mirror of
				https://github.com/python/cpython.git
				synced 2025-10-31 05:31:20 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			492 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable file
		
	
	
	
	
			
		
		
	
	
			492 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable file
		
	
	
	
	
| # Originally contributed by Sjoerd Mullender.
 | |
| # Significantly modified by Jeffrey Yasskin <jyasskin at gmail.com>.
 | |
| 
 | |
| """Rational, infinite-precision, real numbers."""
 | |
| 
 | |
| from __future__ import division
 | |
| import math
 | |
| import numbers
 | |
| import operator
 | |
| import re
 | |
| 
 | |
| __all__ = ["Rational"]
 | |
| 
 | |
| RationalAbc = numbers.Rational
 | |
| 
 | |
| 
 | |
| def _gcd(a, b):
 | |
|     """Calculate the Greatest Common Divisor.
 | |
| 
 | |
|     Unless b==0, the result will have the same sign as b (so that when
 | |
|     b is divided by it, the result comes out positive).
 | |
|     """
 | |
|     while b:
 | |
|         a, b = b, a%b
 | |
|     return a
 | |
| 
 | |
| 
 | |
| def _binary_float_to_ratio(x):
 | |
|     """x -> (top, bot), a pair of ints s.t. x = top/bot.
 | |
| 
 | |
|     The conversion is done exactly, without rounding.
 | |
|     bot > 0 guaranteed.
 | |
|     Some form of binary fp is assumed.
 | |
|     Pass NaNs or infinities at your own risk.
 | |
| 
 | |
|     >>> _binary_float_to_ratio(10.0)
 | |
|     (10, 1)
 | |
|     >>> _binary_float_to_ratio(0.0)
 | |
|     (0, 1)
 | |
|     >>> _binary_float_to_ratio(-.25)
 | |
|     (-1, 4)
 | |
|     """
 | |
| 
 | |
|     if x == 0:
 | |
|         return 0, 1
 | |
|     f, e = math.frexp(x)
 | |
|     signbit = 1
 | |
|     if f < 0:
 | |
|         f = -f
 | |
|         signbit = -1
 | |
|     assert 0.5 <= f < 1.0
 | |
|     # x = signbit * f * 2**e exactly
 | |
| 
 | |
|     # Suck up CHUNK bits at a time; 28 is enough so that we suck
 | |
|     # up all bits in 2 iterations for all known binary double-
 | |
|     # precision formats, and small enough to fit in an int.
 | |
|     CHUNK = 28
 | |
|     top = 0
 | |
|     # invariant: x = signbit * (top + f) * 2**e exactly
 | |
|     while f:
 | |
|         f = math.ldexp(f, CHUNK)
 | |
|         digit = trunc(f)
 | |
|         assert digit >> CHUNK == 0
 | |
|         top = (top << CHUNK) | digit
 | |
|         f = f - digit
 | |
|         assert 0.0 <= f < 1.0
 | |
|         e = e - CHUNK
 | |
|     assert top
 | |
| 
 | |
|     # Add in the sign bit.
 | |
|     top = signbit * top
 | |
| 
 | |
|     # now x = top * 2**e exactly; fold in 2**e
 | |
|     if e>0:
 | |
|         return (top * 2**e, 1)
 | |
|     else:
 | |
|         return (top, 2 ** -e)
 | |
| 
 | |
| 
 | |
| _RATIONAL_FORMAT = re.compile(
 | |
|     r'^\s*(?P<sign>[-+]?)(?P<num>\d+)(?:/(?P<denom>\d+))?\s*$')
 | |
| 
 | |
| 
 | |
| class Rational(RationalAbc):
 | |
|     """This class implements rational numbers.
 | |
| 
 | |
|     Rational(8, 6) will produce a rational number equivalent to
 | |
|     4/3. Both arguments must be Integral. The numerator defaults to 0
 | |
|     and the denominator defaults to 1 so that Rational(3) == 3 and
 | |
|     Rational() == 0.
 | |
| 
 | |
|     Rationals can also be constructed from strings of the form
 | |
|     '[-+]?[0-9]+(/[0-9]+)?', optionally surrounded by spaces.
 | |
| 
 | |
|     """
 | |
| 
 | |
|     __slots__ = ('numerator', 'denominator')
 | |
| 
 | |
|     # We're immutable, so use __new__ not __init__
 | |
|     def __new__(cls, numerator=0, denominator=1):
 | |
|         """Constructs a Rational.
