mirror of
				https://github.com/python/cpython.git
				synced 2025-11-04 07:31:38 +00:00 
			
		
		
		
	Fix time.mktime() error handling on AIX for year before 1970.
Other changes:
* mktime(): rename variable 'buf' to 'tm'.
* _PyTime_localtime():
  * Use "localtime" rather than "ctime" in the error message
    (specific to AIX).
  * Always initialize errno to 0 just in case if localtime_r()
    doesn't set errno on error.
  * On AIX, avoid abs() which is limited to int type.
  * EINVAL constant is now always available.
		
	
			
		
			
				
	
	
		
			1114 lines
		
	
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1114 lines
		
	
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
#include "Python.h"
 | 
						|
#ifdef MS_WINDOWS
 | 
						|
#include <windows.h>
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(__APPLE__)
 | 
						|
#include <mach/mach_time.h>   /* mach_absolute_time(), mach_timebase_info() */
 | 
						|
#endif
 | 
						|
 | 
						|
#define _PyTime_check_mul_overflow(a, b) \
 | 
						|
    (assert(b > 0), \
 | 
						|
     (_PyTime_t)(a) < _PyTime_MIN / (_PyTime_t)(b) \
 | 
						|
     || _PyTime_MAX / (_PyTime_t)(b) < (_PyTime_t)(a))
 | 
						|
 | 
						|
/* To millisecond (10^-3) */
 | 
						|
#define SEC_TO_MS 1000
 | 
						|
 | 
						|
/* To microseconds (10^-6) */
 | 
						|
#define MS_TO_US 1000
 | 
						|
#define SEC_TO_US (SEC_TO_MS * MS_TO_US)
 | 
						|
 | 
						|
/* To nanoseconds (10^-9) */
 | 
						|
#define US_TO_NS 1000
 | 
						|
#define MS_TO_NS (MS_TO_US * US_TO_NS)
 | 
						|
#define SEC_TO_NS (SEC_TO_MS * MS_TO_NS)
 | 
						|
 | 
						|
/* Conversion from nanoseconds */
 | 
						|
#define NS_TO_MS (1000 * 1000)
 | 
						|
#define NS_TO_US (1000)
 | 
						|
 | 
						|
static void
 | 
						|
error_time_t_overflow(void)
 | 
						|
{
 | 
						|
    PyErr_SetString(PyExc_OverflowError,
 | 
						|
                    "timestamp out of range for platform time_t");
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
_PyTime_overflow(void)
 | 
						|
{
 | 
						|
    PyErr_SetString(PyExc_OverflowError,
 | 
						|
                    "timestamp too large to convert to C _PyTime_t");
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
_PyTime_t
 | 
						|
_PyTime_MulDiv(_PyTime_t ticks, _PyTime_t mul, _PyTime_t div)
 | 
						|
{
 | 
						|
    _PyTime_t intpart, remaining;
 | 
						|
    /* Compute (ticks * mul / div) in two parts to prevent integer overflow:
 | 
						|
       compute integer part, and then the remaining part.
 | 
						|
 | 
						|
       (ticks * mul) / div == (ticks / div) * mul + (ticks % div) * mul / div
 | 
						|
 | 
						|
       The caller must ensure that "(div - 1) * mul" cannot overflow. */
 | 
						|
    intpart = ticks / div;
 | 
						|
    ticks %= div;
 | 
						|
    remaining = ticks * mul;
 | 
						|
    remaining /= div;
 | 
						|
    return intpart * mul + remaining;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
time_t
 | 
						|
_PyLong_AsTime_t(PyObject *obj)
 | 
						|
{
 | 
						|
#if SIZEOF_TIME_T == SIZEOF_LONG_LONG
 | 
						|
    long long val;
 | 
						|
    val = PyLong_AsLongLong(obj);
 | 
						|
#else
 | 
						|
    long val;
 | 
						|
    Py_BUILD_ASSERT(sizeof(time_t) <= sizeof(long));
 | 
						|
    val = PyLong_AsLong(obj);
 | 
						|
#endif
 | 
						|
    if (val == -1 && PyErr_Occurred()) {
 | 
						|
        if (PyErr_ExceptionMatches(PyExc_OverflowError)) {
 | 
						|
            error_time_t_overflow();
 | 
						|
        }
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    return (time_t)val;
 | 
						|
}
 | 
						|
 | 
						|
PyObject *
 | 
						|
_PyLong_FromTime_t(time_t t)
 | 
						|
{
 | 
						|
#if SIZEOF_TIME_T == SIZEOF_LONG_LONG
 | 
						|
    return PyLong_FromLongLong((long long)t);
 | 
						|
#else
 | 
						|
    Py_BUILD_ASSERT(sizeof(time_t) <= sizeof(long));
 | 
						|
    return PyLong_FromLong((long)t);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/* Round to nearest with ties going to nearest even integer
 | 
						|
   (_PyTime_ROUND_HALF_EVEN) */
 | 
						|
static double
 | 
						|
_PyTime_RoundHalfEven(double x)
 | 
						|
{
 | 
						|
    double rounded = round(x);
 | 
						|
    if (fabs(x-rounded) == 0.5) {
 | 
						|
        /* halfway case: round to even */
 | 
						|
        rounded = 2.0*round(x/2.0);
 | 
						|
    }
 | 
						|
    return rounded;
 | 
						|
}
 | 
						|
 | 
						|
static double
 | 
						|
_PyTime_Round(double x, _PyTime_round_t round)
 | 
						|
{
 | 
						|
    /* volatile avoids optimization changing how numbers are rounded */
 | 
						|
    volatile double d;
 | 
						|
 | 
						|
    d = x;
 | 
						|
    if (round == _PyTime_ROUND_HALF_EVEN) {
 | 
						|
        d = _PyTime_RoundHalfEven(d);
 | 
						|
    }
 | 
						|
    else if (round == _PyTime_ROUND_CEILING) {
