_exponent, p-1)
 | 
						|
            else:
 | 
						|
                zeros = 0
 | 
						|
            return Decimal((0, (1,) + (0,)*zeros, exponent-zeros))
 | 
						|
 | 
						|
        # case where y is negative: xc must be either a power
 | 
						|
        # of 2 or a power of 5.
 | 
						|
        if y.sign == 1:
 | 
						|
            last_digit = xc % 10
 | 
						|
            if last_digit in (2,4,6,8):
 | 
						|
                # quick test for power of 2
 | 
						|
                if xc & -xc != xc:
 | 
						|
                    return None
 | 
						|
                # now xc is a power of 2; e is its exponent
 | 
						|
                e = _nbits(xc)-1
 | 
						|
                # find e*y and xe*y; both must be integers
 | 
						|
                if ye >= 0:
 | 
						|
                    y_as_int = yc*10**ye
 | 
						|
                    e = e*y_as_int
 | 
						|
                    xe = xe*y_as_int
 | 
						|
                else:
 | 
						|
                    ten_pow = 10**-ye
 | 
						|
                    e, remainder = divmod(e*yc, ten_pow)
 | 
						|
                    if remainder:
 | 
						|
                        return None
 | 
						|
                    xe, remainder = divmod(xe*yc, ten_pow)
 | 
						|
                    if remainder:
 | 
						|
                        return None
 | 
						|
 | 
						|
                if e*65 >= p*93: # 93/65 > log(10)/log(5)
 | 
						|
                    return None
 | 
						|
                xc = 5**e
 | 
						|
 | 
						|
            elif last_digit == 5:
 | 
						|
                # e >= log_5(xc) if xc is a power of 5; we have
 | 
						|
                # equality all the way up to xc=5**2658
 | 
						|
                e = _nbits(xc)*28//65
 | 
						|
                xc, remainder = divmod(5**e, xc)
 | 
						|
                if remainder:
 | 
						|
                    return None
 | 
						|
                while xc % 5 == 0:
 | 
						|
                    xc //= 5
 | 
						|
                    e -= 1
 | 
						|
                if ye >= 0:
 | 
						|
                    y_as_integer = yc*10**ye
 | 
						|
                    e = e*y_as_integer
 | 
						|
                    xe = xe*y_as_integer
 | 
						|
                else:
 | 
						|
                    ten_pow = 10**-ye
 | 
						|
                    e, remainder = divmod(e*yc, ten_pow)
 | 
						|
                    if remainder:
 | 
						|
                        return None
 | 
						|
                    xe, remainder = divmod(xe*yc, ten_pow)
 | 
						|
                    if remainder:
 | 
						|
                        return None
 | 
						|
                if e*3 >= p*10: # 10/3 > log(10)/log(2)
 | 
						|
                    return None
 | 
						|
                xc = 2**e
 | 
						|
            else:
 | 
						|
                return None
 | 
						|
 | 
						|
            if xc >= 10**p:
 | 
						|
                return None
 | 
						|
            xe = -e-xe
 | 
						|
            return Decimal((0, map(int, str(xc)), xe))
 | 
						|
 | 
						|
        # now y is positive; find m and n such that y = m/n
 | 
						|
        if ye >= 0:
 | 
						|
            m, n = yc*10**ye, 1
 | 
						|
        else:
 | 
						|
            if xe != 0 and len(str(abs(yc*xe))) <= -ye:
 | 
						|
                return None
 | 
						|
            xc_bits = _nbits(xc)
 | 
						|
            if xc != 1 and len(str(abs(yc)*xc_bits)) <= -ye:
 | 
						|
                return None
 | 
						|
            m, n = yc, 10**(-ye)
 | 
						|
            while m % 2 == n % 2 == 0:
 | 
						|
                m //= 2
 | 
						|
                n //= 2
 | 
						|
            while m % 5 == n % 5 == 0:
 | 
						|
                m //= 5
 | 
						|
                n //= 5
 | 
						|
 | 
						|
        # compute nth root of xc*10**xe
 | 
						|
        if n > 1:
 | 
						|
            # if 1 < xc < 2**n then xc isn't an nth power
 | 
						|
            if xc != 1 and xc_bits <= n:
 | 
						|
                return None
 | 
						|
 | 
						|
            xe, rem = divmod(xe, n)
 | 
						|
            if rem != 0:
 | 
						|
                return None
 | 
						|
 | 
						|
            # compute nth root of xc using Newton's method
 | 
						|
            a = 1L << -(-_nbits(xc)//n) # initial estimate
 | 
						|
            while True:
 | 
						|
                q, r = divmod(xc, a**(n-1))
 | 
						|
                if a <= q:
 | 
						|
                    break
 | 
						|
                else:
 | 
						|
                    a = (a*(n-1) + q)//n
 | 
						|
            if not (a == q and r == 0):
 | 
						|
                return None
 | 
						|
            xc = a
 | 
						|
 | 
						|
        # now xc*10**xe is the nth root of the original xc*10**xe
 | 
						|
        # compute mth power of xc*10**xe
 | 
						|
 | 
						|
        # if m > p*100//_log10_lb(xc) then m > p/log10(xc), hence xc**m >
 | 
						|
        # 10**p and the result is not representable.
 | 
						|
        if xc > 1 and m > p*100//_log10_lb(xc):
 | 
						|
            return None
 | 
						|
        xc = xc**m
 | 
						|
        xe *= m
 | 
						|
        if xc > 10**p:
 | 
						|
            return None
 | 
						|
 | 
						|
        # by this point the result *is* exactly representable
 | 
						|
        # adjust the exponent to get as close as possible to the ideal
 | 
						|
        # exponent, if necessary
 | 
						|
        str_xc = str(xc)
 | 
						|
        if other._isinteger() and other._sign == 0:
 | 
						|
            ideal_exponent = self._exp*int(other)
 | 
						|
            zeros = min(xe-ideal_exponent, p-len(str_xc))
 | 
						|
        else:
 | 
						|
            zeros = 0
 | 
						|
        return Decimal((0, map(int, str_xc)+[0,]*zeros, xe-zeros))
 | 
						|
 | 
						|
    def __pow__(self, other, modulo=None, context=None):
 | 
						|
        """Return self ** other [ % modulo].
 | 
						|
 | 
						|
        With two arguments, compute self**other.
 | 
						|
 | 
						|
        With three arguments, compute (self**other) % modulo.  For the
 | 
						|
        three argument form, the following restrictions on the
 | 
						|
        arguments hold:
 | 
						|
 | 
						|
         - all three arguments must be integral
 | 
						|
         - other must be nonnegative
 | 
						|
         - either self or other (or both) must be nonzero
 | 
						|
         - modulo must be nonzero and must have at most p digits,
 | 
						|
           where p is the context precision.
 | 
						|
 | 
						|
        If any of these restrictions is violated the InvalidOperation
 | 
						|
        flag is raised.
 | 
						|
 | 
						|
        The result of pow(self, other, modulo) is identical to the
 | 
						|
        result that would be obtained by computing (self**other) %
 | 
						|
        modulo with unbounded precision, but is computed more
 | 
						|
        efficiently.  It is always exact.
 | 
						|
        """
 | 
						|
 | 
						|
        if modulo is not None:
 | 
						|
            return self._power_modulo(other, modulo, context)
 | 
						|
 | 
						|
        other = _convert_other(other)
 | 
						|
        if other is NotImplemented:
 | 
						|
            return other
 | 
						|
 | 
						|
        if context is None:
 | 
						|
            context = getcontext()
 | 
						|
 | 
						|
        # either argument is a NaN => result is NaN
 | 
						|
        ans = self._check_nans(other, context)
 | 
						|
        if ans:
 | 
						|
            return ans
 | 
						|
 | 
						|
        # 0**0 = NaN (!), x**0 = 1 for nonzero x (including +/-Infinity)
 | 
						|
        if not other:
 | 
						|
            if not self:
 | 
						|
                return context._raise_error(InvalidOperation, '0 ** 0')
 | 
						|
            else:
 | 
						|
                return Dec_p1
 | 
						|
 | 
						|
        # result has sign 1 iff self._sign is 1 and other is an odd integer
 | 
						|
        result_sign = 0
 | 
						|
        if self._sign == 1:
 | 
						|
            if other._isinteger():
 | 
						|
                if not other._iseven():
 | 
						|
                    result_sign = 1
 | 
						|
            else:
 | 
						|
                # -ve**noninteger = NaN
 | 
						|
                # (-0)**noninteger = 0**noninteger
 | 
						|
                if self:
 | 
						|
                    return context._raise_error(InvalidOperation,
 | 
						|
                        'x ** y with x negative and y not an integer')
 | 
						|
            # negate self, without doing any unwanted rounding
 | 
						|
            self = Decimal((0, self._int, self._exp))
 | 
						|
 | 
						|
        # 0**(+ve or Inf)= 0; 0**(-ve or -Inf) = Infinity
 | 
						|
        if not self:
 | 
						|
            if other._sign == 0:
 | 
						|
                return Decimal((result_sign, (0,), 0))
 | 
						|
            else:
 | 
						|
                return Infsign[result_sign]
 | 
						|
 | 
						|
        # Inf**(+ve or Inf) = Inf; Inf**(-ve or -Inf) = 0
 | 
						|
        if self._isinfinity():
 | 
						|
            if other._sign == 0:
 | 
						|
                return Infsign[result_sign]
 | 
						|
            else:
 | 
						|
                return Decimal((result_sign, (0,), 0))
 | 
						|
 | 
						|
        # 1**other = 1, but the choice of exponent and the flags
 | 
						|
        # depend on the exponent of self, and on whether other is a
 | 
						|
        # positive integer, a negative integer, or neither
 | 
						|
        if self == Dec_p1:
 | 
						|
            if other._isinteger():
 | 
						|
                # exp = max(self._exp*max(int(other), 0),
 | 
						|
                # 1-context.prec) but evaluating int(other) directly
 | 
						|
                # is dangerous until we know other is small (other
 | 
						|
                # could be 1e999999999)
 | 
						|
                if other._sign == 1:
 | 
						|
                    multiplier = 0
 | 
						|
                elif other > context.prec:
 | 
						|
                    multiplier = context.prec
 | 
						|
                else:
 | 
						|
                    multiplier = int(other)
 | 
						|
 | 
						|
                exp = self._exp * multiplier
 | 
						|
                if exp < 1-context.prec:
 | 
						|
                    exp = 1-context.prec
 | 
						|
                    context._raise_error(Rounded)
 | 
						|
            else:
 | 
						|
                context._raise_error(Inexact)
 | 
						|
                context._raise_error(Rounded)
 | 
						|
                exp = 1-context.prec
 | 
						|
 | 
						|
            return Decimal((result_sign, (1,)+(0,)*-exp, exp))
 | 
						|
 | 
						|
        # compute adjusted exponent of self
 | 
						|
        self_adj = self.adjusted()
 | 
						|
 | 
						|
        # self ** infinity is infinity if self > 1, 0 if self < 1
 | 
						|
        # self ** -infinity is infinity if self < 1, 0 if self > 1
 | 
						|
        if other._isinfinity():
 | 
						|
            if (other._sign == 0) == (self_adj < 0):
 | 
						|
                return Decimal((result_sign, (0,), 0))
 | 
						|
            else:
 | 
						|
                return Infsign[result_sign]
 | 
						|
 | 
						|
        # from here on, the result always goes through the call
 | 
						|
        # to _fix at the end of this function.
 | 
						|
        ans = None
 | 
						|
 | 
						|
        # crude test to catch cases of extreme overflow/underflow.  If
 | 
						|
        # log10(self)*other >= 10**bound and bound >= len(str(Emax))
 | 
						|
        # then 10**bound >= 10**len(str(Emax)) >= Emax+1 and hence
 | 
						|
        # self**other >= 10**(Emax+1), so overflow occurs.  The test
 | 
						|
        # for underflow is similar.
 | 
						|
        bound = self._log10_exp_bound() + other.adjusted()
 | 
						|
        if (self_adj >= 0) == (other._sign == 0):
 | 
						|
            # self > 1 and other +ve, or self < 1 and other -ve
 | 
						|
            # possibility of overflow
 | 
						|
            if bound >= len(str(context.Emax)):
 | 
						|
                ans = Decimal((result_sign, (1,), context.Emax+1))
 | 
						|
        else:
 | 
						|
            # self > 1 and other -ve, or self < 1 and other +ve
 | 
						|
            # possibility of underflow to 0
 | 
						|
            Etiny = context.Etiny()
 | 
						|
            if bound >= len(str(-Etiny)):
 | 
						|
                ans = Decimal((result_sign, (1,), Etiny-1))
 | 
						|
 | 
						|
        # try for an exact result with precision +1
 | 
						|
        if ans is None:
 | 
						|
            ans = self._power_exact(other, context.prec + 1)
 | 
						|
            if ans is not None and result_sign == 1:
 | 
						|
                ans = Decimal((1, ans._int, ans._exp))
 | 
						|
 | 
						|
        # usual case: inexact result, x**y computed directly as exp(y*log(x))
 | 
						|
        if ans is None:
 | 
						|
            p = context.prec
 | 
						|
            x = _WorkRep(self)
 | 
						|
            xc, xe = x.int, x.exp
 | 
						|
            y = _WorkRep(other)
 | 
						|
            yc, ye = y.int, y.exp
 | 
						|
            if y.sign == 1:
 | 
						|
                yc = -yc
 | 
						|
 | 
						|
            # compute correctly rounded result:  start with precision +3,
 | 
						|
            # then increase precision until result is unambiguously roundable
 | 
						|
            extra = 3
 | 
						|
            while True:
 | 
						|
                coeff, exp = _dpower(xc, xe, yc, ye, p+extra)
 | 
						|
                if coeff % (5*10**(len(str(coeff))-p-1)):
 | 
						|
                    break
 | 
						|
                extra += 3
 | 
						|
 | 
						|
            ans = Decimal((result_sign, map(int, str(coeff)), exp))
 | 
						|
 | 
						|
        # the specification says that for non-integer other we need to
 | 
						|
        # raise Inexact, even when the result is actually exact.  In
 | 
						|
        # the same way, we need to raise Underflow here if the result
 | 
						|
        # is subnormal.  (The call to _fix will take care of raising
 | 
						|
        # Rounded and Subnormal, as usual.)
 | 
						|
        if not other._isinteger():
 | 
						|
            context._raise_error(Inexact)
 | 
						|
            # pad with zeros up to length context.prec+1 if necessary
 | 
						|
            if len(ans._int) <= context.prec:
 | 
						|
                expdiff = context.prec+1 - len(ans._int)
 | 
						|
                ans = Decimal((ans._sign, ans._int+(0,)*expdiff, ans._exp-expdiff))
 | 
						|
            if ans.adjusted() < context.Emin:
 | 
						|
                context._raise_error(Underflow)
 | 
						|
 | 
						|
        # unlike exp, ln and log10, the power function respects the
 | 
						|
        # rounding mode; no need to use ROUND_HALF_EVEN here
 | 
						|
        ans = ans._fix(context)
 | 
						|
        return ans
 | 
						|
 | 
						|
    def __rpow__(self, other, context=None):
 | 
						|
        """Swaps self/other and returns __pow__."""
 | 
						|
        other = _convert_other(other)
 | 
						|
        if other is NotImplemented:
 | 
						|
            return other
 | 
						|
        return other.__pow__(self, context=context)
 | 
						|
 | 
						|
    def normalize(self, context=None):
 | 
						|
        """Normalize- strip trailing 0s, change anything equal to 0 to 0e0"""
 | 
						|
 | 
						|
        if context is None:
 | 
						|
            context = getcontext()
 | 
						|
 | 
						|
        if self._is_special:
 | 
						|
            ans = self._check_nans(context=context)
 | 
						|
            if ans:
 | 
						|
                return ans
 | 
						|
 | 
						|
        dup = self._fix(context)
 | 
						|
        if dup._isinfinity():
 | 
						|
            return dup
 | 
						|
 | 
						|
        if not dup:
 | 
						|
            return Decimal( (dup._sign, (0,), 0) )
 | 
						|
        exp_max = [context.Emax, context.Etop()][context._clamp]
 | 
						|
        end = len(dup._int)
 | 
						|
        exp = dup._exp
 | 
						|
        while dup._int[end-1] == 0 and exp < exp_max:
 | 
						|
            exp += 1
 | 
						|
            end -= 1
 | 
						|
        return Decimal( (dup._sign, dup._int[:end], exp) )
 | 
						|
 | 
						|
    def quantize(self, exp, rounding=None, context=None, watchexp=True):
 | 
						|
        """Quantize self so its exponent is the same as that of exp.
 | 
						|
 | 
						|
        Similar to self._rescale(exp._exp) but with error checking.
 | 
						|
        """
 | 
						|
        exp = _convert_other(exp, raiseit=True)
 | 
						|
 | 
						|
        if context is None:
 | 
						|
            context = getcontext()
 | 
						|
        if rounding is None:
 | 
						|
            rounding = context.rounding
 | 
						|
 | 
						|
        if self._is_special or exp._is_special:
 | 
						|
            ans = self._check_nans(exp, context)
 | 
						|
            if ans:
 | 
						|
                return ans
 | 
						|
 | 
						|
            if exp._isinfinity() or self._isinfinity():
 | 
						|
                if exp._isinfinity() and self._isinfinity():
 | 
						|
                    return Decimal(self)  # if both are inf, it is OK
 | 
						|
                return context._raise_error(InvalidOperation,
 | 
						|
                                        'quantize with one INF')
 | 
						|
 | 
						|
        # if we're not watching exponents, do a simple rescale
 | 
						|
        if not watchexp:
 | 
						|
            ans = self._rescale(exp._exp, rounding)
 | 
						|
            # raise Inexact and Rounded where appropriate
 | 
						|
            if ans._exp > self._exp:
 | 
						|
                context._raise_error(Rounded)
 | 
						|
                if ans != self:
 | 
						|
                    context._raise_error(Inexact)
 | 
						|
            return ans
 | 
						|
 | 
						|
        # exp._exp should be between Etiny and Emax
 | 
						|
        if not (context.Etiny() <= exp._exp <= context.Emax):
 | 
						|
            return context._raise_error(InvalidOperation,
 | 
						|
                   'target exponent out of bounds in quantize')
 | 
						|
 | 
						|
        if not self:
 | 
						|
            ans = Decimal((self._sign, (0,), exp._exp))
 | 
						|
            return ans._fix(context)
 | 
						|
 | 
						|
        self_adjusted = self.adjusted()
 | 
						|
        if self_adjusted > context.Emax:
 | 
						|
            return context._raise_error(InvalidOperation,
 | 
						|
                                        'exponent of quantize result too large for current context')
 | 
						|
        if self_adjusted - exp._exp + 1 > context.prec:
 | 
						|
            return context._raise_error(InvalidOperation,
 | 
						|
                                        'quantize result has too many digits for current context')
 | 
						|
 | 
						|
        ans = self._rescale(exp._exp, rounding)
 | 
						|
        if ans.adjusted() > context.Emax:
 | 
						|
            return context._raise_error(InvalidOperation,
 | 
						|
                                        'exponent of quantize result too large for current context')
 | 
						|
        if len(ans._int) > context.prec:
 | 
						|
            return context._raise_error(InvalidOperation,
 | 
						|
                                        'quantize result has too many digits for current context')
 | 
						|
 | 
						|
        # raise appropriate flags
 | 
						|
        if ans._exp > self._exp:
 | 
						|
            context._raise_error(Rounded)
 | 
						|
            if ans != self:
 | 
						|
                context._raise_error(Inexact)
 | 
						|
        if ans and ans.adjusted() < context.Emin:
 | 
						|
            context._raise_error(Subnormal)
 | 
						|
 | 
						|
        # call to fix takes care of any necessary folddown
 | 
						|
        ans = ans._fix(context)
 | 
						|
        return ans
 | 
						|
 | 
						|
    def same_quantum(self, other):
 | 
						|
        """Test whether self and other have the same exponent.
 | 
						|
 | 
						|
        same as self._exp == other._exp, except NaN == sNaN
 | 
						|
        """
 | 
						|
        if self._is_special or other._is_special:
 | 
						|
            if self._isnan() or other._isnan():
 | 
						|
                return self._isnan() and other._isnan() and True
 | 
						|
            if self._isinfinity() or other._isinfinity():
 | 
						|
                return self._isinfinity() and other._isinfinity() and True
 | 
						|
        return self._exp == other._exp
 | 
						|
 | 
						|
    def _rescale(self, exp, rounding):
 | 
						|
        """Rescale self so that the exponent is exp, either by padding with zeros
 | 
						|
        or by truncating digits, using the given rounding mode.
 | 
						|
 | 
						|
        Specials are returned without change.  This operation is
 | 
						|
        quiet: it raises no flags, and uses no information from the
 | 
						|
        context.
