mirror of
				https://github.com/python/cpython.git
				synced 2025-11-04 07:31:38 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			452 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			452 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// Macros and other things needed by ceval.c, and bytecodes.c
 | 
						|
 | 
						|
/* Computed GOTOs, or
 | 
						|
       the-optimization-commonly-but-improperly-known-as-"threaded code"
 | 
						|
   using gcc's labels-as-values extension
 | 
						|
   (http://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html).
 | 
						|
 | 
						|
   The traditional bytecode evaluation loop uses a "switch" statement, which
 | 
						|
   decent compilers will optimize as a single indirect branch instruction
 | 
						|
   combined with a lookup table of jump addresses. However, since the
 | 
						|
   indirect jump instruction is shared by all opcodes, the CPU will have a
 | 
						|
   hard time making the right prediction for where to jump next (actually,
 | 
						|
   it will be always wrong except in the uncommon case of a sequence of
 | 
						|
   several identical opcodes).
 | 
						|
 | 
						|
   "Threaded code" in contrast, uses an explicit jump table and an explicit
 | 
						|
   indirect jump instruction at the end of each opcode. Since the jump
 | 
						|
   instruction is at a different address for each opcode, the CPU will make a
 | 
						|
   separate prediction for each of these instructions, which is equivalent to
 | 
						|
   predicting the second opcode of each opcode pair. These predictions have
 | 
						|
   a much better chance to turn out valid, especially in small bytecode loops.
 | 
						|
 | 
						|
   A mispredicted branch on a modern CPU flushes the whole pipeline and
 | 
						|
   can cost several CPU cycles (depending on the pipeline depth),
 | 
						|
   and potentially many more instructions (depending on the pipeline width).
 | 
						|
   A correctly predicted branch, however, is nearly free.
 | 
						|
 | 
						|
   At the time of this writing, the "threaded code" version is up to 15-20%
 | 
						|
   faster than the normal "switch" version, depending on the compiler and the
 | 
						|
   CPU architecture.
 | 
						|
 | 
						|
   NOTE: care must be taken that the compiler doesn't try to "optimize" the
 | 
						|
   indirect jumps by sharing them between all opcodes. Such optimizations
 | 
						|
   can be disabled on gcc by using the -fno-gcse flag (or possibly
 | 
						|
   -fno-crossjumping).
 | 
						|
*/
 | 
						|
 | 
						|
/* Use macros rather than inline functions, to make it as clear as possible
 | 
						|
 * to the C compiler that the tracing check is a simple test then branch.
 | 
						|
 * We want to be sure that the compiler knows this before it generates
 | 
						|
 * the CFG.
 | 
						|
 */
 | 
						|
 | 
						|
#ifdef WITH_DTRACE
 | 
						|
#define OR_DTRACE_LINE | (PyDTrace_LINE_ENABLED() ? 255 : 0)
 | 
						|
#else
 | 
						|
#define OR_DTRACE_LINE
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef HAVE_COMPUTED_GOTOS
 | 
						|
    #ifndef USE_COMPUTED_GOTOS
 | 
						|
    #define USE_COMPUTED_GOTOS 1
 | 
						|
    #endif
 | 
						|
#else
 | 
						|
    #if defined(USE_COMPUTED_GOTOS) && USE_COMPUTED_GOTOS
 | 
						|
    #error "Computed gotos are not supported on this compiler."
 | 
						|
    #endif
 | 
						|
    #undef USE_COMPUTED_GOTOS
 | 
						|
    #define USE_COMPUTED_GOTOS 0
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef Py_STATS
 | 
						|
#define INSTRUCTION_STATS(op) \
 | 
						|
    do { \
 | 
						|
        OPCODE_EXE_INC(op); \
 | 
						|
        if (_Py_stats) _Py_stats->opcode_stats[lastopcode].pair_count[op]++; \
 | 
						|
        lastopcode = op; \
 | 
						|
    } while (0)
 | 
						|
#else
 | 
						|
#define INSTRUCTION_STATS(op) ((void)0)
 | 
						|
#endif
 | 
						|
 | 
						|
#define TAIL_CALL_PARAMS _PyInterpreterFrame *frame, _PyStackRef *stack_pointer, PyThreadState *tstate, _Py_CODEUNIT *next_instr, int oparg
 | 
						|
#define TAIL_CALL_ARGS frame, stack_pointer, tstate, next_instr, oparg
 | 
						|
 | 
						|
#if Py_TAIL_CALL_INTERP
 | 
						|
    // Note: [[clang::musttail]] works for GCC 15, but not __attribute__((musttail)) at the moment.