 | 
						|
        d = ceil(d);
 | 
						|
    }
 | 
						|
    else if (round == _PyTime_ROUND_FLOOR) {
 | 
						|
        d = floor(d);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        assert(round == _PyTime_ROUND_UP);
 | 
						|
        d = (d >= 0.0) ? ceil(d) : floor(d);
 | 
						|
    }
 | 
						|
    return d;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
_PyTime_DoubleToDenominator(double d, time_t *sec, long *numerator,
 | 
						|
                            long idenominator, _PyTime_round_t round)
 | 
						|
{
 | 
						|
    double denominator = (double)idenominator;
 | 
						|
    double intpart;
 | 
						|
    /* volatile avoids optimization changing how numbers are rounded */
 | 
						|
    volatile double floatpart;
 | 
						|
 | 
						|
    floatpart = modf(d, &intpart);
 | 
						|
 | 
						|
    floatpart *= denominator;
 | 
						|
    floatpart = _PyTime_Round(floatpart, round);
 | 
						|
    if (floatpart >= denominator) {
 | 
						|
        floatpart -= denominator;
 | 
						|
        intpart += 1.0;
 | 
						|
    }
 | 
						|
    else if (floatpart < 0) {
 | 
						|
        floatpart += denominator;
 | 
						|
        intpart -= 1.0;
 | 
						|
    }
 | 
						|
    assert(0.0 <= floatpart && floatpart < denominator);
 | 
						|
 | 
						|
    if (!_Py_InIntegralTypeRange(time_t, intpart)) {
 | 
						|
        error_time_t_overflow();
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    *sec = (time_t)intpart;
 | 
						|
    *numerator = (long)floatpart;
 | 
						|
    assert(0 <= *numerator && *numerator < idenominator);
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
_PyTime_ObjectToDenominator(PyObject *obj, time_t *sec, long *numerator,
 | 
						|
                            long denominator, _PyTime_round_t round)
 | 
						|
{
 | 
						|
    assert(denominator >= 1);
 | 
						|
 | 
						|
    if (PyFloat_Check(obj)) {
 | 
						|
        double d = PyFloat_AsDouble(obj);
 | 
						|
        if (Py_IS_NAN(d)) {
 | 
						|
            *numerator = 0;
 | 
						|
            PyErr_SetString(PyExc_ValueError, "Invalid value NaN (not a number)");
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        return _PyTime_DoubleToDenominator(d, sec, numerator,
 | 
						|
                                           denominator, round);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        *sec = _PyLong_AsTime_t(obj);
 | 
						|
        *numerator = 0;
 | 
						|
        if (*sec == (time_t)-1 && PyErr_Occurred()) {
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
_PyTime_ObjectToTime_t(PyObject *obj, time_t *sec, _PyTime_round_t round)
 | 
						|
{
 | 
						|
    if (PyFloat_Check(obj)) {
 | 
						|
        double intpart;
 | 
						|
        /* volatile avoids optimization changing how numbers are rounded */
 | 
						|
        volatile double d;
 | 
						|
 | 
						|
        d = PyFloat_AsDouble(obj);
 | 
						|
        if (Py_IS_NAN(d)) {
 | 
						|
            PyErr_SetString(PyExc_ValueError, "Invalid value NaN (not a number)");
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
 | 
						|
        d = _PyTime_Round(d, round);
 | 
						|
        (void)modf(d, &intpart);
 | 
						|
 | 
						|
        if (!_Py_InIntegralTypeRange(time_t, intpart)) {
 | 
						|
            error_time_t_overflow();
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        *sec = (time_t)intpart;
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        *sec = _PyLong_AsTime_t(obj);
 | 
						|
        if (*sec == (time_t)-1 && PyErr_Occurred()) {
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
_PyTime_ObjectToTimespec(PyObject *obj, time_t *sec, long *nsec,
 | 
						|
                         _PyTime_round_t round)
 | 
						|
{
 | 
						|
    return _PyTime_ObjectToDenominator(obj, sec, nsec, SEC_TO_NS, round);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
_PyTime_ObjectToTimeval(PyObject *obj, time_t *sec, long *usec,
 | 
						|
                        _PyTime_round_t round)
 | 
						|
{
 | 
						|
    return _PyTime_ObjectToDenominator(obj, sec, usec, SEC_TO_US, round);
 | 
						|
}
 | 
						|
 | 
						|
_PyTime_t
 | 
						|
_PyTime_FromSeconds(int seconds)
 | 
						|
{
 | 
						|
    _PyTime_t t;
 | 
						|
    /* ensure that integer overflow cannot happen, int type should have 32
 | 
						|
       bits, whereas _PyTime_t type has at least 64 bits (SEC_TO_MS takes 30
 | 
						|
       bits). */
 | 
						|
    Py_BUILD_ASSERT(INT_MAX <= _PyTime_MAX / SEC_TO_NS);
 | 
						|
    Py_BUILD_ASSERT(INT_MIN >= _PyTime_MIN / SEC_TO_NS);
 | 
						|
 | 
						|
    t = (_PyTime_t)seconds;
 | 
						|
    assert((t >= 0 && t <= _PyTime_MAX / SEC_TO_NS)
 | 
						|
           || (t < 0 && t >= _PyTime_MIN / SEC_TO_NS));
 | 
						|
    t *= SEC_TO_NS;
 | 
						|
    return t;
