mirror of
				https://github.com/python/cpython.git
				synced 2025-11-03 15:11:34 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			394 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			394 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// Macros and other things needed by ceval.c, and bytecodes.c
 | 
						|
 | 
						|
/* Computed GOTOs, or
 | 
						|
       the-optimization-commonly-but-improperly-known-as-"threaded code"
 | 
						|
   using gcc's labels-as-values extension
 | 
						|
   (http://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html).
 | 
						|
 | 
						|
   The traditional bytecode evaluation loop uses a "switch" statement, which
 | 
						|
   decent compilers will optimize as a single indirect branch instruction
 | 
						|
   combined with a lookup table of jump addresses. However, since the
 | 
						|
   indirect jump instruction is shared by all opcodes, the CPU will have a
 | 
						|
   hard time making the right prediction for where to jump next (actually,
 | 
						|
   it will be always wrong except in the uncommon case of a sequence of
 | 
						|
   several identical opcodes).
 | 
						|
 | 
						|
   "Threaded code" in contrast, uses an explicit jump table and an explicit
 | 
						|
   indirect jump instruction at the end of each opcode. Since the jump
 | 
						|
   instruction is at a different address for each opcode, the CPU will make a
 | 
						|
   separate prediction for each of these instructions, which is equivalent to
 | 
						|
   predicting the second opcode of each opcode pair. These predictions have
 | 
						|
   a much better chance to turn out valid, especially in small bytecode loops.
 | 
						|
 | 
						|
   A mispredicted branch on a modern CPU flushes the whole pipeline and
 | 
						|
   can cost several CPU cycles (depending on the pipeline depth),
 | 
						|
   and potentially many more instructions (depending on the pipeline width).
 | 
						|
   A correctly predicted branch, however, is nearly free.
 | 
						|
 | 
						|
   At the time of this writing, the "threaded code" version is up to 15-20%
 | 
						|
   faster than the normal "switch" version, depending on the compiler and the
 | 
						|
   CPU architecture.
 | 
						|
 | 
						|
   NOTE: care must be taken that the compiler doesn't try to "optimize" the
 | 
						|
   indirect jumps by sharing them between all opcodes. Such optimizations
 | 
						|
   can be disabled on gcc by using the -fno-gcse flag (or possibly
 | 
						|
   -fno-crossjumping).
 | 
						|
*/
 | 
						|
 | 
						|
/* Use macros rather than inline functions, to make it as clear as possible
 | 
						|
 * to the C compiler that the tracing check is a simple test then branch.
 | 
						|
 * We want to be sure that the compiler knows this before it generates
 | 
						|
 * the CFG.
 | 
						|
 */
 | 
						|
 | 
						|
#ifdef WITH_DTRACE
 | 
						|
#define OR_DTRACE_LINE | (PyDTrace_LINE_ENABLED() ? 255 : 0)
 | 
						|
#else
 | 
						|
#define OR_DTRACE_LINE
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef HAVE_COMPUTED_GOTOS
 | 
						|
    #ifndef USE_COMPUTED_GOTOS
 | 
						|
    #define USE_COMPUTED_GOTOS 1
 | 
						|
    #endif
 | 
						|
#else
 | 
						|
    #if defined(USE_COMPUTED_GOTOS) && USE_COMPUTED_GOTOS
 | 
						|
    #error "Computed gotos are not supported on this compiler."