 | 
						|
#   define Py_MUSTTAIL [[clang::musttail]]
 | 
						|
#   define Py_PRESERVE_NONE_CC __attribute__((preserve_none))
 | 
						|
    Py_PRESERVE_NONE_CC typedef PyObject* (*py_tail_call_funcptr)(TAIL_CALL_PARAMS);
 | 
						|
 | 
						|
#   define TARGET(op) Py_PRESERVE_NONE_CC PyObject *_TAIL_CALL_##op(TAIL_CALL_PARAMS)
 | 
						|
#   define DISPATCH_GOTO() \
 | 
						|
        do { \
 | 
						|
            Py_MUSTTAIL return (INSTRUCTION_TABLE[opcode])(TAIL_CALL_ARGS); \
 | 
						|
        } while (0)
 | 
						|
#   define JUMP_TO_LABEL(name) \
 | 
						|
        do { \
 | 
						|
            Py_MUSTTAIL return (_TAIL_CALL_##name)(TAIL_CALL_ARGS); \
 | 
						|
        } while (0)
 | 
						|
#   define JUMP_TO_PREDICTED(name) \
 | 
						|
        do { \
 | 
						|
            Py_MUSTTAIL return (_TAIL_CALL_##name)(frame, stack_pointer, tstate, this_instr, oparg); \
 | 
						|
        } while (0)
 | 
						|
#    define LABEL(name) TARGET(name)
 | 
						|
#elif USE_COMPUTED_GOTOS
 | 
						|
#  define TARGET(op) TARGET_##op:
 | 
						|
#  define DISPATCH_GOTO() goto *opcode_targets[opcode]
 | 
						|
#  define JUMP_TO_LABEL(name) goto name;
 | 
						|
#  define JUMP_TO_PREDICTED(name) goto PREDICTED_##name;
 | 
						|
#  define LABEL(name) name:
 | 
						|
#else
 | 
						|
#  define TARGET(op) case op: TARGET_##op:
 | 
						|
#  define DISPATCH_GOTO() goto dispatch_opcode
 | 
						|
#  define JUMP_TO_LABEL(name) goto name;
 | 
						|
#  define JUMP_TO_PREDICTED(name) goto PREDICTED_##name;
 | 
						|
#  define LABEL(name) name:
 | 
						|
#endif
 | 
						|
 | 
						|
/* PRE_DISPATCH_GOTO() does lltrace if enabled. Normally a no-op */
 | 
						|
#ifdef Py_DEBUG
 | 
						|
#define PRE_DISPATCH_GOTO() if (frame->lltrace >= 5) { \
 | 
						|
    lltrace_instruction(frame, stack_pointer, next_instr, opcode, oparg); }
 | 
						|
#else
 | 
						|
#define PRE_DISPATCH_GOTO() ((void)0)
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef Py_DEBUG
 | 
						|
#define LLTRACE_RESUME_FRAME() \
 | 
						|
do { \
 | 
						|
    _PyFrame_SetStackPointer(frame, stack_pointer); \
 | 
						|
    int lltrace = maybe_lltrace_resume_frame(frame, GLOBALS()); \
 | 
						|
    stack_pointer = _PyFrame_GetStackPointer(frame); \
 | 
						|
    if (lltrace < 0) { \
 | 
						|
        JUMP_TO_LABEL(exit_unwind); \
 | 
						|
    } \
 | 
						|
    frame->lltrace = lltrace; \
 | 
						|
} while (0)
 | 
						|
#else
 | 
						|
#define LLTRACE_RESUME_FRAME() ((void)0)
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef Py_GIL_DISABLED
 | 
						|
#define QSBR_QUIESCENT_STATE(tstate) _Py_qsbr_quiescent_state(((_PyThreadStateImpl *)tstate)->qsbr)
 | 
						|
#else
 | 
						|
#define QSBR_QUIESCENT_STATE(tstate)
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
/* Do interpreter dispatch accounting for tracing and instrumentation */
 | 
						|
#define DISPATCH() \
 | 
						|
    { \
 | 
						|
        assert(frame->stackpointer == NULL); \
 | 
						|
        NEXTOPARG(); \
 | 
						|
        PRE_DISPATCH_GOTO(); \
 | 
						|
        DISPATCH_GOTO(); \
 | 
						|
    }
 | 
						|
 | 
						|
#define DISPATCH_SAME_OPARG() \
 | 
						|
    { \
 | 
						|
        opcode = next_instr->op.code; \
 | 
						|
        PRE_DISPATCH_GOTO(); \
 | 
						|
        DISPATCH_GOTO(); \
 | 
						|
    }
 | 
						|
 | 
						|
#define DISPATCH_INLINED(NEW_FRAME)                     \
 | 
						|
    do {                                                \
 | 
						|
        assert(tstate->interp->eval_frame == NULL);     \
 | 
						|
        _PyFrame_SetStackPointer(frame, stack_pointer); \
 | 
						|
        assert((NEW_FRAME)->previous == frame);         \
 | 
						|
        frame = tstate->current_frame = (NEW_FRAME);     \
 | 
						|
