mirror of
				https://github.com/python/cpython.git
				synced 2025-10-26 11:14:33 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1108 lines
		
	
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1108 lines
		
	
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
 | |
| /* Complex object implementation */
 | |
| 
 | |
| /* Borrows heavily from floatobject.c */
 | |
| 
 | |
| /* Submitted by Jim Hugunin */
 | |
| 
 | |
| #include "Python.h"
 | |
| #include "structmember.h"
 | |
| 
 | |
| #ifndef WITHOUT_COMPLEX
 | |
| 
 | |
| /* elementary operations on complex numbers */
 | |
| 
 | |
| static Py_complex c_1 = {1., 0.};
 | |
| 
 | |
| Py_complex
 | |
| c_sum(Py_complex a, Py_complex b)
 | |
| {
 | |
|     Py_complex r;
 | |
|     r.real = a.real + b.real;
 | |
|     r.imag = a.imag + b.imag;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| Py_complex
 | |
| c_diff(Py_complex a, Py_complex b)
 | |
| {
 | |
|     Py_complex r;
 | |
|     r.real = a.real - b.real;
 | |
|     r.imag = a.imag - b.imag;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| Py_complex
 | |
| c_neg(Py_complex a)
 | |
| {
 | |
|     Py_complex r;
 | |
|     r.real = -a.real;
 | |
|     r.imag = -a.imag;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| Py_complex
 | |
| c_prod(Py_complex a, Py_complex b)
 | |
| {
 | |
|     Py_complex r;
 | |
|     r.real = a.real*b.real - a.imag*b.imag;
 | |
|     r.imag = a.real*b.imag + a.imag*b.real;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| Py_complex
 | |
| c_quot(Py_complex a, Py_complex b)
 | |
| {
 | |
|     /******************************************************************
 | |
|     This was the original algorithm.  It's grossly prone to spurious
 | |
|     overflow and underflow errors.  It also merrily divides by 0 despite
 | |
|     checking for that(!).  The code still serves a doc purpose here, as
 | |
|     the algorithm following is a simple by-cases transformation of this
 | |
|     one:
 | |
| 
 | |
|     Py_complex r;
 | |
|     double d = b.real*b.real + b.imag*b.imag;
 | |
|     if (d == 0.)
 | |
|         errno = EDOM;
 | |
|     r.real = (a.real*b.real + a.imag*b.imag)/d;
 | |
|     r.imag = (a.imag*b.real - a.real*b.imag)/d;
 | |
|     return r;
 | |
|     ******************************************************************/
 | |
| 
 | |
|     /* This algorithm is better, and is pretty obvious:  first divide the
 | |
|      * numerators and denominator by whichever of {b.real, b.imag} has
 | |
|      * larger magnitude.  The earliest reference I found was to CACM
 | |
|      * Algorithm 116 (Complex Division, Robert L. Smith, Stanford
 | |
|      * University).  As usual, though, we're still ignoring all IEEE
 | |
|      * endcases.
 | |
|      */
 | |
|      Py_complex r;      /* the result */
 | |
|      const double abs_breal = b.real < 0 ? -b.real : b.real;
 | |
|      const double abs_bimag = b.imag < 0 ? -b.imag : b.imag;
 | |
| 
 | |
|      if (abs_breal >= abs_bimag) {
 | |
|         /* divide tops and bottom by b.real */
 | |
|         if (abs_breal == 0.0) {
 | |
|             errno = EDOM;
 | |
|             r.real = r.imag = 0.0;
 | |
|         }
 | |
|         else {
 | |
|             const double ratio = b.imag / b.real;
 | |
|             const double denom = b.real + b.imag * ratio;
 | |
|             r.real = (a.real + a.imag * ratio) / denom;
 | |
|             r.imag = (a.imag - a.real * ratio) / denom;
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         /* divide tops and bottom by b.imag */
 | |
|         const double ratio = b.real / b.imag;
 | |
|         const double denom = b.real * ratio + b.imag;
 | |
|         assert(b.imag != 0.0);
 | |
|         r.real = (a.real * ratio + a.imag) / denom;
 | |
|         r.imag = (a.imag * ratio - a.real) / denom;
 | |
|     }
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| Py_complex
 | |
| c_pow(Py_complex a, Py_complex b)
 | |
| {
 | |
|     Py_complex r;
 | |
|     double vabs,len,at,phase;
 | |
|     if (b.real == 0. && b.imag == 0.) {
 | |
|         r.real = 1.;
 | |
|         r.imag = 0.;
 | |
|     }
 | |
|     else if (a.real == 0. && a.imag == 0.) {
 | |
|         if (b.imag != 0. || b.real < 0.)