 | 
						|
    #endif
 | 
						|
    #undef USE_COMPUTED_GOTOS
 | 
						|
    #define USE_COMPUTED_GOTOS 0
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef Py_STATS
 | 
						|
#define INSTRUCTION_STATS(op) \
 | 
						|
    do { \
 | 
						|
        OPCODE_EXE_INC(op); \
 | 
						|
        if (_Py_stats) _Py_stats->opcode_stats[lastopcode].pair_count[op]++; \
 | 
						|
        lastopcode = op; \
 | 
						|
    } while (0)
 | 
						|
#else
 | 
						|
#define INSTRUCTION_STATS(op) ((void)0)
 | 
						|
#endif
 | 
						|
 | 
						|
#if USE_COMPUTED_GOTOS
 | 
						|
#  define TARGET(op) TARGET_##op:
 | 
						|
#  define DISPATCH_GOTO() goto *opcode_targets[opcode]
 | 
						|
#else
 | 
						|
#  define TARGET(op) case op: TARGET_##op:
 | 
						|
#  define DISPATCH_GOTO() goto dispatch_opcode
 | 
						|
#endif
 | 
						|
 | 
						|
/* PRE_DISPATCH_GOTO() does lltrace if enabled. Normally a no-op */
 | 
						|
#ifdef LLTRACE
 | 
						|
#define PRE_DISPATCH_GOTO() if (lltrace >= 5) { \
 | 
						|
    lltrace_instruction(frame, stack_pointer, next_instr, opcode, oparg); }
 | 
						|
#else
 | 
						|
#define PRE_DISPATCH_GOTO() ((void)0)
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
/* Do interpreter dispatch accounting for tracing and instrumentation */
 | 
						|
#define DISPATCH() \
 | 
						|
    { \
 | 
						|
        NEXTOPARG(); \
 | 
						|
        PRE_DISPATCH_GOTO(); \
 | 
						|
        DISPATCH_GOTO(); \
 | 
						|
    }
 | 
						|
 | 
						|
#define DISPATCH_SAME_OPARG() \
 | 
						|
    { \
 | 
						|
        opcode = next_instr->op.code; \
 | 
						|
        PRE_DISPATCH_GOTO(); \
 | 
						|
        DISPATCH_GOTO(); \
 | 
						|
    }
 | 
						|
 | 
						|
#define DISPATCH_INLINED(NEW_FRAME)                     \
 | 
						|
    do {                                                \
 | 
						|
        assert(tstate->interp->eval_frame == NULL);     \
 | 
						|
        _PyFrame_SetStackPointer(frame, stack_pointer); \
 | 
						|
        (NEW_FRAME)->previous = frame;                  \
 | 
						|
        frame = tstate->current_frame = (NEW_FRAME);     \
 | 
						|
        CALL_STAT_INC(inlined_py_calls);                \
 | 
						|
        goto start_frame;                               \
 | 
						|
    } while (0)
 | 
						|
 | 
						|
// Use this instead of 'goto error' so Tier 2 can go to a different label
 | 
						|
#define GOTO_ERROR(LABEL) goto LABEL
 | 
						|
 | 
						|
#define CHECK_EVAL_BREAKER() \
 | 
						|
    _Py_CHECK_EMSCRIPTEN_SIGNALS_PERIODICALLY(); \
 | 
						|
    if (_Py_atomic_load_uintptr_relaxed(&tstate->interp->ceval.eval_breaker) & _PY_EVAL_EVENTS_MASK) { \
 | 
						|
        if (_Py_HandlePending(tstate) != 0) { \
 | 
						|
            GOTO_ERROR(error); \
 | 
						|
        } \
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
/* Tuple access macros */
 | 
						|
 | 
						|
#ifndef Py_DEBUG
 | 
						|
#define GETITEM(v, i) PyTuple_GET_ITEM((v), (i))
 | 
						|
#else
 | 
						|
static inline PyObject *
 | 
						|
GETITEM(PyObject *v, Py_ssize_t i) {
 | 
						|
    assert(PyTuple_Check(v));
 | 
						|
    assert(i >= 0);
 | 
						|
    assert(i < PyTuple_GET_SIZE(v));
 | 
						|
    return PyTuple_GET_ITEM(v, i);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/* Code access macros */
 | 
						|
 | 
						|
/* The integer overflow is checked by an assertion below. */
 | 
						|
#define INSTR_OFFSET() ((int)(next_instr - _PyCode_CODE(_PyFrame_GetCode(frame))))
 | 
						|
#define NEXTOPARG()  do { \
 | 
						|
        _Py_CODEUNIT word = *next_instr; \
 | 
						|
        opcode = word.op.code; \
 | 
						|
        oparg = word.op.arg; \
 | 
						|
    } while (0)
 | 
						|
 | 
						|
/* JUMPBY makes the generator identify the instruction as a jump. SKIP_OVER is
 | 
						|
 * for advancing to the next instruction, taking into account cache entries
 | 
						|
 * and skipped instructions.
 | 
						|
 */
 | 
						|
#define JUMPBY(x)       (next_instr += (x))
 | 
						|
#define SKIP_OVER(x)    (next_instr += (x))
 | 
						|
 | 
						|
/* OpCode prediction macros
 | 
						|
    Some opcodes tend to come in pairs thus making it possible to
 | 
						|
    predict the second code when the first is run.  For example,
 | 
						|
    COMPARE_OP is often followed by POP_JUMP_IF_FALSE or POP_JUMP_IF_TRUE.
