mirror of
				https://github.com/python/cpython.git
				synced 2025-10-28 04:04:44 +00:00 
			
		
		
		
	 4f3786b761
			
		
	
	
		4f3786b761
		
			
		
	
	
	
	
		
			
			This PR adds a private `Fraction._from_coprime_ints` classmethod for internal creations of `Fraction` objects, replacing the use of `_normalize=False` in the existing constructor. This speeds up creation of `Fraction` objects arising from calculations. The `_normalize` argument to the `Fraction` constructor has been removed. Co-authored-by: Pieter Eendebak <pieter.eendebak@gmail.com> Co-authored-by: Mark Dickinson <dickinsm@gmail.com>
		
			
				
	
	
		
			230 lines
		
	
	
	
		
			8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			230 lines
		
	
	
	
		
			8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # test interactions between int, float, Decimal and Fraction
 | |
| 
 | |
| import unittest
 | |
| import random
 | |
| import math
 | |
| import sys
 | |
| import operator
 | |
| 
 | |
| from decimal import Decimal as D
 | |
| from fractions import Fraction as F
 | |
| 
 | |
| # Constants related to the hash implementation;  hash(x) is based
 | |
| # on the reduction of x modulo the prime _PyHASH_MODULUS.
 | |
| _PyHASH_MODULUS = sys.hash_info.modulus
 | |
| _PyHASH_INF = sys.hash_info.inf
 | |
| 
 | |
| 
 | |
| class DummyIntegral(int):
 | |
|     """Dummy Integral class to test conversion of the Rational to float."""
 | |
| 
 | |
|     def __mul__(self, other):
 | |
|         return DummyIntegral(super().__mul__(other))
 | |
|     __rmul__ = __mul__
 | |
| 
 | |
|     def __truediv__(self, other):
 | |
|         return NotImplemented
 | |
|     __rtruediv__ = __truediv__
 | |
| 
 | |
|     @property
 | |
|     def numerator(self):
 | |
|         return DummyIntegral(self)
 | |
| 
 | |
|     @property
 | |
|     def denominator(self):
 | |
|         return DummyIntegral(1)
 | |
| 
 | |
| 
 | |
| class HashTest(unittest.TestCase):
 | |
|     def check_equal_hash(self, x, y):
 | |
|         # check both that x and y are equal and that their hashes are equal
 | |
|         self.assertEqual(hash(x), hash(y),
 | |
|                          "got different hashes for {!r} and {!r}".format(x, y))
 | |
|         self.assertEqual(x, y)
 | |
| 
 | |
|     def test_bools(self):
 | |
|         self.check_equal_hash(False, 0)
 | |
|         self.check_equal_hash(True, 1)
 | |
| 
 | |
|     def test_integers(self):
 | |
|         # check that equal values hash equal
 | |
| 
 | |
|         # exact integers
 | |
|         for i in range(-1000, 1000):
 | |
|             self.check_equal_hash(i, float(i))
 | |
|             self.check_equal_hash(i, D(i))
 | |
|             self.check_equal_hash(i, F(i))
 | |
| 
 | |
|         # the current hash is based on reduction modulo 2**n-1 for some
 | |
|         # n, so pay special attention to numbers of the form 2**n and 2**n-1.
 | |
|         for i in range(100):
 | |
|             n = 2**i - 1
 | |
|             if n == int(float(n)):
 | |
|                 self.check_equal_hash(n, float(n))
 | |
|                 self.check_equal_hash(-n, -float(n))
 | |
|             self.check_equal_hash(n, D(n))
 | |
|             self.check_equal_hash(n, F(n))
 | |
|             self.check_equal_hash(-n, D(-n))
 | |
|             self.check_equal_hash(-n, F(-n))
 | |
| 
 | |
|             n = 2**i
 | |
|             self.check_equal_hash(n, float(n))
 | |
|             self.check_equal_hash(-n, -float(n))
 | |
|             self.check_equal_hash(n, D(n))
 | |