 | |
|             errno = EDOM;
 | |
|         r.real = 0.;
 | |
|         r.imag = 0.;
 | |
|     }
 | |
|     else {
 | |
|         vabs = hypot(a.real,a.imag);
 | |
|         len = pow(vabs,b.real);
 | |
|         at = atan2(a.imag, a.real);
 | |
|         phase = at*b.real;
 | |
|         if (b.imag != 0.0) {
 | |
|             len /= exp(at*b.imag);
 | |
|             phase += b.imag*log(vabs);
 | |
|         }
 | |
|         r.real = len*cos(phase);
 | |
|         r.imag = len*sin(phase);
 | |
|     }
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| static Py_complex
 | |
| c_powu(Py_complex x, long n)
 | |
| {
 | |
|     Py_complex r, p;
 | |
|     long mask = 1;
 | |
|     r = c_1;
 | |
|     p = x;
 | |
|     while (mask > 0 && n >= mask) {
 | |
|         if (n & mask)
 | |
|             r = c_prod(r,p);
 | |
|         mask <<= 1;
 | |
|         p = c_prod(p,p);
 | |
|     }
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| static Py_complex
 | |
| c_powi(Py_complex x, long n)
 | |
| {
 | |
|     Py_complex cn;
 | |
| 
 | |
|     if (n > 100 || n < -100) {
 | |
|         cn.real = (double) n;
 | |
|         cn.imag = 0.;
 | |
|         return c_pow(x,cn);
 | |
|     }
 | |
|     else if (n > 0)
 | |
|         return c_powu(x,n);
 | |
|     else
 | |
|         return c_quot(c_1,c_powu(x,-n));
 | |
| 
 | |
| }
 | |
| 
 | |
| double
 | |
| c_abs(Py_complex z)
 | |
| {
 | |
|     /* sets errno = ERANGE on overflow;  otherwise errno = 0 */
 | |
|     double result;
 | |
| 
 | |
|     if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
 | |
|         /* C99 rules: if either the real or the imaginary part is an
 | |
|            infinity, return infinity, even if the other part is a
 | |
|            NaN. */
 | |
|         if (Py_IS_INFINITY(z.real)) {
 | |
|             result = fabs(z.real);
 | |
|             errno = 0;
 | |
|             return result;
 | |
|         }
 | |
|         if (Py_IS_INFINITY(z.imag)) {
 | |
|             result = fabs(z.imag);
 | |
|             errno = 0;
 | |
|             return result;
 | |
|         }
 | |
|         /* either the real or imaginary part is a NaN,
 | |
|            and neither is infinite. Result should be NaN. */
 | |
|         return Py_NAN;
 | |
|     }
 | |
|     result = hypot(z.real, z.imag);
 | |
|     if (!Py_IS_FINITE(result))
 | |
|         errno = ERANGE;
 | |
|     else
 | |
|         errno = 0;
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_subtype_from_c_complex(PyTypeObject *type, Py_complex cval)
 | |
| {
 | |
|     PyObject *op;
 | |
| 
 | |
|     op = type->tp_alloc(type, 0);
 | |
|     if (op != NULL)
 | |
|         ((PyComplexObject *)op)->cval = cval;
 | |
|     return op;
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| PyComplex_FromCComplex(Py_complex cval)
 | |
| {
 | |
|     register PyComplexObject *op;
 | |
| 
 | |
|     /* Inline PyObject_New */
 | |
|     op = (PyComplexObject *) PyObject_MALLOC(sizeof(PyComplexObject));
 | |
|     if (op == NULL)
 | |
|         return PyErr_NoMemory();
 | |
|     PyObject_INIT(op, &PyComplex_Type);
 | |
|     op->cval = cval;
 | |
|     return (PyObject *) op;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_subtype_from_doubles(PyTypeObject *type, double real, double imag)
 | |
| {
 | |
|     Py_complex c;
 | |
|     c.real = real;
 | |
|     c.imag = imag;
 | |
|     return complex_subtype_from_c_complex(type, c);
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| PyComplex_FromDoubles(double real, double imag)
 | |
| {
 | |
|     Py_complex c;
 | |
|     c.real = real;
 | |
|     c.imag = imag;
 | |
|     return PyComplex_FromCComplex(c);
 | |
| }
 | |
| 
 | |
| double
 | |
| PyComplex_RealAsDouble(PyObject *op)
 | |
| {
 | |
|     if (PyComplex_Check(op)) {
 | |
|         return ((PyComplexObject *)op)->cval.real;
 | |
|     }
 | |
|     else {
 | |
|         return PyFloat_AsDouble(op);
 | |
|     }
 | |
| }
 | |
| 
 | |
| double
 | |
| PyComplex_ImagAsDouble(PyObject *op)
 | |
| {
 | |
|     if (PyComplex_Check(op)) {
 | |
|         return ((PyComplexObject *)op)->cval.imag;
 | |
|     }
 | |
|     else {
 | |
|         return 0.0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| Py_complex
 | |
| PyComplex_AsCComplex(PyObject *op)
 | |
| {
 | |
|     Py_complex cv;
 | |
|     PyObject *newop = NULL;
 | |
|     static PyObject *complex_str = NULL;
 | |
| 
 | |
|     assert(op);
 | |
|     /* If op is already of type PyComplex_Type, return its value */
 | |
|     if (PyComplex_Check(op)) {
 | |
|         return ((PyComplexObject *)op)->cval;
 | |
|     }
 | |
|     /* If not, use op's __complex__  method, if it exists */
 | |