 | 
						|
 | 
						|
        exp = exp to scale to (an integer)
 | 
						|
        rounding = rounding mode
 | 
						|
        """
 | 
						|
        if self._is_special:
 | 
						|
            return Decimal(self)
 | 
						|
        if not self:
 | 
						|
            return Decimal((self._sign, (0,), exp))
 | 
						|
 | 
						|
        if self._exp >= exp:
 | 
						|
            # pad answer with zeros if necessary
 | 
						|
            return Decimal((self._sign, self._int + (0,)*(self._exp - exp), exp))
 | 
						|
 | 
						|
        # too many digits; round and lose data.  If self.adjusted() <
 | 
						|
        # exp-1, replace self by 10**(exp-1) before rounding
 | 
						|
        digits = len(self._int) + self._exp - exp
 | 
						|
        if digits < 0:
 | 
						|
            self = Decimal((self._sign, (1,), exp-1))
 | 
						|
            digits = 0
 | 
						|
        this_function = getattr(self, self._pick_rounding_function[rounding])
 | 
						|
        return this_function(digits)
 | 
						|
 | 
						|
    def to_integral_exact(self, rounding=None, context=None):
 | 
						|
        """Rounds to a nearby integer.
 | 
						|
 | 
						|
        If no rounding mode is specified, take the rounding mode from
 | 
						|
        the context.  This method raises the Rounded and Inexact flags
 | 
						|
        when appropriate.
 | 
						|
 | 
						|
        See also: to_integral_value, which does exactly the same as
 | 
						|
        this method except that it doesn't raise Inexact or Rounded.
 | 
						|
        """
 | 
						|
        if self._is_special:
 | 
						|
            ans = self._check_nans(context=context)
 | 
						|
            if ans:
 | 
						|
                return ans
 | 
						|
            return Decimal(self)
 | 
						|
        if self._exp >= 0:
 | 
						|
            return Decimal(self)
 | 
						|
        if not self:
 | 
						|
            return Decimal((self._sign, (0,), 0))
 | 
						|
        if context is None:
 | 
						|
            context = getcontext()
 | 
						|
        if rounding is None:
 | 
						|
            rounding = context.rounding
 | 
						|
        context._raise_error(Rounded)
 | 
						|
        ans = self._rescale(0, rounding)
 | 
						|
        if ans != self:
 | 
						|
            context._raise_error(Inexact)
 | 
						|
        return ans
 | 
						|
 | 
						|
    def to_integral_value(self, rounding=None, context=None):
 | 
						|
        """Rounds to the nearest integer, without raising inexact, rounded."""
 | 
						|
        if context is None:
 | 
						|
            context = getcontext()
 | 
						|
        if rounding is None:
 | 
						|
            rounding = context.rounding
 | 
						|
        if self._is_special:
 | 
						|
            ans = self._check_nans(context=context)
 | 
						|
            if ans:
 | 
						|
                return ans
 | 
						|
            return Decimal(self)
 | 
						|
        if self._exp >= 0:
 | 
						|
            return Decimal(self)
 | 
						|
        else:
 | 
						|
            return self._rescale(0, rounding)
 | 
						|
 | 
						|
    # the method name changed, but we provide also the old one, for compatibility
 | 
						|
    to_integral = to_integral_value
 | 
						|
 | 
						|
    def sqrt(self, context=None):
 | 
						|
        """Return the square root of self."""
 | 
						|
        if self._is_special:
 | 
						|
            ans = self._check_nans(context=context)
 | 
						|
            if ans:
 | 
						|
                return ans
 | 
						|
 | 
						|
            if self._isinfinity() and self._sign == 0:
 | 
						|
                return Decimal(self)
 | 
						|
 | 
						|
        if not self:
 | 
						|
            # exponent = self._exp // 2.  sqrt(-0) = -0
 | 
						|
            ans = Decimal((self._sign, (0,), self._exp // 2))
 | 
						|
            return ans._fix(context)
 | 
						|
 | 
						|
        if context is None:
 | 
						|
            context = getcontext()
 | 
						|
 | 
						|
        if self._sign == 1:
 | 
						|
            return context._raise_error(InvalidOperation, 'sqrt(-x), x > 0')
 | 
						|
 | 
						|
        # At this point self represents a positive number.  Let p be
 | 
						|
        # the desired precision and express self in the form c*100**e
 | 
						|
        # with c a positive real number and e an integer, c and e
 | 
						|
        # being chosen so that 100**(p-1) <= c < 100**p.  Then the
 | 
						|
        # (exact) square root of self is sqrt(c)*10**e, and 10**(p-1)
 | 
						|
        # <= sqrt(c) < 10**p, so the closest representable Decimal at
 | 
						|
        # precision p is n*10**e where n = round_half_even(sqrt(c)),
 | 
						|
        # the closest integer to sqrt(c) with the even integer chosen
 | 
						|
        # in the case of a tie.
 | 
						|
        #
 | 
						|
        # To ensure correct rounding in all cases, we use the
 | 
						|
        # following trick: we compute the square root to an extra
 | 
						|
        # place (precision p+1 instead of precision p), rounding down.
 | 
						|
        # Then, if the result is inexact and its last digit is 0 or 5,
 | 
						|
        # we increase the last digit to 1 or 6 respectively; if it's
 | 
						|
        # exact we leave the last digit alone.  Now the final round to
 | 
						|
        # p places (or fewer in the case of underflow) will round
 | 
						|
        # correctly and raise the appropriate flags.
 | 
						|
 | 
						|
        # use an extra digit of precision
 | 
						|
        prec = context.prec+1
 | 
						|
 | 
						|
        # write argument in the form c*100**e where e = self._exp//2
 | 
						|
        # is the 'ideal' exponent, to be used if the square root is
 | 
						|
        # exactly representable.  l is the number of 'digits' of c in
 | 
						|
        # base 100, so that 100**(l-1) <= c < 100**l.
 | 
						|
        op = _WorkRep(self)
 | 
						|
        e = op.exp >> 1
 | 
						|
        if op.exp & 1:
 | 
						|
            c = op.int * 10
 | 
						|
            l = (len(self._int) >> 1) + 1
 | 
						|
        else:
 | 
						|
            c = op.int
 | 
						|
            l = len(self._int)+1 >> 1
 | 
						|
 | 
						|
        # rescale so that c has exactly prec base 100 'digits'
 | 
						|
        shift = prec-l
 | 
						|
        if shift >= 0:
 | 
						|
            c *= 100**shift
 | 
						|
            exact = True
 | 
						|
        else:
 | 
						|
            c, remainder = divmod(c, 100**-shift)
 | 
						|
            exact = not remainder
 | 
						|
        e -= shift
 | 
						|
 | 
						|
        # find n = floor(sqrt(c)) using Newton's method
 | 
						|
        n = 10**prec
 | 
						|
        while True:
 | 
						|
            q = c//n
 | 
						|
            if n <= q:
 | 
						|
                break
 | 
						|
            else:
 | 
						|
                n = n + q >> 1
 | 
						|
        exact = exact and n*n == c
 | 
						|
 | 
						|
        if exact:
 | 
						|
            # result is exact; rescale to use ideal exponent e
 | 
						|
            if shift >= 0:
 | 
						|
                # assert n % 10**shift == 0
 | 
						|
                n //= 10**shift
 | 
						|
            else:
 | 
						|
                n *= 10**-shift
 | 
						|
            e += shift
 | 
						|
        else:
 | 
						|
            # result is not exact; fix last digit as described above
 | 
						|
            if n % 5 == 0:
 | 
						|
                n += 1
 | 
						|
 | 
						|
        ans = Decimal((0, map(int, str(n)), e))
 | 
						|
 | 
						|
        # round, and fit to current context
 | 
						|
        context = context._shallow_copy()
 | 
						|
        rounding = context._set_rounding(ROUND_HALF_EVEN)
 | 
						|
        ans = ans._fix(context)
 | 
						|
        context.rounding = rounding
 | 
						|
 | 
						|
        return ans
 | 
						|
 | 
						|
    def max(self, other, context=None):
 | 
						|
        """Returns the larger value.
 | 
						|
 | 
						|
        Like max(self, other) except if one is not a number, returns
 | 
						|
        NaN (and signals if one is sNaN).  Also rounds.
 | 
						|
        """
 | 
						|
        other = _convert_other(other, raiseit=True)
 | 
						|
 | 
						|
        if context is None:
 | 
						|
            context = getcontext()
 | 
						|
 | 
						|
        if self._is_special or other._is_special:
 | 
						|
            # If one operand is a quiet NaN and the other is number, then the
 | 
						|
            # number is always returned
 | 
						|
            sn = self._isnan()
 | 
						|
            on = other._isnan()
 | 
						|
            if sn or on:
 | 
						|
                if on == 1 and sn != 2:
 | 
						|
                    return self._fix_nan(context)
 | 
						|
                if sn == 1 and on != 2:
 | 
						|
                    return other._fix_nan(context)
 | 
						|
                return self._check_nans(other, context)
 | 
						|
 | 
						|
        c = self.__cmp__(other)
 | 
						|
        if c == 0:
 | 
						|
            # If both operands are finite and equal in numerical value
 | 
						|
            # then an ordering is applied:
 | 
						|
            #
 | 
						|
            # If the signs differ then max returns the operand with the
 | 
						|
            # positive sign and min returns the operand with the negative sign
 | 
						|
            #
 | 
						|
            # If the signs are the same then the exponent is used to select
 | 
						|
            # the result.  This is exactly the ordering used in compare_total.
 | 
						|
            c = self.compare_total(other)
 | 
						|
 | 
						|
        if c == -1:
 | 
						|
            ans = other
 | 
						|
        else:
 | 
						|
            ans = self
 | 
						|
 | 
						|
        if context._rounding_decision == ALWAYS_ROUND:
 | 
						|
            return ans._fix(context)
 | 
						|
        return ans
 | 
						|
 | 
						|
    def min(self, other, context=None):
 | 
						|
        """Returns the smaller value.
 | 
						|
 | 
						|
        Like min(self, other) except if one is not a number, returns
 | 
						|
        NaN (and signals if one is sNaN).  Also rounds.
 | 
						|
        """
 | 
						|
        other = _convert_other(other, raiseit=True)
 | 
						|
 | 
						|
        if context is None:
 | 
						|
            context = getcontext()
 | 
						|
 | 
						|
        if self._is_special or other._is_special:
 | 
						|
            # If one operand is a quiet NaN and the other is number, then the
 | 
						|
            # number is always returned
 | 
						|
            sn = self._isnan()
 | 
						|
            on = other._isnan()
 | 
						|
            if sn or on:
 | 
						|
                if on == 1 and sn != 2:
 | 
						|
                    return self._fix_nan(context)
 | 
						|
                if sn == 1 and on != 2:
 | 
						|
                    return other._fix_nan(context)
 | 
						|
                return self._check_nans(other, context)
 | 
						|
 | 
						|
        c = self.__cmp__(other)
 | 
						|
        if c == 0:
 | 
						|
            c = self.compare_total(other)
 | 
						|
 | 
						|
        if c == -1:
 | 
						|
            ans = self
 | 
						|
        else:
 | 
						|
            ans = other
 | 
						|
 | 
						|
        if context._rounding_decision == ALWAYS_ROUND:
 | 
						|
            return ans._fix(context)
 | 
						|
        return ans
 | 
						|
 | 
						|
    def _isinteger(self):
 | 
						|
        """Returns whether self is an integer"""
 | 
						|
        if self._is_special:
 | 
						|
            return False
 | 
						|
        if self._exp >= 0:
 | 
						|
            return True
 | 
						|
        rest = self._int[self._exp:]
 | 
						|
        return rest == (0,)*len(rest)
 | 
						|
 | 
						|
    def _iseven(self):
 | 
						|
        """Returns True if self is even.  Assumes self is an integer."""
 | 
						|
        if not self or self._exp > 0:
 | 
						|
            return True
 | 
						|
        return self._int[-1+self._exp] & 1 == 0
 | 
						|
 | 
						|
    def adjusted(self):
 | 
						|
        """Return the adjusted exponent of self"""
 | 
						|
        try:
 | 
						|
            return self._exp + len(self._int) - 1
 | 
						|
        # If NaN or Infinity, self._exp is string
 | 
						|
        except TypeError:
 | 
						|
            return 0
 | 
						|
 | 
						|
    def canonical(self, context=None):
 | 
						|
        """Returns the same Decimal object.
 | 
						|
 | 
						|
        As we do not have different encodings for the same number, the
 | 
						|
        received object already is in its canonical form.
 | 
						|
        """
 | 
						|
        return self
 | 
						|
 | 
						|
    def compare_signal(self, other, context=None):
 | 
						|
        """Compares self to the other operand numerically.
 | 
						|
 | 
						|
        It's pretty much like compare(), but all NaNs signal, with signaling
 | 
						|
        NaNs taking precedence over quiet NaNs.
 | 
						|
        """
 | 
						|
        if context is None:
 | 
						|
            context = getcontext()
 | 
						|
 | 
						|
        self_is_nan = self._isnan()
 | 
						|
        other_is_nan = other._isnan()
 | 
						|
        if self_is_nan == 2:
 | 
						|
            return context._raise_error(InvalidOperation, 'sNaN',
 | 
						|
                                        1, self)
 | 
						|
        if other_is_nan == 2:
 | 
						|
            return context._raise_error(InvalidOperation, 'sNaN',
 | 
						|
                                        1, other)
 | 
						|
        if self_is_nan:
 | 
						|
            return context._raise_error(InvalidOperation, 'NaN in compare_signal',
 | 
						|
                                        1, self)
 | 
						|
        if other_is_nan:
 | 
						|
            return context._raise_error(InvalidOperation, 'NaN in compare_signal',
 | 
						|
                                        1, other)
 | 
						|
        return self.compare(other, context=context)
 | 
						|
 | 
						|
    def compare_total(self, other):
 | 
						|
        """Compares self to other using the abstract representations.
 | 
						|
 | 
						|
        This is not like the standard compare, which use their numerical
 | 
						|
        value. Note that a total ordering is defined for all possible abstract
 | 
						|
        representations.
 | 
						|
        """
 | 
						|
        # if one is negative and the other is positive, it's easy
 | 
						|
        if self._sign and not other._sign:
 | 
						|
            return Dec_n1
 | 
						|
        if not self._sign and other._sign:
 | 
						|
            return Dec_p1
 | 
						|
        sign = self._sign
 | 
						|
 | 
						|
        # let's handle both NaN types
 | 
						|
        self_nan = self._isnan()
 | 
						|
        other_nan = other._isnan()
 | 
						|
        if self_nan or other_nan:
 | 
						|
            if self_nan == other_nan:
 | 
						|
                if self._int < other._int:
 | 
						|
                    if sign:
 | 
						|
                        return Dec_p1
 | 
						|
                    else:
 | 
						|
                        return Dec_n1
 | 
						|
                if self._int > other._int:
 | 
						|
                    if sign:
 | 
						|
                        return Dec_n1
 | 
						|
                    else:
 | 
						|
                        return Dec_p1
 | 
						|
                return Dec_0
 | 
						|
 | 
						|
            if sign:
 | 
						|
                if self_nan == 1:
 | 
						|
                    return Dec_n1
 | 
						|
                if other_nan == 1:
 | 
						|
                    return Dec_p1
 | 
						|
                if self_nan == 2:
 | 
						|
                    return Dec_n1
 | 
						|
                if other_nan == 2:
 | 
						|
                    return Dec_p1
 | 
						|
            else:
 | 
						|
                if self_nan == 1:
 | 
						|
                    return Dec_p1
 | 
						|
                if other_nan == 1:
 | 
						|
                    return Dec_n1
 | 
						|
                if self_nan == 2:
 | 
						|
                    return Dec_p1
 | 
						|
                if other_nan == 2:
 | 
						|
                    return Dec_n1
 | 
						|
 | 
						|
        if self < other:
 | 
						|
            return Dec_n1
 | 
						|
        if self > other:
 | 
						|
            return Dec_p1
 | 
						|
 | 
						|
        if self._exp < other._exp:
 | 
						|
            if sign:
 | 
						|
                return Dec_p1
 | 
						|
            else:
 | 
						|
                return Dec_n1
 | 
						|
        if self._exp > other._exp:
 | 
						|
            if sign:
 | 
						|
                return Dec_n1
 | 
						|
            else:
 | 
						|
                return Dec_p1
 | 
						|
        return Dec_0
 | 
						|
 | 
						|
 | 
						|
    def compare_total_mag(self, other):
 | 
						|
        """Compares self to other using abstract repr., ignoring sign.
 | 
						|
 | 
						|
        Like compare_total, but with operand's sign ignored and assumed to be 0.
 | 
						|
        """
 | 
						|
        s = self.copy_abs()
 | 
						|
        o = other.copy_abs()
 | 
						|
        return s.compare_total(o)
 | 
						|
 | 
						|
    def copy_abs(self):
 | 
						|
        """Returns a copy with the sign set to 0. """
 | 
						|
        return Decimal((0, self._int, self._exp))
 | 
						|
 | 
						|
    def copy_negate(self):
 | 
						|
        """Returns a copy with the sign inverted."""
 | 
						|
        if self._sign:
 | 
						|
            return Decimal((0, self._int, self._exp))
 | 
						|
        else:
 | 
						|
            return Decimal((1, self._int, self._exp))
 | 
						|
 | 
						|
    def copy_sign(self, other):
 | 
						|
        """Returns self with the sign of other."""
 | 
						|
        return Decimal((other._sign, self._int, self._exp))
 | 
						|
 | 
						|
    def exp(self, context=None):
 | 
						|
        """Returns e ** self."""
 | 
						|
 | 
						|
        if context is None:
 | 
						|
            context = getcontext()
 | 
						|
 | 
						|
        # exp(NaN) = NaN
 | 
						|
        ans = self._check_nans(context=context)
 | 
						|
        if ans:
 | 
						|
            return ans
 | 
						|
 | 
						|
        # exp(-Infinity) = 0
 | 
						|
        if self._isinfinity() == -1:
 | 
						|
            return Dec_0
 | 
						|
 | 
						|
        # exp(0) = 1
 | 
						|
        if not self:
 | 
						|
            return Dec_p1
 | 
						|
 | 
						|
        # exp(Infinity) = Infinity
 | 
						|
        if self._isinfinity() == 1:
 | 
						|
            return Decimal(self)
 | 
						|
 | 
						|
        # the result is now guaranteed to be inexact (the true
 | 
						|
        # mathematical result is transcendental). There's no need to
 | 
						|
        # raise Rounded and Inexact here---they'll always be raised as
 | 
						|
        # a result of the call to _fix.
 | 
						|
        p = context.prec
 | 
						|
        adj = self.adjusted()
 | 
						|
 | 
						|
        # we only need to do any computation for quite a small range
 | 
						|
        # of adjusted exponents---for example, -29 <= adj <= 10 for
 | 
						|
        # the default context.  For smaller exponent the result is
 | 
						|
        # indistinguishable from 1 at the given precision, while for
 | 
						|
        # larger exponent the result either overflows or underflows.
 | 
						|
        if self._sign == 0 and adj > len(str((context.Emax+1)*3)):
 | 
						|
            # overflow
 | 
						|
            ans = Decimal((0, (1,), context.Emax+1))
 | 
						|
        elif self._sign == 1 and adj > len(str((-context.Etiny()+1)*3)):
 | 
						|
            # underflow to 0
 | 
						|
            ans = Decimal((0, (1,), context.Etiny()-1))
 | 
						|
        elif self._sign == 0 and adj < -p:
 | 
						|
            # p+1 digits; final round will raise correct flags
 | 
						|
            ans = Decimal((0, (1,) + (0,)*(p-1) + (1,), -p))
 | 
						|
        elif self._sign == 1 and adj < -p-1:
 | 
						|
            # p+1 digits; final round will raise correct flags
 | 
						|
            ans = Decimal((0, (9,)*(p+1), -p-1))
 | 
						|
        # general case
 | 
						|
        else:
 | 
						|
            op = _WorkRep(self)
 | 
						|
            c, e = op.int, op.exp
 | 
						|
            if op.sign == 1:
 | 
						|
                c = -c
 | 
						|
 | 
						|
            # compute correctly rounded result: increase precision by
 | 
						|
            # 3 digits at a time until we get an unambiguously
 | 
						|
            # roundable result
 | 
						|
            extra = 3
 | 
						|
            while True:
 | 
						|
                coeff, exp = _dexp(c, e, p+extra)
 | 
						|
                if coeff % (5*10**(len(str(coeff))-p-1)):
 | 
						|
                    break
 | 
						|
                extra += 3
 | 
						|
 | 
						|
            ans = Decimal((0, map(int, str(coeff)), exp))
 | 
						|
 | 
						|
        # at this stage, ans should round correctly with *any*
 | 
						|
        # rounding mode, not just with ROUND_HALF_EVEN
 | 
						|
        context = context._shallow_copy()
 | 
						|
        rounding = context._set_rounding(ROUND_HALF_EVEN)
 | 
						|
        ans = ans._fix(context)
 | 
						|
        context.rounding = rounding
 | 
						|
 | 
						|
        return ans
 | 
						|
 | 
						|
    def is_canonical(self):
 | 
						|
        """Returns 1 if self is canonical; otherwise returns 0."""