 | 
						|
}
 | 
						|
 | 
						|
_PyTime_t
 | 
						|
_PyTime_FromNanoseconds(_PyTime_t ns)
 | 
						|
{
 | 
						|
    /* _PyTime_t already uses nanosecond resolution, no conversion needed */
 | 
						|
    return ns;
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
_PyTime_FromNanosecondsObject(_PyTime_t *tp, PyObject *obj)
 | 
						|
{
 | 
						|
    long long nsec;
 | 
						|
    _PyTime_t t;
 | 
						|
 | 
						|
    if (!PyLong_Check(obj)) {
 | 
						|
        PyErr_Format(PyExc_TypeError, "expect int, got %s",
 | 
						|
                     Py_TYPE(obj)->tp_name);
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    Py_BUILD_ASSERT(sizeof(long long) == sizeof(_PyTime_t));
 | 
						|
    nsec = PyLong_AsLongLong(obj);
 | 
						|
    if (nsec == -1 && PyErr_Occurred()) {
 | 
						|
        if (PyErr_ExceptionMatches(PyExc_OverflowError)) {
 | 
						|
            _PyTime_overflow();
 | 
						|
        }
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    /* _PyTime_t already uses nanosecond resolution, no conversion needed */
 | 
						|
    t = (_PyTime_t)nsec;
 | 
						|
    *tp = t;
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef HAVE_CLOCK_GETTIME
 | 
						|
static int
 | 
						|
pytime_fromtimespec(_PyTime_t *tp, struct timespec *ts, int raise)
 | 
						|
{
 | 
						|
    _PyTime_t t, nsec;
 | 
						|
    int res = 0;
 | 
						|
 | 
						|
    Py_BUILD_ASSERT(sizeof(ts->tv_sec) <= sizeof(_PyTime_t));
 | 
						|
    t = (_PyTime_t)ts->tv_sec;
 | 
						|
 | 
						|
    if (_PyTime_check_mul_overflow(t, SEC_TO_NS)) {
 | 
						|
        if (raise) {
 | 
						|
            _PyTime_overflow();
 | 
						|
        }
 | 
						|
        res = -1;
 | 
						|
        t = (t > 0) ? _PyTime_MAX : _PyTime_MIN;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        t = t * SEC_TO_NS;
 | 
						|
    }
 | 
						|
 | 
						|
    nsec = ts->tv_nsec;
 | 
						|
    /* The following test is written for positive only nsec */
 | 
						|
    assert(nsec >= 0);
 | 
						|
    if (t > _PyTime_MAX - nsec) {
 | 
						|
        if (raise) {
 | 
						|
            _PyTime_overflow();
 | 
						|
        }
 | 
						|
        res = -1;
 | 
						|
        t = _PyTime_MAX;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        t += nsec;
 | 
						|
    }
 | 
						|
 | 
						|
    *tp = t;
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
_PyTime_FromTimespec(_PyTime_t *tp, struct timespec *ts)
 | 
						|
{
 | 
						|
    return pytime_fromtimespec(tp, ts, 1);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#if !defined(MS_WINDOWS)
 | 
						|
static int
 | 
						|
pytime_fromtimeval(_PyTime_t *tp, struct timeval *tv, int raise)
 | 
						|
{
 | 
						|
    _PyTime_t t, usec;
 | 
						|
    int res = 0;
 | 
						|
 | 
						|
    Py_BUILD_ASSERT(sizeof(tv->tv_sec) <= sizeof(_PyTime_t));
 | 
						|
    t = (_PyTime_t)tv->tv_sec;
 | 
						|
 | 
						|
    if (_PyTime_check_mul_overflow(t, SEC_TO_NS)) {
 | 
						|
        if (raise) {
 | 
						|
            _PyTime_overflow();
 | 
						|
        }
 | 
						|
        res = -1;
 | 
						|
        t = (t > 0) ? _PyTime_MAX : _PyTime_MIN;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        t = t * SEC_TO_NS;
 | 
						|
    }
 | 
						|
 | 
						|
    usec = (_PyTime_t)tv->tv_usec * US_TO_NS;
 | 
						|
    /* The following test is written for positive only usec */
 | 
						|
    assert(usec >= 0);
 | 
						|
    if (t > _PyTime_MAX - usec) {
 | 
						|
        if (raise) {
 | 
						|
            _PyTime_overflow();
 | 
						|
        }
 | 
						|
        res = -1;
 | 
						|
        t = _PyTime_MAX;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        t += usec;
 | 
						|
    }
 | 
						|
 | 
						|
    *tp = t;
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
_PyTime_FromTimeval(_PyTime_t *tp, struct timeval *tv)
 | 
						|
{
 | 
						|
    return pytime_fromtimeval(tp, tv, 1);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static int
 | 
						|
_PyTime_FromDouble(_PyTime_t *t, double value, _PyTime_round_t round,
 | 
						|
                   long unit_to_ns)
 | 
						|
{
 | 
						|
    /* volatile avoids optimization changing how numbers are rounded */
 | 
						|
    volatile double d;
 | 
						|
 | 
						|
    /* convert to a number of nanoseconds */
 | 
						|
    d = value;
 | 
						|
    d *= (double)unit_to_ns;
 | 
						|
    d = _PyTime_Round(d, round);
 | 
						|
 | 
						|
    if (!_Py_InIntegralTypeRange(_PyTime_t, d)) {
 | 
						|
        _PyTime_overflow();
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    *t = (_PyTime_t)d;
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
_PyTime_FromObject(_PyTime_t *t, PyObject *obj, _PyTime_round_t round,
 | 
						|
                   long unit_to_ns)
 | 
						|
{
 | 