|             self.check_equal_hash(n, F(n))
 | |
|             self.check_equal_hash(-n, D(-n))
 | |
|             self.check_equal_hash(-n, F(-n))
 | |
| 
 | |
|         # random values of various sizes
 | |
|         for _ in range(1000):
 | |
|             e = random.randrange(300)
 | |
|             n = random.randrange(-10**e, 10**e)
 | |
|             self.check_equal_hash(n, D(n))
 | |
|             self.check_equal_hash(n, F(n))
 | |
|             if n == int(float(n)):
 | |
|                 self.check_equal_hash(n, float(n))
 | |
| 
 | |
|     def test_binary_floats(self):
 | |
|         # check that floats hash equal to corresponding Fractions and Decimals
 | |
| 
 | |
|         # floats that are distinct but numerically equal should hash the same
 | |
|         self.check_equal_hash(0.0, -0.0)
 | |
| 
 | |
|         # zeros
 | |
|         self.check_equal_hash(0.0, D(0))
 | |
|         self.check_equal_hash(-0.0, D(0))
 | |
|         self.check_equal_hash(-0.0, D('-0.0'))
 | |
|         self.check_equal_hash(0.0, F(0))
 | |
| 
 | |
|         # infinities and nans
 | |
|         self.check_equal_hash(float('inf'), D('inf'))
 | |
|         self.check_equal_hash(float('-inf'), D('-inf'))
 | |
| 
 | |
|         for _ in range(1000):
 | |
|             x = random.random() * math.exp(random.random()*200.0 - 100.0)
 | |
|             self.check_equal_hash(x, D.from_float(x))
 | |
|             self.check_equal_hash(x, F.from_float(x))
 | |
| 
 | |
|     def test_complex(self):
 | |
|         # complex numbers with zero imaginary part should hash equal to
 | |
|         # the corresponding float
 | |
| 
 | |
|         test_values = [0.0, -0.0, 1.0, -1.0, 0.40625, -5136.5,
 | |
|                        float('inf'), float('-inf')]
 | |
| 
 | |
|         for zero in -0.0, 0.0:
 | |
|             for value in test_values:
 | |
|                 self.check_equal_hash(value, complex(value, zero))
 | |
| 
 | |
|     def test_decimals(self):
 | |
|         # check that Decimal instances that have different representations
 | |
|         # but equal values give the same hash
 | |
|         zeros = ['0', '-0', '0.0', '-0.0e10', '000e-10']
 | |
|         for zero in zeros:
 | |
|             self.check_equal_hash(D(zero), D(0))
 | |
| 
 | |
|         self.check_equal_hash(D('1.00'), D(1))
 | |
|         self.check_equal_hash(D('1.00000'), D(1))
 | |
|         self.check_equal_hash(D('-1.00'), D(-1))
 | |
|         self.check_equal_hash(D('-1.00000'), D(-1))
 | |
|         self.check_equal_hash(D('123e2'), D(12300))
 | |
|         self.check_equal_hash(D('1230e1'), D(12300))
 | |
|         self.check_equal_hash(D('12300'), D(12300))
 | |
|         self.check_equal_hash(D('12300.0'), D(12300))
 | |
|         self.check_equal_hash(D('12300.00'), D(12300))
 | |
|         self.check_equal_hash(D('12300.000'), D(12300))
 | |
| 
 | |
|     def test_fractions(self):
 | |
|         # check special case for fractions where either the numerator
 | |
|         # or the denominator is a multiple of _PyHASH_MODULUS
 | |
|         self.assertEqual(hash(F(1, _PyHASH_MODULUS)), _PyHASH_INF)
 | |
|         self.assertEqual(hash(F(-1, 3*_PyHASH_MODULUS)), -_PyHASH_INF)
 | |
|         self.assertEqual(hash(F(7*_PyHASH_MODULUS, 1)), 0)
 | |
|         self.assertEqual(hash(F(-_PyHASH_MODULUS, 1)), 0)
 | |
| 
 | |
|         # The numbers ABC doesn't enforce that the "true" division
 | |
|         # of integers produces a float.  This tests that the
 | |
|         # Rational.__float__() method has required type conversions.