 | |
| 
 | |
|         Takes a string, another Rational, or a numerator/denominator pair.
 | |
| 
 | |
|         """
 | |
|         self = super(Rational, cls).__new__(cls)
 | |
| 
 | |
|         if denominator == 1:
 | |
|             if isinstance(numerator, basestring):
 | |
|                 # Handle construction from strings.
 | |
|                 input = numerator
 | |
|                 m = _RATIONAL_FORMAT.match(input)
 | |
|                 if m is None:
 | |
|                     raise ValueError('Invalid literal for Rational: ' + input)
 | |
|                 numerator = int(m.group('num'))
 | |
|                 # Default denominator to 1. That's the only optional group.
 | |
|                 denominator = int(m.group('denom') or 1)
 | |
|                 if m.group('sign') == '-':
 | |
|                     numerator = -numerator
 | |
| 
 | |
|             elif (not isinstance(numerator, numbers.Integral) and
 | |
|                   isinstance(numerator, RationalAbc)):
 | |
|                 # Handle copies from other rationals.
 | |
|                 other_rational = numerator
 | |
|                 numerator = other_rational.numerator
 | |
|                 denominator = other_rational.denominator
 | |
| 
 | |
|         if (not isinstance(numerator, numbers.Integral) or
 | |
|             not isinstance(denominator, numbers.Integral)):
 | |
|             raise TypeError("Rational(%(numerator)s, %(denominator)s):"
 | |
|                             " Both arguments must be integral." % locals())
 | |
| 
 | |
|         if denominator == 0:
 | |
|             raise ZeroDivisionError('Rational(%s, 0)' % numerator)
 | |
| 
 | |
|         g = _gcd(numerator, denominator)
 | |
|         self.numerator = int(numerator // g)
 | |
|         self.denominator = int(denominator // g)
 | |
|         return self
 | |
| 
 | |
|     @classmethod
 | |
|     def from_float(cls, f):
 | |
|         """Converts a finite float to a rational number, exactly.
 | |
| 
 | |
|         Beware that Rational.from_float(0.3) != Rational(3, 10).
 | |
| 
 | |
|         """
 | |
|         if not isinstance(f, float):
 | |
|             raise TypeError("%s.from_float() only takes floats, not %r (%s)" %
 | |
|                             (cls.__name__, f, type(f).__name__))
 | |
|         if math.isnan(f) or math.isinf(f):
 | |
|             raise TypeError("Cannot convert %r to %s." % (f, cls.__name__))
 | |
|         return cls(*_binary_float_to_ratio(f))
 | |
| 
 | |
|     @classmethod
 | |
|     def from_decimal(cls, dec):
 | |
|         """Converts a finite Decimal instance to a rational number, exactly."""
 | |
|         from decimal import Decimal
 | |
|         if not isinstance(dec, Decimal):
 | |
|             raise TypeError(
 | |
|                 "%s.from_decimal() only takes Decimals, not %r (%s)" %
 | |
|                 (cls.__name__, dec, type(dec).__name__))
 | |
|         if not dec.is_finite():
 | |
|             # Catches infinities and nans.