						|
    if (PyFloat_Check(obj)) {
 | 
						|
        double d;
 | 
						|
        d = PyFloat_AsDouble(obj);
 | 
						|
        if (Py_IS_NAN(d)) {
 | 
						|
            PyErr_SetString(PyExc_ValueError, "Invalid value NaN (not a number)");
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        return _PyTime_FromDouble(t, d, round, unit_to_ns);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        long long sec;
 | 
						|
        Py_BUILD_ASSERT(sizeof(long long) <= sizeof(_PyTime_t));
 | 
						|
 | 
						|
        sec = PyLong_AsLongLong(obj);
 | 
						|
        if (sec == -1 && PyErr_Occurred()) {
 | 
						|
            if (PyErr_ExceptionMatches(PyExc_OverflowError)) {
 | 
						|
                _PyTime_overflow();
 | 
						|
            }
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
 | 
						|
        if (_PyTime_check_mul_overflow(sec, unit_to_ns)) {
 | 
						|
            _PyTime_overflow();
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        *t = sec * unit_to_ns;
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
_PyTime_FromSecondsObject(_PyTime_t *t, PyObject *obj, _PyTime_round_t round)
 | 
						|
{
 | 
						|
    return _PyTime_FromObject(t, obj, round, SEC_TO_NS);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
_PyTime_FromMillisecondsObject(_PyTime_t *t, PyObject *obj, _PyTime_round_t round)
 | 
						|
{
 | 
						|
    return _PyTime_FromObject(t, obj, round, MS_TO_NS);
 | 
						|
}
 | 
						|
 | 
						|
double
 | 
						|
_PyTime_AsSecondsDouble(_PyTime_t t)
 | 
						|
{
 | 
						|
    /* volatile avoids optimization changing how numbers are rounded */
 | 
						|
    volatile double d;
 | 
						|
 | 
						|
    if (t % SEC_TO_NS == 0) {
 | 
						|
        _PyTime_t secs;
 | 
						|
        /* Divide using integers to avoid rounding issues on the integer part.
 | 
						|
           1e-9 cannot be stored exactly in IEEE 64-bit. */
 | 
						|
        secs = t / SEC_TO_NS;
 | 
						|
        d = (double)secs;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        d = (double)t;
 | 
						|
        d /= 1e9;
 | 
						|
    }
 | 
						|
    return d;
 | 
						|
}
 | 
						|
 | 
						|
PyObject *
 | 
						|
_PyTime_AsNanosecondsObject(_PyTime_t t)
 | 
						|
{
 | 
						|
    Py_BUILD_ASSERT(sizeof(long long) >= sizeof(_PyTime_t));
 | 
						|
    return PyLong_FromLongLong((long long)t);
 | 
						|
}
 | 
						|
 | 
						|
static _PyTime_t
 | 
						|
_PyTime_Divide(const _PyTime_t t, const _PyTime_t k,
 | 
						|
               const _PyTime_round_t round)
 | 
						|
{
 | 
						|
    assert(k > 1);
 | 
						|
    if (round == _PyTime_ROUND_HALF_EVEN) {
 | 
						|
        _PyTime_t x, r, abs_r;
 | 
						|
        x = t / k;
 | 
						|
        r = t % k;
 | 
						|
        abs_r = Py_ABS(r);
 | 
						|
        if (abs_r > k / 2 || (abs_r == k / 2 && (Py_ABS(x) & 1))) {
 | 
						|
            if (t >= 0) {
 | 
						|
                x++;
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                x--;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return x;
 | 
						|
    }
 | 
						|
    else if (round == _PyTime_ROUND_CEILING) {
 | 
						|
        if (t >= 0) {
 | 
						|
            return (t + k - 1) / k;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            return t / k;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else if (round == _PyTime_ROUND_FLOOR){
 | 
						|
        if (t >= 0) {
 | 
						|
            return t / k;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            return (t - (k - 1)) / k;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        assert(round == _PyTime_ROUND_UP);
 | 
						|
        if (t >= 0) {
 | 
						|
            return (t + k - 1) / k;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            return (t - (k - 1)) / k;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
_PyTime_t
 | 
						|
_PyTime_AsMilliseconds(_PyTime_t t, _PyTime_round_t round)
 | 
						|
{
 | 
						|
    return _PyTime_Divide(t, NS_TO_MS, round);
 | 
						|
}
 | 
						|
 | 
						|
_PyTime_t
 | 
						|
_PyTime_AsMicroseconds(_PyTime_t t, _PyTime_round_t round)
 | 
						|
{
 | 
						|
    return _PyTime_Divide(t, NS_TO_US, round);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
_PyTime_AsTimeval_impl(_PyTime_t t, _PyTime_t *p_secs, int *p_us,
 | 
						|
                       _PyTime_round_t round)
 | 
						|
{
 | 
						|
    _PyTime_t secs, ns;
 | 
						|
    int usec;
 | 
						|
    int res = 0;
 | 
						|
 | 
						|
    secs = t / SEC_TO_NS;
 | 
						|
    ns = t % SEC_TO_NS;
 | 
						|
 | 
						|
    usec = (int)_PyTime_Divide(ns, US_TO_NS, round);
 | 
						|
    if (usec < 0) {
 | 
						|
        usec += SEC_TO_US;
 | 
						|
        if (secs != _PyTime_MIN) {
 | 
						|