| 
 | |
|     /* return -1 on failure */
 | |
|     cv.real = -1.;
 | |
|     cv.imag = 0.;
 | |
| 
 | |
|     if (complex_str == NULL) {
 | |
|         if (!(complex_str = PyUnicode_FromString("__complex__")))
 | |
|             return cv;
 | |
|     }
 | |
| 
 | |
|     {
 | |
|         PyObject *complexfunc;
 | |
|         complexfunc = _PyType_Lookup(op->ob_type, complex_str);
 | |
|         /* complexfunc is a borrowed reference */
 | |
|         if (complexfunc) {
 | |
|             newop = PyObject_CallFunctionObjArgs(complexfunc, op, NULL);
 | |
|             if (!newop)
 | |
|                 return cv;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (newop) {
 | |
|         if (!PyComplex_Check(newop)) {
 | |
|             PyErr_SetString(PyExc_TypeError,
 | |
|                 "__complex__ should return a complex object");
 | |
|             Py_DECREF(newop);
 | |
|             return cv;
 | |
|         }
 | |
|         cv = ((PyComplexObject *)newop)->cval;
 | |
|         Py_DECREF(newop);
 | |
|         return cv;
 | |
|     }
 | |
|     /* If neither of the above works, interpret op as a float giving the
 | |
|        real part of the result, and fill in the imaginary part as 0. */
 | |
|     else {
 | |
|         /* PyFloat_AsDouble will return -1 on failure */
 | |
|         cv.real = PyFloat_AsDouble(op);
 | |
|         return cv;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void
 | |
| complex_dealloc(PyObject *op)
 | |
| {
 | |
|     op->ob_type->tp_free(op);
 | |
| }
 | |
| 
 | |
| 
 | |
| static PyObject *
 | |
| complex_format(PyComplexObject *v, int precision, char format_code)
 | |
| {
 | |
|     PyObject *result = NULL;
 | |
|     Py_ssize_t len;
 | |
| 
 | |
|     /* If these are non-NULL, they'll need to be freed. */
 | |
|     char *pre = NULL;
 | |
|     char *im = NULL;
 | |
|     char *buf = NULL;
 | |
| 
 | |
|     /* These do not need to be freed. re is either an alias
 | |
|        for pre or a pointer to a constant.  lead and tail
 | |
|        are pointers to constants. */
 | |
|     char *re = NULL;
 | |
|     char *lead = "";
 | |
|     char *tail = "";
 | |
| 
 | |
|     if (v->cval.real == 0. && copysign(1.0, v->cval.real)==1.0) {
 | |
|         re = "";
 | |
|         im = PyOS_double_to_string(v->cval.imag, format_code,
 | |
|                                    precision, 0, NULL);
 | |
|         if (!im) {
 | |
|             PyErr_NoMemory();
 | |
|             goto done;
 | |
|         }
 | |
|     } else {
 | |
|         /* Format imaginary part with sign, real part without */
 | |
|         pre = PyOS_double_to_string(v->cval.real, format_code,
 | |
|                                     precision, 0, NULL);
 | |
|         if (!pre) {
 | |
|             PyErr_NoMemory();
 | |
|             goto done;
 | |
|         }
 | |
|         re = pre;
 | |
| 
 | |
|         im = PyOS_double_to_string(v->cval.imag, format_code,
 | |
|                                    precision, Py_DTSF_SIGN, NULL);
 | |
|         if (!im) {
 | |
|             PyErr_NoMemory();
 | |
|             goto done;
 | |
|         }
 | |
|         lead = "(";
 | |
|         tail = ")";
 | |
|     }
 | |
|     /* Alloc the final buffer. Add one for the "j" in the format string,
 | |
|        and one for the trailing zero. */
 | |
|     len = strlen(lead) + strlen(re) + strlen(im) + strlen(tail) + 2;
 | |
|     buf = PyMem_Malloc(len);
 | |
|     if (!buf) {
 | |
|         PyErr_NoMemory();
 | |
|         goto done;
 | |
|     }
 | |
|     PyOS_snprintf(buf, len, "%s%s%sj%s", lead, re, im, tail);
 | |
|     result = PyUnicode_FromString(buf);
 | |
|   done:
 | |
|     PyMem_Free(im);
 | |
|     PyMem_Free(pre);
 | |
|     PyMem_Free(buf);
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_repr(PyComplexObject *v)
 | |
| {
 | |
|     return complex_format(v, 0, 'r');
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_str(PyComplexObject *v)
 | |
| {
 | |
|     return complex_format(v, PyFloat_STR_PRECISION, 'g');
 | |
| }
 | |
| 
 | |
| static long
 | |
| complex_hash(PyComplexObject *v)
 | |
| {
 | |
|     long hashreal, hashimag, combined;
 | |
|     hashreal = _Py_HashDouble(v->cval.real);
 | |
|     if (hashreal == -1)
 | |
|         return -1;
 | |
|     hashimag = _Py_HashDouble(v->cval.imag);
 | |
|     if (hashimag == -1)
 | |
|         return -1;
 | |
|     /* Note:  if the imaginary part is 0, hashimag is 0 now,
 | |
|      * so the following returns hashreal unchanged.  This is
 | |
|      * important because numbers of different types that
 | |
|      * compare equal must have the same hash value, so that
 | |
|      * hash(x + 0*j) must equal hash(x).