        CALL_STAT_INC(inlined_py_calls);                \
 | 
						|
        JUMP_TO_LABEL(start_frame);                      \
 | 
						|
    } while (0)
 | 
						|
 | 
						|
/* Tuple access macros */
 | 
						|
 | 
						|
#ifndef Py_DEBUG
 | 
						|
#define GETITEM(v, i) PyTuple_GET_ITEM((v), (i))
 | 
						|
#else
 | 
						|
static inline PyObject *
 | 
						|
GETITEM(PyObject *v, Py_ssize_t i) {
 | 
						|
    assert(PyTuple_Check(v));
 | 
						|
    assert(i >= 0);
 | 
						|
    assert(i < PyTuple_GET_SIZE(v));
 | 
						|
    return PyTuple_GET_ITEM(v, i);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/* Code access macros */
 | 
						|
 | 
						|
/* The integer overflow is checked by an assertion below. */
 | 
						|
#define INSTR_OFFSET() ((int)(next_instr - _PyFrame_GetBytecode(frame)))
 | 
						|
#define NEXTOPARG()  do { \
 | 
						|
        _Py_CODEUNIT word  = {.cache = FT_ATOMIC_LOAD_UINT16_RELAXED(*(uint16_t*)next_instr)}; \
 | 
						|
        opcode = word.op.code; \
 | 
						|
        oparg = word.op.arg; \
 | 
						|
    } while (0)
 | 
						|
 | 
						|
/* JUMPBY makes the generator identify the instruction as a jump. SKIP_OVER is
 | 
						|
 * for advancing to the next instruction, taking into account cache entries
 | 
						|
 * and skipped instructions.
 | 
						|
 */
 | 
						|
#define JUMPBY(x)       (next_instr += (x))
 | 
						|
#define SKIP_OVER(x)    (next_instr += (x))
 | 
						|
 | 
						|
 | 
						|
/* Stack manipulation macros */
 | 
						|
 | 
						|
/* The stack can grow at most MAXINT deep, as co_nlocals and
 | 
						|
   co_stacksize are ints. */
 | 
						|
#define STACK_LEVEL()     ((int)(stack_pointer - _PyFrame_Stackbase(frame)))
 | 
						|
#define STACK_SIZE()      (_PyFrame_GetCode(frame)->co_stacksize)
 | 
						|
#define EMPTY()           (STACK_LEVEL() == 0)
 | 
						|
#define TOP()             (stack_pointer[-1])
 | 
						|
#define SECOND()          (stack_pointer[-2])
 | 
						|
#define THIRD()           (stack_pointer[-3])
 | 
						|
#define FOURTH()          (stack_pointer[-4])
 | 
						|
#define PEEK(n)           (stack_pointer[-(n)])
 | 
						|
#define POKE(n, v)        (stack_pointer[-(n)] = (v))
 | 
						|
#define SET_TOP(v)        (stack_pointer[-1] = (v))
 | 
						|
#define SET_SECOND(v)     (stack_pointer[-2] = (v))
 | 
						|
#define BASIC_STACKADJ(n) (stack_pointer += n)
 | 
						|
#define BASIC_PUSH(v)     (*stack_pointer++ = (v))
 | 
						|
#define BASIC_POP()       (*--stack_pointer)
 | 
						|
 | 
						|
#ifdef Py_DEBUG
 | 
						|
#define PUSH(v)         do { \
 | 
						|
                            BASIC_PUSH(v); \
 | 
						|
                            assert(STACK_LEVEL() <= STACK_SIZE()); \
 | 
						|
                        } while (0)
 | 
						|
#define POP()           (assert(STACK_LEVEL() > 0), BASIC_POP())
 | 
						|
#define STACK_GROW(n)   do { \
 | 
						|
                            assert(n >= 0); \
 | 
						|
                            BASIC_STACKADJ(n); \
 | 
						|
                            assert(STACK_LEVEL() <= STACK_SIZE()); \
 | 
						|
                        } while (0)
 | 
						|
#define STACK_SHRINK(n) do { \
 | 
						|
                            assert(n >= 0); \
 | 
						|
                            assert(STACK_LEVEL() >= n); \
 | 
						|
                            BASIC_STACKADJ(-(n)); \
 | 
						|
                        } while (0)
 | 
						|
#else
 | 
						|
#define PUSH(v)                BASIC_PUSH(v)
 | 
						|
#define POP()                  BASIC_POP()
 | 
						|
#define STACK_GROW(n)          BASIC_STACKADJ(n)
 | 
						|
#define STACK_SHRINK(n)        BASIC_STACKADJ(-(n))
 | 
						|
#endif
 | 
						|
 | 
						|
#define WITHIN_STACK_BOUNDS() \
 | 
						|
   (frame->owner == FRAME_OWNED_BY_INTERPRETER || (STACK_LEVEL() >= 0 && STACK_LEVEL() <= STACK_SIZE()))