            secs -= 1;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            res = -1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else if (usec >= SEC_TO_US) {
 | 
						|
        usec -= SEC_TO_US;
 | 
						|
        if (secs != _PyTime_MAX) {
 | 
						|
            secs += 1;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            res = -1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    assert(0 <= usec && usec < SEC_TO_US);
 | 
						|
 | 
						|
    *p_secs = secs;
 | 
						|
    *p_us = usec;
 | 
						|
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
_PyTime_AsTimevalStruct_impl(_PyTime_t t, struct timeval *tv,
 | 
						|
                             _PyTime_round_t round, int raise)
 | 
						|
{
 | 
						|
    _PyTime_t secs, secs2;
 | 
						|
    int us;
 | 
						|
    int res;
 | 
						|
 | 
						|
    res = _PyTime_AsTimeval_impl(t, &secs, &us, round);
 | 
						|
 | 
						|
#ifdef MS_WINDOWS
 | 
						|
    tv->tv_sec = (long)secs;
 | 
						|
#else
 | 
						|
    tv->tv_sec = secs;
 | 
						|
#endif
 | 
						|
    tv->tv_usec = us;
 | 
						|
 | 
						|
    secs2 = (_PyTime_t)tv->tv_sec;
 | 
						|
    if (res < 0 || secs2 != secs) {
 | 
						|
        if (raise) {
 | 
						|
            error_time_t_overflow();
 | 
						|
        }
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
_PyTime_AsTimeval(_PyTime_t t, struct timeval *tv, _PyTime_round_t round)
 | 
						|
{
 | 
						|
    return _PyTime_AsTimevalStruct_impl(t, tv, round, 1);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
_PyTime_AsTimeval_noraise(_PyTime_t t, struct timeval *tv, _PyTime_round_t round)
 | 
						|
{
 | 
						|
    return _PyTime_AsTimevalStruct_impl(t, tv, round, 0);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
_PyTime_AsTimevalTime_t(_PyTime_t t, time_t *p_secs, int *us,
 | 
						|
                        _PyTime_round_t round)
 | 
						|
{
 | 
						|
    _PyTime_t secs;
 | 
						|
    int res;
 | 
						|
 | 
						|
    res = _PyTime_AsTimeval_impl(t, &secs, us, round);
 | 
						|
 | 
						|
    *p_secs = secs;
 | 
						|
 | 
						|
    if (res < 0 || (_PyTime_t)*p_secs != secs) {
 | 
						|
        error_time_t_overflow();
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#if defined(HAVE_CLOCK_GETTIME) || defined(HAVE_KQUEUE)
 | 
						|
int
 | 
						|
_PyTime_AsTimespec(_PyTime_t t, struct timespec *ts)
 | 
						|
{
 | 
						|
    _PyTime_t secs, nsec;
 | 
						|
 | 
						|
    secs = t / SEC_TO_NS;
 | 
						|
    nsec = t % SEC_TO_NS;
 | 
						|
    if (nsec < 0) {
 | 
						|
        nsec += SEC_TO_NS;
 | 
						|
        secs -= 1;
 | 
						|
    }
 | 
						|
    ts->tv_sec = (time_t)secs;
 | 
						|
    assert(0 <= nsec && nsec < SEC_TO_NS);
 | 
						|
    ts->tv_nsec = nsec;
 | 
						|
 | 
						|
    if ((_PyTime_t)ts->tv_sec != secs) {
 | 
						|
        error_time_t_overflow();
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static int
 | 
						|
pygettimeofday(_PyTime_t *tp, _Py_clock_info_t *info, int raise)
 | 
						|
{
 | 
						|
#ifdef MS_WINDOWS
 | 
						|
    FILETIME system_time;
 | 
						|
    ULARGE_INTEGER large;
 | 
						|
 | 
						|
    assert(info == NULL || raise);
 | 
						|
 | 
						|
    GetSystemTimeAsFileTime(&system_time);
 | 
						|
    large.u.LowPart = system_time.dwLowDateTime;
 | 
						|
    large.u.HighPart = system_time.dwHighDateTime;
 | 
						|
    /* 11,644,473,600,000,000,000: number of nanoseconds between
 | 
						|
       the 1st january 1601 and the 1st january 1970 (369 years + 89 leap
 | 
						|
       days). */
 | 
						|
    *tp = large.QuadPart * 100 - 11644473600000000000;
 | 
						|
    if (info) {
 | 
						|
        DWORD timeAdjustment, timeIncrement;
 | 
						|
        BOOL isTimeAdjustmentDisabled, ok;
 | 
						|
 | 
						|
        info->implementation = "GetSystemTimeAsFileTime()";
 | 
						|
        info->monotonic = 0;
 | 
						|
        ok = GetSystemTimeAdjustment(&timeAdjustment, &timeIncrement,
 | 
						|
                                     &isTimeAdjustmentDisabled);
 | 
						|
        if (!ok) {
 | 
						|
            PyErr_SetFromWindowsErr(0);
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        info->resolution = timeIncrement * 1e-7;
 | 
						|
        info->adjustable = 1;
 | 
						|
    }
 | 
						|
 | 
						|
#else   /* MS_WINDOWS */
 | 
						|
    int err;
 | 
						|
#ifdef HAVE_CLOCK_GETTIME
 | 
						|
    struct timespec ts;
 | 
						|
#else
 | 
						|
    struct timeval tv;
 | 
						|
#endif
 | 
						|
 | 
						|
    assert(info == NULL || raise);
 | 
						|
 | 
						|
#ifdef HAVE_CLOCK_GETTIME
 | 
						|
    err = clock_gettime(CLOCK_REALTIME, &ts);
 | 
						|
    if (err) {
 | 
						|
        if (raise) {
 | 
						|
            PyErr_SetFromErrno(PyExc_OSError);
 | 
						|
        }