 | |
|      */
 | |
|     combined = hashreal + 1000003 * hashimag;
 | |
|     if (combined == -1)
 | |
|         combined = -2;
 | |
|     return combined;
 | |
| }
 | |
| 
 | |
| /* This macro may return! */
 | |
| #define TO_COMPLEX(obj, c) \
 | |
|     if (PyComplex_Check(obj)) \
 | |
|         c = ((PyComplexObject *)(obj))->cval; \
 | |
|     else if (to_complex(&(obj), &(c)) < 0) \
 | |
|         return (obj)
 | |
| 
 | |
| static int
 | |
| to_complex(PyObject **pobj, Py_complex *pc)
 | |
| {
 | |
|     PyObject *obj = *pobj;
 | |
| 
 | |
|     pc->real = pc->imag = 0.0;
 | |
|     if (PyLong_Check(obj)) {
 | |
|         pc->real = PyLong_AsDouble(obj);
 | |
|         if (pc->real == -1.0 && PyErr_Occurred()) {
 | |
|             *pobj = NULL;
 | |
|             return -1;
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     if (PyFloat_Check(obj)) {
 | |
|         pc->real = PyFloat_AsDouble(obj);
 | |
|         return 0;
 | |
|     }
 | |
|     Py_INCREF(Py_NotImplemented);
 | |
|     *pobj = Py_NotImplemented;
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| 
 | |
| static PyObject *
 | |
| complex_add(PyObject *v, PyObject *w)
 | |
| {
 | |
|     Py_complex result;
 | |
|     Py_complex a, b;
 | |
|     TO_COMPLEX(v, a);
 | |
|     TO_COMPLEX(w, b);
 | |
|     PyFPE_START_PROTECT("complex_add", return 0)
 | |
|     result = c_sum(a, b);
 | |
|     PyFPE_END_PROTECT(result)
 | |
|     return PyComplex_FromCComplex(result);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_sub(PyObject *v, PyObject *w)
 | |
| {
 | |
|     Py_complex result;
 | |
|     Py_complex a, b;
 | |
|     TO_COMPLEX(v, a);
 | |
|     TO_COMPLEX(w, b);
 | |
|     PyFPE_START_PROTECT("complex_sub", return 0)
 | |
|     result = c_diff(a, b);
 | |
|     PyFPE_END_PROTECT(result)
 | |
|     return PyComplex_FromCComplex(result);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_mul(PyObject *v, PyObject *w)
 | |
| {
 | |
|     Py_complex result;
 | |
|     Py_complex a, b;
 | |
|     TO_COMPLEX(v, a);
 | |
|     TO_COMPLEX(w, b);
 | |
|     PyFPE_START_PROTECT("complex_mul", return 0)
 | |
|     result = c_prod(a, b);
 | |
|     PyFPE_END_PROTECT(result)
 | |
|     return PyComplex_FromCComplex(result);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_div(PyObject *v, PyObject *w)
 | |
| {
 | |
|     Py_complex quot;
 | |
|     Py_complex a, b;
 | |
|     TO_COMPLEX(v, a);
 | |
|     TO_COMPLEX(w, b);
 | |
|     PyFPE_START_PROTECT("complex_div", return 0)
 | |
|     errno = 0;
 | |
|     quot = c_quot(a, b);
 | |
|     PyFPE_END_PROTECT(quot)
 | |
|     if (errno == EDOM) {
 | |
|         PyErr_SetString(PyExc_ZeroDivisionError, "complex division");
 | |
|         return NULL;
 | |
|     }
 | |
|     return PyComplex_FromCComplex(quot);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_remainder(PyObject *v, PyObject *w)
 | |
| {
 | |
|     PyErr_SetString(PyExc_TypeError,
 | |
|                     "can't mod complex numbers.");
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| 
 | |
| static PyObject *
 | |
| complex_divmod(PyObject *v, PyObject *w)
 | |
| {
 | |
|     PyErr_SetString(PyExc_TypeError,
 | |
|                     "can't take floor or mod of complex number.");
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_pow(PyObject *v, PyObject *w, PyObject *z)
 | |
| {
 | |
|     Py_complex p;
 | |
|     Py_complex exponent;
 | |
|     long int_exponent;
 | |
|     Py_complex a, b;
 | |
|     TO_COMPLEX(v, a);
 | |
|     TO_COMPLEX(w, b);
 | |
| 
 | |
|     if (z != Py_None) {
 | |
|         PyErr_SetString(PyExc_ValueError, "complex modulo");
 | |
|         return NULL;
 | |
|     }
 | |
|     PyFPE_START_PROTECT("complex_pow", return 0)
 | |
|     errno = 0;
 | |
|     exponent = b;
 | |
|     int_exponent = (long)exponent.real;
 | |
|     if (exponent.imag == 0. && exponent.real == int_exponent)
 | |
|         p = c_powi(a, int_exponent);
 | |
|     else
 | |
|         p = c_pow(a, exponent);
 | |
| 
 | |
|     PyFPE_END_PROTECT(p)
 | |
|     Py_ADJUST_ERANGE2(p.real, p.imag);
 | |
|     if (errno == EDOM) {
 | |
|         PyErr_SetString(PyExc_ZeroDivisionError,
 | |
|                         "0.0 to a negative or complex power");
 | |
|         return NULL;
 | |
|     }
 | |
|     else if (errno == ERANGE) {
 | |
|         PyErr_SetString(PyExc_OverflowError,
 | |
|                         "complex exponentiation");
 | |
|         return NULL;
 | |
|     }
 | |
|     return PyComplex_FromCComplex(p);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_int_div(PyObject *v, PyObject *w)
 | |
| {
 | |
|     PyErr_SetString(PyExc_TypeError,
 | |
|                     "can't take floor of complex number.");
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_neg(PyComplexObject *v)
 | |
| {
 | |
|     Py_complex neg;
 | |
|     neg.real = -v->cval.real;
 | |
|     neg.imag = -v->cval.imag;
 | |
|     return PyComplex_FromCComplex(neg);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_pos(PyComplexObject *v)