 | |
|             raise TypeError("Cannot convert %s to %s." % (dec, cls.__name__))
 | |
|         sign, digits, exp = dec.as_tuple()
 | |
|         digits = int(''.join(map(str, digits)))
 | |
|         if sign:
 | |
|             digits = -digits
 | |
|         if exp >= 0:
 | |
|             return cls(digits * 10 ** exp)
 | |
|         else:
 | |
|             return cls(digits, 10 ** -exp)
 | |
| 
 | |
|     @classmethod
 | |
|     def from_continued_fraction(cls, seq):
 | |
|         'Build a Rational from a continued fraction expessed as a sequence'
 | |
|         n, d = 1, 0
 | |
|         for e in reversed(seq):
 | |
|             n, d = d, n
 | |
|             n += e * d
 | |
|         return cls(n, d) if seq else cls(0)
 | |
| 
 | |
|     def as_continued_fraction(self):
 | |
|         'Return continued fraction expressed as a list'
 | |
|         n = self.numerator
 | |
|         d = self.denominator
 | |
|         cf = []
 | |
|         while d:
 | |
|             e = int(n // d)
 | |
|             cf.append(e)
 | |
|             n -= e * d
 | |
|             n, d = d, n
 | |
|         return cf
 | |
| 
 | |
|     @classmethod
 | |
|     def approximate_from_float(cls, f, max_denominator):
 | |
|         'Best rational approximation to f with a denominator <= max_denominator'
 | |
|         # XXX First cut at algorithm
 | |
|         # Still needs rounding rules as specified at
 | |
|         #       http://en.wikipedia.org/wiki/Continued_fraction
 | |
|         cf = cls.from_float(f).as_continued_fraction()
 | |
|         result = Rational(0)
 | |
|         for i in range(1, len(cf)):
 | |
|             new = cls.from_continued_fraction(cf[:i])
 | |
|             if new.denominator > max_denominator:
 | |
|                 break
 | |
|             result = new
 | |
|         return result
 | |
| 
 | |
|     def __repr__(self):
 | |
|         """repr(self)"""
 | |
|         return ('Rational(%r,%r)' % (self.numerator, self.denominator))
 | |
| 
 | |
|     def __str__(self):
 | |
|         """str(self)"""
 | |
|         if self.denominator == 1:
 | |
|             return str(self.numerator)
 | |
|         else:
 | |
|             return '%s/%s' % (self.numerator, self.denominator)
 | |
| 
 | |
|     def _operator_fallbacks(monomorphic_operator, fallback_operator):
 | |
|         """Generates forward and reverse operators given a purely-rational
 | |
|         operator and a function from the operator module.
 | |
| 
 | |
|         Use this like:
 | |
|         __op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op)
 | |
| 
 | |
|         """
 | |
|         def forward(a, b):
 | |
|             if isinstance(b, RationalAbc):
 | |
|                 # Includes ints.
 | |
|                 return monomorphic_operator(a, b)
 | |
|             elif isinstance(b, float):
 | |
|                 return fallback_operator(float(a), b)
 | |
|             elif isinstance(b, complex):
 | |
|                 return fallback_operator(complex(a), b)
 | |
|             else:
 | |
|                 return NotImplemented
 | |
|         forward.__name__ = '__' + fallback_operator.__name__ + '__'
 | |
|         forward.__doc__ = monomorphic_operator.__doc__
 | |
| 
 | |
|         def reverse(b, a):
 | |
|             if isinstance(a, RationalAbc):
 | |
|                 # Includes ints.
 | |
|                 return monomorphic_operator(a, b)
 | |
|             elif isinstance(a, numbers.Real):
 | |
|                 return fallback_operator(float(a), float(b))
 | |
|             elif isinstance(a, numbers.Complex):
 | |
|                 return fallback_operator(complex(a), complex(b))
 | |
|             else:
 | |
|                 return NotImplemented
 | |
|         reverse.__name__ = '__r' + fallback_operator.__name__ + '__'
 | |
|         reverse.__doc__ = monomorphic_operator.__doc__
 | |
| 
 | |
|         return forward, reverse
 | |
| 
 | |
|     def _add(a, b):
 | |
|         """a + b"""
 | |
|         return Rational(a.numerator * b.denominator +
 | |
|                         b.numerator * a.denominator,
 | |
|                         a.denominator * b.denominator)
 | |
| 
 | |
|     __add__, __radd__ = _operator_fallbacks(_add, operator.add)
 | |
| 
 | |
|     def _sub(a, b):
 | |
|         """a - b"""
 | |
|         return Rational(a.numerator * b.denominator -
 | |
|                         b.numerator * a.denominator,
 | |
|                         a.denominator * b.denominator)
 | |
| 
 | |
|     __sub__, __rsub__ = _operator_fallbacks(_sub, operator.sub)
 | |
| 
 | |
|     def _mul(a, b):
 | |
|         """a * b"""
 | |
|         return Rational(a.numerator * b.numerator, a.denominator * b.denominator)
 | |
| 
 | |
|     __mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul)
 | |
| 
 | |
|     def _div(a, b):
 | |
|         """a / b"""
 | |
|         return Rational(a.numerator * b.denominator,
 | |
|                         a.denominator * b.numerator)
 | |
| 
 | |
|     __truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv)
 | |
|     __div__, __rdiv__ = _operator_fallbacks(_div, operator.div)
 | |
| 
 | |
|     @classmethod
 | |
|     def _floordiv(cls, a, b):
 | |
|         div = a / b
 | |
|         if isinstance(div, RationalAbc):
 | |
|             # trunc(math.floor(div)) doesn't work if the rational is
 | |
|             # more precise than a float because the intermediate
 | |
|             # rounding may cross an integer boundary.