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    if (pytime_fromtimespec(tp, &ts, raise) < 0) {
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (info) {
 | 
						|
        struct timespec res;
 | 
						|
        info->implementation = "clock_gettime(CLOCK_REALTIME)";
 | 
						|
        info->monotonic = 0;
 | 
						|
        info->adjustable = 1;
 | 
						|
        if (clock_getres(CLOCK_REALTIME, &res) == 0) {
 | 
						|
            info->resolution = res.tv_sec + res.tv_nsec * 1e-9;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            info->resolution = 1e-9;
 | 
						|
        }
 | 
						|
    }
 | 
						|
#else   /* HAVE_CLOCK_GETTIME */
 | 
						|
 | 
						|
     /* test gettimeofday() */
 | 
						|
#ifdef GETTIMEOFDAY_NO_TZ
 | 
						|
    err = gettimeofday(&tv);
 | 
						|
#else
 | 
						|
    err = gettimeofday(&tv, (struct timezone *)NULL);
 | 
						|
#endif
 | 
						|
    if (err) {
 | 
						|
        if (raise) {
 | 
						|
            PyErr_SetFromErrno(PyExc_OSError);
 | 
						|
        }
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    if (pytime_fromtimeval(tp, &tv, raise) < 0) {
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (info) {
 | 
						|
        info->implementation = "gettimeofday()";
 | 
						|
        info->resolution = 1e-6;
 | 
						|
        info->monotonic = 0;
 | 
						|
        info->adjustable = 1;
 | 
						|
    }
 | 
						|
#endif   /* !HAVE_CLOCK_GETTIME */
 | 
						|
#endif   /* !MS_WINDOWS */
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
_PyTime_t
 | 
						|
_PyTime_GetSystemClock(void)
 | 
						|
{
 | 
						|
    _PyTime_t t;
 | 
						|
    if (pygettimeofday(&t, NULL, 0) < 0) {
 | 
						|
        /* should not happen, _PyTime_Init() checked the clock at startup */
 | 
						|
        Py_UNREACHABLE();
 | 
						|
    }
 | 
						|
    return t;
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
_PyTime_GetSystemClockWithInfo(_PyTime_t *t, _Py_clock_info_t *info)
 | 
						|
{
 | 
						|
    return pygettimeofday(t, info, 1);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
pymonotonic(_PyTime_t *tp, _Py_clock_info_t *info, int raise)
 | 
						|
{
 | 
						|
#if defined(MS_WINDOWS)
 | 
						|
    ULONGLONG ticks;
 | 
						|
    _PyTime_t t;
 | 
						|
 | 
						|
    assert(info == NULL || raise);
 | 
						|
 | 
						|
    ticks = GetTickCount64();
 | 
						|
    Py_BUILD_ASSERT(sizeof(ticks) <= sizeof(_PyTime_t));
 | 
						|
    t = (_PyTime_t)ticks;
 | 
						|
 | 
						|
    if (_PyTime_check_mul_overflow(t, MS_TO_NS)) {
 | 
						|
        if (raise) {
 | 
						|
            _PyTime_overflow();
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        /* Hello, time traveler! */
 | 
						|
        Py_UNREACHABLE();
 | 
						|
    }
 | 
						|
    *tp = t * MS_TO_NS;
 | 
						|
 | 
						|
    if (info) {
 | 
						|
        DWORD timeAdjustment, timeIncrement;
 | 
						|
        BOOL isTimeAdjustmentDisabled, ok;
 | 
						|
        info->implementation = "GetTickCount64()";
 | 
						|
        info->monotonic = 1;
 | 
						|
        ok = GetSystemTimeAdjustment(&timeAdjustment, &timeIncrement,
 | 
						|
                                     &isTimeAdjustmentDisabled);
 | 
						|
        if (!ok) {
 | 
						|
            PyErr_SetFromWindowsErr(0);
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        info->resolution = timeIncrement * 1e-7;
 | 
						|
        info->adjustable = 0;
 | 
						|
    }
 | 
						|
 | 
						|
#elif defined(__APPLE__)
 | 
						|
    static mach_timebase_info_data_t timebase;
 | 
						|
    static uint64_t t0 = 0;
 | 
						|
    uint64_t ticks;
 | 
						|
 | 
						|
    if (timebase.denom == 0) {
 | 
						|
        /* According to the Technical Q&A QA1398, mach_timebase_info() cannot
 | 
						|
           fail: https://developer.apple.com/library/mac/#qa/qa1398/ */
 | 
						|
        (void)mach_timebase_info(&timebase);
 | 
						|
 | 
						|
        /* Sanity check: should never occur in practice */
 | 
						|
        if (timebase.numer < 1 || timebase.denom < 1) {
 | 
						|
            PyErr_SetString(PyExc_RuntimeError,
 | 
						|
                            "invalid mach_timebase_info");
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
 | 
						|
        /* Check that timebase.numer and timebase.denom can be casted to
 | 
						|
           _PyTime_t. In practice, timebase uses uint32_t, so casting cannot
 | 
						|
           overflow. At the end, only make sure that the type is uint32_t
 | 
						|
           (_PyTime_t is 64-bit long). */
 | 
						|
        assert(sizeof(timebase.numer) < sizeof(_PyTime_t));
 | 
						|
        assert(sizeof(timebase.denom) < sizeof(_PyTime_t));
 | 
						|
 | 
						|
        /* Make sure that (ticks * timebase.numer) cannot overflow in
 | 
						|
           _PyTime_MulDiv(), with ticks < timebase.denom.