 | 
						|
 | 
						|
    Verifying the prediction costs a single high-speed test of a register
 | 
						|
    variable against a constant.  If the pairing was good, then the
 | 
						|
    processor's own internal branch predication has a high likelihood of
 | 
						|
    success, resulting in a nearly zero-overhead transition to the
 | 
						|
    next opcode.  A successful prediction saves a trip through the eval-loop
 | 
						|
    including its unpredictable switch-case branch.  Combined with the
 | 
						|
    processor's internal branch prediction, a successful PREDICT has the
 | 
						|
    effect of making the two opcodes run as if they were a single new opcode
 | 
						|
    with the bodies combined.
 | 
						|
 | 
						|
    If collecting opcode statistics, your choices are to either keep the
 | 
						|
    predictions turned-on and interpret the results as if some opcodes
 | 
						|
    had been combined or turn-off predictions so that the opcode frequency
 | 
						|
    counter updates for both opcodes.
 | 
						|
 | 
						|
    Opcode prediction is disabled with threaded code, since the latter allows
 | 
						|
    the CPU to record separate branch prediction information for each
 | 
						|
    opcode.
 | 
						|
 | 
						|
*/
 | 
						|
 | 
						|
#define PREDICT_ID(op)          PRED_##op
 | 
						|
#define PREDICTED(op)           PREDICT_ID(op):
 | 
						|
 | 
						|
 | 
						|
/* Stack manipulation macros */
 | 
						|
 | 
						|
/* The stack can grow at most MAXINT deep, as co_nlocals and
 | 
						|
   co_stacksize are ints. */
 | 
						|
#define STACK_LEVEL()     ((int)(stack_pointer - _PyFrame_Stackbase(frame)))
 | 
						|
#define STACK_SIZE()      (_PyFrame_GetCode(frame)->co_stacksize)
 | 
						|
#define EMPTY()           (STACK_LEVEL() == 0)
 | 
						|
#define TOP()             (stack_pointer[-1])
 | 
						|
#define SECOND()          (stack_pointer[-2])
 | 
						|
#define THIRD()           (stack_pointer[-3])
 | 
						|
#define FOURTH()          (stack_pointer[-4])
 | 
						|
#define PEEK(n)           (stack_pointer[-(n)])
 | 
						|
#define POKE(n, v)        (stack_pointer[-(n)] = (v))
 | 
						|
#define SET_TOP(v)        (stack_pointer[-1] = (v))
 | 
						|
#define SET_SECOND(v)     (stack_pointer[-2] = (v))
 | 
						|
#define BASIC_STACKADJ(n) (stack_pointer += n)
 | 
						|
#define BASIC_PUSH(v)     (*stack_pointer++ = (v))
 | 
						|
#define BASIC_POP()       (*--stack_pointer)
 | 
						|
 | 
						|
#ifdef Py_DEBUG
 | 
						|
#define PUSH(v)         do { \
 | 
						|
                            BASIC_PUSH(v); \
 | 
						|
                            assert(STACK_LEVEL() <= STACK_SIZE()); \
 | 
						|
                        } while (0)
 | 
						|
#define POP()           (assert(STACK_LEVEL() > 0), BASIC_POP())
 | 
						|
#define STACK_GROW(n)   do { \
 | 
						|
                            assert(n >= 0); \
 | 
						|
                            BASIC_STACKADJ(n); \
 | 
						|
                            assert(STACK_LEVEL() <= STACK_SIZE()); \
 | 
						|
                        } while (0)
 | 
						|
#define STACK_SHRINK(n) do { \
 | 
						|
                            assert(n >= 0); \
 | 
						|
                            assert(STACK_LEVEL() >= n); \
 | 
						|
                            BASIC_STACKADJ(-(n)); \
 | 
						|
                        } while (0)
 | 
						|
#else
 | 
						|
#define PUSH(v)                BASIC_PUSH(v)
 | 
						|
#define POP()                  BASIC_POP()
 | 
						|
#define STACK_GROW(n)          BASIC_STACKADJ(n)
 | 
						|
#define STACK_SHRINK(n)        BASIC_STACKADJ(-(n))
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
/* Data access macros */
 | 
						|
#define FRAME_CO_CONSTS (_PyFrame_GetCode(frame)->co_consts)
 | 
						|
#define FRAME_CO_NAMES  (_PyFrame_GetCode(frame)->co_names)
 | 
						|
 | 
						|
/* Local variable macros */
 | 
						|
 | 
						|
#define LOCALS_ARRAY    (frame->localsplus)
 | 
						|
#define GETLOCAL(i)     (frame->localsplus[i])
 | 
						|
 | 
						|
/* The SETLOCAL() macro must not DECREF the local variable in-place and
 | 
						|
   then store the new value; it must copy the old value to a temporary
 | 
						|
   value, then store the new value, and then DECREF the temporary value.