 | |
|             return div.numerator // div.denominator
 | |
|         else:
 | |
|             return math.floor(div)
 | |
| 
 | |
|     def __floordiv__(a, b):
 | |
|         """a // b"""
 | |
|         # Will be math.floor(a / b) in 3.0.
 | |
|         return a._floordiv(a, b)
 | |
| 
 | |
|     def __rfloordiv__(b, a):
 | |
|         """a // b"""
 | |
|         # Will be math.floor(a / b) in 3.0.
 | |
|         return b._floordiv(a, b)
 | |
| 
 | |
|     @classmethod
 | |
|     def _mod(cls, a, b):
 | |
|         div = a // b
 | |
|         return a - b * div
 | |
| 
 | |
|     def __mod__(a, b):
 | |
|         """a % b"""
 | |
|         return a._mod(a, b)
 | |
| 
 | |
|     def __rmod__(b, a):
 | |
|         """a % b"""
 | |
|         return b._mod(a, b)
 | |
| 
 | |
|     def __pow__(a, b):
 | |
|         """a ** b
 | |
| 
 | |
|         If b is not an integer, the result will be a float or complex
 | |
|         since roots are generally irrational. If b is an integer, the
 | |
|         result will be rational.
 | |
| 
 | |
|         """
 | |
|         if isinstance(b, RationalAbc):
 | |
|             if b.denominator == 1:
 | |
|                 power = b.numerator
 | |
|                 if power >= 0:
 | |
|                     return Rational(a.numerator ** power,
 | |
|                                     a.denominator ** power)
 | |
|                 else:
 | |
|                     return Rational(a.denominator ** -power,
 | |
|                                     a.numerator ** -power)
 | |
|             else:
 | |
|                 # A fractional power will generally produce an
 | |
|                 # irrational number.
 | |
|                 return float(a) ** float(b)
 | |
|         else:
 | |
|             return float(a) ** b
 | |
| 
 | |
|     def __rpow__(b, a):
 | |
|         """a ** b"""
 | |
|         if b.denominator == 1 and b.numerator >= 0:
 | |
|             # If a is an int, keep it that way if possible.
 | |
|             return a ** b.numerator
 | |
| 
 | |
|         if isinstance(a, RationalAbc):
 | |
|             return Rational(a.numerator, a.denominator) ** b
 | |
| 
 | |
|         if b.denominator == 1:
 | |
|             return a ** b.numerator
 | |
| 
 | |
|         return a ** float(b)
 | |
| 
 | |
|     def __pos__(a):
 | |
|         """+a: Coerces a subclass instance to Rational"""
 | |
|         return Rational(a.numerator, a.denominator)
 | |
| 
 | |
|     def __neg__(a):
 | |
|         """-a"""
 | |
|         return Rational(-a.numerator, a.denominator)
 | |
| 
 | |
|     def __abs__(a):
 | |
|         """abs(a)"""
 | |
|         return Rational(abs(a.numerator), a.denominator)
 | |
| 
 | |
|     def __trunc__(a):
 | |
|         """trunc(a)"""
 | |
|         if a.numerator < 0:
 | |
|             return -(-a.numerator // a.denominator)
 | |
|         else:
 | |
|             return a.numerator // a.denominator
 | |
| 
 | |
|     __int__ = __trunc__
 | |
| 
 | |
|     def __floor__(a):
 | |
|         """Will be math.floor(a) in 3.0."""
 | |
|         return a.numerator // a.denominator
 | |
| 
 | |
|     def __ceil__(a):
 | |
|         """Will be math.ceil(a) in 3.0."""
 | |
|         # The negations cleverly convince floordiv to return the ceiling.
 | |
|         return -(-a.numerator // a.denominator)
 | |
| 
 | |
|     def __round__(self, ndigits=None):
 | |
|         """Will be round(self, ndigits) in 3.0.
 | |
| 
 | |
|         Rounds half toward even.