 | 
						|
 | 
						|
           Known time bases:
 | 
						|
 | 
						|
           * always (1, 1) on Intel
 | 
						|
           * (1000000000, 33333335) or (1000000000, 25000000) on PowerPC
 | 
						|
 | 
						|
           None of these time bases can overflow with 64-bit _PyTime_t, but
 | 
						|
           check for overflow, just in case. */
 | 
						|
        if ((_PyTime_t)timebase.numer > _PyTime_MAX / (_PyTime_t)timebase.denom) {
 | 
						|
            PyErr_SetString(PyExc_OverflowError,
 | 
						|
                            "mach_timebase_info is too large");
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
 | 
						|
        t0 = mach_absolute_time();
 | 
						|
    }
 | 
						|
 | 
						|
    if (info) {
 | 
						|
        info->implementation = "mach_absolute_time()";
 | 
						|
        info->resolution = (double)timebase.numer / (double)timebase.denom * 1e-9;
 | 
						|
        info->monotonic = 1;
 | 
						|
        info->adjustable = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    ticks = mach_absolute_time();
 | 
						|
    /* Use a "time zero" to reduce precision loss when converting time
 | 
						|
       to floatting point number, as in time.monotonic(). */
 | 
						|
    ticks -= t0;
 | 
						|
    *tp = _PyTime_MulDiv(ticks,
 | 
						|
                         (_PyTime_t)timebase.numer,
 | 
						|
                         (_PyTime_t)timebase.denom);
 | 
						|
 | 
						|
#elif defined(__hpux)
 | 
						|
    hrtime_t time;
 | 
						|
 | 
						|
    time = gethrtime();
 | 
						|
    if (time == -1) {
 | 
						|
        if (raise) {
 | 
						|
            PyErr_SetFromErrno(PyExc_OSError);
 | 
						|
        }
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    *tp = time;
 | 
						|
 | 
						|
    if (info) {
 | 
						|
        info->implementation = "gethrtime()";
 | 
						|
        info->resolution = 1e-9;
 | 
						|
        info->monotonic = 1;
 | 
						|
        info->adjustable = 0;
 | 
						|
    }
 | 
						|
 | 
						|
#else
 | 
						|
    struct timespec ts;
 | 
						|
#ifdef CLOCK_HIGHRES
 | 
						|
    const clockid_t clk_id = CLOCK_HIGHRES;
 | 
						|
    const char *implementation = "clock_gettime(CLOCK_HIGHRES)";
 | 
						|
#else
 | 
						|
    const clockid_t clk_id = CLOCK_MONOTONIC;
 | 
						|
    const char *implementation = "clock_gettime(CLOCK_MONOTONIC)";
 | 
						|
#endif
 | 
						|
 | 
						|
    assert(info == NULL || raise);
 | 
						|
 | 
						|
    if (clock_gettime(clk_id, &ts) != 0) {
 | 
						|
        if (raise) {
 | 
						|
            PyErr_SetFromErrno(PyExc_OSError);
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (info) {
 | 
						|
        struct timespec res;
 | 
						|
        info->monotonic = 1;
 | 
						|
        info->implementation = implementation;
 | 
						|
        info->adjustable = 0;
 | 
						|
        if (clock_getres(clk_id, &res) != 0) {
 | 
						|
            PyErr_SetFromErrno(PyExc_OSError);
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        info->resolution = res.tv_sec + res.tv_nsec * 1e-9;
 | 
						|
    }
 | 
						|
    if (pytime_fromtimespec(tp, &ts, raise) < 0) {
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
_PyTime_t
 | 
						|
_PyTime_GetMonotonicClock(void)
 | 
						|
{
 | 
						|
    _PyTime_t t;
 | 
						|
    if (pymonotonic(&t, NULL, 0) < 0) {
 | 
						|
        /* should not happen, _PyTime_Init() checked that monotonic clock at
 | 
						|
           startup */
 | 
						|
        Py_UNREACHABLE();
 | 
						|
    }
 | 
						|
    return t;
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
_PyTime_GetMonotonicClockWithInfo(_PyTime_t *tp, _Py_clock_info_t *info)
 | 
						|
{
 | 
						|
    return pymonotonic(tp, info, 1);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#ifdef MS_WINDOWS
 | 
						|
static int
 | 
						|
win_perf_counter(_PyTime_t *tp, _Py_clock_info_t *info)
 | 
						|
{
 | 
						|
    static LONGLONG frequency = 0;
 | 
						|
    static LONGLONG t0 = 0;
 | 
						|
    LARGE_INTEGER now;
 | 
						|
    LONGLONG ticksll;
 | 
						|
    _PyTime_t ticks;
 | 
						|
 | 
						|
    if (frequency == 0) {
 | 
						|
        LARGE_INTEGER freq;
 | 
						|
        if (!QueryPerformanceFrequency(&freq)) {
 | 
						|
            PyErr_SetFromWindowsErr(0);
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        frequency = freq.QuadPart;
 | 
						|
 | 
						|
        /* Sanity check: should never occur in practice */
 | 
						|
        if (frequency < 1) {
 | 
						|
            PyErr_SetString(PyExc_RuntimeError,
 | 
						|
                            "invalid QueryPerformanceFrequency");
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
 | 
						|
        /* Check that frequency can be casted to _PyTime_t.
 | 
						|
 | 
						|
           Make also sure that (ticks * SEC_TO_NS) cannot overflow in
 | 
						|
           _PyTime_MulDiv(), with ticks < frequency.