 | 
						|
 | 
						|
/* Data access macros */
 | 
						|
#define FRAME_CO_CONSTS (_PyFrame_GetCode(frame)->co_consts)
 | 
						|
#define FRAME_CO_NAMES  (_PyFrame_GetCode(frame)->co_names)
 | 
						|
 | 
						|
/* Local variable macros */
 | 
						|
 | 
						|
#define LOCALS_ARRAY    (frame->localsplus)
 | 
						|
#define GETLOCAL(i)     (frame->localsplus[i])
 | 
						|
 | 
						|
 | 
						|
#ifdef Py_STATS
 | 
						|
#define UPDATE_MISS_STATS(INSTNAME)                              \
 | 
						|
    do {                                                         \
 | 
						|
        STAT_INC(opcode, miss);                                  \
 | 
						|
        STAT_INC((INSTNAME), miss);                              \
 | 
						|
        /* The counter is always the first cache entry: */       \
 | 
						|
        if (ADAPTIVE_COUNTER_TRIGGERS(next_instr->cache)) {       \
 | 
						|
            STAT_INC((INSTNAME), deopt);                         \
 | 
						|
        }                                                        \
 | 
						|
    } while (0)
 | 
						|
#else
 | 
						|
#define UPDATE_MISS_STATS(INSTNAME) ((void)0)
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
// Try to lock an object in the free threading build, if it's not already
 | 
						|
// locked. Use with a DEOPT_IF() to deopt if the object is already locked.
 | 
						|
// These are no-ops in the default GIL build. The general pattern is:
 | 
						|
//
 | 
						|
// DEOPT_IF(!LOCK_OBJECT(op));
 | 
						|
// if (/* condition fails */) {
 | 
						|
//     UNLOCK_OBJECT(op);
 | 
						|
//     DEOPT_IF(true);
 | 
						|
//  }
 | 
						|
//  ...
 | 
						|
//  UNLOCK_OBJECT(op);
 | 
						|
//
 | 
						|
// NOTE: The object must be unlocked on every exit code path and you should
 | 
						|
// avoid any potentially escaping calls (like PyStackRef_CLOSE) while the
 | 
						|
// object is locked.
 | 
						|
#ifdef Py_GIL_DISABLED
 | 
						|
#  define LOCK_OBJECT(op) PyMutex_LockFast(&(_PyObject_CAST(op))->ob_mutex)
 | 
						|
#  define UNLOCK_OBJECT(op) PyMutex_Unlock(&(_PyObject_CAST(op))->ob_mutex)
 | 
						|
#else
 | 
						|
#  define LOCK_OBJECT(op) (1)
 | 
						|
#  define UNLOCK_OBJECT(op) ((void)0)
 | 
						|
#endif
 | 
						|
 | 
						|
#define GLOBALS() frame->f_globals
 | 
						|
#define BUILTINS() frame->f_builtins
 | 
						|
#define LOCALS() frame->f_locals
 | 
						|
#define CONSTS() _PyFrame_GetCode(frame)->co_consts
 | 
						|
#define NAMES() _PyFrame_GetCode(frame)->co_names
 | 
						|
 | 
						|
#define DTRACE_FUNCTION_ENTRY()  \
 | 
						|
    if (PyDTrace_FUNCTION_ENTRY_ENABLED()) { \
 | 
						|
        dtrace_function_entry(frame); \
 | 
						|
    }
 | 
						|
 | 
						|
/* This takes a uint16_t instead of a _Py_BackoffCounter,
 | 
						|
 * because it is used directly on the cache entry in generated code,
 | 
						|
 * which is always an integral type. */
 | 
						|
#define ADAPTIVE_COUNTER_TRIGGERS(COUNTER) \
 | 
						|
    backoff_counter_triggers(forge_backoff_counter((COUNTER)))
 | 
						|
 | 
						|
#define ADVANCE_ADAPTIVE_COUNTER(COUNTER) \
 | 
						|
    do { \
 | 
						|
        (COUNTER) = advance_backoff_counter((COUNTER)); \
 | 
						|
    } while (0);
 | 
						|
 | 
						|
#define PAUSE_ADAPTIVE_COUNTER(COUNTER) \
 | 
						|
    do { \
 | 
						|
        (COUNTER) = pause_backoff_counter((COUNTER)); \
 | 
						|
    } while (0);
 | 
						|
 | 
						|
#ifdef ENABLE_SPECIALIZATION_FT
 | 
						|
/* Multiple threads may execute these concurrently if thread-local bytecode is
 | 
						|
 * disabled and they all execute the main copy of the bytecode. Specialization
 | 
						|
 * is disabled in that case so the value is unused, but the RMW cycle should be
 | 
						|
 * free of data races.
