mirror of
				https://github.com/python/cpython.git
				synced 2025-10-31 05:31:20 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			657 lines
		
	
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			657 lines
		
	
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2008-2016 Stefan Krah. All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  *
 | |
|  * 1. Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  *
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in the
 | |
|  *    documentation and/or other materials provided with the distribution.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
 | |
|  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
|  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 | |
|  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
|  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 | |
|  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | |
|  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | |
|  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 | |
|  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 | |
|  * SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| 
 | |
| #include "mpdecimal.h"
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <assert.h>
 | |
| #include "constants.h"
 | |
| #include "typearith.h"
 | |
| #include "basearith.h"
 | |
| 
 | |
| 
 | |
| /*********************************************************************/
 | |
| /*                   Calculations in base MPD_RADIX                  */
 | |
| /*********************************************************************/
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Knuth, TAOCP, Volume 2, 4.3.1:
 | |
|  *    w := sum of u (len m) and v (len n)
 | |
|  *    n > 0 and m >= n
 | |
|  * The calling function has to handle a possible final carry.
 | |
|  */
 | |
| mpd_uint_t
 | |
| _mpd_baseadd(mpd_uint_t *w, const mpd_uint_t *u, const mpd_uint_t *v,
 | |
|              mpd_size_t m, mpd_size_t n)
 | |
| {
 | |
|     mpd_uint_t s;
 | |
|     mpd_uint_t carry = 0;
 | |
|     mpd_size_t i;
 | |
| 
 | |
|     assert(n > 0 && m >= n);
 | |
| 
 | |
|     /* add n members of u and v */
 | |
|     for (i = 0; i < n; i++) {
 | |
|         s = u[i] + (v[i] + carry);
 | |
|         carry = (s < u[i]) | (s >= MPD_RADIX);
 | |
|         w[i] = carry ? s-MPD_RADIX : s;
 | |
|     }
 | |
|     /* if there is a carry, propagate it */
 | |
|     for (; carry && i < m; i++) {
 | |
|         s = u[i] + carry;
 | |
|         carry = (s == MPD_RADIX);
 | |
|         w[i] = carry ? 0 : s;
 | |
|     }
 | |
|     /* copy the rest of u */
 | |
|     for (; i < m; i++) {
 | |
|         w[i] = u[i];
 | |
|     }
 | |
| 
 | |
|     return carry;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add the contents of u to w. Carries are propagated further. The caller
 | |
|  * has to make sure that w is big enough.
 | |
|  */
 | |
| void
 | |
| _mpd_baseaddto(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n)
 | |
| {
 | |
|     mpd_uint_t s;
 | |
|     mpd_uint_t carry = 0;
 | |
|     mpd_size_t i;
 | |
| 
 | |
|     if (n == 0) return;
 | |
| 
 | |
|     /* add n members of u to w */
 | |
|     for (i = 0; i < n; i++) {
 | |
|         s = w[i] + (u[i] + carry);
 | |
|         carry = (s < w[i]) | (s >= MPD_RADIX);
 | |
|         w[i] = carry ? s-MPD_RADIX : s;
 | |
|     }
 | |
|     /* if there is a carry, propagate it */
 | |
|     for (; carry; i++) {
 | |
|         s = w[i] + carry;
 | |
|         carry = (s == MPD_RADIX);
 | |
|         w[i] = carry ? 0 : s;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add v to w (len m). The calling function has to handle a possible
 | |
|  * final carry. Assumption: m > 0.