 | |
| {
 | |
|     if (PyComplex_CheckExact(v)) {
 | |
|         Py_INCREF(v);
 | |
|         return (PyObject *)v;
 | |
|     }
 | |
|     else
 | |
|         return PyComplex_FromCComplex(v->cval);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_abs(PyComplexObject *v)
 | |
| {
 | |
|     double result;
 | |
| 
 | |
|     PyFPE_START_PROTECT("complex_abs", return 0)
 | |
|     result = c_abs(v->cval);
 | |
|     PyFPE_END_PROTECT(result)
 | |
| 
 | |
|     if (errno == ERANGE) {
 | |
|         PyErr_SetString(PyExc_OverflowError,
 | |
|                         "absolute value too large");
 | |
|         return NULL;
 | |
|     }
 | |
|     return PyFloat_FromDouble(result);
 | |
| }
 | |
| 
 | |
| static int
 | |
| complex_bool(PyComplexObject *v)
 | |
| {
 | |
|     return v->cval.real != 0.0 || v->cval.imag != 0.0;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_richcompare(PyObject *v, PyObject *w, int op)
 | |
| {
 | |
|     PyObject *res;
 | |
|     Py_complex i, j;
 | |
|     TO_COMPLEX(v, i);
 | |
|     TO_COMPLEX(w, j);
 | |
| 
 | |
|     if (op != Py_EQ && op != Py_NE) {
 | |
|         /* XXX Should eventually return NotImplemented */
 | |
|         PyErr_SetString(PyExc_TypeError,
 | |
|             "no ordering relation is defined for complex numbers");
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     if ((i.real == j.real && i.imag == j.imag) == (op == Py_EQ))
 | |
|         res = Py_True;
 | |
|     else
 | |
|         res = Py_False;
 | |
| 
 | |
|     Py_INCREF(res);
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_int(PyObject *v)
 | |
| {
 | |
|     PyErr_SetString(PyExc_TypeError,
 | |
|                "can't convert complex to int");
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_float(PyObject *v)
 | |
| {
 | |
|     PyErr_SetString(PyExc_TypeError,
 | |
|                "can't convert complex to float");
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_conjugate(PyObject *self)
 | |
| {
 | |
|     Py_complex c;
 | |
|     c = ((PyComplexObject *)self)->cval;
 | |
|     c.imag = -c.imag;
 | |
|     return PyComplex_FromCComplex(c);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(complex_conjugate_doc,
 | |
| "complex.conjugate() -> complex\n"
 | |
| "\n"
 | |
| "Returns the complex conjugate of its argument. (3-4j).conjugate() == 3+4j.");
 | |
| 
 | |
| static PyObject *
 | |
| complex_getnewargs(PyComplexObject *v)
 | |
| {
 | |
|     Py_complex c = v->cval;
 | |
|     return Py_BuildValue("(dd)", c.real, c.imag);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(complex__format__doc,
 | |
| "complex.__format__() -> str\n"
 | |
| "\n"
 | |
| "Converts to a string according to format_spec.");
 | |
| 
 | |
| static PyObject *
 | |
| complex__format__(PyObject* self, PyObject* args)
 | |
| {
 | |
|     PyObject *format_spec;
 | |
| 
 | |
|     if (!PyArg_ParseTuple(args, "U:__format__", &format_spec))
 | |
|     return NULL;
 | |
|     return _PyComplex_FormatAdvanced(self,
 | |
|                                      PyUnicode_AS_UNICODE(format_spec),
 | |
|                                      PyUnicode_GET_SIZE(format_spec));
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| static PyObject *
 | |
| complex_is_finite(PyObject *self)
 | |
| {
 | |
|     Py_complex c;
 | |
|     c = ((PyComplexObject *)self)->cval;
 | |
|     return PyBool_FromLong((long)(Py_IS_FINITE(c.real) &&
 | |
|                                   Py_IS_FINITE(c.imag)));
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(complex_is_finite_doc,
 | |
| "complex.is_finite() -> bool\n"
 | |
| "\n"
 | |
| "Returns True if the real and the imaginary part is finite.");
 | |
| #endif
 | |
| 
 | |
| static PyMethodDef complex_methods[] = {
 | |
|     {"conjugate",       (PyCFunction)complex_conjugate, METH_NOARGS,
 | |
|      complex_conjugate_doc},
 | |
| #if 0
 | |
|     {"is_finite",       (PyCFunction)complex_is_finite, METH_NOARGS,
 | |
|      complex_is_finite_doc},
 | |
| #endif
 | |
|     {"__getnewargs__",          (PyCFunction)complex_getnewargs,        METH_NOARGS},
 | |
|     {"__format__",          (PyCFunction)complex__format__,
 | |
|                                        METH_VARARGS, complex__format__doc},
 | |
|     {NULL,              NULL}           /* sentinel */
 | |
| };
 | |
| 
 | |
| static PyMemberDef complex_members[] = {
 | |
|     {"real", T_DOUBLE, offsetof(PyComplexObject, cval.real), READONLY,
 | |
|      "the real part of a complex number"},
 | |
|     {"imag", T_DOUBLE, offsetof(PyComplexObject, cval.imag), READONLY,
 | |
|      "the imaginary part of a complex number"},
 | |
|     {0},
 | |
| };
 | |
| 
 | |
| static PyObject *
 | |
| complex_subtype_from_string(PyTypeObject *type, PyObject *v)
 | |
| {
 | |
|     const char *s, *start;
 | |
|     char *end;
 | |
|     double x=0.0, y=0.0, z;
 | |
|     int got_bracket=0;
 | |
|     char s_buffer[256];
 | |