 | 
						|
        return Dec_p1
 | 
						|
 | 
						|
    def is_finite(self):
 | 
						|
        """Returns 1 if self is finite, otherwise returns 0.
 | 
						|
 | 
						|
        For it to be finite, it must be neither infinite nor a NaN.
 | 
						|
        """
 | 
						|
        if self._is_special:
 | 
						|
            return Dec_0
 | 
						|
        else:
 | 
						|
            return Dec_p1
 | 
						|
 | 
						|
    def is_infinite(self):
 | 
						|
        """Returns 1 if self is an Infinite, otherwise returns 0."""
 | 
						|
        if self._isinfinity():
 | 
						|
            return Dec_p1
 | 
						|
        else:
 | 
						|
            return Dec_0
 | 
						|
 | 
						|
    def is_nan(self):
 | 
						|
        """Returns 1 if self is qNaN or sNaN, otherwise returns 0."""
 | 
						|
        if self._isnan():
 | 
						|
            return Dec_p1
 | 
						|
        else:
 | 
						|
            return Dec_0
 | 
						|
 | 
						|
    def is_normal(self, context=None):
 | 
						|
        """Returns 1 if self is a normal number, otherwise returns 0."""
 | 
						|
        if self._is_special:
 | 
						|
            return Dec_0
 | 
						|
        if not self:
 | 
						|
            return Dec_0
 | 
						|
        if context is None:
 | 
						|
            context = getcontext()
 | 
						|
        if context.Emin <= self.adjusted() <= context.Emax:
 | 
						|
            return Dec_p1
 | 
						|
        else:
 | 
						|
            return Dec_0
 | 
						|
 | 
						|
    def is_qnan(self):
 | 
						|
        """Returns 1 if self is a quiet NaN, otherwise returns 0."""
 | 
						|
        if self._isnan() == 1:
 | 
						|
            return Dec_p1
 | 
						|
        else:
 | 
						|
            return Dec_0
 | 
						|
 | 
						|
    def is_signed(self):
 | 
						|
        """Returns 1 if self is negative, otherwise returns 0."""
 | 
						|
        return Decimal(self._sign)
 | 
						|
 | 
						|
    def is_snan(self):
 | 
						|
        """Returns 1 if self is a signaling NaN, otherwise returns 0."""
 | 
						|
        if self._isnan() == 2:
 | 
						|
            return Dec_p1
 | 
						|
        else:
 | 
						|
            return Dec_0
 | 
						|
 | 
						|
    def is_subnormal(self, context=None):
 | 
						|
        """Returns 1 if self is subnormal, otherwise returns 0."""
 | 
						|
        if self._is_special:
 | 
						|
            return Dec_0
 | 
						|
        if not self:
 | 
						|
            return Dec_0
 | 
						|
        if context is None:
 | 
						|
            context = getcontext()
 | 
						|
 | 
						|
        r = self._exp + len(self._int)
 | 
						|
        if r <= context.Emin:
 | 
						|
            return Dec_p1
 | 
						|
        return Dec_0
 | 
						|
 | 
						|
    def is_zero(self):
 | 
						|
        """Returns 1 if self is a zero, otherwise returns 0."""
 | 
						|
        if self:
 | 
						|
            return Dec_0
 | 
						|
        else:
 | 
						|
            return Dec_p1
 | 
						|
 | 
						|
    def _ln_exp_bound(self):
 | 
						|
        """Compute a lower bound for the adjusted exponent of self.ln().
 | 
						|
        In other words, compute r such that self.ln() >= 10**r.  Assumes
 | 
						|
        that self is finite and positive and that self != 1.
 | 
						|
        """
 | 
						|
 | 
						|
        # for 0.1 <= x <= 10 we use the inequalities 1-1/x <= ln(x) <= x-1
 | 
						|
        adj = self._exp + len(self._int) - 1
 | 
						|
        if adj >= 1:
 | 
						|
            # argument >= 10; we use 23/10 = 2.3 as a lower bound for ln(10)
 | 
						|
            return len(str(adj*23//10)) - 1
 | 
						|
        if adj <= -2:
 | 
						|
            # argument <= 0.1
 | 
						|
            return len(str((-1-adj)*23//10)) - 1
 | 
						|
        op = _WorkRep(self)
 | 
						|
        c, e = op.int, op.exp
 | 
						|
        if adj == 0:
 | 
						|
            # 1 < self < 10
 | 
						|
            num = str(c-10**-e)
 | 
						|
            den = str(c)
 | 
						|
            return len(num) - len(den) - (num < den)
 | 
						|
        # adj == -1, 0.1 <= self < 1
 | 
						|
        return e + len(str(10**-e - c)) - 1
 | 
						|
 | 
						|
 | 
						|
    def ln(self, context=None):
 | 
						|
        """Returns the natural (base e) logarithm of self."""
 | 
						|
 | 
						|
        if context is None:
 | 
						|
            context = getcontext()
 | 
						|
 | 
						|
        # ln(NaN) = NaN
 | 
						|
        ans = self._check_nans(context=context)
 | 
						|
        if ans:
 | 
						|
            return ans
 | 
						|
 | 
						|
        # ln(0.0) == -Infinity
 | 
						|
        if not self:
 | 
						|
            return negInf
 | 
						|
 | 
						|
        # ln(Infinity) = Infinity
 | 
						|
        if self._isinfinity() == 1:
 | 
						|
            return Inf
 | 
						|
 | 
						|
        # ln(1.0) == 0.0
 | 
						|
        if self == Dec_p1:
 | 
						|
            return Dec_0
 | 
						|
 | 
						|
        # ln(negative) raises InvalidOperation
 | 
						|
        if self._sign == 1:
 | 
						|
            return context._raise_error(InvalidOperation,
 | 
						|
                                        'ln of a negative value')
 | 
						|
 | 
						|
        # result is irrational, so necessarily inexact
 | 
						|
        op = _WorkRep(self)
 | 
						|
        c, e = op.int, op.exp
 | 
						|
        p = context.prec
 | 
						|
 | 
						|
        # correctly rounded result: repeatedly increase precision by 3
 | 
						|
        # until we get an unambiguously roundable result
 | 
						|
        places = p - self._ln_exp_bound() + 2 # at least p+3 places
 | 
						|
        while True:
 | 
						|
            coeff = _dlog(c, e, places)
 | 
						|
            # assert len(str(abs(coeff)))-p >= 1
 | 
						|
            if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
 | 
						|
                break
 | 
						|
            places += 3
 | 
						|
        ans = Decimal((int(coeff<0), map(int, str(abs(coeff))), -places))
 | 
						|
 | 
						|
        context = context._shallow_copy()
 | 
						|
        rounding = context._set_rounding(ROUND_HALF_EVEN)
 | 
						|
        ans = ans._fix(context)
 | 
						|
        context.rounding = rounding
 | 
						|
        return ans
 | 
						|
 | 
						|
    def _log10_exp_bound(self):
 | 
						|
        """Compute a lower bound for the adjusted exponent of self.log10().
 | 
						|
        In other words, find r such that self.log10() >= 10**r.
 | 
						|
        Assumes that self is finite and positive and that self != 1.
 | 
						|
        """
 | 
						|
 | 
						|
        # For x >= 10 or x < 0.1 we only need a bound on the integer
 | 
						|
        # part of log10(self), and this comes directly from the
 | 
						|
        # exponent of x.  For 0.1 <= x <= 10 we use the inequalities
 | 
						|
        # 1-1/x <= log(x) <= x-1. If x > 1 we have |log10(x)| >
 | 
						|
        # (1-1/x)/2.31 > 0.  If x < 1 then |log10(x)| > (1-x)/2.31 > 0
 | 
						|
 | 
						|
        adj = self._exp + len(self._int) - 1
 | 
						|
        if adj >= 1:
 | 
						|
            # self >= 10
 | 
						|
            return len(str(adj))-1
 | 
						|
        if adj <= -2:
 | 
						|
            # self < 0.1
 | 
						|
            return len(str(-1-adj))-1
 | 
						|
        op = _WorkRep(self)
 | 
						|
        c, e = op.int, op.exp
 | 
						|
        if adj == 0:
 | 
						|
            # 1 < self < 10
 | 
						|
            num = str(c-10**-e)
 | 
						|
            den = str(231*c)
 | 
						|
            return len(num) - len(den) - (num < den) + 2
 | 
						|
        # adj == -1, 0.1 <= self < 1
 | 
						|
        num = str(10**-e-c)
 | 
						|
        return len(num) + e - (num < "231") - 1
 | 
						|
 | 
						|
    def log10(self, context=None):
 | 
						|
        """Returns the base 10 logarithm of self."""
 | 
						|
 | 
						|
        if context is None:
 | 
						|
            context = getcontext()
 | 
						|
 | 
						|
        # log10(NaN) = NaN
 | 
						|
        ans = self._check_nans(context=context)
 | 
						|
        if ans:
 | 
						|
            return ans
 | 
						|
 | 
						|
        # log10(0.0) == -Infinity
 | 
						|
        if not self:
 | 
						|
            return negInf
 | 
						|
 | 
						|
        # log10(Infinity) = Infinity
 | 
						|
        if self._isinfinity() == 1:
 | 
						|
            return Inf
 | 
						|
 | 
						|
        # log10(negative or -Infinity) raises InvalidOperation
 | 
						|
        if self._sign == 1:
 | 
						|
            return context._raise_error(InvalidOperation,
 | 
						|
                                        'log10 of a negative value')
 | 
						|
 | 
						|
        # log10(10**n) = n
 | 
						|
        if self._int[0] == 1 and self._int[1:] == (0,)*(len(self._int) - 1):
 | 
						|
            # answer may need rounding
 | 
						|
            ans = Decimal(self._exp + len(self._int) - 1)
 | 
						|
        else:
 | 
						|
            # result is irrational, so necessarily inexact
 | 
						|
            op = _WorkRep(self)
 | 
						|
            c, e = op.int, op.exp
 | 
						|
            p = context.prec
 | 
						|
 | 
						|
            # correctly rounded result: repeatedly increase precision
 | 
						|
            # until result is unambiguously roundable
 | 
						|
            places = p-self._log10_exp_bound()+2
 | 
						|
            while True:
 | 
						|
                coeff = _dlog10(c, e, places)
 | 
						|
                # assert len(str(abs(coeff)))-p >= 1
 | 
						|
                if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
 | 
						|
                    break
 | 
						|
                places += 3
 | 
						|
            ans = Decimal((int(coeff<0), map(int, str(abs(coeff))), -places))
 | 
						|
 | 
						|
        context = context._shallow_copy()
 | 
						|
        rounding = context._set_rounding(ROUND_HALF_EVEN)
 | 
						|
        ans = ans._fix(context)
 | 
						|
        context.rounding = rounding
 | 
						|
        return ans
 | 
						|
 | 
						|
    def logb(self, context=None):
 | 
						|
        """ Returns the exponent of the magnitude of self's MSD.
 | 
						|
 | 
						|
        The result is the integer which is the exponent of the magnitude
 | 
						|
        of the most significant digit of self (as though it were truncated
 | 
						|
        to a single digit while maintaining the value of that digit and
 | 
						|
        without limiting the resulting exponent).
 | 
						|
        """
 | 
						|
        # logb(NaN) = NaN
 | 
						|
        ans = self._check_nans(context=context)
 | 
						|
        if ans:
 | 
						|
            return ans
 | 
						|
 | 
						|
        if context is None:
 | 
						|
            context = getcontext()
 | 
						|
 | 
						|
        # logb(+/-Inf) = +Inf
 | 
						|
        if self._isinfinity():
 | 
						|
            return Inf
 | 
						|
 | 
						|
        # logb(0) = -Inf, DivisionByZero
 | 
						|
        if not self:
 | 
						|
            return context._raise_error(DivisionByZero, 'logb(0)', 1)
 | 
						|
 | 
						|
        # otherwise, simply return the adjusted exponent of self, as a
 | 
						|
        # Decimal.  Note that no attempt is made to fit the result
 | 
						|
        # into the current context.
 | 
						|
        return Decimal(self.adjusted())
 | 
						|
 | 
						|
    def _islogical(self):
 | 
						|
        """Return True if self is a logical operand.
 | 
						|
 | 
						|
        For being logical, it must be a finite numbers with a sign of 0,
 | 
						|
        an exponent of 0, and a coefficient whose digits must all be
 | 
						|
        either 0 or 1.
 | 
						|
        """
 | 
						|
        if self._sign != 0 or self._exp != 0:
 | 
						|
            return False
 | 
						|
        for dig in self._int:
 | 
						|
            if dig not in (0, 1):
 | 
						|
                return False
 | 
						|
        return True
 | 
						|
 | 
						|
    def _fill_logical(self, context, opa, opb):
 | 
						|
        dif = context.prec - len(opa)
 | 
						|
        if dif > 0:
 | 
						|
            opa = (0,)*dif + opa
 | 
						|
        elif dif < 0:
 | 
						|
            opa = opa[-context.prec:]
 | 
						|
        dif = context.prec - len(opb)
 | 
						|
        if dif > 0:
 | 
						|
            opb = (0,)*dif + opb
 | 
						|
        elif dif < 0:
 | 
						|
            opb = opb[-context.prec:]
 | 
						|
        return opa, opb
 | 
						|
 | 
						|
    def logical_and(self, other, context=None):
 | 
						|
        """Applies an 'and' operation between self and other's digits."""
 | 
						|
        if context is None:
 | 
						|
            context = getcontext()
 | 
						|
        if not self._islogical() or not other._islogical():
 | 
						|
            return context._raise_error(InvalidOperation)
 | 
						|
 | 
						|
        # fill to context.prec
 | 
						|
        (opa, opb) = self._fill_logical(context, self._int, other._int)
 | 
						|
 | 
						|
        # make the operation, and clean starting zeroes
 | 
						|
        result = [a&b for a,b in zip(opa,opb)]
 | 
						|
        for i,d in enumerate(result):
 | 
						|
            if d == 1:
 | 
						|
                break
 | 
						|
        result = tuple(result[i:])
 | 
						|
 | 
						|
        # if empty, we must have at least a zero
 | 
						|
        if not result:
 | 
						|
            result = (0,)
 | 
						|
        return Decimal((0, result, 0))
 | 
						|
 | 
						|
    def logical_invert(self, context=None):
 | 
						|
        """Invert all its digits."""
 | 
						|
        if context is None:
 | 
						|
            context = getcontext()
 | 
						|
        return self.logical_xor(Decimal((0,(1,)*context.prec,0)), context)
 | 
						|
 | 
						|
    def logical_or(self, other, context=None):
 | 
						|
        """Applies an 'or' operation between self and other's digits."""
 | 
						|
        if context is None:
 | 
						|
            context = getcontext()
 | 
						|
        if not self._islogical() or not other._islogical():
 | 
						|
            return context._raise_error(InvalidOperation)
 | 
						|
 | 
						|
        # fill to context.prec
 | 
						|
        (opa, opb) = self._fill_logical(context, self._int, other._int)
 | 
						|
 | 
						|
        # make the operation, and clean starting zeroes
 | 
						|
        result = [a|b for a,b in zip(opa,opb)]
 | 
						|
        for i,d in enumerate(result):
 | 
						|
            if d == 1:
 | 
						|
                break
 | 
						|
        result = tuple(result[i:])
 | 
						|
 | 
						|
        # if empty, we must have at least a zero
 | 
						|
        if not result:
 | 
						|
            result = (0,)
 | 
						|
        return Decimal((0, result, 0))
 | 
						|
 | 
						|
    def logical_xor(self, other, context=None):
 | 
						|
        """Applies an 'xor' operation between self and other's digits."""
 | 
						|
        if context is None:
 | 
						|
            context = getcontext()
 | 
						|
        if not self._islogical() or not other._islogical():
 | 
						|
            return context._raise_error(InvalidOperation)
 | 
						|
 | 
						|
        # fill to context.prec
 | 
						|
        (opa, opb) = self._fill_logical(context, self._int, other._int)
 | 
						|
 | 
						|
        # make the operation, and clean starting zeroes
 | 
						|
        result = [a^b for a,b in zip(opa,opb)]
 | 
						|
        for i,d in enumerate(result):
 | 
						|
            if d == 1:
 | 
						|
                break
 | 
						|
        result = tuple(result[i:])
 | 
						|
 | 
						|
        # if empty, we must have at least a zero
 | 
						|
        if not result:
 | 
						|
            result = (0,)
 | 
						|
        return Decimal((0, result, 0))
 | 
						|
 | 
						|
    def max_mag(self, other, context=None):
 | 
						|
        """Compares the values numerically with their sign ignored."""
 | 
						|
        other = _convert_other(other, raiseit=True)
 | 
						|
 | 
						|
        if context is None:
 | 
						|
            context = getcontext()
 | 
						|
 | 
						|
        if self._is_special or other._is_special:
 | 
						|
            # If one operand is a quiet NaN and the other is number, then the
 | 
						|
            # number is always returned
 | 
						|
            sn = self._isnan()
 | 
						|
            on = other._isnan()
 | 
						|
            if sn or on:
 | 
						|
                if on == 1 and sn != 2:
 | 
						|
                    return self._fix_nan(context)
 | 
						|
                if sn == 1 and on != 2:
 | 
						|
                    return other._fix_nan(context)
 | 
						|
                return self._check_nans(other, context)
 | 
						|
 | 
						|
        c = self.copy_abs().__cmp__(other.copy_abs())
 | 
						|
        if c == 0:
 | 
						|
            c = self.compare_total(other)
 | 
						|
 | 
						|
        if c == -1:
 | 
						|
            ans = other
 | 
						|
        else:
 | 
						|
            ans = self
 | 
						|
 | 
						|
        if context._rounding_decision == ALWAYS_ROUND:
 | 
						|
            return ans._fix(context)
 | 
						|
        return ans
 | 
						|
 | 
						|
    def min_mag(self, other, context=None):
 | 
						|
        """Compares the values numerically with their sign ignored."""
 | 
						|
        other = _convert_other(other, raiseit=True)
 | 
						|
 | 
						|
        if context is None:
 | 
						|
            context = getcontext()
 | 
						|
 | 
						|
        if self._is_special or other._is_special:
 | 
						|
            # If one operand is a quiet NaN and the other is number, then the
 | 
						|
            # number is always returned
 | 
						|
            sn = self._isnan()
 | 
						|
            on = other._isnan()
 | 
						|
            if sn or on:
 | 
						|
                if on == 1 and sn != 2:
 | 
						|
                    return self._fix_nan(context)
 | 
						|
                if sn == 1 and on != 2:
 | 
						|
                    return other._fix_nan(context)
 | 
						|
                return self._check_nans(other, context)
 | 
						|
 | 
						|
        c = self.copy_abs().__cmp__(other.copy_abs())
 | 
						|
        if c == 0:
 | 
						|
            c = self.compare_total(other)
 | 
						|
 | 
						|
        if c == -1:
 | 
						|
            ans = self
 | 
						|
        else:
 | 
						|
            ans = other
 | 
						|
 | 
						|
        if context._rounding_decision == ALWAYS_ROUND:
 | 
						|
            return ans._fix(context)
 | 
						|
        return ans
 | 
						|
 | 
						|
    def next_minus(self, context=None):
 | 
						|
        """Returns the largest representable number smaller than itself."""
 | 
						|
        if context is None:
 | 
						|
            context = getcontext()
 | 
						|
 | 
						|
        ans = self._check_nans(context=context)
 | 
						|
        if ans:
 | 
						|
            return ans
 | 
						|
 | 
						|
        if self._isinfinity() == -1:
 | 
						|
            return negInf
 | 
						|
        if self._isinfinity() == 1:
 | 
						|
            return Decimal((0, (9,)*context.prec, context.Etop()))
 | 
						|
 | 
						|
        context = context.copy()
 | 
						|
        context._set_rounding(ROUND_FLOOR)
 | 
						|
        context._ignore_all_flags()
 | 
						|
        new_self = self._fix(context)
 | 
						|
        if new_self != self:
 | 
						|
            return new_self
 | 
						|
        return self.__sub__(Decimal((0, (1,), context.Etiny()-1)), context)
 | 
						|
 | 
						|
    def next_plus(self, context=None):
 | 
						|
        """Returns the smallest representable number larger than itself."""
 | 
						|
        if context is None:
 | 
						|
            context = getcontext()
 | 
						|
 | 
						|
        ans = self._check_nans(context=context)
 | 
						|
        if ans:
 | 
						|
            return ans
 | 
						|
 | 
						|
        if self._isinfinity() == 1:
 | 
						|
            return Inf
 | 
						|
        if self._isinfinity() == -1:
 | 
						|
            return Decimal((1, (9,)*context.prec, context.Etop()))
 | 
						|
 | 
						|
        context = context.copy()
 | 
						|
        context._set_rounding(ROUND_CEILING)
 | 
						|
        context._ignore_all_flags()
 | 
						|
        new_self = self._fix(context)
 | 
						|
        if new_self != self:
 | 
						|
            return new_self
 | 
						|
        return self.__add__(Decimal((0, (1,), context.Etiny()-1)), context)
 | 
						|
 | 
						|
    def next_toward(self, other, context=None):
 | 
						|
        """Returns the number closest to self, in the direction towards other.
