mirror of
				https://github.com/python/cpython.git
				synced 2025-10-31 21:51:50 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			836 lines
		
	
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			836 lines
		
	
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
 | |
| /* Float object implementation */
 | |
| 
 | |
| /* XXX There should be overflow checks here, but it's hard to check
 | |
|    for any kind of float exception without losing portability. */
 | |
| 
 | |
| #include "Python.h"
 | |
| 
 | |
| #include <ctype.h>
 | |
| 
 | |
| #ifdef i860
 | |
| /* Cray APP has bogus definition of HUGE_VAL in <math.h> */
 | |
| #undef HUGE_VAL
 | |
| #endif
 | |
| 
 | |
| #if defined(HUGE_VAL) && !defined(CHECK)
 | |
| #define CHECK(x) if (errno != 0) ; \
 | |
| 	else if (-HUGE_VAL <= (x) && (x) <= HUGE_VAL) ; \
 | |
| 	else errno = ERANGE
 | |
| #endif
 | |
| 
 | |
| #ifndef CHECK
 | |
| #define CHECK(x) /* Don't know how to check */
 | |
| #endif
 | |
| 
 | |
| #if !defined(__STDC__) && !defined(macintosh)
 | |
| extern double fmod(double, double);
 | |
| extern double pow(double, double);
 | |
| #endif
 | |
| 
 | |
| #if defined(sun) && !defined(__SVR4)
 | |
| /* On SunOS4.1 only libm.a exists. Make sure that references to all
 | |
|    needed math functions exist in the executable, so that dynamic
 | |
|    loading of mathmodule does not fail. */
 | |
| double (*_Py_math_funcs_hack[])() = {
 | |
| 	acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor,
 | |
| 	fmod, log, log10, pow, sin, sinh, sqrt, tan, tanh
 | |
| };
 | |
| #endif
 | |
| 
 | |
| /* Special free list -- see comments for same code in intobject.c. */
 | |
| #define BLOCK_SIZE	1000	/* 1K less typical malloc overhead */
 | |
| #define BHEAD_SIZE	8	/* Enough for a 64-bit pointer */
 | |
| #define N_FLOATOBJECTS	((BLOCK_SIZE - BHEAD_SIZE) / sizeof(PyFloatObject))
 | |
| 
 | |
| struct _floatblock {
 | |
| 	struct _floatblock *next;
 | |
| 	PyFloatObject objects[N_FLOATOBJECTS];
 | |
| };
 | |
| 
 | |
| typedef struct _floatblock PyFloatBlock;
 | |
| 
 | |
| static PyFloatBlock *block_list = NULL;
 | |
| static PyFloatObject *free_list = NULL;
 | |
| 
 | |
| static PyFloatObject *
 | |
| fill_free_list(void)
 | |
| {
 | |
| 	PyFloatObject *p, *q;
 | |
| 	/* XXX Float blocks escape the object heap. Use PyObject_MALLOC ??? */
 | |
| 	p = (PyFloatObject *) PyMem_MALLOC(sizeof(PyFloatBlock));
 | |
| 	if (p == NULL)
 | |
| 		return (PyFloatObject *) PyErr_NoMemory();
 | |
| 	((PyFloatBlock *)p)->next = block_list;
 | |
| 	block_list = (PyFloatBlock *)p;
 | |
| 	p = &((PyFloatBlock *)p)->objects[0];
 | |
| 	q = p + N_FLOATOBJECTS;
 | |
| 	while (--q > p)
 | |
| 		q->ob_type = (struct _typeobject *)(q-1);
 | |
| 	q->ob_type = NULL;
 | |
| 	return p + N_FLOATOBJECTS - 1;
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| PyFloat_FromDouble(double fval)
 | |
| {
 | |
| 	register PyFloatObject *op;
 | |
| 	if (free_list == NULL) {
 | |
| 		if ((free_list = fill_free_list()) == NULL)
 | |
| 			return NULL;
 | |
| 	}
 | |
| 	/* PyObject_New is inlined */
 | |
| 	op = free_list;
 | |
| 	free_list = (PyFloatObject *)op->ob_type;
 | |
| 	PyObject_INIT(op, &PyFloat_Type);
 | |
| 	op->ob_fval = fval;
 | |
| 	return (PyObject *) op;
 | |
| }
 | |
| 
 | |
| /**************************************************************************
 | |
| RED_FLAG 22-Sep-2000 tim
 | |
| PyFloat_FromString's pend argument is braindead.  Prior to this RED_FLAG,
 | |
| 
 | |
| 1.  If v was a regular string, *pend was set to point to its terminating
 | |
|     null byte.  That's useless (the caller can find that without any
 | |
|     help from this function!).