 | 
						|
   This is because it is possible that during the DECREF the frame is
 | 
						|
   accessed by other code (e.g. a __del__ method or gc.collect()) and the
 | 
						|
   variable would be pointing to already-freed memory. */
 | 
						|
#define SETLOCAL(i, value)      do { PyObject *tmp = GETLOCAL(i); \
 | 
						|
                                     GETLOCAL(i) = value; \
 | 
						|
                                     Py_XDECREF(tmp); } while (0)
 | 
						|
 | 
						|
#define GO_TO_INSTRUCTION(op) goto PREDICT_ID(op)
 | 
						|
 | 
						|
#ifdef Py_STATS
 | 
						|
#define UPDATE_MISS_STATS(INSTNAME)                              \
 | 
						|
    do {                                                         \
 | 
						|
        STAT_INC(opcode, miss);                                  \
 | 
						|
        STAT_INC((INSTNAME), miss);                              \
 | 
						|
        /* The counter is always the first cache entry: */       \
 | 
						|
        if (ADAPTIVE_COUNTER_IS_ZERO(next_instr->cache)) {       \
 | 
						|
            STAT_INC((INSTNAME), deopt);                         \
 | 
						|
        }                                                        \
 | 
						|
    } while (0)
 | 
						|
#else
 | 
						|
#define UPDATE_MISS_STATS(INSTNAME) ((void)0)
 | 
						|
#endif
 | 
						|
 | 
						|
#define DEOPT_IF(COND, INSTNAME)                            \
 | 
						|
    if ((COND)) {                                           \
 | 
						|
        /* This is only a single jump on release builds! */ \
 | 
						|
        UPDATE_MISS_STATS((INSTNAME));                      \
 | 
						|
        assert(_PyOpcode_Deopt[opcode] == (INSTNAME));      \
 | 
						|
        GO_TO_INSTRUCTION(INSTNAME);                        \
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
#define GLOBALS() frame->f_globals
 | 
						|
#define BUILTINS() frame->f_builtins
 | 
						|
#define LOCALS() frame->f_locals
 | 
						|
#define CONSTS() _PyFrame_GetCode(frame)->co_consts
 | 
						|
#define NAMES() _PyFrame_GetCode(frame)->co_names
 | 
						|
 | 
						|
#define DTRACE_FUNCTION_ENTRY()  \
 | 
						|
    if (PyDTrace_FUNCTION_ENTRY_ENABLED()) { \
 | 
						|
        dtrace_function_entry(frame); \
 | 
						|
    }
 | 
						|
 | 
						|
#define ADAPTIVE_COUNTER_IS_ZERO(COUNTER) \
 | 
						|
    (((COUNTER) >> ADAPTIVE_BACKOFF_BITS) == 0)
 | 
						|
 | 
						|
#define ADAPTIVE_COUNTER_IS_MAX(COUNTER) \
 | 
						|
    (((COUNTER) >> ADAPTIVE_BACKOFF_BITS) == ((1 << MAX_BACKOFF_VALUE) - 1))
 | 
						|
 | 
						|
#define DECREMENT_ADAPTIVE_COUNTER(COUNTER)           \
 | 
						|
    do {                                              \
 | 
						|
        assert(!ADAPTIVE_COUNTER_IS_ZERO((COUNTER))); \
 | 
						|
        (COUNTER) -= (1 << ADAPTIVE_BACKOFF_BITS);    \
 | 
						|
    } while (0);
 | 
						|
 | 
						|
#define INCREMENT_ADAPTIVE_COUNTER(COUNTER)          \
 | 
						|
    do {                                             \
 | 
						|
        (COUNTER) += (1 << ADAPTIVE_BACKOFF_BITS);   \
 | 
						|
    } while (0);
 | 
						|
 | 
						|
#define UNBOUNDLOCAL_ERROR_MSG \
 | 
						|
    "cannot access local variable '%s' where it is not associated with a value"
 | 
						|
#define UNBOUNDFREE_ERROR_MSG \
 | 
						|
    "cannot access free variable '%s' where it is not associated with a value" \
 | 
						|
    " in enclosing scope"
 | 
						|
#define NAME_ERROR_MSG "name '%.200s' is not defined"
 | 
						|
 | 
						|
#define DECREF_INPUTS_AND_REUSE_FLOAT(left, right, dval, result) \
 | 
						|
do { \
 | 
						|