|     Py_ssize_t len;
 | |
| 
 | |
|     if (PyUnicode_Check(v)) {
 | |
|         if (PyUnicode_GET_SIZE(v) >= (Py_ssize_t)sizeof(s_buffer)) {
 | |
|             PyErr_SetString(PyExc_ValueError,
 | |
|                      "complex() literal too large to convert");
 | |
|             return NULL;
 | |
|         }
 | |
|         if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v),
 | |
|                                     PyUnicode_GET_SIZE(v),
 | |
|                                     s_buffer,
 | |
|                                     NULL))
 | |
|             return NULL;
 | |
|         s = s_buffer;
 | |
|         len = strlen(s);
 | |
|     }
 | |
|     else if (PyObject_AsCharBuffer(v, &s, &len)) {
 | |
|         PyErr_SetString(PyExc_TypeError,
 | |
|                         "complex() arg is not a string");
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     /* position on first nonblank */
 | |
|     start = s;
 | |
|     while (Py_ISSPACE(*s))
 | |
|         s++;
 | |
|     if (*s == '(') {
 | |
|         /* Skip over possible bracket from repr(). */
 | |
|         got_bracket = 1;
 | |
|         s++;
 | |
|         while (Py_ISSPACE(*s))
 | |
|             s++;
 | |
|     }
 | |
| 
 | |
|     /* a valid complex string usually takes one of the three forms:
 | |
| 
 | |
|          <float>                  - real part only
 | |
|          <float>j                 - imaginary part only
 | |
|          <float><signed-float>j   - real and imaginary parts
 | |
| 
 | |
|        where <float> represents any numeric string that's accepted by the
 | |
|        float constructor (including 'nan', 'inf', 'infinity', etc.), and
 | |
|        <signed-float> is any string of the form <float> whose first
 | |
|        character is '+' or '-'.
 | |
| 
 | |
|        For backwards compatibility, the extra forms
 | |
| 
 | |
|          <float><sign>j
 | |
|          <sign>j
 | |
|          j
 | |
| 
 | |
|        are also accepted, though support for these forms may be removed from
 | |
|        a future version of Python.
 | |
|     */
 | |
| 
 | |
|     /* first look for forms starting with <float> */
 | |
|     z = PyOS_string_to_double(s, &end, NULL);
 | |
|     if (z == -1.0 && PyErr_Occurred()) {
 | |
|         if (PyErr_ExceptionMatches(PyExc_ValueError))
 | |
|             PyErr_Clear();
 | |
|         else
 | |
|             return NULL;
 | |
|     }
 | |
|     if (end != s) {
 | |
|         /* all 4 forms starting with <float> land here */
 | |
|         s = end;
 | |
|         if (*s == '+' || *s == '-') {
 | |
|             /* <float><signed-float>j | <float><sign>j */
 | |
|             x = z;
 | |
|             y = PyOS_string_to_double(s, &end, NULL);
 | |
|             if (y == -1.0 && PyErr_Occurred()) {
 | |
|                 if (PyErr_ExceptionMatches(PyExc_ValueError))
 | |
|                     PyErr_Clear();
 | |
|                 else
 | |
|                     return NULL;
 | |
|             }
 | |
|             if (end != s)
 | |
|                 /* <float><signed-float>j */
 | |
|                 s = end;
 | |
|             else {
 | |
|                 /* <float><sign>j */
 | |
|                 y = *s == '+' ? 1.0 : -1.0;
 | |
|                 s++;
 | |
|             }
 | |
|             if (!(*s == 'j' || *s == 'J'))
 | |
|                 goto parse_error;
 | |
|             s++;
 | |
|         }
 | |
|         else if (*s == 'j' || *s == 'J') {
 | |
|             /* <float>j */
 | |
|             s++;
 | |
|             y = z;
 | |
|         }
 | |
|         else
 | |
|             /* <float> */
 | |
|             x = z;
 | |
|     }
 | |
|     else {
 | |
|         /* not starting with <float>; must be <sign>j or j */
 | |
|         if (*s == '+' || *s == '-') {
 | |
|             /* <sign>j */
 | |
|             y = *s == '+' ? 1.0 : -1.0;
 | |
|             s++;
 | |
|         }
 | |
|         else
 | |
|             /* j */
 | |
|             y = 1.0;
 | |
|         if (!(*s == 'j' || *s == 'J'))
 | |
|             goto parse_error;
 | |
|         s++;
 | |
|     }
 | |
| 
 | |
|     /* trailing whitespace and closing bracket */
 | |
|     while (Py_ISSPACE(*s))
 | |
|         s++;
 | |
|     if (got_bracket) {
 | |
|         /* if there was an opening parenthesis, then the corresponding
 | |
|            closing parenthesis should be right here */
 | |
|         if (*s != ')')
 | |
|             goto parse_error;
 | |
|         s++;
 | |
|         while (Py_ISSPACE(*s))
 | |
|             s++;
 | |
|     }
 | |
| 
 | |
|     /* we should now be at the end of the string */
 | |
|     if (s-start != len)
 | |
|         goto parse_error;
 | |
| 
 | |
|     return complex_subtype_from_doubles(type, x, y);
 | |
| 
 | |
|   parse_error:
 | |
|     PyErr_SetString(PyExc_ValueError,
 | |
|                     "complex() arg is a malformed string");
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
 | |
| {
 | |
|     PyObject *r, *i, *tmp, *f;
 | |