 | |
| 
 | |
| 2.  If v was a Unicode string, or an object convertible to a character
 | |
|     buffer, *pend was set to point into stack trash (the auto temp
 | |
|     vector holding the character buffer).  That was downright dangerous.
 | |
| 
 | |
| Since we can't change the interface of a public API function, pend is
 | |
| still supported but now *officially* useless:  if pend is not NULL,
 | |
| *pend is set to NULL.
 | |
| **************************************************************************/
 | |
| PyObject *
 | |
| PyFloat_FromString(PyObject *v, char **pend)
 | |
| {
 | |
| 	const char *s, *last, *end;
 | |
| 	double x;
 | |
| 	char buffer[256]; /* for errors */
 | |
| #ifdef Py_USING_UNICODE
 | |
| 	char s_buffer[256]; /* for objects convertible to a char buffer */
 | |
| #endif
 | |
| 	int len;
 | |
| 
 | |
| 	if (pend)
 | |
| 		*pend = NULL;
 | |
| 	if (PyString_Check(v)) {
 | |
| 		s = PyString_AS_STRING(v);
 | |
| 		len = PyString_GET_SIZE(v);
 | |
| 	}
 | |
| #ifdef Py_USING_UNICODE
 | |
| 	else if (PyUnicode_Check(v)) {
 | |
| 		if (PyUnicode_GET_SIZE(v) >= sizeof(s_buffer)) {
 | |
| 			PyErr_SetString(PyExc_ValueError,
 | |
| 				"Unicode float() literal too long to convert");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v),
 | |
| 					    PyUnicode_GET_SIZE(v),
 | |
| 					    s_buffer, 
 | |
| 					    NULL))
 | |
| 			return NULL;
 | |
| 		s = s_buffer;
 | |
| 		len = (int)strlen(s);
 | |
| 	}
 | |
| #endif
 | |
| 	else if (PyObject_AsCharBuffer(v, &s, &len)) {
 | |
| 		PyErr_SetString(PyExc_TypeError,
 | |
| 				"float() needs a string argument");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	last = s + len;
 | |
| 	while (*s && isspace(Py_CHARMASK(*s)))
 | |
| 		s++;
 | |
| 	if (*s == '\0') {
 | |
| 		PyErr_SetString(PyExc_ValueError, "empty string for float()");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	/* We don't care about overflow or underflow.  If the platform supports
 | |
| 	 * them, infinities and signed zeroes (on underflow) are fine.
 | |
| 	 * However, strtod can return 0 for denormalized numbers, where atof
 | |
| 	 * does not.  So (alas!) we special-case a zero result.  Note that
 | |
| 	 * whether strtod sets errno on underflow is not defined, so we can't
 | |
| 	 * key off errno.
 | |
|          */
 | |
| 	PyFPE_START_PROTECT("strtod", return NULL)
 | |
| 	x = strtod(s, (char **)&end);
 | |
| 	PyFPE_END_PROTECT(x)
 | |
| 	errno = 0;
 | |
| 	/* Believe it or not, Solaris 2.6 can move end *beyond* the null
 | |
| 	   byte at the end of the string, when the input is inf(inity). */
 | |
| 	if (end > last)
 | |
| 		end = last;
 | |
| 	if (end == s) {
 | |
| 		sprintf(buffer, "invalid literal for float(): %.200s", s);
 | |
| 		PyErr_SetString(PyExc_ValueError, buffer);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	/* Since end != s, the platform made *some* kind of sense out
 | |
| 	   of the input.  Trust it. */
 | |
| 	while (*end && isspace(Py_CHARMASK(*end)))
 | |
| 		end++;
 | |
| 	if (*end != '\0') {
 | |
| 		sprintf(buffer, "invalid literal for float(): %.200s", s);
 | |
| 		PyErr_SetString(PyExc_ValueError, buffer);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	else if (end != last) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 				"null byte in argument for float()");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if (x == 0.0) {
 | |
| 		/* See above -- may have been strtod being anal
 | |
| 		   about denorms. */
 | |