    if (Py_REFCNT(left) == 1) { \
 | 
						|
        ((PyFloatObject *)left)->ob_fval = (dval); \
 | 
						|
        _Py_DECREF_SPECIALIZED(right, _PyFloat_ExactDealloc);\
 | 
						|
        result = (left); \
 | 
						|
    } \
 | 
						|
    else if (Py_REFCNT(right) == 1)  {\
 | 
						|
        ((PyFloatObject *)right)->ob_fval = (dval); \
 | 
						|
        _Py_DECREF_NO_DEALLOC(left); \
 | 
						|
        result = (right); \
 | 
						|
    }\
 | 
						|
    else { \
 | 
						|
        result = PyFloat_FromDouble(dval); \
 | 
						|
        if ((result) == NULL) GOTO_ERROR(error); \
 | 
						|
        _Py_DECREF_NO_DEALLOC(left); \
 | 
						|
        _Py_DECREF_NO_DEALLOC(right); \
 | 
						|
    } \
 | 
						|
} while (0)
 | 
						|
 | 
						|
// If a trace function sets a new f_lineno and
 | 
						|
// *then* raises, we use the destination when searching
 | 
						|
// for an exception handler, displaying the traceback, and so on
 | 
						|
#define INSTRUMENTED_JUMP(src, dest, event) \
 | 
						|
do { \
 | 
						|
    _PyFrame_SetStackPointer(frame, stack_pointer); \
 | 
						|
    next_instr = _Py_call_instrumentation_jump(tstate, event, frame, src, dest); \
 | 
						|
    stack_pointer = _PyFrame_GetStackPointer(frame); \
 | 
						|
    if (next_instr == NULL) { \
 | 
						|
        next_instr = (dest)+1; \
 | 
						|
        goto error; \
 | 
						|
    } \
 | 
						|
} while (0);
 | 
						|
 | 
						|
typedef PyObject *(*convertion_func_ptr)(PyObject *);
 | 
						|
 | 
						|
static const convertion_func_ptr CONVERSION_FUNCTIONS[4] = {
 | 
						|
    [FVC_STR] = PyObject_Str,
 | 
						|
    [FVC_REPR] = PyObject_Repr,
 | 
						|
    [FVC_ASCII] = PyObject_ASCII
 | 
						|
};
 | 
						|
 | 
						|
// GH-89279: Force inlining by using a macro.
 | 
						|
#if defined(_MSC_VER) && SIZEOF_INT == 4
 | 
						|
#define _Py_atomic_load_relaxed_int32(ATOMIC_VAL) (assert(sizeof((ATOMIC_VAL)->_value) == 4), *((volatile int*)&((ATOMIC_VAL)->_value)))
 | 
						|
#else
 | 
						|
#define _Py_atomic_load_relaxed_int32(ATOMIC_VAL) _Py_atomic_load_relaxed(ATOMIC_VAL)
 | 
						|
#endif
 | 
						|
 | 
						|
static inline int _Py_EnterRecursivePy(PyThreadState *tstate) {
 | 
						|
    return (tstate->py_recursion_remaining-- <= 0) &&
 | 
						|
        _Py_CheckRecursiveCallPy(tstate);
 | 
						|
}
 | 
						|
 | 
						|
static inline void _Py_LeaveRecursiveCallPy(PyThreadState *tstate)  {
 | 
						|
    tstate->py_recursion_remaining++;
 | 
						|
}
 | 
						|
 | 
						|
/* Marker to specify tier 1 only instructions */
 | 
						|
#define TIER_ONE_ONLY
 | 
						|
 | 
						|
/* Marker to specify tier 2 only instructions */
 | 
						|
#define TIER_TWO_ONLY
 | 
						|
 | 
						|
/* Implementation of "macros" that modify the instruction pointer,
 | 
						|
 * stack pointer, or frame pointer.
 | 
						|
 * These need to treated differently by tier 1 and 2.
 | 
						|
 * The Tier 1 version is here; Tier 2 is inlined in ceval.c. */
 | 
						|
 | 
						|
#define LOAD_IP(OFFSET) do { \
 | 
						|
        next_instr = frame->instr_ptr + (OFFSET); \
 | 
						|
    } while (0)
 | 
						|
 | 
						|
/* There's no STORE_IP(), it's inlined by the code generator. */
 | 
						|
 | 
						|
#define LOAD_SP() \
 | 
						|
stack_pointer = _PyFrame_GetStackPointer(frame);
 | 
						|
 | 
						|
/* Tier-switching macros. */
 | 
						|
 | 
						|
#define GOTO_TIER_TWO() goto enter_tier_two;
 | 
						|
 | 
						|
#define CURRENT_OPARG() (next_uop[-1].oparg)
 | 
						|
 | 
						|
#define CURRENT_OPERAND() (next_uop[-1].operand)
 |