 | |
|  */
 | |
| mpd_uint_t
 | |
| _mpd_shortadd(mpd_uint_t *w, mpd_size_t m, mpd_uint_t v)
 | |
| {
 | |
|     mpd_uint_t s;
 | |
|     mpd_uint_t carry;
 | |
|     mpd_size_t i;
 | |
| 
 | |
|     assert(m > 0);
 | |
| 
 | |
|     /* add v to w */
 | |
|     s = w[0] + v;
 | |
|     carry = (s < v) | (s >= MPD_RADIX);
 | |
|     w[0] = carry ? s-MPD_RADIX : s;
 | |
| 
 | |
|     /* if there is a carry, propagate it */
 | |
|     for (i = 1; carry && i < m; i++) {
 | |
|         s = w[i] + carry;
 | |
|         carry = (s == MPD_RADIX);
 | |
|         w[i] = carry ? 0 : s;
 | |
|     }
 | |
| 
 | |
|     return carry;
 | |
| }
 | |
| 
 | |
| /* Increment u. The calling function has to handle a possible carry. */
 | |
| mpd_uint_t
 | |
| _mpd_baseincr(mpd_uint_t *u, mpd_size_t n)
 | |
| {
 | |
|     mpd_uint_t s;
 | |
|     mpd_uint_t carry = 1;
 | |
|     mpd_size_t i;
 | |
| 
 | |
|     assert(n > 0);
 | |
| 
 | |
|     /* if there is a carry, propagate it */
 | |
|     for (i = 0; carry && i < n; i++) {
 | |
|         s = u[i] + carry;
 | |
|         carry = (s == MPD_RADIX);
 | |
|         u[i] = carry ? 0 : s;
 | |
|     }
 | |
| 
 | |
|     return carry;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Knuth, TAOCP, Volume 2, 4.3.1:
 | |
|  *     w := difference of u (len m) and v (len n).
 | |
|  *     number in u >= number in v;
 | |
|  */
 | |
| void
 | |
| _mpd_basesub(mpd_uint_t *w, const mpd_uint_t *u, const mpd_uint_t *v,
 | |
|              mpd_size_t m, mpd_size_t n)
 | |
| {
 | |
|     mpd_uint_t d;
 | |
|     mpd_uint_t borrow = 0;
 | |
|     mpd_size_t i;
 | |
| 
 | |
|     assert(m > 0 && n > 0);
 | |
| 
 | |
|     /* subtract n members of v from u */
 | |
|     for (i = 0; i < n; i++) {
 | |
|         d = u[i] - (v[i] + borrow);
 | |
|         borrow = (u[i] < d);
 | |
|         w[i] = borrow ? d + MPD_RADIX : d;
 | |
|     }
 | |
|     /* if there is a borrow, propagate it */
 | |
|     for (; borrow && i < m; i++) {
 | |
|         d = u[i] - borrow;
 | |
|         borrow = (u[i] == 0);
 | |
|         w[i] = borrow ? MPD_RADIX-1 : d;
 | |
|     }
 | |
|     /* copy the rest of u */
 | |
|     for (; i < m; i++) {
 | |
|         w[i] = u[i];
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Subtract the contents of u from w. w is larger than u. Borrows are
 | |
|  * propagated further, but eventually w can absorb the final borrow.
 | |
|  */
 | |
| void
 | |
| _mpd_basesubfrom(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n)
 | |
| {
 | |
|     mpd_uint_t d;
 | |
|     mpd_uint_t borrow = 0;
 | |
|     mpd_size_t i;
 | |
| 
 | |
|     if (n == 0) return;
 | |
| 
 | |
|     /* subtract n members of u from w */
 | |
|     for (i = 0; i < n; i++) {
 | |
|         d = w[i] - (u[i] + borrow);
 | |
|         borrow = (w[i] < d);
 | |
|         w[i] = borrow ? d + MPD_RADIX : d;
 | |
|     }
 | |