| 		PyFPE_START_PROTECT("atof", return NULL)
 | |
| 		x = atof(s);
 | |
| 		PyFPE_END_PROTECT(x)
 | |
| 		errno = 0;    /* whether atof ever set errno is undefined */
 | |
| 	}
 | |
| 	return PyFloat_FromDouble(x);
 | |
| }
 | |
| 
 | |
| static void
 | |
| float_dealloc(PyFloatObject *op)
 | |
| {
 | |
| 	op->ob_type = (struct _typeobject *)free_list;
 | |
| 	free_list = op;
 | |
| }
 | |
| 
 | |
| double
 | |
| PyFloat_AsDouble(PyObject *op)
 | |
| {
 | |
| 	PyNumberMethods *nb;
 | |
| 	PyFloatObject *fo;
 | |
| 	double val;
 | |
| 	
 | |
| 	if (op && PyFloat_Check(op))
 | |
| 		return PyFloat_AS_DOUBLE((PyFloatObject*) op);
 | |
| 	
 | |
| 	if (op == NULL || (nb = op->ob_type->tp_as_number) == NULL ||
 | |
| 	    nb->nb_float == NULL) {
 | |
| 		PyErr_BadArgument();
 | |
| 		return -1;
 | |
| 	}
 | |
| 	
 | |
| 	fo = (PyFloatObject*) (*nb->nb_float) (op);
 | |
| 	if (fo == NULL)
 | |
| 		return -1;
 | |
| 	if (!PyFloat_Check(fo)) {
 | |
| 		PyErr_SetString(PyExc_TypeError,
 | |
| 				"nb_float should return float object");
 | |
| 		return -1;
 | |
| 	}
 | |
| 	
 | |
| 	val = PyFloat_AS_DOUBLE(fo);
 | |
| 	Py_DECREF(fo);
 | |
| 	
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| /* Methods */
 | |
| 
 | |
| void
 | |
| PyFloat_AsStringEx(char *buf, PyFloatObject *v, int precision)
 | |
| {
 | |
| 	register char *cp;
 | |
| 	/* Subroutine for float_repr and float_print.
 | |
| 	   We want float numbers to be recognizable as such,
 | |
| 	   i.e., they should contain a decimal point or an exponent.
 | |
| 	   However, %g may print the number as an integer;
 | |
| 	   in such cases, we append ".0" to the string. */
 | |
| 	sprintf(buf, "%.*g", precision, v->ob_fval);
 | |
| 	cp = buf;
 | |
| 	if (*cp == '-')
 | |
| 		cp++;
 | |
| 	for (; *cp != '\0'; cp++) {
 | |
| 		/* Any non-digit means it's not an integer;
 | |
| 		   this takes care of NAN and INF as well. */
 | |
| 		if (!isdigit(Py_CHARMASK(*cp)))
 | |
| 			break;
 | |
| 	}
 | |
| 	if (*cp == '\0') {
 | |
| 		*cp++ = '.';
 | |
| 		*cp++ = '0';
 | |
| 		*cp++ = '\0';
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Macro and helper that convert PyObject obj to a C double and store
 | |
|    the value in dbl; this replaces the functionality of the coercion
 | |
|    slot function */
 | |
| 
 | |
| #define CONVERT_TO_DOUBLE(obj, dbl)			\
 | |
| 	if (PyFloat_Check(obj))				\
 | |
| 		dbl = PyFloat_AS_DOUBLE(obj);		\
 | |
| 	else if (convert_to_double(&(obj), &(dbl)) < 0)	\
 | |
| 		return obj;
 | |
| 
 | |
| static int
 | |
| convert_to_double(PyObject **v,
 | |
| 		  double *dbl)
 | |
| {
 | |
| 	register PyObject *obj = *v;
 | |
| 	
 | |
| 	if (PyInt_Check(obj)) {
 | |
| 		*dbl = (double)PyInt_AS_LONG(obj);
 | |
| 	}
 | |
| 	else if (PyLong_Check(obj)) {
 | |
| 		PyFPE_START_PROTECT("convert_to_double", {*v=NULL;return -1;})
 | |
| 		*dbl = PyLong_AsDouble(obj);
 | |
| 		PyFPE_END_PROTECT(*dbl)
 | |
| 	}
 | |
| 	else {
 | |
| 		Py_INCREF(Py_NotImplemented);
 | |
| 		*v = Py_NotImplemented;
 | |
| 		return -1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Precisions used by repr() and str(), respectively.
 | |
| 
 | |
|    The repr() precision (17 significant decimal digits) is the minimal number
 | |
|    that is guaranteed to have enough precision so that if the number is read
 | |
|    back in the exact same binary value is recreated.  This is true for IEEE
 | |
|    floating point by design, and also happens to work for all other modern
 | |
|    hardware.