 | 
						|
 */
 | 
						|
#define RECORD_BRANCH_TAKEN(bitset, flag) \
 | 
						|
    FT_ATOMIC_STORE_UINT16_RELAXED(       \
 | 
						|
        bitset, (FT_ATOMIC_LOAD_UINT16_RELAXED(bitset) << 1) | (flag))
 | 
						|
#else
 | 
						|
#define RECORD_BRANCH_TAKEN(bitset, flag)
 | 
						|
#endif
 | 
						|
 | 
						|
#define UNBOUNDLOCAL_ERROR_MSG \
 | 
						|
    "cannot access local variable '%s' where it is not associated with a value"
 | 
						|
#define UNBOUNDFREE_ERROR_MSG \
 | 
						|
    "cannot access free variable '%s' where it is not associated with a value" \
 | 
						|
    " in enclosing scope"
 | 
						|
#define NAME_ERROR_MSG "name '%.200s' is not defined"
 | 
						|
 | 
						|
// If a trace function sets a new f_lineno and
 | 
						|
// *then* raises, we use the destination when searching
 | 
						|
// for an exception handler, displaying the traceback, and so on
 | 
						|
#define INSTRUMENTED_JUMP(src, dest, event) \
 | 
						|
do { \
 | 
						|
    if (tstate->tracing) {\
 | 
						|
        next_instr = dest; \
 | 
						|
    } else { \
 | 
						|
        _PyFrame_SetStackPointer(frame, stack_pointer); \
 | 
						|
        next_instr = _Py_call_instrumentation_jump(this_instr, tstate, event, frame, src, dest); \
 | 
						|
        stack_pointer = _PyFrame_GetStackPointer(frame); \
 | 
						|
        if (next_instr == NULL) { \
 | 
						|
            next_instr = (dest)+1; \
 | 
						|
            JUMP_TO_LABEL(error); \
 | 
						|
        } \
 | 
						|
    } \
 | 
						|
} while (0);
 | 
						|
 | 
						|
 | 
						|
static inline int _Py_EnterRecursivePy(PyThreadState *tstate) {
 | 
						|
    return (tstate->py_recursion_remaining-- <= 0) &&
 | 
						|
        _Py_CheckRecursiveCallPy(tstate);
 | 
						|
}
 | 
						|
 | 
						|
static inline void _Py_LeaveRecursiveCallPy(PyThreadState *tstate)  {
 | 
						|
    tstate->py_recursion_remaining++;
 | 
						|
}
 | 
						|
 | 
						|
/* Implementation of "macros" that modify the instruction pointer,
 | 
						|
 * stack pointer, or frame pointer.
 | 
						|
 * These need to treated differently by tier 1 and 2.