 | 
						|
 | 
						|
        The result is the closest representable number to self
 | 
						|
        (excluding self) that is in the direction towards other,
 | 
						|
        unless both have the same value.  If the two operands are
 | 
						|
        numerically equal, then the result is a copy of self with the
 | 
						|
        sign set to be the same as the sign of other.
 | 
						|
        """
 | 
						|
        other = _convert_other(other, raiseit=True)
 | 
						|
 | 
						|
        if context is None:
 | 
						|
            context = getcontext()
 | 
						|
 | 
						|
        ans = self._check_nans(other, context)
 | 
						|
        if ans:
 | 
						|
            return ans
 | 
						|
 | 
						|
        comparison = self.__cmp__(other)
 | 
						|
        if comparison == 0:
 | 
						|
            return Decimal((other._sign, self._int, self._exp))
 | 
						|
 | 
						|
        if comparison == -1:
 | 
						|
            ans = self.next_plus(context)
 | 
						|
        else: # comparison == 1
 | 
						|
            ans = self.next_minus(context)
 | 
						|
 | 
						|
        # decide which flags to raise using value of ans
 | 
						|
        if ans._isinfinity():
 | 
						|
            context._raise_error(Overflow,
 | 
						|
                                 'Infinite result from next_toward',
 | 
						|
                                 ans._sign)
 | 
						|
            context._raise_error(Rounded)
 | 
						|
            context._raise_error(Inexact)
 | 
						|
        elif ans.adjusted() < context.Emin:
 | 
						|
            context._raise_error(Underflow)
 | 
						|
            context._raise_error(Subnormal)
 | 
						|
            context._raise_error(Rounded)
 | 
						|
            context._raise_error(Inexact)
 | 
						|
            # if precision == 1 then we don't raise Clamped for a
 | 
						|
            # result 0E-Etiny.
 | 
						|
            if not ans:
 | 
						|
                context._raise_error(Clamped)
 | 
						|
 | 
						|
        return ans
 | 
						|
 | 
						|
    def number_class(self, context=None):
 | 
						|
        """Returns an indication of the class of self.
 | 
						|
 | 
						|
        The class is one of the following strings:
 | 
						|
          -sNaN
 | 
						|
          -NaN
 | 
						|
          -Infinity
 | 
						|
          -Normal
 | 
						|
          -Subnormal
 | 
						|
          -Zero
 | 
						|
          +Zero
 | 
						|
          +Subnormal
 | 
						|
          +Normal
 | 
						|
          +Infinity
 | 
						|
        """
 | 
						|
        if self.is_snan():
 | 
						|
            return "sNaN"
 | 
						|
        if self.is_qnan():
 | 
						|
            return "NaN"
 | 
						|
        inf = self._isinfinity()
 | 
						|
        if inf == 1:
 | 
						|
            return "+Infinity"
 | 
						|
        if inf == -1:
 | 
						|
            return "-Infinity"
 | 
						|
        if self.is_zero():
 | 
						|
            if self._sign:
 | 
						|
                return "-Zero"
 | 
						|
            else:
 | 
						|
                return "+Zero"
 | 
						|
        if context is None:
 | 
						|
            context = getcontext()
 | 
						|
        if self.is_subnormal(context=context):
 | 
						|
            if self._sign:
 | 
						|
                return "-Subnormal"
 | 
						|
            else:
 | 
						|
                return "+Subnormal"
 | 
						|
        # just a normal, regular, boring number, :)
 | 
						|
        if self._sign:
 | 
						|
            return "-Normal"
 | 
						|
        else:
 | 
						|
            return "+Normal"
 | 
						|
 | 
						|
    def radix(self):
 | 
						|
        """Just returns 10, as this is Decimal, :)"""
 | 
						|
        return Decimal(10)
 | 
						|
 | 
						|
    def rotate(self, other, context=None):
 | 
						|
        """Returns a rotated copy of self, value-of-other times."""
 | 
						|
        if context is None:
 | 
						|
            context = getcontext()
 | 
						|
 | 
						|
        ans = self._check_nans(other, context)
 | 
						|
        if ans:
 | 
						|
            return ans
 | 
						|
 | 
						|
        if other._exp != 0:
 | 
						|
            return context._raise_error(InvalidOperation)
 | 
						|
        if not (-context.prec <= int(other) <= context.prec):
 | 
						|
            return context._raise_error(InvalidOperation)
 | 
						|
 | 
						|
        if self._isinfinity():
 | 
						|
            return Decimal(self)
 | 
						|
 | 
						|
        # get values, pad if necessary
 | 
						|
        torot = int(other)
 | 
						|
        rotdig = self._int
 | 
						|
        topad = context.prec - len(rotdig)
 | 
						|
        if topad:
 | 
						|
            rotdig = ((0,)*topad) + rotdig
 | 
						|
 | 
						|
        # let's rotate!
 | 
						|
        rotated = rotdig[torot:] + rotdig[:torot]
 | 
						|
 | 
						|
        # clean starting zeroes
 | 
						|
        for i,d in enumerate(rotated):
 | 
						|
            if d != 0:
 | 
						|
                break
 | 
						|
        rotated = rotated[i:]
 | 
						|
 | 
						|
        return Decimal((self._sign, rotated, self._exp))
 | 
						|
 | 
						|
 | 
						|
    def scaleb (self, other, context=None):
 | 
						|
        """Returns self operand after adding the second value to its exp."""
 | 
						|
        if context is None:
 | 
						|
            context = getcontext()
 | 
						|
 | 
						|
        ans = self._check_nans(other, context)
 | 
						|
        if ans:
 | 
						|
            return ans
 | 
						|
 | 
						|
        if other._exp != 0:
 | 
						|
            return context._raise_error(InvalidOperation)
 | 
						|
        liminf = -2 * (context.Emax + context.prec)
 | 
						|
        limsup =  2 * (context.Emax + context.prec)
 | 
						|
        if not (liminf <= int(other) <= limsup):
 | 
						|
            return context._raise_error(InvalidOperation)
 | 
						|
 | 
						|
        if self._isinfinity():
 | 
						|
            return Decimal(self)
 | 
						|
 | 
						|
        d = Decimal((self._sign, self._int, self._exp + int(other)))
 | 
						|
        d = d._fix(context)
 | 
						|
        return d
 | 
						|
 | 
						|
    def shift(self, other, context=None):
 | 
						|
        """Returns a shifted copy of self, value-of-other times."""
 | 
						|
        if context is None:
 | 
						|
            context = getcontext()
 | 
						|
 | 
						|
        ans = self._check_nans(other, context)
 | 
						|
        if ans:
 | 
						|
            return ans
 | 
						|
 | 
						|
        if other._exp != 0:
 | 
						|
            return context._raise_error(InvalidOperation)
 | 
						|
        if not (-context.prec <= int(other) <= context.prec):
 | 
						|
            return context._raise_error(InvalidOperation)
 | 
						|
 | 
						|
        if self._isinfinity():
 | 
						|
            return Decimal(self)
 | 
						|
 | 
						|
        # get values, pad if necessary
 | 
						|
        torot = int(other)
 | 
						|
        if not torot:
 | 
						|
            return Decimal(self)
 | 
						|
        rotdig = self._int
 | 
						|
        topad = context.prec - len(rotdig)
 | 
						|
        if topad:
 | 
						|
            rotdig = ((0,)*topad) + rotdig
 | 
						|
 | 
						|
        # let's shift!
 | 
						|
        if torot < 0:
 | 
						|
            rotated = rotdig[:torot]
 | 
						|
        else:
 | 
						|
            rotated = (rotdig + ((0,) * torot))
 | 
						|
            rotated = rotated[-context.prec:]
 | 
						|
 | 
						|
        # clean starting zeroes
 | 
						|
        if rotated:
 | 
						|
            for i,d in enumerate(rotated):
 | 
						|
                if d != 0:
 | 
						|
                    break
 | 
						|
            rotated = rotated[i:]
 | 
						|
        else:
 | 
						|
            rotated = (0,)
 | 
						|
 | 
						|
        return Decimal((self._sign, rotated, self._exp))
 | 
						|
 | 
						|
 | 
						|
    # Support for pickling, copy, and deepcopy
 | 
						|
    def __reduce__(self):
 | 
						|
        return (self.__class__, (str(self),))
 | 
						|
 | 
						|
    def __copy__(self):
 | 
						|
        if type(self) == Decimal:
 | 
						|
            return self     # I'm immutable; therefore I am my own clone
 | 
						|
        return self.__class__(str(self))
 | 
						|
 | 
						|
    def __deepcopy__(self, memo):
 | 
						|
        if type(self) == Decimal:
 | 
						|
            return self     # My components are also immutable
 | 
						|
        return self.__class__(str(self))
 | 
						|
 | 
						|
##### Context class #######################################################
 | 
						|
 | 
						|
 | 
						|
# get rounding method function:
 | 
						|
rounding_functions = [name for name in Decimal.__dict__.keys()
 | 
						|
                                    if name.startswith('_round_')]
 | 
						|
for name in rounding_functions:
 | 
						|
    # name is like _round_half_even, goes to the global ROUND_HALF_EVEN value.
 | 
						|
    globalname = name[1:].upper()
 | 
						|
    val = globals()[globalname]
 | 
						|
    Decimal._pick_rounding_function[val] = name
 | 
						|
 | 
						|
del name, val, globalname, rounding_functions
 | 
						|
 | 
						|
class _ContextManager(object):
 | 
						|
    """Context manager class to support localcontext().
 | 
						|
 | 
						|
      Sets a copy of the supplied context in __enter__() and restores
 | 
						|
      the previous decimal context in __exit__()
 | 
						|
    """
 | 
						|
    def __init__(self, new_context):
 | 
						|
        self.new_context = new_context.copy()
 | 
						|
    def __enter__(self):
 | 
						|
        self.saved_context = getcontext()
 | 
						|
        setcontext(self.new_context)
 | 
						|
        return self.new_context
 | 
						|
    def __exit__(self, t, v, tb):
 | 
						|
        setcontext(self.saved_context)
 | 
						|
 | 
						|
class Context(object):
 | 
						|
    """Contains the context for a Decimal instance.
 | 
						|
 | 
						|
    Contains:
 | 
						|
    prec - precision (for use in rounding, division, square roots..)
 | 
						|
    rounding - rounding type (how you round)
 | 
						|
    _rounding_decision - ALWAYS_ROUND, NEVER_ROUND -- do you round?
 | 
						|
    traps - If traps[exception] = 1, then the exception is
 | 
						|
                    raised when it is caused.  Otherwise, a value is
 | 
						|
                    substituted in.
 | 
						|
    flags  - When an exception is caused, flags[exception] is incremented.
 | 
						|
             (Whether or not the trap_enabler is set)
 | 
						|
             Should be reset by user of Decimal instance.
 | 
						|
    Emin -   Minimum exponent
 | 
						|
    Emax -   Maximum exponent
 | 
						|
    capitals -      If 1, 1*10^1 is printed as 1E+1.
 | 
						|
                    If 0, printed as 1e1
 | 
						|
    _clamp - If 1, change exponents if too high (Default 0)
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(self, prec=None, rounding=None,
 | 
						|
                 traps=None, flags=None,
 | 
						|
                 _rounding_decision=None,
 | 
						|
                 Emin=None, Emax=None,
 | 
						|
                 capitals=None, _clamp=0,
 | 
						|
                 _ignored_flags=None):
 | 
						|
        if flags is None:
 | 
						|
            flags = []
 | 
						|
        if _ignored_flags is None:
 | 
						|
            _ignored_flags = []
 | 
						|
        if not isinstance(flags, dict):
 | 
						|
            flags = dict([(s,s in flags) for s in _signals])
 | 
						|
            del s
 | 
						|
        if traps is not None and not isinstance(traps, dict):
 | 
						|
            traps = dict([(s,s in traps) for s in _signals])
 | 
						|
            del s
 | 
						|
        for name, val in locals().items():
 | 
						|
            if val is None:
 | 
						|
                setattr(self, name, _copy.copy(getattr(DefaultContext, name)))
 | 
						|
            else:
 | 
						|
                setattr(self, name, val)
 | 
						|
        del self.self
 | 
						|
 | 
						|
    def __repr__(self):
 | 
						|
        """Show the current context."""
 | 
						|
        s = []
 | 
						|
        s.append('Context(prec=%(prec)d, rounding=%(rounding)s, '
 | 
						|
                 'Emin=%(Emin)d, Emax=%(Emax)d, capitals=%(capitals)d'
 | 
						|
                 % vars(self))
 | 
						|
        names = [f.__name__ for f, v in self.flags.items() if v]
 | 
						|
        s.append('flags=[' + ', '.join(names) + ']')
 | 
						|
        names = [t.__name__ for t, v in self.traps.items() if v]
 | 
						|
        s.append('traps=[' + ', '.join(names) + ']')
 | 
						|
        return ', '.join(s) + ')'
 | 
						|
 | 
						|
    def clear_flags(self):
 | 
						|
        """Reset all flags to zero"""
 | 
						|
        for flag in self.flags:
 | 
						|
            self.flags[flag] = 0
 | 
						|
 | 
						|
    def _shallow_copy(self):
 | 
						|
        """Returns a shallow copy from self."""
 | 
						|
        nc = Context(self.prec, self.rounding, self.traps, self.flags,
 | 
						|
                         self._rounding_decision, self.Emin, self.Emax,
 | 
						|
                         self.capitals, self._clamp, self._ignored_flags)
 | 
						|
        return nc
 | 
						|
 | 
						|
    def copy(self):
 | 
						|
        """Returns a deep copy from self."""
 | 
						|
        nc = Context(self.prec, self.rounding, self.traps.copy(),
 | 
						|
                self.flags.copy(), self._rounding_decision, self.Emin,
 | 
						|
                self.Emax, self.capitals, self._clamp, self._ignored_flags)
 | 
						|
        return nc
 | 
						|
    __copy__ = copy
 | 
						|
 | 
						|
    def _raise_error(self, condition, explanation = None, *args):
 | 
						|
        """Handles an error
 | 
						|
 | 
						|
        If the flag is in _ignored_flags, returns the default response.
 | 
						|
        Otherwise, it increments the flag, then, if the corresponding
 | 
						|
        trap_enabler is set, it reaises the exception.  Otherwise, it returns
 | 
						|
        the default value after incrementing the flag.
 | 
						|
        """
 | 
						|
        error = _condition_map.get(condition, condition)
 | 
						|
        if error in self._ignored_flags:
 | 
						|
            # Don't touch the flag
 | 
						|
            return error().handle(self, *args)
 | 
						|
 | 
						|
        self.flags[error] += 1
 | 
						|
        if not self.traps[error]:
 | 
						|
            # The errors define how to handle themselves.
 | 
						|
            return condition().handle(self, *args)
 | 
						|
 | 
						|
        # Errors should only be risked on copies of the context
 | 
						|
        # self._ignored_flags = []
 | 
						|
        raise error, explanation
 | 
						|
 | 
						|
    def _ignore_all_flags(self):
 | 
						|
        """Ignore all flags, if they are raised"""
 | 
						|
        return self._ignore_flags(*_signals)
 | 
						|
 | 
						|
    def _ignore_flags(self, *flags):
 | 
						|
        """Ignore the flags, if they are raised"""
 | 
						|
        # Do not mutate-- This way, copies of a context leave the original
 | 
						|
        # alone.
 | 
						|
        self._ignored_flags = (self._ignored_flags + list(flags))
 | 
						|
        return list(flags)
 | 
						|
 | 
						|
    def _regard_flags(self, *flags):
 | 
						|
        """Stop ignoring the flags, if they are raised"""
 | 
						|
        if flags and isinstance(flags[0], (tuple,list)):
 | 
						|
            flags = flags[0]
 | 
						|
        for flag in flags:
 | 
						|
            self._ignored_flags.remove(flag)
 | 
						|
 | 
						|
    def __hash__(self):
 | 
						|
        """A Context cannot be hashed."""
 | 
						|
        # We inherit object.__hash__, so we must deny this explicitly
 | 
						|
        raise TypeError("Cannot hash a Context.")
 | 
						|
 | 
						|
    def Etiny(self):
 | 
						|
        """Returns Etiny (= Emin - prec + 1)"""
 | 
						|
        return int(self.Emin - self.prec + 1)
 | 
						|
 | 
						|
    def Etop(self):
 | 
						|
        """Returns maximum exponent (= Emax - prec + 1)"""
 | 
						|
        return int(self.Emax - self.prec + 1)
 | 
						|
 | 
						|
    def _set_rounding_decision(self, type):
 | 
						|
        """Sets the rounding decision.
 | 
						|
 | 
						|
        Sets the rounding decision, and returns the current (previous)
 | 
						|
        rounding decision.  Often used like:
 | 
						|
 | 
						|
        context = context._shallow_copy()
 | 
						|
        # That so you don't change the calling context
 | 
						|
        # if an error occurs in the middle (say DivisionImpossible is raised).
 | 
						|
 | 
						|
        rounding = context._set_rounding_decision(NEVER_ROUND)
 | 
						|
        instance = instance / Decimal(2)
 | 
						|
        context._set_rounding_decision(rounding)
 | 
						|
 | 
						|
        This will make it not round for that operation.
 | 
						|
        """
 | 
						|
 | 
						|
        rounding = self._rounding_decision
 | 
						|
        self._rounding_decision = type
 | 
						|
        return rounding
 | 
						|
 | 
						|
    def _set_rounding(self, type):
 | 
						|
        """Sets the rounding type.
 | 
						|
 | 
						|
        Sets the rounding type, and returns the current (previous)
 | 
						|
        rounding type.  Often used like:
 | 
						|
 | 
						|
        context = context.copy()
 | 
						|
        # so you don't change the calling context
 | 
						|
        # if an error occurs in the middle.
 | 
						|
        rounding = context._set_rounding(ROUND_UP)
 | 
						|
        val = self.__sub__(other, context=context)
 | 
						|
        context._set_rounding(rounding)
 | 
						|
 | 
						|
        This will make it round up for that operation.
 | 
						|
        """
 | 
						|
        rounding = self.rounding
 | 
						|
        self.rounding= type
 | 
						|
        return rounding
 | 
						|
 | 
						|
    def create_decimal(self, num='0'):
 | 
						|
        """Creates a new Decimal instance but using self as context."""
 | 
						|
        d = Decimal(num, context=self)
 | 
						|
        if d._isnan() and len(d._int) > self.prec - self._clamp:
 | 
						|
            return self._raise_error(ConversionSyntax,
 | 
						|
                                     "diagnostic info too long in NaN")
 | 
						|
        return d._fix(self)
 | 
						|
 | 
						|
    # Methods
 | 
						|
    def abs(self, a):
 | 
						|
        """Returns the absolute value of the operand.
 | 
						|
 | 
						|
        If the operand is negative, the result is the same as using the minus
 | 
						|
        operation on the operand.  Otherwise, the result is the same as using
 | 
						|
        the plus operation on the operand.
 | 
						|
 | 
						|
        >>> ExtendedContext.abs(Decimal('2.1'))
 | 
						|
        Decimal("2.1")
 | 
						|
        >>> ExtendedContext.abs(Decimal('-100'))
 | 
						|
        Decimal("100")
 | 
						|
        >>> ExtendedContext.abs(Decimal('101.5'))
 | 
						|
        Decimal("101.5")
 | 
						|
        >>> ExtendedContext.abs(Decimal('-101.5'))
 | 
						|
        Decimal("101.5")
 | 
						|
        """
 | 
						|
        return a.__abs__(context=self)
 | 
						|
 | 
						|
    def add(self, a, b):
 | 
						|
        """Return the sum of the two operands.
 | 
						|
 | 
						|
        >>> ExtendedContext.add(Decimal('12'), Decimal('7.00'))
 | 
						|
        Decimal("19.00")
 | 
						|
        >>> ExtendedContext.add(Decimal('1E+2'), Decimal('1.01E+4'))
 | 
						|
        Decimal("1.02E+4")
 | 
						|
        """
 | 
						|
        return a.__add__(b, context=self)
 | 
						|
 | 
						|
    def _apply(self, a):
 | 
						|
        return str(a._fix(self))
 | 
						|
 | 
						|
    def canonical(self, a):
 | 
						|
        """Returns the same Decimal object.
 | 
						|
 | 
						|
        As we do not have different encodings for the same number, the
 | 
						|
        received object already is in its canonical form.