 | |
| 
 | |
|    The str() precision is chosen so that in most cases, the rounding noise
 | |
|    created by various operations is suppressed, while giving plenty of
 | |
|    precision for practical use.
 | |
| 
 | |
| */
 | |
| 
 | |
| #define PREC_REPR	17
 | |
| #define PREC_STR	12
 | |
| 
 | |
| void
 | |
| PyFloat_AsString(char *buf, PyFloatObject *v)
 | |
| {
 | |
| 	PyFloat_AsStringEx(buf, v, PREC_STR);
 | |
| }
 | |
| 
 | |
| void
 | |
| PyFloat_AsReprString(char *buf, PyFloatObject *v)
 | |
| {
 | |
| 	PyFloat_AsStringEx(buf, v, PREC_REPR);
 | |
| }
 | |
| 
 | |
| /* ARGSUSED */
 | |
| static int
 | |
| float_print(PyFloatObject *v, FILE *fp, int flags)
 | |
| {
 | |
| 	char buf[100];
 | |
| 	PyFloat_AsStringEx(buf, v, flags&Py_PRINT_RAW ? PREC_STR : PREC_REPR);
 | |
| 	fputs(buf, fp);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_repr(PyFloatObject *v)
 | |
| {
 | |
| 	char buf[100];
 | |
| 	PyFloat_AsStringEx(buf, v, PREC_REPR);
 | |
| 	return PyString_FromString(buf);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_str(PyFloatObject *v)
 | |
| {
 | |
| 	char buf[100];
 | |
| 	PyFloat_AsStringEx(buf, v, PREC_STR);
 | |
| 	return PyString_FromString(buf);
 | |
| }
 | |
| 
 | |
| static int
 | |
| float_compare(PyFloatObject *v, PyFloatObject *w)
 | |
| {
 | |
| 	double i = v->ob_fval;
 | |
| 	double j = w->ob_fval;
 | |
| 	return (i < j) ? -1 : (i > j) ? 1 : 0;
 | |
| }
 | |
| 
 | |
| static long
 | |
| float_hash(PyFloatObject *v)
 | |
| {
 | |
| 	return _Py_HashDouble(v->ob_fval);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_add(PyObject *v, PyObject *w)
 | |
| {
 | |
| 	double a,b;
 | |
| 	CONVERT_TO_DOUBLE(v, a);
 | |
| 	CONVERT_TO_DOUBLE(w, b);
 | |
| 	PyFPE_START_PROTECT("add", return 0)
 | |
| 	a = a + b;
 | |
| 	PyFPE_END_PROTECT(a)
 | |
| 	return PyFloat_FromDouble(a);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_sub(PyObject *v, PyObject *w)
 | |
| {
 | |
| 	double a,b;
 | |
| 	CONVERT_TO_DOUBLE(v, a);
 | |
| 	CONVERT_TO_DOUBLE(w, b);
 | |
| 	PyFPE_START_PROTECT("subtract", return 0)
 | |
| 	a = a - b;
 | |
| 	PyFPE_END_PROTECT(a)
 | |
| 	return PyFloat_FromDouble(a);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_mul(PyObject *v, PyObject *w)
 | |
| {
 | |
| 	double a,b;
 | |
| 	CONVERT_TO_DOUBLE(v, a);
 | |
| 	CONVERT_TO_DOUBLE(w, b);
 | |
| 	PyFPE_START_PROTECT("multiply", return 0)
 | |
| 	a = a * b;
 | |
| 	PyFPE_END_PROTECT(a)
 | |
| 	return PyFloat_FromDouble(a);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_div(PyObject *v, PyObject *w)
 | |
| {
 | |
| 	double a,b;
 | |
| 	CONVERT_TO_DOUBLE(v, a);
 | |
| 	CONVERT_TO_DOUBLE(w, b);
 | |
| 	if (b == 0.0) {
 | |
| 		PyErr_SetString(PyExc_ZeroDivisionError, "float division");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	PyFPE_START_PROTECT("divide", return 0)
 | |
| 	a = a / b;
 | |
| 	PyFPE_END_PROTECT(a)
 | |
| 	return PyFloat_FromDouble(a);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_rem(PyObject *v, PyObject *w)
 | |
| {
 | |
| 	double vx, wx;
 | |
| 	double mod;
 | |
|  	CONVERT_TO_DOUBLE(v, vx);
 | |
|  	CONVERT_TO_DOUBLE(w, wx);
 | |
| 	if (wx == 0.0) {
 | |
| 		PyErr_SetString(PyExc_ZeroDivisionError, "float modulo");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	PyFPE_START_PROTECT("modulo", return 0)
 | |
| 	mod = fmod(vx, wx);
 | |
| 	/* note: checking mod*wx < 0 is incorrect -- underflows to
 | |
| 	   0 if wx < sqrt(smallest nonzero double) */