 | 
						|
 * The Tier 1 version is here; Tier 2 is inlined in ceval.c. */
 | 
						|
 | 
						|
#define LOAD_IP(OFFSET) do { \
 | 
						|
        next_instr = frame->instr_ptr + (OFFSET); \
 | 
						|
    } while (0)
 | 
						|
 | 
						|
/* There's no STORE_IP(), it's inlined by the code generator. */
 | 
						|
 | 
						|
#define LOAD_SP() \
 | 
						|
stack_pointer = _PyFrame_GetStackPointer(frame)
 | 
						|
 | 
						|
#define SAVE_SP() \
 | 
						|
_PyFrame_SetStackPointer(frame, stack_pointer)
 | 
						|
 | 
						|
/* Tier-switching macros. */
 | 
						|
 | 
						|
#ifdef _Py_JIT
 | 
						|
#define GOTO_TIER_TWO(EXECUTOR)                        \
 | 
						|
do {                                                   \
 | 
						|
    OPT_STAT_INC(traces_executed);                     \
 | 
						|
    _PyExecutorObject *_executor = (EXECUTOR);         \
 | 
						|
    jit_func jitted = _executor->jit_code;             \
 | 
						|
    /* Keep the shim frame alive via the executor: */  \
 | 
						|
    Py_INCREF(_executor);                              \
 | 
						|
    next_instr = jitted(frame, stack_pointer, tstate); \
 | 
						|
    Py_DECREF(_executor);                              \
 | 
						|
    Py_CLEAR(tstate->previous_executor);               \
 | 
						|
    frame = tstate->current_frame;                     \
 | 
						|
    stack_pointer = _PyFrame_GetStackPointer(frame);   \
 | 
						|
    if (next_instr == NULL) {                          \
 | 
						|
        next_instr = frame->instr_ptr;                 \
 | 
						|
        JUMP_TO_LABEL(error);                          \
 | 
						|
    }                                                  \
 | 
						|
    DISPATCH();                                        \
 | 
						|
} while (0)
 | 
						|
#else
 | 
						|
#define GOTO_TIER_TWO(EXECUTOR) \
 | 
						|
do { \
 | 
						|
    OPT_STAT_INC(traces_executed); \
 | 
						|
    next_uop = (EXECUTOR)->trace; \
 | 
						|
    assert(next_uop->opcode == _START_EXECUTOR); \
 | 
						|
    goto enter_tier_two; \
 | 
						|
} while (0)
 | 
						|
#endif
 | 
						|
 | 
						|
#define GOTO_TIER_ONE(TARGET)                                         \
 | 
						|
    do                                                                \
 | 
						|
    {                                                                 \
 | 
						|
        next_instr = (TARGET);                                        \
 | 
						|
        OPT_HIST(trace_uop_execution_counter, trace_run_length_hist); \
 | 
						|
        _PyFrame_SetStackPointer(frame, stack_pointer);               \
 | 
						|
        Py_CLEAR(tstate->previous_executor);                          \
 | 
						|
        stack_pointer = _PyFrame_GetStackPointer(frame);              \
 | 
						|
        if (next_instr == NULL)                                       \
 | 
						|
        {                                                             \
 | 
						|
            next_instr = frame->instr_ptr;                            \
 | 
						|
            goto error;                                               \
 | 
						|
        }                                                             \
 | 
						|
        DISPATCH();                                                   \
 | 
						|
    } while (0)
 | 
						|
 | 
						|
#define CURRENT_OPARG()    (next_uop[-1].oparg)
 | 
						|
#define CURRENT_OPERAND0() (next_uop[-1].operand0)
 | 
						|
#define CURRENT_OPERAND1() (next_uop[-1].operand1)
 | 
						|
#define CURRENT_TARGET()   (next_uop[-1].target)
 | 
						|
 | 
						|
#define JUMP_TO_JUMP_TARGET() goto jump_to_jump_target
 | 
						|
#define JUMP_TO_ERROR() goto jump_to_error_target
 | 
						|
 | 
						|
/* Stackref macros */
 | 
						|
 | 
						|
/* How much scratch space to give stackref to PyObject* conversion. */
 | 
						|
#define MAX_STACKREF_SCRATCH 10
 | 
						|
 | 
						|
#define STACKREFS_TO_PYOBJECTS(ARGS, ARG_COUNT, NAME) \
 | 
						|
    /* +1 because vectorcall might use -1 to write self */ \
 | 
						|
    PyObject *NAME##_temp[MAX_STACKREF_SCRATCH+1]; \
 | 
						|
    PyObject **NAME = _PyObjectArray_FromStackRefArray(ARGS, ARG_COUNT, NAME##_temp + 1);
 | 
						|
 | 
						|
#define STACKREFS_TO_PYOBJECTS_CLEANUP(NAME) \
 | 
						|
    /* +1 because we +1 previously */ \
 | 
						|
    _PyObjectArray_Free(NAME - 1, NAME##_temp);
 | 
						|
 | 
						|
#define CONVERSION_FAILED(NAME) ((NAME) == NULL)
 |