|     PyNumberMethods *nbr, *nbi = NULL;
 | |
|     Py_complex cr, ci;
 | |
|     int own_r = 0;
 | |
|     int cr_is_complex = 0;
 | |
|     int ci_is_complex = 0;
 | |
|     static PyObject *complexstr;
 | |
|     static char *kwlist[] = {"real", "imag", 0};
 | |
| 
 | |
|     r = Py_False;
 | |
|     i = NULL;
 | |
|     if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OO:complex", kwlist,
 | |
|                                      &r, &i))
 | |
|         return NULL;
 | |
| 
 | |
|     /* Special-case for a single argument when type(arg) is complex. */
 | |
|     if (PyComplex_CheckExact(r) && i == NULL &&
 | |
|         type == &PyComplex_Type) {
 | |
|         /* Note that we can't know whether it's safe to return
 | |
|            a complex *subclass* instance as-is, hence the restriction
 | |
|            to exact complexes here.  If either the input or the
 | |
|            output is a complex subclass, it will be handled below
 | |
|            as a non-orthogonal vector.  */
 | |
|         Py_INCREF(r);
 | |
|         return r;
 | |
|     }
 | |
|     if (PyUnicode_Check(r)) {
 | |
|         if (i != NULL) {
 | |
|             PyErr_SetString(PyExc_TypeError,
 | |
|                             "complex() can't take second arg"
 | |
|                             " if first is a string");
 | |
|             return NULL;
 | |
|         }
 | |
|         return complex_subtype_from_string(type, r);
 | |
|     }
 | |
|     if (i != NULL && PyUnicode_Check(i)) {
 | |
|         PyErr_SetString(PyExc_TypeError,
 | |
|                         "complex() second arg can't be a string");
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     /* XXX Hack to support classes with __complex__ method */
 | |
|     if (complexstr == NULL) {
 | |
|         complexstr = PyUnicode_InternFromString("__complex__");
 | |
|         if (complexstr == NULL)
 | |
|             return NULL;
 | |
|     }
 | |
|     f = PyObject_GetAttr(r, complexstr);
 | |
|     if (f == NULL)
 | |
|         PyErr_Clear();
 | |
|     else {
 | |
|         PyObject *args = PyTuple_New(0);
 | |
|         if (args == NULL)
 | |
|             return NULL;
 | |
|         r = PyEval_CallObject(f, args);
 | |
|         Py_DECREF(args);
 | |
|         Py_DECREF(f);
 | |
|         if (r == NULL)
 | |
|             return NULL;
 | |
|         own_r = 1;
 | |
|     }
 | |
|     nbr = r->ob_type->tp_as_number;
 | |
|     if (i != NULL)
 | |
|         nbi = i->ob_type->tp_as_number;
 | |
|     if (nbr == NULL || nbr->nb_float == NULL ||
 | |
|         ((i != NULL) && (nbi == NULL || nbi->nb_float == NULL))) {
 | |
|         PyErr_SetString(PyExc_TypeError,
 | |
|                    "complex() argument must be a string or a number");
 | |
|         if (own_r) {
 | |
|             Py_DECREF(r);
 | |
|         }
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     /* If we get this far, then the "real" and "imag" parts should
 | |
|        both be treated as numbers, and the constructor should return a
 | |
|        complex number equal to (real + imag*1j).
 | |
| 
 | |
|        Note that we do NOT assume the input to already be in canonical
 | |
|        form; the "real" and "imag" parts might themselves be complex
 | |
|        numbers, which slightly complicates the code below. */
 | |
|     if (PyComplex_Check(r)) {
 | |
|         /* Note that if r is of a complex subtype, we're only
 | |
|            retaining its real & imag parts here, and the return
 | |
|            value is (properly) of the builtin complex type. */
 | |
|         cr = ((PyComplexObject*)r)->cval;
 | |
|         cr_is_complex = 1;
 | |
|         if (own_r) {
 | |
|             Py_DECREF(r);
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         /* The "real" part really is entirely real, and contributes
 | |
|            nothing in the imaginary direction.
 | |
|            Just treat it as a double. */
 | |
|         tmp = PyNumber_Float(r);
 | |
|         if (own_r) {
 | |
|             /* r was a newly created complex number, rather
 | |
|                than the original "real" argument. */
 | |
|             Py_DECREF(r);
 | |
|         }
 | |
|         if (tmp == NULL)
 | |
|             return NULL;
 | |
|         if (!PyFloat_Check(tmp)) {
 | |
|             PyErr_SetString(PyExc_TypeError,
 | |
|                             "float(r) didn't return a float");
 | |
|             Py_DECREF(tmp);
 | |
|             return NULL;
 | |
|         }
 | |
|         cr.real = PyFloat_AsDouble(tmp);
 | |
|         cr.imag = 0.0; /* Shut up compiler warning */
 | |
|         Py_DECREF(tmp);
 | |
|     }
 | |
|     if (i == NULL) {
 | |
|         ci.real = 0.0;
 | |
|     }
 | |
|     else if (PyComplex_Check(i)) {
 | |
|         ci = ((PyComplexObject*)i)->cval;
 | |
|         ci_is_complex = 1;
 | |
|     } else {
 | |
|         /* The "imag" part really is entirely imaginary, and
 | |
|            contributes nothing in the real direction.