 | 
						|
 | 
						|
        >>> ExtendedContext.canonical(Decimal('2.50'))
 | 
						|
        Decimal("2.50")
 | 
						|
        """
 | 
						|
        return a.canonical(context=self)
 | 
						|
 | 
						|
    def compare(self, a, b):
 | 
						|
        """Compares values numerically.
 | 
						|
 | 
						|
        If the signs of the operands differ, a value representing each operand
 | 
						|
        ('-1' if the operand is less than zero, '0' if the operand is zero or
 | 
						|
        negative zero, or '1' if the operand is greater than zero) is used in
 | 
						|
        place of that operand for the comparison instead of the actual
 | 
						|
        operand.
 | 
						|
 | 
						|
        The comparison is then effected by subtracting the second operand from
 | 
						|
        the first and then returning a value according to the result of the
 | 
						|
        subtraction: '-1' if the result is less than zero, '0' if the result is
 | 
						|
        zero or negative zero, or '1' if the result is greater than zero.
 | 
						|
 | 
						|
        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('3'))
 | 
						|
        Decimal("-1")
 | 
						|
        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.1'))
 | 
						|
        Decimal("0")
 | 
						|
        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.10'))
 | 
						|
        Decimal("0")
 | 
						|
        >>> ExtendedContext.compare(Decimal('3'), Decimal('2.1'))
 | 
						|
        Decimal("1")
 | 
						|
        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('-3'))
 | 
						|
        Decimal("1")
 | 
						|
        >>> ExtendedContext.compare(Decimal('-3'), Decimal('2.1'))
 | 
						|
        Decimal("-1")
 | 
						|
        """
 | 
						|
        return a.compare(b, context=self)
 | 
						|
 | 
						|
    def compare_signal(self, a, b):
 | 
						|
        """Compares the values of the two operands numerically.
 | 
						|
 | 
						|
        It's pretty much like compare(), but all NaNs signal, with signaling
 | 
						|
        NaNs taking precedence over quiet NaNs.
 | 
						|
 | 
						|
        >>> c = ExtendedContext
 | 
						|
        >>> c.compare_signal(Decimal('2.1'), Decimal('3'))
 | 
						|
        Decimal("-1")
 | 
						|
        >>> c.compare_signal(Decimal('2.1'), Decimal('2.1'))
 | 
						|
        Decimal("0")
 | 
						|
        >>> c.flags[InvalidOperation] = 0
 | 
						|
        >>> print c.flags[InvalidOperation]
 | 
						|
        0
 | 
						|
        >>> c.compare_signal(Decimal('NaN'), Decimal('2.1'))
 | 
						|
        Decimal("NaN")
 | 
						|
        >>> print c.flags[InvalidOperation]
 | 
						|
        1
 | 
						|
        >>> c.flags[InvalidOperation] = 0
 | 
						|
        >>> print c.flags[InvalidOperation]
 | 
						|
        0
 | 
						|
        >>> c.compare_signal(Decimal('sNaN'), Decimal('2.1'))
 | 
						|
        Decimal("NaN")
 | 
						|
        >>> print c.flags[InvalidOperation]
 | 
						|
        1
 | 
						|
        """
 | 
						|
        return a.compare_signal(b, context=self)
 | 
						|
 | 
						|
    def compare_total(self, a, b):
 | 
						|
        """Compares two operands using their abstract representation.
 | 
						|
 | 
						|
        This is not like the standard compare, which use their numerical
 | 
						|
        value. Note that a total ordering is defined for all possible abstract
 | 
						|
        representations.
 | 
						|
 | 
						|
        >>> ExtendedContext.compare_total(Decimal('12.73'), Decimal('127.9'))
 | 
						|
        Decimal("-1")
 | 
						|
        >>> ExtendedContext.compare_total(Decimal('-127'),  Decimal('12'))
 | 
						|
        Decimal("-1")
 | 
						|
        >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.3'))
 | 
						|
        Decimal("-1")
 | 
						|
        >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.30'))
 | 
						|
        Decimal("0")
 | 
						|
        >>> ExtendedContext.compare_total(Decimal('12.3'),  Decimal('12.300'))
 | 
						|
        Decimal("1")
 | 
						|
        >>> ExtendedContext.compare_total(Decimal('12.3'),  Decimal('NaN'))
 | 
						|
        Decimal("-1")
 | 
						|
        """
 | 
						|
        return a.compare_total(b)
 | 
						|
 | 
						|
    def compare_total_mag(self, a, b):
 | 
						|
        """Compares two operands using their abstract representation ignoring sign.
 | 
						|
 | 
						|
        Like compare_total, but with operand's sign ignored and assumed to be 0.
 | 
						|
        """
 | 
						|
        return a.compare_total_mag(b)
 | 
						|
 | 
						|
    def copy_abs(self, a):
 | 
						|
        """Returns a copy of the operand with the sign set to 0.
 | 
						|
 | 
						|
        >>> ExtendedContext.copy_abs(Decimal('2.1'))
 | 
						|
        Decimal("2.1")
 | 
						|
        >>> ExtendedContext.copy_abs(Decimal('-100'))
 | 
						|
        Decimal("100")
 | 
						|
        """
 | 
						|
        return a.copy_abs()
 | 
						|
 | 
						|
    def copy_decimal(self, a):
 | 
						|
        """Returns a copy of the decimal objet.
 | 
						|
 | 
						|
        >>> ExtendedContext.copy_decimal(Decimal('2.1'))
 | 
						|
        Decimal("2.1")
 | 
						|
        >>> ExtendedContext.copy_decimal(Decimal('-1.00'))
 | 
						|
        Decimal("-1.00")
 | 
						|
        """
 | 
						|
        return Decimal(a)
 | 
						|
 | 
						|
    def copy_negate(self, a):
 | 
						|
        """Returns a copy of the operand with the sign inverted.
 | 
						|
 | 
						|
        >>> ExtendedContext.copy_negate(Decimal('101.5'))
 | 
						|
        Decimal("-101.5")
 | 
						|
        >>> ExtendedContext.copy_negate(Decimal('-101.5'))
 | 
						|
        Decimal("101.5")
 | 
						|
        """
 | 
						|
        return a.copy_negate()
 | 
						|
 | 
						|
    def copy_sign(self, a, b):
 | 
						|
        """Copies the second operand's sign to the first one.
 | 
						|
 | 
						|
        In detail, it returns a copy of the first operand with the sign
 | 
						|
        equal to the sign of the second operand.
 | 
						|
 | 
						|
        >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('7.33'))
 | 
						|
        Decimal("1.50")
 | 
						|
        >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('7.33'))
 | 
						|
        Decimal("1.50")
 | 
						|
        >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('-7.33'))
 | 
						|
        Decimal("-1.50")
 | 
						|
        >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('-7.33'))
 | 
						|
        Decimal("-1.50")
 | 
						|
        """
 | 
						|
        return a.copy_sign(b)
 | 
						|
 | 
						|
    def divide(self, a, b):
 | 
						|
        """Decimal division in a specified context.
 | 
						|
 | 
						|
        >>> ExtendedContext.divide(Decimal('1'), Decimal('3'))
 | 
						|
        Decimal("0.333333333")
 | 
						|
        >>> ExtendedContext.divide(Decimal('2'), Decimal('3'))
 | 
						|
        Decimal("0.666666667")
 | 
						|
        >>> ExtendedContext.divide(Decimal('5'), Decimal('2'))
 | 
						|
        Decimal("2.5")
 | 
						|
        >>> ExtendedContext.divide(Decimal('1'), Decimal('10'))
 | 
						|
        Decimal("0.1")
 | 
						|
        >>> ExtendedContext.divide(Decimal('12'), Decimal('12'))
 | 
						|
        Decimal("1")
 | 
						|
        >>> ExtendedContext.divide(Decimal('8.00'), Decimal('2'))
 | 
						|
        Decimal("4.00")
 | 
						|
        >>> ExtendedContext.divide(Decimal('2.400'), Decimal('2.0'))
 | 
						|
        Decimal("1.20")
 | 
						|
        >>> ExtendedContext.divide(Decimal('1000'), Decimal('100'))
 | 
						|
        Decimal("10")
 | 
						|
        >>> ExtendedContext.divide(Decimal('1000'), Decimal('1'))
 | 
						|
        Decimal("1000")
 | 
						|
        >>> ExtendedContext.divide(Decimal('2.40E+6'), Decimal('2'))
 | 
						|
        Decimal("1.20E+6")
 | 
						|
        """
 | 
						|
        return a.__div__(b, context=self)
 | 
						|
 | 
						|
    def divide_int(self, a, b):
 | 
						|
        """Divides two numbers and returns the integer part of the result.
 | 
						|
 | 
						|
        >>> ExtendedContext.divide_int(Decimal('2'), Decimal('3'))
 | 
						|
        Decimal("0")
 | 
						|
        >>> ExtendedContext.divide_int(Decimal('10'), Decimal('3'))
 | 
						|
        Decimal("3")
 | 
						|
        >>> ExtendedContext.divide_int(Decimal('1'), Decimal('0.3'))
 | 
						|
        Decimal("3")
 | 
						|
        """
 | 
						|
        return a.__floordiv__(b, context=self)
 | 
						|
 | 
						|
    def divmod(self, a, b):
 | 
						|
        return a.__divmod__(b, context=self)
 | 
						|
 | 
						|
    def exp(self, a):
 | 
						|
        """Returns e ** a.
 | 
						|
 | 
						|
        >>> c = ExtendedContext.copy()
 | 
						|
        >>> c.Emin = -999
 | 
						|
        >>> c.Emax = 999
 | 
						|
        >>> c.exp(Decimal('-Infinity'))
 | 
						|
        Decimal("0")
 | 
						|
        >>> c.exp(Decimal('-1'))
 | 
						|
        Decimal("0.367879441")
 | 
						|
        >>> c.exp(Decimal('0'))
 | 
						|
        Decimal("1")
 | 
						|
        >>> c.exp(Decimal('1'))
 | 
						|
        Decimal("2.71828183")
 | 
						|
        >>> c.exp(Decimal('0.693147181'))
 | 
						|
        Decimal("2.00000000")
 | 
						|
        >>> c.exp(Decimal('+Infinity'))
 | 
						|
        Decimal("Infinity")
 | 
						|
        """
 | 
						|
        return a.exp(context=self)
 | 
						|
 | 
						|
    def fma(self, a, b, c):
 | 
						|
        """Returns a multiplied by b, plus c.
 | 
						|
 | 
						|
        The first two operands are multiplied together, using multiply,
 | 
						|
        the third operand is then added to the result of that
 | 
						|
        multiplication, using add, all with only one final rounding.
 | 
						|
 | 
						|
        >>> ExtendedContext.fma(Decimal('3'), Decimal('5'), Decimal('7'))
 | 
						|
        Decimal("22")
 | 
						|
        >>> ExtendedContext.fma(Decimal('3'), Decimal('-5'), Decimal('7'))
 | 
						|
        Decimal("-8")
 | 
						|
        >>> ExtendedContext.fma(Decimal('888565290'), Decimal('1557.96930'), Decimal('-86087.7578'))
 | 
						|
        Decimal("1.38435736E+12")
 | 
						|
        """
 | 
						|
        return a.fma(b, c, context=self)
 | 
						|
 | 
						|
    def is_canonical(self, a):
 | 
						|
        """Returns 1 if the operand is canonical; otherwise returns 0.
 | 
						|
 | 
						|
        >>> ExtendedContext.is_canonical(Decimal('2.50'))
 | 
						|
        Decimal("1")
 | 
						|
        """
 | 
						|
        return Dec_p1
 | 
						|
 | 
						|
    def is_finite(self, a):
 | 
						|
        """Returns 1 if the operand is finite, otherwise returns 0.
 | 
						|
 | 
						|
        For it to be finite, it must be neither infinite nor a NaN.
 | 
						|
 | 
						|
        >>> ExtendedContext.is_finite(Decimal('2.50'))
 | 
						|
        Decimal("1")
 | 
						|
        >>> ExtendedContext.is_finite(Decimal('-0.3'))
 | 
						|
        Decimal("1")
 | 
						|
        >>> ExtendedContext.is_finite(Decimal('0'))
 | 
						|
        Decimal("1")
 | 
						|
        >>> ExtendedContext.is_finite(Decimal('Inf'))
 | 
						|
        Decimal("0")
 | 
						|
        >>> ExtendedContext.is_finite(Decimal('NaN'))
 | 
						|
        Decimal("0")
 | 
						|
        """
 | 
						|
        return a.is_finite()
 | 
						|
 | 
						|
    def is_infinite(self, a):
 | 
						|
        """Returns 1 if the operand is an Infinite, otherwise returns 0.
 | 
						|
 | 
						|
        >>> ExtendedContext.is_infinite(Decimal('2.50'))
 | 
						|
        Decimal("0")
 | 
						|
        >>> ExtendedContext.is_infinite(Decimal('-Inf'))
 | 
						|
        Decimal("1")
 | 
						|
        >>> ExtendedContext.is_infinite(Decimal('NaN'))
 | 
						|
        Decimal("0")
 | 
						|
        """
 | 
						|
        return a.is_infinite()
 | 
						|
 | 
						|
    def is_nan(self, a):
 | 
						|
        """Returns 1 if the operand is qNaN or sNaN, otherwise returns 0.
 | 
						|
 | 
						|
        >>> ExtendedContext.is_nan(Decimal('2.50'))
 | 
						|
        Decimal("0")
 | 
						|
        >>> ExtendedContext.is_nan(Decimal('NaN'))
 | 
						|
        Decimal("1")
 | 
						|
        >>> ExtendedContext.is_nan(Decimal('-sNaN'))
 | 
						|
        Decimal("1")
 | 
						|
        """
 | 
						|
        return a.is_nan()
 | 
						|
 | 
						|
    def is_normal(self, a):
 | 
						|
        """Returns 1 if the operand is a normal number, otherwise returns 0.
 | 
						|
 | 
						|
        >>> c = ExtendedContext.copy()
 | 
						|
        >>> c.Emin = -999
 | 
						|
        >>> c.Emax = 999
 | 
						|
        >>> c.is_normal(Decimal('2.50'))
 | 
						|
        Decimal("1")
 | 
						|
        >>> c.is_normal(Decimal('0.1E-999'))
 | 
						|
        Decimal("0")
 | 
						|
        >>> c.is_normal(Decimal('0.00'))
 | 
						|
        Decimal("0")
 | 
						|
        >>> c.is_normal(Decimal('-Inf'))
 | 
						|
        Decimal("0")
 | 
						|
        >>> c.is_normal(Decimal('NaN'))
 | 
						|
        Decimal("0")
 | 
						|
        """
 | 
						|
        return a.is_normal(context=self)
 | 
						|
 | 
						|
    def is_qnan(self, a):
 | 
						|
        """Returns 1 if the operand is a quiet NaN, otherwise returns 0.
 | 
						|
 | 
						|
        >>> ExtendedContext.is_qnan(Decimal('2.50'))
 | 
						|
        Decimal("0")
 | 
						|
        >>> ExtendedContext.is_qnan(Decimal('NaN'))
 | 
						|
        Decimal("1")
 | 
						|
        >>> ExtendedContext.is_qnan(Decimal('sNaN'))
 | 
						|
        Decimal("0")
 | 
						|
        """
 | 
						|
        return a.is_qnan()
 | 
						|
 | 
						|
    def is_signed(self, a):
 | 
						|
        """Returns 1 if the operand is negative, otherwise returns 0.
 | 
						|
 | 
						|
        >>> ExtendedContext.is_signed(Decimal('2.50'))
 | 
						|
        Decimal("0")
 | 
						|
        >>> ExtendedContext.is_signed(Decimal('-12'))
 | 
						|
        Decimal("1")
 | 
						|
        >>> ExtendedContext.is_signed(Decimal('-0'))
 | 
						|
        Decimal("1")
 | 
						|
        """
 | 
						|
        return a.is_signed()
 | 
						|
 | 
						|
    def is_snan(self, a):
 | 
						|
        """Returns 1 if the operand is a signaling NaN, otherwise returns 0.
 | 
						|
 | 
						|
        >>> ExtendedContext.is_snan(Decimal('2.50'))
 | 
						|
        Decimal("0")
 | 
						|
        >>> ExtendedContext.is_snan(Decimal('NaN'))
 | 
						|
        Decimal("0")
 | 
						|
        >>> ExtendedContext.is_snan(Decimal('sNaN'))
 | 
						|
        Decimal("1")
 | 
						|
        """
 | 
						|
        return a.is_snan()
 | 
						|
 | 
						|
    def is_subnormal(self, a):
 | 
						|
        """Returns 1 if the operand is subnormal, otherwise returns 0.
 | 
						|
 | 
						|
        >>> c = ExtendedContext.copy()
 | 
						|
        >>> c.Emin = -999
 | 
						|
        >>> c.Emax = 999
 | 
						|
        >>> c.is_subnormal(Decimal('2.50'))
 | 
						|
        Decimal("0")
 | 
						|
        >>> c.is_subnormal(Decimal('0.1E-999'))
 | 
						|
        Decimal("1")
 | 
						|
        >>> c.is_subnormal(Decimal('0.00'))
 | 
						|
        Decimal("0")
 | 
						|
        >>> c.is_subnormal(Decimal('-Inf'))
 | 
						|
        Decimal("0")
 | 
						|
        >>> c.is_subnormal(Decimal('NaN'))
 | 
						|
        Decimal("0")
 | 
						|
        """
 | 
						|
        return a.is_subnormal(context=self)
 | 
						|
 | 
						|
    def is_zero(self, a):
 | 
						|
        """Returns 1 if the operand is a zero, otherwise returns 0.
 | 
						|
 | 
						|
        >>> ExtendedContext.is_zero(Decimal('0'))
 | 
						|
        Decimal("1")
 | 
						|
        >>> ExtendedContext.is_zero(Decimal('2.50'))
 | 
						|
        Decimal("0")
 | 
						|
        >>> ExtendedContext.is_zero(Decimal('-0E+2'))
 | 
						|
        Decimal("1")
 | 
						|
        """
 | 
						|
        return a.is_zero()
 | 
						|
 | 
						|
    def ln(self, a):
 | 
						|
        """Returns the natural (base e) logarithm of the operand.
 | 
						|
 | 
						|
        >>> c = ExtendedContext.copy()
 | 
						|
        >>> c.Emin = -999
 | 
						|
        >>> c.Emax = 999
 | 
						|
        >>> c.ln(Decimal('0'))
 | 
						|
        Decimal("-Infinity")
 | 
						|
        >>> c.ln(Decimal('1.000'))
 | 
						|
        Decimal("0")
 | 
						|
        >>> c.ln(Decimal('2.71828183'))
 | 
						|
        Decimal("1.00000000")
 | 
						|
        >>> c.ln(Decimal('10'))
 | 
						|
        Decimal("2.30258509")
 | 
						|
        >>> c.ln(Decimal('+Infinity'))
 | 
						|
        Decimal("Infinity")
 | 
						|
        """
 | 
						|
        return a.ln(context=self)
 | 
						|
 | 
						|
    def log10(self, a):
 | 
						|
        """Returns the base 10 logarithm of the operand.
 | 
						|
 | 
						|
        >>> c = ExtendedContext.copy()
 | 
						|
        >>> c.Emin = -999
 | 
						|
        >>> c.Emax = 999
 | 
						|
        >>> c.log10(Decimal('0'))
 | 
						|
        Decimal("-Infinity")
 | 
						|
        >>> c.log10(Decimal('0.001'))
 | 
						|
        Decimal("-3")
 | 
						|
        >>> c.log10(Decimal('1.000'))
 | 
						|
        Decimal("0")
 | 
						|
        >>> c.log10(Decimal('2'))
 | 
						|
        Decimal("0.301029996")
 | 
						|
        >>> c.log10(Decimal('10'))
 | 
						|
        Decimal("1")
 | 
						|
        >>> c.log10(Decimal('70'))
 | 
						|
        Decimal("1.84509804")
 | 
						|
        >>> c.log10(Decimal('+Infinity'))
 | 
						|
        Decimal("Infinity")
 | 
						|
        """
 | 
						|
        return a.log10(context=self)
 | 
						|
 | 
						|
    def logb(self, a):
 | 
						|
        """ Returns the exponent of the magnitude of the operand's MSD.
 | 
						|
 | 
						|
        The result is the integer which is the exponent of the magnitude
 | 
						|
        of the most significant digit of the operand (as though the
 | 
						|
        operand were truncated to a single digit while maintaining the
 | 
						|
        value of that digit and without limiting the resulting exponent).
 | 
						|
 | 
						|
        >>> ExtendedContext.logb(Decimal('250'))
 | 
						|
        Decimal("2")
 | 
						|
        >>> ExtendedContext.logb(Decimal('2.50'))
 | 
						|
        Decimal("0")
 | 
						|
        >>> ExtendedContext.logb(Decimal('0.03'))
 | 
						|
        Decimal("-2")
 | 
						|
        >>> ExtendedContext.logb(Decimal('0'))
 | 
						|
        Decimal("-Infinity")
 | 
						|
        """
 | 
						|
        return a.logb(context=self)
 | 
						|
 | 
						|
    def logical_and(self, a, b):
 | 
						|
        """Applies the logical operation 'and' between each operand's digits.