|     /* if there is a borrow, propagate it */
 | |
|     for (; borrow; i++) {
 | |
|         d = w[i] - borrow;
 | |
|         borrow = (w[i] == 0);
 | |
|         w[i] = borrow ? MPD_RADIX-1 : d;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* w := product of u (len n) and v (single word) */
 | |
| void
 | |
| _mpd_shortmul(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n, mpd_uint_t v)
 | |
| {
 | |
|     mpd_uint_t hi, lo;
 | |
|     mpd_uint_t carry = 0;
 | |
|     mpd_size_t i;
 | |
| 
 | |
|     assert(n > 0);
 | |
| 
 | |
|     for (i=0; i < n; i++) {
 | |
| 
 | |
|         _mpd_mul_words(&hi, &lo, u[i], v);
 | |
|         lo = carry + lo;
 | |
|         if (lo < carry) hi++;
 | |
| 
 | |
|         _mpd_div_words_r(&carry, &w[i], hi, lo);
 | |
|     }
 | |
|     w[i] = carry;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Knuth, TAOCP, Volume 2, 4.3.1:
 | |
|  *     w := product of u (len m) and v (len n)
 | |
|  *     w must be initialized to zero
 | |
|  */
 | |
| void
 | |
| _mpd_basemul(mpd_uint_t *w, const mpd_uint_t *u, const mpd_uint_t *v,
 | |
|              mpd_size_t m, mpd_size_t n)
 | |
| {
 | |
|     mpd_uint_t hi, lo;
 | |
|     mpd_uint_t carry;
 | |
|     mpd_size_t i, j;
 | |
| 
 | |
|     assert(m > 0 && n > 0);
 | |
| 
 | |
|     for (j=0; j < n; j++) {
 | |
|         carry = 0;
 | |
|         for (i=0; i < m; i++) {
 | |
| 
 | |
|             _mpd_mul_words(&hi, &lo, u[i], v[j]);
 | |
|             lo = w[i+j] + lo;
 | |
|             if (lo < w[i+j]) hi++;
 | |
|             lo = carry + lo;
 | |
|             if (lo < carry) hi++;
 | |
| 
 | |
|             _mpd_div_words_r(&carry, &w[i+j], hi, lo);
 | |
|         }
 | |
|         w[j+m] = carry;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Knuth, TAOCP Volume 2, 4.3.1, exercise 16:
 | |
|  *     w := quotient of u (len n) divided by a single word v
 | |
|  */
 | |
| mpd_uint_t
 | |
| _mpd_shortdiv(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n, mpd_uint_t v)
 | |
| {
 | |
|     mpd_uint_t hi, lo;
 | |
|     mpd_uint_t rem = 0;
 | |
|     mpd_size_t i;
 | |
| 
 | |
|     assert(n > 0);
 | |
| 
 | |
|     for (i=n-1; i != MPD_SIZE_MAX; i--) {
 | |
| 
 | |
|         _mpd_mul_words(&hi, &lo, rem, MPD_RADIX);
 | |
|         lo = u[i] + lo;
 | |
|         if (lo < u[i]) hi++;
 | |
| 
 | |
|         _mpd_div_words(&w[i], &rem, hi, lo, v);
 | |
|     }
 | |
| 
 | |
|     return rem;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Knuth, TAOCP Volume 2, 4.3.1:
 | |
|  *     q, r := quotient and remainder of uconst (len nplusm)
 | |
|  *             divided by vconst (len n)
 | |
|  *     nplusm >= n
 | |
|  *
 | |
|  * If r is not NULL, r will contain the remainder. If r is NULL, the
 | |
|  * return value indicates if there is a remainder: 1 for true, 0 for
 | |
|  * false.  A return value of -1 indicates an error.