 | |
| 	if (mod && ((wx < 0) != (mod < 0))) {
 | |
| 		mod += wx;
 | |
| 	}
 | |
| 	PyFPE_END_PROTECT(mod)
 | |
| 	return PyFloat_FromDouble(mod);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_divmod(PyObject *v, PyObject *w)
 | |
| {
 | |
| 	double vx, wx;
 | |
| 	double div, mod, floordiv;
 | |
|  	CONVERT_TO_DOUBLE(v, vx);
 | |
|  	CONVERT_TO_DOUBLE(w, wx);
 | |
| 	if (wx == 0.0) {
 | |
| 		PyErr_SetString(PyExc_ZeroDivisionError, "float divmod()");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	PyFPE_START_PROTECT("divmod", return 0)
 | |
| 	mod = fmod(vx, wx);
 | |
| 	/* fmod is typically exact, so vx-mod is *mathematically* an
 | |
| 	   exact multiple of wx.  But this is fp arithmetic, and fp
 | |
| 	   vx - mod is an approximation; the result is that div may
 | |
| 	   not be an exact integral value after the division, although
 | |
| 	   it will always be very close to one.
 | |
| 	*/
 | |
| 	div = (vx - mod) / wx;
 | |
| 	/* note: checking mod*wx < 0 is incorrect -- underflows to
 | |
| 	   0 if wx < sqrt(smallest nonzero double) */
 | |
| 	if (mod && ((wx < 0) != (mod < 0))) {
 | |
| 		mod += wx;
 | |
| 		div -= 1.0;
 | |
| 	}
 | |
| 	/* snap quotient to nearest integral value */
 | |
| 	floordiv = floor(div);
 | |
| 	if (div - floordiv > 0.5)
 | |
| 		floordiv += 1.0;
 | |
| 	PyFPE_END_PROTECT(div)
 | |
| 	return Py_BuildValue("(dd)", floordiv, mod);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_pow(PyObject *v, PyObject *w, PyObject *z)
 | |
| {
 | |
| 	double iv, iw, ix;
 | |
|  /* XXX Doesn't handle overflows if z!=None yet; it may never do so :(
 | |
|   * The z parameter is really only going to be useful for integers and
 | |
|   * long integers.  Maybe something clever with logarithms could be done.
 | |
|   * [AMK]
 | |
|   */
 | |
| 	CONVERT_TO_DOUBLE(v, iv);
 | |
| 	CONVERT_TO_DOUBLE(w, iw);
 | |
| 
 | |
| 	/* Sort out special cases here instead of relying on pow() */
 | |
| 	if (iw == 0) { 		/* v**0 is 1, even 0**0 */
 | |
| 		PyFPE_START_PROTECT("pow", return NULL)
 | |
| 		if ((PyObject *)z != Py_None) {
 | |
| 			double iz;
 | |
| 			CONVERT_TO_DOUBLE(z, iz);
 | |
| 			ix = fmod(1.0, iz);
 | |
| 			if (ix != 0 && iz < 0)
 | |
| 				ix += iz;
 | |
| 		}
 | |
| 		else
 | |
| 			ix = 1.0;
 | |
| 		PyFPE_END_PROTECT(ix)
 | |
| 		return PyFloat_FromDouble(ix); 
 | |
| 	}
 | |
| 	if (iv == 0.0) {  /* 0**w is error if w<0, else 1 */
 | |
| 		if (iw < 0.0) {
 | |
| 			PyErr_SetString(PyExc_ZeroDivisionError,
 | |
| 					"0.0 cannot be raised to a negative power");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		return PyFloat_FromDouble(0.0);
 | |
| 	}
 | |
| 	if (iv < 0.0 && iw != floor(iw)) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 				"negative number cannot be raised to a fractional power");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	errno = 0;
 | |
| 	PyFPE_START_PROTECT("pow", return NULL)
 | |
| 	ix = pow(iv, iw);
 | |
| 	PyFPE_END_PROTECT(ix)
 | |
| 	CHECK(ix);
 | |
| 	if (errno != 0) {
 | |
| 		/* XXX could it be another type of error? */
 | |
| 		PyErr_SetFromErrno(PyExc_OverflowError);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if ((PyObject *)z != Py_None) {
 | |
| 		double iz;
 | |
| 		CONVERT_TO_DOUBLE(z, iz);
 | |
| 		PyFPE_START_PROTECT("pow", return 0)
 | |
| 	 	ix = fmod(ix, iz);	/* XXX To Be Rewritten */
 | |
| 	 	if (ix != 0 && ((iv < 0 && iz > 0) || (iv > 0 && iz < 0) )) {