 | 
						|
 | 
						|
        The operands must be both logical numbers.
 | 
						|
 | 
						|
        >>> ExtendedContext.logical_and(Decimal('0'), Decimal('0'))
 | 
						|
        Decimal("0")
 | 
						|
        >>> ExtendedContext.logical_and(Decimal('0'), Decimal('1'))
 | 
						|
        Decimal("0")
 | 
						|
        >>> ExtendedContext.logical_and(Decimal('1'), Decimal('0'))
 | 
						|
        Decimal("0")
 | 
						|
        >>> ExtendedContext.logical_and(Decimal('1'), Decimal('1'))
 | 
						|
        Decimal("1")
 | 
						|
        >>> ExtendedContext.logical_and(Decimal('1100'), Decimal('1010'))
 | 
						|
        Decimal("1000")
 | 
						|
        >>> ExtendedContext.logical_and(Decimal('1111'), Decimal('10'))
 | 
						|
        Decimal("10")
 | 
						|
        """
 | 
						|
        return a.logical_and(b, context=self)
 | 
						|
 | 
						|
    def logical_invert(self, a):
 | 
						|
        """Invert all the digits in the operand.
 | 
						|
 | 
						|
        The operand must be a logical number.
 | 
						|
 | 
						|
        >>> ExtendedContext.logical_invert(Decimal('0'))
 | 
						|
        Decimal("111111111")
 | 
						|
        >>> ExtendedContext.logical_invert(Decimal('1'))
 | 
						|
        Decimal("111111110")
 | 
						|
        >>> ExtendedContext.logical_invert(Decimal('111111111'))
 | 
						|
        Decimal("0")
 | 
						|
        >>> ExtendedContext.logical_invert(Decimal('101010101'))
 | 
						|
        Decimal("10101010")
 | 
						|
        """
 | 
						|
        return a.logical_invert(context=self)
 | 
						|
 | 
						|
    def logical_or(self, a, b):
 | 
						|
        """Applies the logical operation 'or' between each operand's digits.
 | 
						|
 | 
						|
        The operands must be both logical numbers.
 | 
						|
 | 
						|
        >>> ExtendedContext.logical_or(Decimal('0'), Decimal('0'))
 | 
						|
        Decimal("0")
 | 
						|
        >>> ExtendedContext.logical_or(Decimal('0'), Decimal('1'))
 | 
						|
        Decimal("1")
 | 
						|
        >>> ExtendedContext.logical_or(Decimal('1'), Decimal('0'))
 | 
						|
        Decimal("1")
 | 
						|
        >>> ExtendedContext.logical_or(Decimal('1'), Decimal('1'))
 | 
						|
        Decimal("1")
 | 
						|
        >>> ExtendedContext.logical_or(Decimal('1100'), Decimal('1010'))
 | 
						|
        Decimal("1110")
 | 
						|
        >>> ExtendedContext.logical_or(Decimal('1110'), Decimal('10'))
 | 
						|
        Decimal("1110")
 | 
						|
        """
 | 
						|
        return a.logical_or(b, context=self)
 | 
						|
 | 
						|
    def logical_xor(self, a, b):
 | 
						|
        """Applies the logical operation 'xor' between each operand's digits.
 | 
						|
 | 
						|
        The operands must be both logical numbers.
 | 
						|
 | 
						|
        >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('0'))
 | 
						|
        Decimal("0")
 | 
						|
        >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('1'))
 | 
						|
        Decimal("1")
 | 
						|
        >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('0'))
 | 
						|
        Decimal("1")
 | 
						|
        >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('1'))
 | 
						|
        Decimal("0")
 | 
						|
        >>> ExtendedContext.logical_xor(Decimal('1100'), Decimal('1010'))
 | 
						|
        Decimal("110")
 | 
						|
        >>> ExtendedContext.logical_xor(Decimal('1111'), Decimal('10'))
 | 
						|
        Decimal("1101")
 | 
						|
        """
 | 
						|
        return a.logical_xor(b, context=self)
 | 
						|
 | 
						|
    def max(self, a,b):
 | 
						|
        """max compares two values numerically and returns the maximum.
 | 
						|
 | 
						|
        If either operand is a NaN then the general rules apply.
 | 
						|
        Otherwise, the operands are compared as as though by the compare
 | 
						|
        operation.  If they are numerically equal then the left-hand operand
 | 
						|
        is chosen as the result.  Otherwise the maximum (closer to positive
 | 
						|
        infinity) of the two operands is chosen as the result.
 | 
						|
 | 
						|
        >>> ExtendedContext.max(Decimal('3'), Decimal('2'))
 | 
						|
        Decimal("3")
 | 
						|
        >>> ExtendedContext.max(Decimal('-10'), Decimal('3'))
 | 
						|
        Decimal("3")
 | 
						|
        >>> ExtendedContext.max(Decimal('1.0'), Decimal('1'))
 | 
						|
        Decimal("1")
 | 
						|
        >>> ExtendedContext.max(Decimal('7'), Decimal('NaN'))
 | 
						|
        Decimal("7")
 | 
						|
        """
 | 
						|
        return a.max(b, context=self)
 | 
						|
 | 
						|
    def max_mag(self, a, b):
 | 
						|
        """Compares the values numerically with their sign ignored."""
 | 
						|
        return a.max_mag(b, context=self)
 | 
						|
 | 
						|
    def min(self, a,b):
 | 
						|
        """min compares two values numerically and returns the minimum.
 | 
						|
 | 
						|
        If either operand is a NaN then the general rules apply.
 | 
						|
        Otherwise, the operands are compared as as though by the compare
 | 
						|
        operation.  If they are numerically equal then the left-hand operand
 | 
						|
        is chosen as the result.  Otherwise the minimum (closer to negative
 | 
						|
        infinity) of the two operands is chosen as the result.
 | 
						|
 | 
						|
        >>> ExtendedContext.min(Decimal('3'), Decimal('2'))
 | 
						|
        Decimal("2")
 | 
						|
        >>> ExtendedContext.min(Decimal('-10'), Decimal('3'))
 | 
						|
        Decimal("-10")
 | 
						|
        >>> ExtendedContext.min(Decimal('1.0'), Decimal('1'))
 | 
						|
        Decimal("1.0")
 | 
						|
        >>> ExtendedContext.min(Decimal('7'), Decimal('NaN'))
 | 
						|
        Decimal("7")
 | 
						|
        """
 | 
						|
        return a.min(b, context=self)
 | 
						|
 | 
						|
    def min_mag(self, a, b):
 | 
						|
        """Compares the values numerically with their sign ignored."""
 | 
						|
        return a.min_mag(b, context=self)
 | 
						|
 | 
						|
    def minus(self, a):
 | 
						|
        """Minus corresponds to unary prefix minus in Python.
 | 
						|
 | 
						|
        The operation is evaluated using the same rules as subtract; the
 | 
						|
        operation minus(a) is calculated as subtract('0', a) where the '0'
 | 
						|
        has the same exponent as the operand.
 | 
						|
 | 
						|
        >>> ExtendedContext.minus(Decimal('1.3'))
 | 
						|
        Decimal("-1.3")
 | 
						|
        >>> ExtendedContext.minus(Decimal('-1.3'))
 | 
						|
        Decimal("1.3")
 | 
						|
        """
 | 
						|
        return a.__neg__(context=self)
 | 
						|
 | 
						|
    def multiply(self, a, b):
 | 
						|
        """multiply multiplies two operands.
 | 
						|
 | 
						|
        If either operand is a special value then the general rules apply.
 | 
						|
        Otherwise, the operands are multiplied together ('long multiplication'),
 | 
						|
        resulting in a number which may be as long as the sum of the lengths
 | 
						|
        of the two operands.
 | 
						|
 | 
						|
        >>> ExtendedContext.multiply(Decimal('1.20'), Decimal('3'))
 | 
						|
        Decimal("3.60")
 | 
						|
        >>> ExtendedContext.multiply(Decimal('7'), Decimal('3'))
 | 
						|
        Decimal("21")
 | 
						|
        >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('0.8'))
 | 
						|
        Decimal("0.72")
 | 
						|
        >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('-0'))
 | 
						|
        Decimal("-0.0")
 | 
						|
        >>> ExtendedContext.multiply(Decimal('654321'), Decimal('654321'))
 | 
						|
        Decimal("4.28135971E+11")
 | 
						|
        """
 | 
						|
        return a.__mul__(b, context=self)
 | 
						|
 | 
						|
    def next_minus(self, a):
 | 
						|
        """Returns the largest representable number smaller than a.
 | 
						|
 | 
						|
        >>> c = ExtendedContext.copy()
 | 
						|
        >>> c.Emin = -999
 | 
						|
        >>> c.Emax = 999
 | 
						|
        >>> ExtendedContext.next_minus(Decimal('1'))
 | 
						|
        Decimal("0.999999999")
 | 
						|
        >>> c.next_minus(Decimal('1E-1007'))
 | 
						|
        Decimal("0E-1007")
 | 
						|
        >>> ExtendedContext.next_minus(Decimal('-1.00000003'))
 | 
						|
        Decimal("-1.00000004")
 | 
						|
        >>> c.next_minus(Decimal('Infinity'))
 | 
						|
        Decimal("9.99999999E+999")
 | 
						|
        """
 | 
						|
        return a.next_minus(context=self)
 | 
						|
 | 
						|
    def next_plus(self, a):
 | 
						|
        """Returns the smallest representable number larger than a.
 | 
						|
 | 
						|
        >>> c = ExtendedContext.copy()
 | 
						|
        >>> c.Emin = -999
 | 
						|
        >>> c.Emax = 999
 | 
						|
        >>> ExtendedContext.next_plus(Decimal('1'))
 | 
						|
        Decimal("1.00000001")
 | 
						|
        >>> c.next_plus(Decimal('-1E-1007'))
 | 
						|
        Decimal("-0E-1007")
 | 
						|
        >>> ExtendedContext.next_plus(Decimal('-1.00000003'))
 | 
						|
        Decimal("-1.00000002")
 | 
						|
        >>> c.next_plus(Decimal('-Infinity'))
 | 
						|
        Decimal("-9.99999999E+999")
 | 
						|
        """
 | 
						|
        return a.next_plus(context=self)
 | 
						|
 | 
						|
    def next_toward(self, a, b):
 | 
						|
        """Returns the number closest to a, in direction towards b.
 | 
						|
 | 
						|
        The result is the closest representable number from the first
 | 
						|
        operand (but not the first operand) that is in the direction
 | 
						|
        towards the second operand, unless the operands have the same
 | 
						|
        value.
 | 
						|
 | 
						|
        >>> c = ExtendedContext.copy()
 | 
						|
        >>> c.Emin = -999
 | 
						|
        >>> c.Emax = 999
 | 
						|
        >>> c.next_toward(Decimal('1'), Decimal('2'))
 | 
						|
        Decimal("1.00000001")
 | 
						|
        >>> c.next_toward(Decimal('-1E-1007'), Decimal('1'))
 | 
						|
        Decimal("-0E-1007")
 | 
						|
        >>> c.next_toward(Decimal('-1.00000003'), Decimal('0'))
 | 
						|
        Decimal("-1.00000002")
 | 
						|
        >>> c.next_toward(Decimal('1'), Decimal('0'))
 | 
						|
        Decimal("0.999999999")
 | 
						|
        >>> c.next_toward(Decimal('1E-1007'), Decimal('-100'))
 | 
						|
        Decimal("0E-1007")
 | 
						|
        >>> c.next_toward(Decimal('-1.00000003'), Decimal('-10'))
 | 
						|
        Decimal("-1.00000004")
 | 
						|
        >>> c.next_toward(Decimal('0.00'), Decimal('-0.0000'))
 | 
						|
        Decimal("-0.00")
 | 
						|
        """
 | 
						|
        return a.next_toward(b, context=self)
 | 
						|
 | 
						|
    def normalize(self, a):
 | 
						|
        """normalize reduces an operand to its simplest form.
 | 
						|
 | 
						|
        Essentially a plus operation with all trailing zeros removed from the
 | 
						|
        result.
 | 
						|
 | 
						|
        >>> ExtendedContext.normalize(Decimal('2.1'))
 | 
						|
        Decimal("2.1")
 | 
						|
        >>> ExtendedContext.normalize(Decimal('-2.0'))
 | 
						|
        Decimal("-2")
 | 
						|
        >>> ExtendedContext.normalize(Decimal('1.200'))
 | 
						|
        Decimal("1.2")
 | 
						|
        >>> ExtendedContext.normalize(Decimal('-120'))
 | 
						|
        Decimal("-1.2E+2")
 | 
						|
        >>> ExtendedContext.normalize(Decimal('120.00'))
 | 
						|
        Decimal("1.2E+2")
 | 
						|
        >>> ExtendedContext.normalize(Decimal('0.00'))
 | 
						|
        Decimal("0")
 | 
						|
        """
 | 
						|
        return a.normalize(context=self)
 | 
						|
 | 
						|
    def number_class(self, a):
 | 
						|
        """Returns an indication of the class of the operand.
 | 
						|
 | 
						|
        The class is one of the following strings:
 | 
						|
          -sNaN
 | 
						|
          -NaN
 | 
						|
          -Infinity
 | 
						|
          -Normal
 | 
						|
          -Subnormal
 | 
						|
          -Zero
 | 
						|
          +Zero
 | 
						|
          +Subnormal
 | 
						|
          +Normal
 | 
						|
          +Infinity
 | 
						|
 | 
						|
        >>> c = Context(ExtendedContext)
 | 
						|
        >>> c.Emin = -999
 | 
						|
        >>> c.Emax = 999
 | 
						|
        >>> c.number_class(Decimal('Infinity'))
 | 
						|
        '+Infinity'
 | 
						|
        >>> c.number_class(Decimal('1E-10'))
 | 
						|
        '+Normal'
 | 
						|
        >>> c.number_class(Decimal('2.50'))
 | 
						|
        '+Normal'
 | 
						|
        >>> c.number_class(Decimal('0.1E-999'))
 | 
						|
        '+Subnormal'
 | 
						|
        >>> c.number_class(Decimal('0'))
 | 
						|
        '+Zero'
 | 
						|
        >>> c.number_class(Decimal('-0'))
 | 
						|
        '-Zero'
 | 
						|
        >>> c.number_class(Decimal('-0.1E-999'))
 | 
						|
        '-Subnormal'
 | 
						|
        >>> c.number_class(Decimal('-1E-10'))
 | 
						|
        '-Normal'
 | 
						|
        >>> c.number_class(Decimal('-2.50'))
 | 
						|
        '-Normal'
 | 
						|
        >>> c.number_class(Decimal('-Infinity'))
 | 
						|
        '-Infinity'
 | 
						|
        >>> c.number_class(Decimal('NaN'))
 | 
						|
        'NaN'
 | 
						|
        >>> c.number_class(Decimal('-NaN'))
 | 
						|
        'NaN'
 | 
						|
        >>> c.number_class(Decimal('sNaN'))
 | 
						|
        'sNaN'
 | 
						|
        """
 | 
						|
        return a.number_class(context=self)
 | 
						|
 | 
						|
    def plus(self, a):
 | 
						|
        """Plus corresponds to unary prefix plus in Python.
 | 
						|
 | 
						|
        The operation is evaluated using the same rules as add; the
 | 
						|
        operation plus(a) is calculated as add('0', a) where the '0'
 | 
						|
        has the same exponent as the operand.
 | 
						|
 | 
						|
        >>> ExtendedContext.plus(Decimal('1.3'))
 | 
						|
        Decimal("1.3")
 | 
						|
        >>> ExtendedContext.plus(Decimal('-1.3'))
 | 
						|
        Decimal("-1.3")
 | 
						|
        """
 | 
						|
        return a.__pos__(context=self)
 | 
						|
 | 
						|
    def power(self, a, b, modulo=None):
 | 
						|
        """Raises a to the power of b, to modulo if given.
 | 
						|
 | 
						|
        With two arguments, compute a**b.  If a is negative then b
 | 
						|
        must be integral.  The result will be inexact unless b is
 | 
						|
        integral and the result is finite and can be expressed exactly
 | 
						|
        in 'precision' digits.
 | 
						|
 | 
						|
        With three arguments, compute (a**b) % modulo.  For the
 | 
						|
        three argument form, the following restrictions on the
 | 
						|
        arguments hold:
 | 
						|
 | 
						|
         - all three arguments must be integral
 | 
						|
         - b must be nonnegative
 | 
						|
         - at least one of a or b must be nonzero
 | 
						|
         - modulo must be nonzero and have at most 'precision' digits
 | 
						|
 | 
						|
        The result of pow(a, b, modulo) is identical to the result
 | 
						|
        that would be obtained by computing (a**b) % modulo with
 | 
						|
        unbounded precision, but is computed more efficiently.  It is
 | 
						|
        always exact.
 | 
						|
 | 
						|
        >>> c = ExtendedContext.copy()
 | 
						|
        >>> c.Emin = -999
 | 
						|
        >>> c.Emax = 999
 | 
						|
        >>> c.power(Decimal('2'), Decimal('3'))
 | 
						|
        Decimal("8")
 | 
						|
        >>> c.power(Decimal('-2'), Decimal('3'))
 | 
						|
        Decimal("-8")
 | 
						|
        >>> c.power(Decimal('2'), Decimal('-3'))
 | 
						|
        Decimal("0.125")
 | 
						|
        >>> c.power(Decimal('1.7'), Decimal('8'))
 | 
						|
        Decimal("69.7575744")
 | 
						|
        >>> c.power(Decimal('10'), Decimal('0.301029996'))
 | 
						|
        Decimal("2.00000000")
 | 
						|
        >>> c.power(Decimal('Infinity'), Decimal('-1'))
 | 
						|
        Decimal("0")
 | 
						|
        >>> c.power(Decimal('Infinity'), Decimal('0'))
 | 
						|
        Decimal("1")
 | 
						|
        >>> c.power(Decimal('Infinity'), Decimal('1'))
 | 
						|
        Decimal("Infinity")
 | 
						|
        >>> c.power(Decimal('-Infinity'), Decimal('-1'))
 | 
						|
        Decimal("-0")
 | 
						|
        >>> c.power(Decimal('-Infinity'), Decimal('0'))
 | 
						|
        Decimal("1")
 | 
						|
        >>> c.power(Decimal('-Infinity'), Decimal('1'))
 | 
						|
        Decimal("-Infinity")
 | 
						|
        >>> c.power(Decimal('-Infinity'), Decimal('2'))
 | 
						|
        Decimal("Infinity")
 | 
						|
        >>> c.power(Decimal('0'), Decimal('0'))
 | 
						|
        Decimal("NaN")
 | 
						|
 | 
						|
        >>> c.power(Decimal('3'), Decimal('7'), Decimal('16'))
 | 
						|
        Decimal("11")
 | 
						|
        >>> c.power(Decimal('-3'), Decimal('7'), Decimal('16'))
 | 
						|
        Decimal("-11")
 | 
						|
        >>> c.power(Decimal('-3'), Decimal('8'), Decimal('16'))
 | 
						|
        Decimal("1")
 | 
						|
        >>> c.power(Decimal('3'), Decimal('7'), Decimal('-16'))
 | 
						|
        Decimal("11")
 | 
						|
        >>> c.power(Decimal('23E12345'), Decimal('67E189'), Decimal('123456789'))
 | 
						|
        Decimal("11729830")
 | 
						|
        >>> c.power(Decimal('-0'), Decimal('17'), Decimal('1729'))
 | 
						|
        Decimal("-0")
 | 
						|
        >>> c.power(Decimal('-23'), Decimal('0'), Decimal('65537'))
 | 
						|
        Decimal("1")
 | 
						|
        """
 | 
						|
        return a.__pow__(b, modulo, context=self)
 | 
						|
 | 
						|
    def quantize(self, a, b):
 | 
						|
        """Returns a value equal to 'a' (rounded), having the exponent of 'b'.
 | 
						|
 | 
						|
        The coefficient of the result is derived from that of the left-hand
 | 
						|
        operand.  It may be rounded using the current rounding setting (if the
 | 
						|
        exponent is being increased), multiplied by a positive power of ten (if
 | 
						|
        the exponent is being decreased), or is unchanged (if the exponent is
 | 
						|
        already equal to that of the right-hand operand).
 | 
						|
 | 
						|
        Unlike other operations, if the length of the coefficient after the
 | 
						|
        quantize operation would be greater than precision then an Invalid
 | 
						|
        operation condition is raised.  This guarantees that, unless there is
 | 
						|
        an error condition, the exponent of the result of a quantize is always
 | 
						|
        equal to that of the right-hand operand.
 | 
						|
 | 
						|
        Also unlike other operations, quantize will never raise Underflow, even
 | 
						|
        if the result is subnormal and inexact.