 | |
|            Just treat it as a double. */
 | |
|         tmp = (*nbi->nb_float)(i);
 | |
|         if (tmp == NULL)
 | |
|             return NULL;
 | |
|         ci.real = PyFloat_AsDouble(tmp);
 | |
|         Py_DECREF(tmp);
 | |
|     }
 | |
|     /*  If the input was in canonical form, then the "real" and "imag"
 | |
|         parts are real numbers, so that ci.imag and cr.imag are zero.
 | |
|         We need this correction in case they were not real numbers. */
 | |
| 
 | |
|     if (ci_is_complex) {
 | |
|         cr.real -= ci.imag;
 | |
|     }
 | |
|     if (cr_is_complex) {
 | |
|         ci.real += cr.imag;
 | |
|     }
 | |
|     return complex_subtype_from_doubles(type, cr.real, ci.real);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(complex_doc,
 | |
| "complex(real[, imag]) -> complex number\n"
 | |
| "\n"
 | |
| "Create a complex number from a real part and an optional imaginary part.\n"
 | |
| "This is equivalent to (real + imag*1j) where imag defaults to 0.");
 | |
| 
 | |
| static PyNumberMethods complex_as_number = {
 | |
|     (binaryfunc)complex_add,                    /* nb_add */
 | |
|     (binaryfunc)complex_sub,                    /* nb_subtract */
 | |
|     (binaryfunc)complex_mul,                    /* nb_multiply */
 | |
|     (binaryfunc)complex_remainder,              /* nb_remainder */
 | |
|     (binaryfunc)complex_divmod,                 /* nb_divmod */
 | |
|     (ternaryfunc)complex_pow,                   /* nb_power */
 | |
|     (unaryfunc)complex_neg,                     /* nb_negative */
 | |
|     (unaryfunc)complex_pos,                     /* nb_positive */
 | |
|     (unaryfunc)complex_abs,                     /* nb_absolute */
 | |
|     (inquiry)complex_bool,                      /* nb_bool */
 | |
|     0,                                          /* nb_invert */
 | |
|     0,                                          /* nb_lshift */
 | |
|     0,                                          /* nb_rshift */
 | |
|     0,                                          /* nb_and */
 | |
|     0,                                          /* nb_xor */
 | |
|     0,                                          /* nb_or */
 | |
|     complex_int,                                /* nb_int */
 | |
|     0,                                          /* nb_reserved */
 | |
|     complex_float,                              /* nb_float */
 | |
|     0,                                          /* nb_inplace_add */
 | |
|     0,                                          /* nb_inplace_subtract */
 | |
|     0,                                          /* nb_inplace_multiply*/
 | |
|     0,                                          /* nb_inplace_remainder */
 | |
|     0,                                          /* nb_inplace_power */
 | |
|     0,                                          /* nb_inplace_lshift */
 | |
|     0,                                          /* nb_inplace_rshift */
 | |
|     0,                                          /* nb_inplace_and */
 | |
|     0,                                          /* nb_inplace_xor */
 | |
|     0,                                          /* nb_inplace_or */
 | |
|     (binaryfunc)complex_int_div,                /* nb_floor_divide */
 | |
|     (binaryfunc)complex_div,                    /* nb_true_divide */
 | |
|     0,                                          /* nb_inplace_floor_divide */
 | |
|     0,                                          /* nb_inplace_true_divide */
 | |
| };
 | |
| 
 | |
| PyTypeObject PyComplex_Type = {
 | |
|     PyVarObject_HEAD_INIT(&PyType_Type, 0)
 | |
|     "complex",
 | |
|     sizeof(PyComplexObject),
 | |
|     0,
 | |
|     complex_dealloc,                            /* tp_dealloc */
 | |
|     0,                                          /* tp_print */
 | |
|     0,                                          /* tp_getattr */
 | |
|     0,                                          /* tp_setattr */
 | |
|     0,                                          /* tp_reserved */
 | |
|     (reprfunc)complex_repr,                     /* tp_repr */
 | |
|     &complex_as_number,                         /* tp_as_number */
 | |
|     0,                                          /* tp_as_sequence */
 | |
|     0,                                          /* tp_as_mapping */
 | |
|     (hashfunc)complex_hash,                     /* tp_hash */
 | |
|     0,                                          /* tp_call */
 | |
|     (reprfunc)complex_str,                      /* tp_str */
 | |
|     PyObject_GenericGetAttr,                    /* tp_getattro */
 | |
|     0,                                          /* tp_setattro */
 | |
|     0,                                          /* tp_as_buffer */
 | |
|     Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
 | |
|     complex_doc,                                /* tp_doc */
 | |
|     0,                                          /* tp_traverse */
 | |
|     0,                                          /* tp_clear */
 | |
|     complex_richcompare,                        /* tp_richcompare */
 | |
|     0,                                          /* tp_weaklistoffset */
 | |
|     0,                                          /* tp_iter */
 | |
|     0,                                          /* tp_iternext */
 | |
|     complex_methods,                            /* tp_methods */
 | |
|     complex_members,                            /* tp_members */
 | |
|     0,                                          /* tp_getset */
 | |
|     0,                                          /* tp_base */
 | |
|     0,                                          /* tp_dict */
 | |
|     0,                                          /* tp_descr_get */
 | |
|     0,                                          /* tp_descr_set */
 | |
|     0,                                          /* tp_dictoffset */
 | |
|     0,                                          /* tp_init */
 | |
|     PyType_GenericAlloc,                        /* tp_alloc */
 | |
|     complex_new,                                /* tp_new */
 | |
|     PyObject_Del,                               /* tp_free */
 | |
| };
 | |
| 
 | |
| #endif
 | 