 | |
|         """
 | |
|         if ndigits is None:
 | |
|             floor, remainder = divmod(self.numerator, self.denominator)
 | |
|             if remainder * 2 < self.denominator:
 | |
|                 return floor
 | |
|             elif remainder * 2 > self.denominator:
 | |
|                 return floor + 1
 | |
|             # Deal with the half case:
 | |
|             elif floor % 2 == 0:
 | |
|                 return floor
 | |
|             else:
 | |
|                 return floor + 1
 | |
|         shift = 10**abs(ndigits)
 | |
|         # See _operator_fallbacks.forward to check that the results of
 | |
|         # these operations will always be Rational and therefore have
 | |
|         # __round__().
 | |
|         if ndigits > 0:
 | |
|             return Rational((self * shift).__round__(), shift)
 | |
|         else:
 | |
|             return Rational((self / shift).__round__() * shift)
 | |
| 
 | |
|     def __hash__(self):
 | |
|         """hash(self)
 | |
| 
 | |
|         Tricky because values that are exactly representable as a
 | |
|         float must have the same hash as that float.
 | |
| 
 | |
|         """
 | |
|         if self.denominator == 1:
 | |
|             # Get integers right.
 | |
|             return hash(self.numerator)
 | |
|         # Expensive check, but definitely correct.
 | |
|         if self == float(self):
 | |
|             return hash(float(self))
 | |
|         else:
 | |
|             # Use tuple's hash to avoid a high collision rate on
 | |
|             # simple fractions.
 | |
|             return hash((self.numerator, self.denominator))
 | |
| 
 | |
|     def __eq__(a, b):
 | |
|         """a == b"""
 | |
|         if isinstance(b, RationalAbc):
 | |
|             return (a.numerator == b.numerator and
 | |
|                     a.denominator == b.denominator)
 | |
|         if isinstance(b, numbers.Complex) and b.imag == 0:
 | |
|             b = b.real
 | |
|         if isinstance(b, float):
 | |
|             return a == a.from_float(b)
 | |
|         else:
 | |
|             # XXX: If b.__eq__ is implemented like this method, it may
 | |
|             # give the wrong answer after float(a) changes a's
 | |
|             # value. Better ways of doing this are welcome.
 | |
|             return float(a) == b
 | |
| 
 | |
|     def _subtractAndCompareToZero(a, b, op):
 | |
|         """Helper function for comparison operators.
 | |
| 
 | |
|         Subtracts b from a, exactly if possible, and compares the
 | |
|         result with 0 using op, in such a way that the comparison
 | |
|         won't recurse. If the difference raises a TypeError, returns
 | |
|         NotImplemented instead.
 | |
| 
 | |
|         """
 | |
|         if isinstance(b, numbers.Complex) and b.imag == 0:
 | |
|             b = b.real
 | |
|         if isinstance(b, float):
 | |
|             b = a.from_float(b)
 | |
|         try:
 | |
|             # XXX: If b <: Real but not <: RationalAbc, this is likely
 | |
|             # to fall back to a float. If the actual values differ by
 | |
|             # less than MIN_FLOAT, this could falsely call them equal,
 | |
|             # which would make <= inconsistent with ==. Better ways of
 | |
|             # doing this are welcome.
 | |
|             diff = a - b
 | |
|         except TypeError:
 | |
|             return NotImplemented
 | |
|         if isinstance(diff, RationalAbc):
 | |
|             return op(diff.numerator, 0)
 | |
|         return op(diff, 0)
 | |
| 
 | |
|     def __lt__(a, b):
 | |
|         """a < b"""
 | |
|         return a._subtractAndCompareToZero(b, operator.lt)
 | |
| 
 | |
|     def __gt__(a, b):
 | |
|         """a > b"""
 | |
|         return a._subtractAndCompareToZero(b, operator.gt)
 | |
| 
 | |
|     def __le__(a, b):
 | |
|         """a <= b"""
 | |
|         return a._subtractAndCompareToZero(b, operator.le)
 | |
| 
 | |
|     def __ge__(a, b):
 | |
|         """a >= b"""
 | |
|         return a._subtractAndCompareToZero(b, operator.ge)
 | |
| 
 | |
|     def __nonzero__(a):
 | |
|         """a != 0"""
 | |
|         return a.numerator != 0
 | 