 | |
|         x = F._from_coprime_ints(DummyIntegral(1), DummyIntegral(2))
 | |
|         self.assertRaises(TypeError, lambda: x.numerator/x.denominator)
 | |
|         self.assertEqual(float(x), 0.5)
 | |
| 
 | |
|     def test_hash_normalization(self):
 | |
|         # Test for a bug encountered while changing long_hash.
 | |
|         #
 | |
|         # Given objects x and y, it should be possible for y's
 | |
|         # __hash__ method to return hash(x) in order to ensure that
 | |
|         # hash(x) == hash(y).  But hash(x) is not exactly equal to the
 | |
|         # result of x.__hash__(): there's some internal normalization
 | |
|         # to make sure that the result fits in a C long, and is not
 | |
|         # equal to the invalid hash value -1.  This internal
 | |
|         # normalization must therefore not change the result of
 | |
|         # hash(x) for any x.
 | |
| 
 | |
|         class HalibutProxy:
 | |
|             def __hash__(self):
 | |
|                 return hash('halibut')
 | |
|             def __eq__(self, other):
 | |
|                 return other == 'halibut'
 | |
| 
 | |
|         x = {'halibut', HalibutProxy()}
 | |
|         self.assertEqual(len(x), 1)
 | |
| 
 | |
| class ComparisonTest(unittest.TestCase):
 | |
|     def test_mixed_comparisons(self):
 | |
| 
 | |
|         # ordered list of distinct test values of various types:
 | |
|         # int, float, Fraction, Decimal
 | |
|         test_values = [
 | |
|             float('-inf'),
 | |
|             D('-1e425000000'),
 | |
|             -1e308,
 | |
|             F(-22, 7),
 | |
|             -3.14,
 | |
|             -2,
 | |
|             0.0,
 | |
|             1e-320,
 | |
|             True,
 | |
|             F('1.2'),
 | |
|             D('1.3'),
 | |
|             float('1.4'),
 | |
|             F(275807, 195025),
 | |
|             D('1.414213562373095048801688724'),
 | |
|             F(114243, 80782),
 | |
|             F(473596569, 84615),
 | |
|             7e200,
 | |
|             D('infinity'),
 | |
|             ]
 | |
|         for i, first in enumerate(test_values):
 | |
|             for second in test_values[i+1:]:
 | |
|                 self.assertLess(first, second)
 | |
|                 self.assertLessEqual(first, second)
 | |
|                 self.assertGreater(second, first)
 | |
|                 self.assertGreaterEqual(second, first)
 | |
| 
 | |
|     def test_complex(self):
 | |
|         # comparisons with complex are special:  equality and inequality
 | |
|         # comparisons should always succeed, but order comparisons should
 | |
|         # raise TypeError.
 | |
|         z = 1.0 + 0j
 | |
|         w = -3.14 + 2.7j
 | |
| 
 | |
|         for v in 1, 1.0, F(1), D(1), complex(1):
 | |
|             self.assertEqual(z, v)
 | |
|             self.assertEqual(v, z)
 | |
| 
 | |
|         for v in 2, 2.0, F(2), D(2), complex(2):
 | |
|             self.assertNotEqual(z, v)
 | |
|             self.assertNotEqual(v, z)
 | |
|             self.assertNotEqual(w, v)
 | |
|             self.assertNotEqual(v, w)
 | |
| 
 | |
|         for v in (1, 1.0, F(1), D(1), complex(1),
 | |
|                   2, 2.0, F(2), D(2), complex(2), w):
 | |
|             for op in operator.le, operator.lt, operator.ge, operator.gt:
 | |
|                 self.assertRaises(TypeError, op, z, v)
 | |
|                 self.assertRaises(TypeError, op, v, z)
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     unittest.main()
 |