 | |
| 		     ix += iz;
 | |
| 		}
 | |
|   		PyFPE_END_PROTECT(ix)
 | |
| 	}
 | |
| 	return PyFloat_FromDouble(ix);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_int_div(PyObject *v, PyObject *w)
 | |
| {
 | |
| 	PyObject *t, *r;
 | |
| 	
 | |
| 	t = float_divmod(v, w);
 | |
| 	if (t != NULL) {
 | |
| 		r = PyTuple_GET_ITEM(t, 0);
 | |
| 		Py_INCREF(r);
 | |
| 		Py_DECREF(t);
 | |
| 		return r;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_neg(PyFloatObject *v)
 | |
| {
 | |
| 	return PyFloat_FromDouble(-v->ob_fval);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_pos(PyFloatObject *v)
 | |
| {
 | |
| 	Py_INCREF(v);
 | |
| 	return (PyObject *)v;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_abs(PyFloatObject *v)
 | |
| {
 | |
| 	if (v->ob_fval < 0)
 | |
| 		return float_neg(v);
 | |
| 	else
 | |
| 		return float_pos(v);
 | |
| }
 | |
| 
 | |
| static int
 | |
| float_nonzero(PyFloatObject *v)
 | |
| {
 | |
| 	return v->ob_fval != 0.0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| float_coerce(PyObject **pv, PyObject **pw)
 | |
| {
 | |
| 	if (PyInt_Check(*pw)) {
 | |
| 		long x = PyInt_AsLong(*pw);
 | |
| 		*pw = PyFloat_FromDouble((double)x);
 | |
| 		Py_INCREF(*pv);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	else if (PyLong_Check(*pw)) {
 | |
| 		*pw = PyFloat_FromDouble(PyLong_AsDouble(*pw));
 | |
| 		Py_INCREF(*pv);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return 1; /* Can't do it */
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_int(PyObject *v)
 | |
| {
 | |
| 	double x = PyFloat_AsDouble(v);
 | |
| 	double wholepart;	/* integral portion of x, rounded toward 0 */
 | |
| 	long aslong;		/* (long)wholepart */
 | |
| 
 | |
| 	(void)modf(x, &wholepart);
 | |
| 	/* doubles may have more bits than longs, or vice versa; and casting
 | |
| 	   to long may yield gibberish in either case.  What really matters
 | |
| 	   is whether converting back to double again reproduces what we
 | |
| 	   started with. */
 | |
| 	aslong = (long)wholepart;
 | |
| 	if ((double)aslong == wholepart)
 | |
| 		return PyInt_FromLong(aslong);
 | |
| 	PyErr_SetString(PyExc_OverflowError, "float too large to convert");
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_long(PyObject *v)
 | |
| {
 | |
| 	double x = PyFloat_AsDouble(v);
 | |
| 	return PyLong_FromDouble(x);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_float(PyObject *v)
 | |
| {
 | |
| 	Py_INCREF(v);
 | |
| 	return v;
 | |
| }
 | |
| 
 | |
| 
 | |
| staticforward PyObject *
 | |
| float_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds);
 | |
| 
 | |
| static PyObject *
 | |
| float_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
 | |
| {
 | |
| 	PyObject *x = Py_False; /* Integer zero */
 | |
| 	static char *kwlist[] = {"x", 0};
 | |
| 
 | |
| 	if (type != &PyFloat_Type)
 | |
| 		return float_subtype_new(type, args, kwds); /* Wimp out */
 | |
| 	if (!PyArg_ParseTupleAndKeywords(args, kwds, "|O:float", kwlist, &x))
 | |
| 		return NULL;
 | |
| 	if (PyString_Check(x))
 | |
| 		return PyFloat_FromString(x, NULL);
 | |
| 	return PyNumber_Float(x);
 | |
| }
 | |
| 
 | |
| /* Wimpy, slow approach to tp_new calls for subtypes of float:
 | |
|    first create a regular float from whatever arguments we got,
 | |
|    then allocate a subtype instance and initialize its ob_fval
 | |
|    from the regular float.  The regular float is then thrown away.