 | 
						|
 | 
						|
        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.001'))
 | 
						|
        Decimal("2.170")
 | 
						|
        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.01'))
 | 
						|
        Decimal("2.17")
 | 
						|
        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.1'))
 | 
						|
        Decimal("2.2")
 | 
						|
        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+0'))
 | 
						|
        Decimal("2")
 | 
						|
        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+1'))
 | 
						|
        Decimal("0E+1")
 | 
						|
        >>> ExtendedContext.quantize(Decimal('-Inf'), Decimal('Infinity'))
 | 
						|
        Decimal("-Infinity")
 | 
						|
        >>> ExtendedContext.quantize(Decimal('2'), Decimal('Infinity'))
 | 
						|
        Decimal("NaN")
 | 
						|
        >>> ExtendedContext.quantize(Decimal('-0.1'), Decimal('1'))
 | 
						|
        Decimal("-0")
 | 
						|
        >>> ExtendedContext.quantize(Decimal('-0'), Decimal('1e+5'))
 | 
						|
        Decimal("-0E+5")
 | 
						|
        >>> ExtendedContext.quantize(Decimal('+35236450.6'), Decimal('1e-2'))
 | 
						|
        Decimal("NaN")
 | 
						|
        >>> ExtendedContext.quantize(Decimal('-35236450.6'), Decimal('1e-2'))
 | 
						|
        Decimal("NaN")
 | 
						|
        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-1'))
 | 
						|
        Decimal("217.0")
 | 
						|
        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-0'))
 | 
						|
        Decimal("217")
 | 
						|
        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+1'))
 | 
						|
        Decimal("2.2E+2")
 | 
						|
        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+2'))
 | 
						|
        Decimal("2E+2")
 | 
						|
        """
 | 
						|
        return a.quantize(b, context=self)
 | 
						|
 | 
						|
    def radix(self):
 | 
						|
        """Just returns 10, as this is Decimal, :)
 | 
						|
 | 
						|
        >>> ExtendedContext.radix()
 | 
						|
        Decimal("10")
 | 
						|
        """
 | 
						|
        return Decimal(10)
 | 
						|
 | 
						|
    def remainder(self, a, b):
 | 
						|
        """Returns the remainder from integer division.
 | 
						|
 | 
						|
        The result is the residue of the dividend after the operation of
 | 
						|
        calculating integer division as described for divide-integer, rounded
 | 
						|
        to precision digits if necessary.  The sign of the result, if
 | 
						|
        non-zero, is the same as that of the original dividend.
 | 
						|
 | 
						|
        This operation will fail under the same conditions as integer division
 | 
						|
        (that is, if integer division on the same two operands would fail, the
 | 
						|
        remainder cannot be calculated).
 | 
						|
 | 
						|
        >>> ExtendedContext.remainder(Decimal('2.1'), Decimal('3'))
 | 
						|
        Decimal("2.1")
 | 
						|
        >>> ExtendedContext.remainder(Decimal('10'), Decimal('3'))
 | 
						|
        Decimal("1")
 | 
						|
        >>> ExtendedContext.remainder(Decimal('-10'), Decimal('3'))
 | 
						|
        Decimal("-1")
 | 
						|
        >>> ExtendedContext.remainder(Decimal('10.2'), Decimal('1'))
 | 
						|
        Decimal("0.2")
 | 
						|
        >>> ExtendedContext.remainder(Decimal('10'), Decimal('0.3'))
 | 
						|
        Decimal("0.1")
 | 
						|
        >>> ExtendedContext.remainder(Decimal('3.6'), Decimal('1.3'))
 | 
						|
        Decimal("1.0")
 | 
						|
        """
 | 
						|
        return a.__mod__(b, context=self)
 | 
						|
 | 
						|
    def remainder_near(self, a, b):
 | 
						|
        """Returns to be "a - b * n", where n is the integer nearest the exact
 | 
						|
        value of "x / b" (if two integers are equally near then the even one
 | 
						|
        is chosen).  If the result is equal to 0 then its sign will be the
 | 
						|
        sign of a.
 | 
						|
 | 
						|
        This operation will fail under the same conditions as integer division
 | 
						|
        (that is, if integer division on the same two operands would fail, the
 | 
						|
        remainder cannot be calculated).
 | 
						|
 | 
						|
        >>> ExtendedContext.remainder_near(Decimal('2.1'), Decimal('3'))
 | 
						|
        Decimal("-0.9")
 | 
						|
        >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('6'))
 | 
						|
        Decimal("-2")
 | 
						|
        >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('3'))
 | 
						|
        Decimal("1")
 | 
						|
        >>> ExtendedContext.remainder_near(Decimal('-10'), Decimal('3'))
 | 
						|
        Decimal("-1")
 | 
						|
        >>> ExtendedContext.remainder_near(Decimal('10.2'), Decimal('1'))
 | 
						|
        Decimal("0.2")
 | 
						|
        >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('0.3'))
 | 
						|
        Decimal("0.1")
 | 
						|
        >>> ExtendedContext.remainder_near(Decimal('3.6'), Decimal('1.3'))
 | 
						|
        Decimal("-0.3")
 | 
						|
        """
 | 
						|
        return a.remainder_near(b, context=self)
 | 
						|
 | 
						|
    def rotate(self, a, b):
 | 
						|
        """Returns a rotated copy of a, b times.
 | 
						|
 | 
						|
        The coefficient of the result is a rotated copy of the digits in
 | 
						|
        the coefficient of the first operand.  The number of places of
 | 
						|
        rotation is taken from the absolute value of the second operand,
 | 
						|
        with the rotation being to the left if the second operand is
 | 
						|
        positive or to the right otherwise.
 | 
						|
 | 
						|
        >>> ExtendedContext.rotate(Decimal('34'), Decimal('8'))
 | 
						|
        Decimal("400000003")
 | 
						|
        >>> ExtendedContext.rotate(Decimal('12'), Decimal('9'))
 | 
						|
        Decimal("12")
 | 
						|
        >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('-2'))
 | 
						|
        Decimal("891234567")
 | 
						|
        >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('0'))
 | 
						|
        Decimal("123456789")
 | 
						|
        >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('+2'))
 | 
						|
        Decimal("345678912")
 | 
						|
        """
 | 
						|
        return a.rotate(b, context=self)
 | 
						|
 | 
						|
    def same_quantum(self, a, b):
 | 
						|
        """Returns True if the two operands have the same exponent.
 | 
						|
 | 
						|
        The result is never affected by either the sign or the coefficient of
 | 
						|
        either operand.
 | 
						|
 | 
						|
        >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.001'))
 | 
						|
        False
 | 
						|
        >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.01'))
 | 
						|
        True
 | 
						|
        >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('1'))
 | 
						|
        False
 | 
						|
        >>> ExtendedContext.same_quantum(Decimal('Inf'), Decimal('-Inf'))
 | 
						|
        True
 | 
						|
        """
 | 
						|
        return a.same_quantum(b)
 | 
						|
 | 
						|
    def scaleb (self, a, b):
 | 
						|
        """Returns the first operand after adding the second value its exp.
 | 
						|
 | 
						|
        >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('-2'))
 | 
						|
        Decimal("0.0750")
 | 
						|
        >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('0'))
 | 
						|
        Decimal("7.50")
 | 
						|
        >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('3'))
 | 
						|
        Decimal("7.50E+3")
 | 
						|
        """
 | 
						|
        return a.scaleb (b, context=self)
 | 
						|
 | 
						|
    def shift(self, a, b):
 | 
						|
        """Returns a shifted copy of a, b times.
 | 
						|
 | 
						|
        The coefficient of the result is a shifted copy of the digits
 | 
						|
        in the coefficient of the first operand.  The number of places
 | 
						|
        to shift is taken from the absolute value of the second operand,
 | 
						|
        with the shift being to the left if the second operand is
 | 
						|
        positive or to the right otherwise.  Digits shifted into the
 | 
						|
        coefficient are zeros.
 | 
						|
 | 
						|
        >>> ExtendedContext.shift(Decimal('34'), Decimal('8'))
 | 
						|
        Decimal("400000000")
 | 
						|
        >>> ExtendedContext.shift(Decimal('12'), Decimal('9'))
 | 
						|
        Decimal("0")
 | 
						|
        >>> ExtendedContext.shift(Decimal('123456789'), Decimal('-2'))
 | 
						|
        Decimal("1234567")
 | 
						|
        >>> ExtendedContext.shift(Decimal('123456789'), Decimal('0'))
 | 
						|
        Decimal("123456789")
 | 
						|
        >>> ExtendedContext.shift(Decimal('123456789'), Decimal('+2'))
 | 
						|
        Decimal("345678900")
 | 
						|
        """
 | 
						|
        return a.shift(b, context=self)
 | 
						|
 | 
						|
    def sqrt(self, a):
 | 
						|
        """Square root of a non-negative number to context precision.
 | 
						|
 | 
						|
        If the result must be inexact, it is rounded using the round-half-even
 | 
						|
        algorithm.
 | 
						|
 | 
						|
        >>> ExtendedContext.sqrt(Decimal('0'))
 | 
						|
        Decimal("0")
 | 
						|
        >>> ExtendedContext.sqrt(Decimal('-0'))
 | 
						|
        Decimal("-0")
 | 
						|
        >>> ExtendedContext.sqrt(Decimal('0.39'))
 | 
						|
        Decimal("0.624499800")
 | 
						|
        >>> ExtendedContext.sqrt(Decimal('100'))
 | 
						|
        Decimal("10")
 | 
						|
        >>> ExtendedContext.sqrt(Decimal('1'))
 | 
						|
        Decimal("1")
 | 
						|
        >>> ExtendedContext.sqrt(Decimal('1.0'))
 | 
						|
        Decimal("1.0")
 | 
						|
        >>> ExtendedContext.sqrt(Decimal('1.00'))
 | 
						|
        Decimal("1.0")
 | 
						|
        >>> ExtendedContext.sqrt(Decimal('7'))
 | 
						|
        Decimal("2.64575131")
 | 
						|
        >>> ExtendedContext.sqrt(Decimal('10'))
 | 
						|
        Decimal("3.16227766")
 | 
						|
        >>> ExtendedContext.prec
 | 
						|
        9
 | 
						|
        """
 | 
						|
        return a.sqrt(context=self)
 | 
						|
 | 
						|
    def subtract(self, a, b):
 | 
						|
        """Return the difference between the two operands.
 | 
						|
 | 
						|
        >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.07'))
 | 
						|
        Decimal("0.23")
 | 
						|
        >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.30'))
 | 
						|
        Decimal("0.00")
 | 
						|
        >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('2.07'))
 | 
						|
        Decimal("-0.77")
 | 
						|
        """
 | 
						|
        return a.__sub__(b, context=self)
 | 
						|
 | 
						|
    def to_eng_string(self, a):
 | 
						|
        """Converts a number to a string, using scientific notation.
 | 
						|
 | 
						|
        The operation is not affected by the context.
 | 
						|
        """
 | 
						|
        return a.to_eng_string(context=self)
 | 
						|
 | 
						|
    def to_sci_string(self, a):
 | 
						|
        """Converts a number to a string, using scientific notation.
 | 
						|
 | 
						|
        The operation is not affected by the context.
 | 
						|
        """
 | 
						|
        return a.__str__(context=self)
 | 
						|
 | 
						|
    def to_integral_exact(self, a):
 | 
						|
        """Rounds to an integer.
 | 
						|
 | 
						|
        When the operand has a negative exponent, the result is the same
 | 
						|
        as using the quantize() operation using the given operand as the
 | 
						|
        left-hand-operand, 1E+0 as the right-hand-operand, and the precision
 | 
						|
        of the operand as the precision setting; Inexact and Rounded flags
 | 
						|
        are allowed in this operation.  The rounding mode is taken from the
 | 
						|
        context.
 | 
						|
 | 
						|
        >>> ExtendedContext.to_integral_exact(Decimal('2.1'))
 | 
						|
        Decimal("2")
 | 
						|
        >>> ExtendedContext.to_integral_exact(Decimal('100'))
 | 
						|
        Decimal("100")
 | 
						|
        >>> ExtendedContext.to_integral_exact(Decimal('100.0'))
 | 
						|
        Decimal("100")
 | 
						|
        >>> ExtendedContext.to_integral_exact(Decimal('101.5'))
 | 
						|
        Decimal("102")
 | 
						|
        >>> ExtendedContext.to_integral_exact(Decimal('-101.5'))
 | 
						|
        Decimal("-102")
 | 
						|
        >>> ExtendedContext.to_integral_exact(Decimal('10E+5'))
 | 
						|
        Decimal("1.0E+6")
 | 
						|
        >>> ExtendedContext.to_integral_exact(Decimal('7.89E+77'))
 | 
						|
        Decimal("7.89E+77")
 | 
						|
        >>> ExtendedContext.to_integral_exact(Decimal('-Inf'))
 | 
						|
        Decimal("-Infinity")
 | 
						|
        """
 | 
						|
        return a.to_integral_exact(context=self)
 | 
						|
 | 
						|
    def to_integral_value(self, a):
 | 
						|
        """Rounds to an integer.
 | 
						|
 | 
						|
        When the operand has a negative exponent, the result is the same
 | 
						|
        as using the quantize() operation using the given operand as the
 | 
						|
        left-hand-operand, 1E+0 as the right-hand-operand, and the precision
 | 
						|
        of the operand as the precision setting, except that no flags will
 | 
						|
        be set.  The rounding mode is taken from the context.
 | 
						|
 | 
						|
        >>> ExtendedContext.to_integral_value(Decimal('2.1'))
 | 
						|
        Decimal("2")
 | 
						|
        >>> ExtendedContext.to_integral_value(Decimal('100'))
 | 
						|
        Decimal("100")
 | 
						|
        >>> ExtendedContext.to_integral_value(Decimal('100.0'))
 | 
						|
        Decimal("100")
 | 
						|
        >>> ExtendedContext.to_integral_value(Decimal('101.5'))
 | 
						|
        Decimal("102")
 | 
						|
        >>> ExtendedContext.to_integral_value(Decimal('-101.5'))
 | 
						|
        Decimal("-102")
 | 
						|
        >>> ExtendedContext.to_integral_value(Decimal('10E+5'))
 | 
						|
        Decimal("1.0E+6")
 | 
						|
        >>> ExtendedContext.to_integral_value(Decimal('7.89E+77'))
 | 
						|
        Decimal("7.89E+77")
 | 
						|
        >>> ExtendedContext.to_integral_value(Decimal('-Inf'))
 | 
						|
        Decimal("-Infinity")
 | 
						|
        """
 | 
						|
        return a.to_integral_value(context=self)
 | 
						|
 | 
						|
    # the method name changed, but we provide also the old one, for compatibility
 | 
						|
    to_integral = to_integral_value
 | 
						|
 | 
						|
class _WorkRep(object):
 | 
						|
    __slots__ = ('sign','int','exp')
 | 
						|
    # sign: 0 or 1
 | 
						|
    # int:  int or long
 | 
						|
    # exp:  None, int, or string
 | 
						|
 | 
						|
    def __init__(self, value=None):
 | 
						|
        if value is None:
 | 
						|
            self.sign = None
 | 
						|
            self.int = 0
 | 
						|
            self.exp = None
 | 
						|
        elif isinstance(value, Decimal):
 | 
						|
            self.sign = value._sign
 | 
						|
            cum = 0
 | 
						|
            for digit  in value._int:
 | 
						|
                cum = cum * 10 + digit
 | 
						|
            self.int = cum
 | 
						|
            self.exp = value._exp
 | 
						|
        else:
 | 
						|
            # assert isinstance(value, tuple)
 | 
						|
            self.sign = value[0]
 | 
						|
            self.int = value[1]
 | 
						|
            self.exp = value[2]
 | 
						|
 | 
						|
    def __repr__(self):
 | 
						|
        return "(%r, %r, %r)" % (self.sign, self.int, self.exp)
 | 
						|
 | 
						|
    __str__ = __repr__
 | 
						|
 | 
						|
 | 
						|
 | 
						|
def _normalize(op1, op2, shouldround = 0, prec = 0):
 | 
						|
    """Normalizes op1, op2 to have the same exp and length of coefficient.
 | 
						|
 | 
						|
    Done during addition.
 | 
						|
    """
 | 
						|
    if op1.exp < op2.exp:
 | 
						|
        tmp = op2
 | 
						|
        other = op1
 | 
						|
    else:
 | 
						|
        tmp = op1
 | 
						|
        other = op2
 | 
						|
 | 
						|
    # Let exp = min(tmp.exp - 1, tmp.adjusted() - precision - 1).
 | 
						|
    # Then adding 10**exp to tmp has the same effect (after rounding)
 | 
						|
    # as adding any positive quantity smaller than 10**exp; similarly
 | 
						|
    # for subtraction.  So if other is smaller than 10**exp we replace
 | 
						|
    # it with 10**exp.  This avoids tmp.exp - other.exp getting too large.
 | 
						|
    if shouldround:
 | 
						|
        tmp_len = len(str(tmp.int))
 | 
						|
        other_len = len(str(other.int))
 | 
						|
        exp = tmp.exp + min(-1, tmp_len - prec - 2)
 | 
						|
        if other_len + other.exp - 1 < exp:
 | 
						|
            other.int = 1
 | 
						|
            other.exp = exp
 | 
						|
 | 
						|
    tmp.int *= 10 ** (tmp.exp - other.exp)
 | 
						|
    tmp.exp = other.exp
 | 
						|
    return op1, op2
 | 
						|
 | 
						|
##### Integer arithmetic functions used by ln, log10, exp and __pow__ #####
 | 
						|
 | 
						|
# This function from Tim Peters was taken from here:
 | 
						|
# http://mail.python.org/pipermail/python-list/1999-July/007758.html
 | 
						|
# The correction being in the function definition is for speed, and
 | 
						|
# the whole function is not resolved with math.log because of avoiding
 | 
						|
# the use of floats.
 | 
						|
def _nbits(n, correction = {
 | 
						|
        '0': 4, '1': 3, '2': 2, '3': 2,
 | 
						|
        '4': 1, '5': 1, '6': 1, '7': 1,
 | 
						|
        '8': 0, '9': 0, 'a': 0, 'b': 0,
 | 
						|
        'c': 0, 'd': 0, 'e': 0, 'f': 0}):
 | 
						|
    """Number of bits in binary representation of the positive integer n,
 | 
						|
    or 0 if n == 0.
 | 
						|
    """
 | 
						|
    if n < 0:
 | 
						|
        raise ValueError("The argument to _nbits should be nonnegative.")
 | 
						|
    hex_n = "%x" % n
 | 
						|
    return 4*len(hex_n) - correction[hex_n[0]]
 | 
						|
 | 
						|
def _sqrt_nearest(n, a):
 | 
						|
    """Closest integer to the square root of the positive integer n.  a is
 | 
						|
    an initial approximation to the square root.  Any positive integer
 | 
						|
    will do for a, but the closer a is to the square root of n the
 | 
						|
    faster convergence will be.
 | 
						|
 | 
						|
    """
 | 
						|
    if n <= 0 or a <= 0:
 | 
						|
        raise ValueError("Both arguments to _sqrt_nearest should be positive.")
 | 
						|
 | 
						|
    b=0
 | 
						|
    while a != b:
 | 
						|
        b, a = a, a--n//a>>1
 | 
						|
    return a
 | 
						|
 | 
						|
def _rshift_nearest(x, shift):
 | 
						|
    """Given an integer x and a nonnegative integer shift, return closest
 | 
						|
    integer to x / 2**shift; use round-to-even in case of a tie.
 | 
						|
 | 
						|
    """
 | 
						|
    b, q = 1L << shift, x >> shift
 | 
						|
    return q + (2*(x & (b-1)) + (q&1) > b)
 | 
						|
 | 
						|
def _div_nearest(a, b):
 | 
						|
    """Closest integer to a/b, a and b positive integers; rounds to even
 | 
						|
    in the case of a tie.
 | 
						|
 | 
						|
    """
 | 
						|
    q, r = divmod(a, b)
 | 
						|
    return q + (2*r + (q&1) > b)
 | 
						|
 | 
						|
def _ilog(x, M, L = 8):
 | 
						|
    """Integer approximation to M*log(x/M), with absolute error boundable
 | 
						|
    in terms only of x/M.
 | 
						|
 | 
						|
    Given positive integers x and M, return an integer approximation to
 | 
						|
    M * log(x/M).  For L = 8 and 0.1 <= x/M <= 10 the difference
 | 
						|
    between the approximation and the exact result is at most 22.  For
 | 
						|
    L = 8 and 1.0 <= x/M <= 10.0 the difference is at most 15.  In
 | 
						|
    both cases these are upper bounds on the error; it will usually be
 | 
						|
    much smaller."""