 | 
						|
 | 
						|
           Known QueryPerformanceFrequency() values:
 | 
						|
 | 
						|
           * 10,000,000 (10 MHz): 100 ns resolution
 | 
						|
           * 3,579,545 Hz (3.6 MHz): 279 ns resolution
 | 
						|
 | 
						|
           None of these frequencies can overflow with 64-bit _PyTime_t, but
 | 
						|
           check for overflow, just in case. */
 | 
						|
        if (frequency > _PyTime_MAX
 | 
						|
            || frequency > (LONGLONG)_PyTime_MAX / (LONGLONG)SEC_TO_NS) {
 | 
						|
            PyErr_SetString(PyExc_OverflowError,
 | 
						|
                            "QueryPerformanceFrequency is too large");
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
 | 
						|
        QueryPerformanceCounter(&now);
 | 
						|
        t0 = now.QuadPart;
 | 
						|
    }
 | 
						|
 | 
						|
    if (info) {
 | 
						|
        info->implementation = "QueryPerformanceCounter()";
 | 
						|
        info->resolution = 1.0 / (double)frequency;
 | 
						|
        info->monotonic = 1;
 | 
						|
        info->adjustable = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    QueryPerformanceCounter(&now);
 | 
						|
    ticksll = now.QuadPart;
 | 
						|
 | 
						|
    /* Use a "time zero" to reduce precision loss when converting time
 | 
						|
       to floatting point number, as in time.perf_counter(). */
 | 
						|
    ticksll -= t0;
 | 
						|
 | 
						|
    /* Make sure that casting LONGLONG to _PyTime_t cannot overflow,
 | 
						|
       both types are signed */
 | 
						|
    Py_BUILD_ASSERT(sizeof(ticksll) <= sizeof(ticks));
 | 
						|
    ticks = (_PyTime_t)ticksll;
 | 
						|
 | 
						|
    *tp = _PyTime_MulDiv(ticks, SEC_TO_NS, (_PyTime_t)frequency);
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
int
 | 
						|
_PyTime_GetPerfCounterWithInfo(_PyTime_t *t, _Py_clock_info_t *info)
 | 
						|
{
 | 
						|
#ifdef MS_WINDOWS
 | 
						|
    return win_perf_counter(t, info);
 | 
						|
#else
 | 
						|
    return _PyTime_GetMonotonicClockWithInfo(t, info);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
_PyTime_t
 | 
						|
_PyTime_GetPerfCounter(void)
 | 
						|
{
 | 
						|
    _PyTime_t t;
 | 
						|
    if (_PyTime_GetPerfCounterWithInfo(&t, NULL)) {
 | 
						|
        Py_UNREACHABLE();
 | 
						|
    }
 | 
						|
    return t;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int
 | 
						|
_PyTime_Init(void)
 | 
						|
{
 | 
						|
    /* check that time.time(), time.monotonic() and time.perf_counter() clocks
 | 
						|
       are working properly to not have to check for exceptions at runtime. If
 | 
						|
       a clock works once, it cannot fail in next calls. */
 | 
						|
    _PyTime_t t;
 | 
						|
    if (_PyTime_GetSystemClockWithInfo(&t, NULL) < 0) {
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    if (_PyTime_GetMonotonicClockWithInfo(&t, NULL) < 0) {
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    if (_PyTime_GetPerfCounterWithInfo(&t, NULL) < 0) {
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
_PyTime_localtime(time_t t, struct tm *tm)
 | 
						|
{
 | 
						|
#ifdef MS_WINDOWS
 | 
						|
    int error;
 | 
						|
 | 
						|
    error = localtime_s(tm, &t);
 | 
						|
    if (error != 0) {
 | 
						|
        errno = error;
 | 
						|
        PyErr_SetFromErrno(PyExc_OSError);
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
#else /* !MS_WINDOWS */
 | 
						|
 | 
						|
#ifdef _AIX
 | 
						|
    /* bpo-34373: AIX does not return NULL if t is too small or too large */
 | 
						|
    if (t < -2145916800 /* 1902-01-01 */
 | 
						|
       || t > 2145916800 /* 2038-01-01 */) {
 | 
						|
        errno = EINVAL;
 | 
						|
        PyErr_SetString(PyExc_OverflowError,
 | 
						|
                        "localtime argument out of range");
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    errno = 0;
 | 
						|
    if (localtime_r(&t, tm) == NULL) {
 | 
						|
        if (errno == 0) {
 | 
						|
            errno = EINVAL;
 | 
						|
        }
 | 
						|
        PyErr_SetFromErrno(PyExc_OSError);
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
#endif /* MS_WINDOWS */
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
_PyTime_gmtime(time_t t, struct tm *tm)
 | 
						|
{
 | 
						|
#ifdef MS_WINDOWS
 | 
						|
    int error;
 | 
						|
 | 
						|
    error = gmtime_s(tm, &t);
 | 
						|
    if (error != 0) {
 | 
						|
        errno = error;
 | 
						|
        PyErr_SetFromErrno(PyExc_OSError);
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
#else /* !MS_WINDOWS */
 | 
						|
    if (gmtime_r(&t, tm) == NULL) {
 | 
						|
#ifdef EINVAL
 | 
						|
        if (errno == 0) {
 | 
						|
            errno = EINVAL;
 | 
						|
        }
 | 
						|
#endif
 | 
						|
        PyErr_SetFromErrno(PyExc_OSError);
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
#endif /* MS_WINDOWS */
 | 
						|
}
 |