 | |
| */
 | |
| static PyObject *
 | |
| float_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
 | |
| {
 | |
| 	PyObject *tmp, *new;
 | |
| 
 | |
| 	assert(PyType_IsSubtype(type, &PyFloat_Type));
 | |
| 	tmp = float_new(&PyFloat_Type, args, kwds);
 | |
| 	if (tmp == NULL)
 | |
| 		return NULL;
 | |
| 	assert(PyFloat_Check(tmp));
 | |
| 	new = type->tp_alloc(type, 0);;
 | |
| 	if (new == NULL)
 | |
| 		return NULL;
 | |
| 	((PyFloatObject *)new)->ob_fval = ((PyFloatObject *)tmp)->ob_fval;
 | |
| 	Py_DECREF(tmp);
 | |
| 	return new;
 | |
| }
 | |
| 
 | |
| static char float_doc[] =
 | |
| "float(x) -> floating point number\n\
 | |
| \n\
 | |
| Convert a string or number to a floating point number, if possible.";
 | |
| 
 | |
| 
 | |
| static PyNumberMethods float_as_number = {
 | |
| 	(binaryfunc)float_add, /*nb_add*/
 | |
| 	(binaryfunc)float_sub, /*nb_subtract*/
 | |
| 	(binaryfunc)float_mul, /*nb_multiply*/
 | |
| 	(binaryfunc)float_div, /*nb_divide*/
 | |
| 	(binaryfunc)float_rem, /*nb_remainder*/
 | |
| 	(binaryfunc)float_divmod, /*nb_divmod*/
 | |
| 	(ternaryfunc)float_pow, /*nb_power*/
 | |
| 	(unaryfunc)float_neg, /*nb_negative*/
 | |
| 	(unaryfunc)float_pos, /*nb_positive*/
 | |
| 	(unaryfunc)float_abs, /*nb_absolute*/
 | |
| 	(inquiry)float_nonzero, /*nb_nonzero*/
 | |
| 	0,		/*nb_invert*/
 | |
| 	0,		/*nb_lshift*/
 | |
| 	0,		/*nb_rshift*/
 | |
| 	0,		/*nb_and*/
 | |
| 	0,		/*nb_xor*/
 | |
| 	0,		/*nb_or*/
 | |
| 	(coercion)float_coerce, /*nb_coerce*/
 | |
| 	(unaryfunc)float_int, /*nb_int*/
 | |
| 	(unaryfunc)float_long, /*nb_long*/
 | |
| 	(unaryfunc)float_float, /*nb_float*/
 | |
| 	0,		/* nb_oct */
 | |
| 	0,		/* nb_hex */
 | |
| 	0,		/* nb_inplace_add */
 | |
| 	0,		/* nb_inplace_subtract */
 | |
| 	0,		/* nb_inplace_multiply */
 | |
| 	0,		/* nb_inplace_divide */
 | |
| 	0,		/* nb_inplace_remainder */
 | |
| 	0, 		/* nb_inplace_power */
 | |
| 	0,		/* nb_inplace_lshift */
 | |
| 	0,		/* nb_inplace_rshift */
 | |
| 	0,		/* nb_inplace_and */
 | |
| 	0,		/* nb_inplace_xor */
 | |
| 	0,		/* nb_inplace_or */
 | |
| 	float_int_div,	/* nb_floor_divide */
 | |
| 	float_div,	/* nb_true_divide */
 | |
| 	0,		/* nb_inplace_floor_divide */
 | |
| 	0,		/* nb_inplace_true_divide */
 | |
| };
 | |
| 
 | |
| PyTypeObject PyFloat_Type = {
 | |
| 	PyObject_HEAD_INIT(&PyType_Type)
 | |
| 	0,
 | |
| 	"float",
 | |
| 	sizeof(PyFloatObject),
 | |
| 	0,
 | |
| 	(destructor)float_dealloc,		/* tp_dealloc */
 | |
| 	(printfunc)float_print, 		/* tp_print */
 | |
| 	0,					/* tp_getattr */
 | |
| 	0,					/* tp_setattr */
 | |
| 	(cmpfunc)float_compare, 		/* tp_compare */
 | |
| 	(reprfunc)float_repr,			/* tp_repr */
 | |
| 	&float_as_number,			/* tp_as_number */
 | |
| 	0,					/* tp_as_sequence */
 | |
| 	0,					/* tp_as_mapping */
 | |
| 	(hashfunc)float_hash,			/* tp_hash */
 | |
| 	0,					/* tp_call */
 | |
| 	(reprfunc)float_str,			/* tp_str */
 | |
| 	PyObject_GenericGetAttr,		/* tp_getattro */