 | 
						|
 | 
						|
    # The basic algorithm is the following: let log1p be the function
 | 
						|
    # log1p(x) = log(1+x).  Then log(x/M) = log1p((x-M)/M).  We use
 | 
						|
    # the reduction
 | 
						|
    #
 | 
						|
    #    log1p(y) = 2*log1p(y/(1+sqrt(1+y)))
 | 
						|
    #
 | 
						|
    # repeatedly until the argument to log1p is small (< 2**-L in
 | 
						|
    # absolute value).  For small y we can use the Taylor series
 | 
						|
    # expansion
 | 
						|
    #
 | 
						|
    #    log1p(y) ~ y - y**2/2 + y**3/3 - ... - (-y)**T/T
 | 
						|
    #
 | 
						|
    # truncating at T such that y**T is small enough.  The whole
 | 
						|
    # computation is carried out in a form of fixed-point arithmetic,
 | 
						|
    # with a real number z being represented by an integer
 | 
						|
    # approximation to z*M.  To avoid loss of precision, the y below
 | 
						|
    # is actually an integer approximation to 2**R*y*M, where R is the
 | 
						|
    # number of reductions performed so far.
 | 
						|
 | 
						|
    y = x-M
 | 
						|
    # argument reduction; R = number of reductions performed
 | 
						|
    R = 0
 | 
						|
    while (R <= L and long(abs(y)) << L-R >= M or
 | 
						|
           R > L and abs(y) >> R-L >= M):
 | 
						|
        y = _div_nearest(long(M*y) << 1,
 | 
						|
                         M + _sqrt_nearest(M*(M+_rshift_nearest(y, R)), M))
 | 
						|
        R += 1
 | 
						|
 | 
						|
    # Taylor series with T terms
 | 
						|
    T = -int(-10*len(str(M))//(3*L))
 | 
						|
    yshift = _rshift_nearest(y, R)
 | 
						|
    w = _div_nearest(M, T)
 | 
						|
    for k in xrange(T-1, 0, -1):
 | 
						|
        w = _div_nearest(M, k) - _div_nearest(yshift*w, M)
 | 
						|
 | 
						|
    return _div_nearest(w*y, M)
 | 
						|
 | 
						|
def _dlog10(c, e, p):
 | 
						|
    """Given integers c, e and p with c > 0, p >= 0, compute an integer
 | 
						|
    approximation to 10**p * log10(c*10**e), with an absolute error of
 | 
						|
    at most 1.  Assumes that c*10**e is not exactly 1."""
 | 
						|
 | 
						|
    # increase precision by 2; compensate for this by dividing
 | 
						|
    # final result by 100
 | 
						|
    p += 2
 | 
						|
 | 
						|
    # write c*10**e as d*10**f with either:
 | 
						|
    #   f >= 0 and 1 <= d <= 10, or
 | 
						|
    #   f <= 0 and 0.1 <= d <= 1.
 | 
						|
    # Thus for c*10**e close to 1, f = 0
 | 
						|
    l = len(str(c))
 | 
						|
    f = e+l - (e+l >= 1)
 | 
						|
 | 
						|
    if p > 0:
 | 
						|
        M = 10**p
 | 
						|
        k = e+p-f
 | 
						|
        if k >= 0:
 | 
						|
            c *= 10**k
 | 
						|
        else:
 | 
						|
            c = _div_nearest(c, 10**-k)
 | 
						|
 | 
						|
        log_d = _ilog(c, M) # error < 5 + 22 = 27
 | 
						|
        log_10 = _ilog(10*M, M) # error < 15
 | 
						|
        log_d = _div_nearest(log_d*M, log_10)
 | 
						|
        log_tenpower = f*M # exact
 | 
						|
    else:
 | 
						|
        log_d = 0  # error < 2.31
 | 
						|
        log_tenpower = div_nearest(f, 10**-p) # error < 0.5
 | 
						|
 | 
						|
    return _div_nearest(log_tenpower+log_d, 100)
 | 
						|
 | 
						|
def _dlog(c, e, p):
 | 
						|
    """Given integers c, e and p with c > 0, compute an integer
 | 
						|
    approximation to 10**p * log(c*10**e), with an absolute error of
 | 
						|
    at most 1.  Assumes that c*10**e is not exactly 1."""
 | 
						|
 | 
						|
    # Increase precision by 2. The precision increase is compensated
 | 
						|
    # for at the end with a division by 100.
 | 
						|
    p += 2
 | 
						|
 | 
						|
    # rewrite c*10**e as d*10**f with either f >= 0 and 1 <= d <= 10,
 | 
						|
    # or f <= 0 and 0.1 <= d <= 1.  Then we can compute 10**p * log(c*10**e)
 | 
						|
    # as 10**p * log(d) + 10**p*f * log(10).
 | 
						|
    l = len(str(c))
 | 
						|
    f = e+l - (e+l >= 1)
 | 
						|
 | 
						|
    # compute approximation to 10**p*log(d), with error < 27
 | 
						|
    if p > 0:
 | 
						|
        k = e+p-f
 | 
						|
        if k >= 0:
 | 
						|
            c *= 10**k
 | 
						|
        else:
 | 
						|
            c = _div_nearest(c, 10**-k)  # error of <= 0.5 in c
 | 
						|
 | 
						|
        # _ilog magnifies existing error in c by a factor of at most 10
 | 
						|
        log_d = _ilog(c, 10**p) # error < 5 + 22 = 27
 | 
						|
    else:
 | 
						|
        # p <= 0: just approximate the whole thing by 0; error < 2.31
 | 
						|
        log_d = 0
 | 
						|
 | 
						|
    # compute approximation to 10**p*f*log(10), with error < 17
 | 
						|
    if f:
 | 
						|
        sign_f = [-1, 1][f > 0]
 | 
						|
        if p >= 0:
 | 
						|
            M = 10**p * abs(f)
 | 
						|
        else:
 | 
						|
            M = _div_nearest(abs(f), 10**-p) # M = 10**p*|f|, error <= 0.5
 | 
						|
 | 
						|
        if M:
 | 
						|
            f_log_ten = sign_f*_ilog(10*M, M)   # M*log(10), error <= 1.2 + 15 < 17
 | 
						|
        else:
 | 
						|
            f_log_ten = 0
 | 
						|
    else:
 | 
						|
        f_log_ten = 0
 | 
						|
 | 
						|
    # error in sum < 17+27 = 44; error after division < 0.44 + 0.5 < 1
 | 
						|
    return _div_nearest(f_log_ten + log_d, 100)
 | 
						|
 | 
						|
def _iexp(x, M, L=8):
 | 
						|
    """Given integers x and M, M > 0, such that x/M is small in absolute
 | 
						|
    value, compute an integer approximation to M*exp(x/M).  For 0 <=
 | 
						|
    x/M <= 2.4, the absolute error in the result is bounded by 60 (and
 | 
						|
    is usually much smaller)."""
 | 
						|
 | 
						|
    # Algorithm: to compute exp(z) for a real number z, first divide z
 | 
						|
    # by a suitable power R of 2 so that |z/2**R| < 2**-L.  Then
 | 
						|
    # compute expm1(z/2**R) = exp(z/2**R) - 1 using the usual Taylor
 | 
						|
    # series
 | 
						|
    #
 | 
						|
    #     expm1(x) = x + x**2/2! + x**3/3! + ...
 | 
						|
    #
 | 
						|
    # Now use the identity
 | 
						|
    #
 | 
						|
    #     expm1(2x) = expm1(x)*(expm1(x)+2)
 | 
						|
    #
 | 
						|
    # R times to compute the sequence expm1(z/2**R),
 | 
						|
    # expm1(z/2**(R-1)), ... , exp(z/2), exp(z).
 | 
						|
 | 
						|
    # Find R such that x/2**R/M <= 2**-L
 | 
						|
    R = _nbits((long(x)<<L)//M)
 | 
						|
 | 
						|
    # Taylor series.  (2**L)**T > M
 | 
						|
    T = -int(-10*len(str(M))//(3*L))
 | 
						|
    y = _div_nearest(x, T)
 | 
						|
    Mshift = long(M)<<R
 | 
						|
    for i in xrange(T-1, 0, -1):
 | 
						|
        y = _div_nearest(x*(Mshift + y), Mshift * i)
 | 
						|
 | 
						|
    # Expansion
 | 
						|
    for k in xrange(R-1, -1, -1):
 | 
						|
        Mshift = long(M)<<(k+2)
 | 
						|
        y = _div_nearest(y*(y+Mshift), Mshift)
 | 
						|
 | 
						|
    return M+y
 | 
						|
 | 
						|
def _dexp(c, e, p):
 | 
						|
    """Compute an approximation to exp(c*10**e), with p decimal places of
 | 
						|
    precision.
 | 
						|
 | 
						|
    Returns d, f such that:
 | 
						|
 | 
						|
      10**(p-1) <= d <= 10**p, and
 | 
						|
      (d-1)*10**f < exp(c*10**e) < (d+1)*10**f
 | 
						|
 | 
						|
    In other words, d*10**f is an approximation to exp(c*10**e) with p
 | 
						|
    digits of precision, and with an error in d of at most 1.  This is
 | 
						|
    almost, but not quite, the same as the error being < 1ulp: when d
 | 
						|
    = 10**(p-1) the error could be up to 10 ulp."""
 | 
						|
 | 
						|
    # we'll call iexp with M = 10**(p+2), giving p+3 digits of precision
 | 
						|
    p += 2
 | 
						|
 | 
						|
    # compute log10 with extra precision = adjusted exponent of c*10**e
 | 
						|
    extra = max(0, e + len(str(c)) - 1)
 | 
						|
    q = p + extra
 | 
						|
    log10 = _dlog(10, 0, q)  # error <= 1
 | 
						|
 | 
						|
    # compute quotient c*10**e/(log10/10**q) = c*10**(e+q)/log10,
 | 
						|
    # rounding down
 | 
						|
    shift = e+q
 | 
						|
    if shift >= 0:
 | 
						|
        cshift = c*10**shift
 | 
						|
    else:
 | 
						|
        cshift = c//10**-shift
 | 
						|
    quot, rem = divmod(cshift, log10)
 | 
						|
 | 
						|
    # reduce remainder back to original precision
 | 
						|
    rem = _div_nearest(rem, 10**extra)
 | 
						|
 | 
						|
    # error in result of _iexp < 120;  error after division < 0.62
 | 
						|
    return _div_nearest(_iexp(rem, 10**p), 1000), quot - p + 3
 | 
						|
 | 
						|
def _dpower(xc, xe, yc, ye, p):
 | 
						|
    """Given integers xc, xe, yc and ye representing Decimals x = xc*10**xe and
 | 
						|
    y = yc*10**ye, compute x**y.  Returns a pair of integers (c, e) such that:
 | 
						|
 | 
						|
      10**(p-1) <= c <= 10**p, and
 | 
						|
      (c-1)*10**e < x**y < (c+1)*10**e
 | 
						|
 | 
						|
    in other words, c*10**e is an approximation to x**y with p digits
 | 
						|
    of precision, and with an error in c of at most 1.  (This is
 | 
						|
    almost, but not quite, the same as the error being < 1ulp: when c
 | 
						|
    == 10**(p-1) we can only guarantee error < 10ulp.)
 | 
						|
 | 
						|
    We assume that: x is positive and not equal to 1, and y is nonzero.
 | 
						|
    """
 | 
						|
 | 
						|
    # Find b such that 10**(b-1) <= |y| <= 10**b
 | 
						|
    b = len(str(abs(yc))) + ye
 | 
						|
 | 
						|
    # log(x) = lxc*10**(-p-b-1), to p+b+1 places after the decimal point
 | 
						|
    lxc = _dlog(xc, xe, p+b+1)
 | 
						|
 | 
						|
    # compute product y*log(x) = yc*lxc*10**(-p-b-1+ye) = pc*10**(-p-1)
 | 
						|
    shift = ye-b
 | 
						|
    if shift >= 0:
 | 
						|
        pc = lxc*yc*10**shift
 | 
						|
    else:
 | 
						|
        pc = _div_nearest(lxc*yc, 10**-shift)
 | 
						|
 | 
						|
    if pc == 0:
 | 
						|
        # we prefer a result that isn't exactly 1; this makes it
 | 
						|
        # easier to compute a correctly rounded result in __pow__
 | 
						|
        if ((len(str(xc)) + xe >= 1) == (yc > 0)): # if x**y > 1:
 | 
						|
            coeff, exp = 10**(p-1)+1, 1-p
 | 
						|
        else:
 | 
						|
            coeff, exp = 10**p-1, -p
 | 
						|
    else:
 | 
						|
        coeff, exp = _dexp(pc, -(p+1), p+1)
 | 
						|
        coeff = _div_nearest(coeff, 10)
 | 
						|
        exp += 1
 | 
						|
 | 
						|
    return coeff, exp
 | 
						|
 | 
						|
def _log10_lb(c, correction = {
 | 
						|
        '1': 100, '2': 70, '3': 53, '4': 40, '5': 31,
 | 
						|
        '6': 23, '7': 16, '8': 10, '9': 5}):
 | 
						|
    """Compute a lower bound for 100*log10(c) for a positive integer c."""
 | 
						|
    if c <= 0:
 | 
						|
        raise ValueError("The argument to _log10_lb should be nonnegative.")
 | 
						|
    str_c = str(c)
 | 
						|
    return 100*len(str_c) - correction[str_c[0]]
 | 
						|
 | 
						|
##### Helper Functions ####################################################
 | 
						|
 | 
						|
def _convert_other(other, raiseit=False):
 | 
						|
    """Convert other to Decimal.
 | 
						|
 | 
						|
    Verifies that it's ok to use in an implicit construction.
 | 
						|
    """
 | 
						|
    if isinstance(other, Decimal):
 | 
						|
        return other
 | 
						|
    if isinstance(other, (int, long)):
 | 
						|
        return Decimal(other)
 | 
						|
    if raiseit:
 | 
						|
        raise TypeError("Unable to convert %s to Decimal" % other)
 | 
						|
    return NotImplemented
 | 
						|
 | 
						|
_infinity_map = {
 | 
						|
    'inf' : 1,
 | 
						|
    'infinity' : 1,
 | 
						|
    '+inf' : 1,
 | 
						|
    '+infinity' : 1,
 | 
						|
    '-inf' : -1,
 | 
						|
    '-infinity' : -1
 | 
						|
}
 | 
						|
 | 
						|
def _isinfinity(num):
 | 
						|
    """Determines whether a string or float is infinity.
 | 
						|
 | 
						|
    +1 for negative infinity; 0 for finite ; +1 for positive infinity
 | 
						|
    """
 | 
						|
    num = str(num).lower()
 | 
						|
    return _infinity_map.get(num, 0)
 | 
						|
 | 
						|
def _isnan(num):
 | 
						|
    """Determines whether a string or float is NaN
 | 
						|
 | 
						|
    (1, sign, diagnostic info as string) => NaN
 | 
						|
    (2, sign, diagnostic info as string) => sNaN
 | 
						|
    0 => not a NaN
 | 
						|
    """
 | 
						|
    num = str(num).lower()
 | 
						|
    if not num:
 | 
						|
        return 0
 | 
						|
 | 
						|
    # Get the sign, get rid of trailing [+-]
 | 
						|
    sign = 0
 | 
						|
    if num[0] == '+':
 | 
						|
        num = num[1:]
 | 
						|
    elif num[0] == '-':  # elif avoids '+-nan'
 | 
						|
        num = num[1:]
 | 
						|
        sign = 1
 | 
						|
 | 
						|
    if num.startswith('nan'):
 | 
						|
        if len(num) > 3 and not num[3:].isdigit():  # diagnostic info
 | 
						|
            return 0
 | 
						|
        return (1, sign, num[3:].lstrip('0'))
 | 
						|
    if num.startswith('snan'):
 | 
						|
        if len(num) > 4 and not num[4:].isdigit():
 | 
						|
            return 0
 | 
						|
        return (2, sign, num[4:].lstrip('0'))
 | 
						|
    return 0
 | 
						|
 | 
						|
 | 
						|
##### Setup Specific Contexts ############################################
 | 
						|
 | 
						|
# The default context prototype used by Context()
 | 
						|
# Is mutable, so that new contexts can have different default values
 | 
						|
 | 
						|
DefaultContext = Context(
 | 
						|
        prec=28, rounding=ROUND_HALF_EVEN,
 | 
						|
        traps=[DivisionByZero, Overflow, InvalidOperation],
 | 
						|
        flags=[],
 | 
						|
        _rounding_decision=ALWAYS_ROUND,
 | 
						|
        Emax=999999999,
 | 
						|
        Emin=-999999999,
 | 
						|
        capitals=1
 | 
						|
)
 | 
						|
 | 
						|
# Pre-made alternate contexts offered by the specification
 | 
						|
# Don't change these; the user should be able to select these
 | 
						|
# contexts and be able to reproduce results from other implementations
 | 
						|
# of the spec.
 | 
						|
 | 
						|
BasicContext = Context(
 | 
						|
        prec=9, rounding=ROUND_HALF_UP,
 | 
						|
        traps=[DivisionByZero, Overflow, InvalidOperation, Clamped, Underflow],
 | 
						|
        flags=[],
 | 
						|
)
 | 
						|
 | 
						|
ExtendedContext = Context(
 | 
						|
        prec=9, rounding=ROUND_HALF_EVEN,
 | 
						|
        traps=[],
 | 
						|
        flags=[],
 | 
						|
)
 | 
						|
 | 
						|
 | 
						|
##### Useful Constants (internal use only) ################################
 | 
						|
 | 
						|
# Reusable defaults
 | 
						|
Inf = Decimal('Inf')
 | 
						|
negInf = Decimal('-Inf')
 | 
						|
NaN = Decimal('NaN')
 | 
						|
Dec_0 = Decimal(0)
 | 
						|
Dec_p1 = Decimal(1)
 | 
						|
Dec_n1 = Decimal(-1)
 | 
						|
Dec_p2 = Decimal(2)
 | 
						|
Dec_n2 = Decimal(-2)
 | 
						|
 | 
						|
# Infsign[sign] is infinity w/ that sign
 | 
						|
Infsign = (Inf, negInf)
 | 
						|
 | 
						|
 | 
						|
##### crud for parsing strings #############################################
 | 
						|
import re
 | 
						|
 | 
						|
# There's an optional sign at the start, and an optional exponent
 | 
						|
# at the end.  The exponent has an optional sign and at least one
 | 
						|
# digit.  In between, must have either at least one digit followed
 | 
						|
# by an optional fraction, or a decimal point followed by at least
 | 
						|
# one digit.  Yuck.
 | 
						|
 | 
						|
_parser = re.compile(r"""
 | 
						|
#    \s*
 | 
						|
    (?P<sign>[-+])?
 | 
						|
    (
 | 
						|
        (?P<int>\d+) (\. (?P<frac>\d*))?
 | 
						|
    |
 | 
						|
        \. (?P<onlyfrac>\d+)
 | 
						|
    )
 | 
						|
    ([eE](?P<exp>[-+]? \d+))?
 | 
						|
#    \s*
 | 
						|
    $
 | 
						|
""", re.VERBOSE).match  # Uncomment the \s* to allow leading or trailing spaces.
 | 
						|
 | 
						|
del re
 | 
						|
 | 
						|
def _string2exact(s):
 | 
						|
    """Return sign, n, p s.t.
 | 
						|
 | 
						|
    Float string value == -1**sign * n * 10**p exactly
 | 
						|
    """
 | 
						|
    m = _parser(s)
 | 
						|
    if m is None:
 | 
						|
        raise ValueError("invalid literal for Decimal: %r" % s)
 | 
						|
 | 
						|
    if m.group('sign') == "-":
 | 
						|
        sign = 1
 | 
						|
    else:
 | 
						|
        sign = 0
 | 
						|
 | 
						|
    exp = m.group('exp')
 | 
						|
    if exp is None:
 | 
						|
        exp = 0
 | 
						|
    else:
 | 
						|
        exp = int(exp)
 | 
						|
 | 
						|
    intpart = m.group('int')
 | 
						|
    if intpart is None:
 | 
						|
        intpart = ""
 | 
						|
        fracpart = m.group('onlyfrac')
 | 
						|
    else:
 | 
						|
        fracpart = m.group('frac')
 | 
						|
        if fracpart is None:
 | 
						|
            fracpart = ""
 | 
						|
 | 
						|
    exp -= len(fracpart)
 | 
						|
 | 
						|
    mantissa = intpart + fracpart
 | 
						|
    tmp = map(int, mantissa)
 | 
						|
    backup = tmp
 | 
						|
    while tmp and tmp[0] == 0:
 | 
						|
        del tmp[0]
 | 
						|
 | 
						|
    # It's a zero
 | 
						|
    if not tmp:
 | 
						|
        if backup:
 | 
						|
            return (sign, tuple(backup), exp)
 | 
						|
        return (sign, (0,), exp)
 | 
						|
    mantissa = tuple(tmp)
 | 
						|
 | 
						|
    return (sign, mantissa, exp)
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    import doctest, sys
 | 
						|
    doctest.testmod(sys.modules[__name__])
 |