 | |
| 	0,					/* tp_setattro */
 | |
| 	0,					/* tp_as_buffer */
 | |
| 	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
 | |
| 		Py_TPFLAGS_BASETYPE,		/* tp_flags */
 | |
| 	float_doc,				/* tp_doc */
 | |
|  	0,					/* tp_traverse */
 | |
| 	0,					/* tp_clear */
 | |
| 	0,					/* tp_richcompare */
 | |
| 	0,					/* tp_weaklistoffset */
 | |
| 	0,					/* tp_iter */
 | |
| 	0,					/* tp_iternext */
 | |
| 	0,					/* tp_methods */
 | |
| 	0,					/* tp_members */
 | |
| 	0,					/* tp_getset */
 | |
| 	0,					/* tp_base */
 | |
| 	0,					/* tp_dict */
 | |
| 	0,					/* tp_descr_get */
 | |
| 	0,					/* tp_descr_set */
 | |
| 	0,					/* tp_dictoffset */
 | |
| 	0,					/* tp_init */
 | |
| 	0,					/* tp_alloc */
 | |
| 	float_new,				/* tp_new */
 | |
| };
 | |
| 
 | |
| void
 | |
| PyFloat_Fini(void)
 | |
| {
 | |
| 	PyFloatObject *p;
 | |
| 	PyFloatBlock *list, *next;
 | |
| 	int i;
 | |
| 	int bc, bf;	/* block count, number of freed blocks */
 | |
| 	int frem, fsum;	/* remaining unfreed floats per block, total */
 | |
| 
 | |
| 	bc = 0;
 | |
| 	bf = 0;
 | |
| 	fsum = 0;
 | |
| 	list = block_list;
 | |
| 	block_list = NULL;
 | |
| 	free_list = NULL;
 | |
| 	while (list != NULL) {
 | |
| 		bc++;
 | |
| 		frem = 0;
 | |
| 		for (i = 0, p = &list->objects[0];
 | |
| 		     i < N_FLOATOBJECTS;
 | |
| 		     i++, p++) {
 | |
| 			if (p->ob_type == &PyFloat_Type && p->ob_refcnt != 0)
 | |
| 				frem++;
 | |
| 		}
 | |
| 		next = list->next;
 | |
| 		if (frem) {
 | |
| 			list->next = block_list;
 | |
| 			block_list = list;
 | |
| 			for (i = 0, p = &list->objects[0];
 | |
| 			     i < N_FLOATOBJECTS;
 | |
| 			     i++, p++) {
 | |
| 				if (p->ob_type != &PyFloat_Type ||
 | |
| 				    p->ob_refcnt == 0) {
 | |
| 					p->ob_type = (struct _typeobject *)
 | |
| 						free_list;
 | |
| 					free_list = p;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		else {
 | |
| 			PyMem_FREE(list); /* XXX PyObject_FREE ??? */
 | |
| 			bf++;
 | |
| 		}
 | |
| 		fsum += frem;
 | |
| 		list = next;
 | |
| 	}
 | |
| 	if (!Py_VerboseFlag)
 | |
| 		return;
 | |
| 	fprintf(stderr, "# cleanup floats");
 | |
| 	if (!fsum) {
 | |
| 		fprintf(stderr, "\n");
 | |
| 	}
 | |
| 	else {
 | |
| 		fprintf(stderr,
 | |
| 			": %d unfreed float%s in %d out of %d block%s\n",
 | |
| 			fsum, fsum == 1 ? "" : "s",
 | |
| 			bc - bf, bc, bc == 1 ? "" : "s");
 | |
| 	}
 | |
| 	if (Py_VerboseFlag > 1) {
 | |
| 		list = block_list;
 | |
| 		while (list != NULL) {
 | |
| 			for (i = 0, p = &list->objects[0];
 | |
| 			     i < N_FLOATOBJECTS;
 | |
| 			     i++, p++) {
 | |
| 				if (p->ob_type == &PyFloat_Type &&
 | |
| 				    p->ob_refcnt != 0) {
 | |
| 					char buf[100];
 | |
| 					PyFloat_AsString(buf, p);
 | |
| 					fprintf(stderr,
 | |
| 			     "#   <float at %p, refcnt=%d, val=%s>\n",
 | |
| 						p, p->ob_refcnt, buf);
 | |
| 				}
 | |
| 			}
 | |
| 			list = list->next;
 | |
| 		}
 | |
| 	}
 | |
| }
 | 