 | |
|  */
 | |
| int
 | |
| _mpd_basedivmod(mpd_uint_t *q, mpd_uint_t *r,
 | |
|                 const mpd_uint_t *uconst, const mpd_uint_t *vconst,
 | |
|                 mpd_size_t nplusm, mpd_size_t n)
 | |
| {
 | |
|     mpd_uint_t ustatic[MPD_MINALLOC_MAX];
 | |
|     mpd_uint_t vstatic[MPD_MINALLOC_MAX];
 | |
|     mpd_uint_t *u = ustatic;
 | |
|     mpd_uint_t *v = vstatic;
 | |
|     mpd_uint_t d, qhat, rhat, w2[2];
 | |
|     mpd_uint_t hi, lo, x;
 | |
|     mpd_uint_t carry;
 | |
|     mpd_size_t i, j, m;
 | |
|     int retval = 0;
 | |
| 
 | |
|     assert(n > 1 && nplusm >= n);
 | |
|     m = sub_size_t(nplusm, n);
 | |
| 
 | |
|     /* D1: normalize */
 | |
|     d = MPD_RADIX / (vconst[n-1] + 1);
 | |
| 
 | |
|     if (nplusm >= MPD_MINALLOC_MAX) {
 | |
|         if ((u = mpd_alloc(nplusm+1, sizeof *u)) == NULL) {
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
|     if (n >= MPD_MINALLOC_MAX) {
 | |
|         if ((v = mpd_alloc(n+1, sizeof *v)) == NULL) {
 | |
|             mpd_free(u);
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     _mpd_shortmul(u, uconst, nplusm, d);
 | |
|     _mpd_shortmul(v, vconst, n, d);
 | |
| 
 | |
|     /* D2: loop */
 | |
|     for (j=m; j != MPD_SIZE_MAX; j--) {
 | |
| 
 | |
|         /* D3: calculate qhat and rhat */
 | |
|         rhat = _mpd_shortdiv(w2, u+j+n-1, 2, v[n-1]);
 | |
|         qhat = w2[1] * MPD_RADIX + w2[0];
 | |
| 
 | |
|         while (1) {
 | |
|             if (qhat < MPD_RADIX) {
 | |
|                 _mpd_singlemul(w2, qhat, v[n-2]);
 | |
|                 if (w2[1] <= rhat) {
 | |
|                     if (w2[1] != rhat || w2[0] <= u[j+n-2]) {
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             qhat -= 1;
 | |
|             rhat += v[n-1];
 | |
|             if (rhat < v[n-1] || rhat >= MPD_RADIX) {
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         /* D4: multiply and subtract */
 | |
|         carry = 0;
 | |
|         for (i=0; i <= n; i++) {
 | |
| 
 | |
|             _mpd_mul_words(&hi, &lo, qhat, v[i]);
 | |
| 
 | |
|             lo = carry + lo;
 | |
|             if (lo < carry) hi++;
 | |
| 
 | |
|             _mpd_div_words_r(&hi, &lo, hi, lo);
 | |
| 
 | |
|             x = u[i+j] - lo;
 | |
|             carry = (u[i+j] < x);
 | |
|             u[i+j] = carry ? x+MPD_RADIX : x;
 | |
|             carry += hi;
 | |
|         }
 | |
|         q[j] = qhat;
 | |
|         /* D5: test remainder */
 | |
|         if (carry) {
 | |
|             q[j] -= 1;
 | |
|             /* D6: add back */
 | |
|             (void)_mpd_baseadd(u+j, u+j, v, n+1, n);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* D8: unnormalize */
 | |
|     if (r != NULL) {
 | |
|         _mpd_shortdiv(r, u, n, d);
 | |
|         /* we are not interested in the return value here */
 | |
|         retval = 0;
 | |
|     }
 | |
|     else {
 | |
|         retval = !_mpd_isallzero(u, n);
 | |
|     }
 | |
| 
 | |
| 
 | |
| if (u != ustatic) mpd_free(u);
 | |
| if (v != vstatic) mpd_free(v);
 | |
| return retval;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Left shift of src by 'shift' digits; src may equal dest.
 | |
|  *
 | |
|  *  dest := area of n mpd_uint_t with space for srcdigits+shift digits.
 | |
|  *  src  := coefficient with length m.
 | |
|  *
 | |
|  * The case splits in the function are non-obvious. The following
 | |
|  * equations might help:
 | |
|  *
 | |
|  *  Let msdigits denote the number of digits in the most significant
 | |
|  *  word of src. Then 1 <= msdigits <= rdigits.
 | |
|  *
 | |
|  *   1) shift = q * rdigits + r
 | |
|  *   2) srcdigits = qsrc * rdigits + msdigits
 | |
|  *   3) destdigits = shift + srcdigits
 | |
|  *                 = q * rdigits + r + qsrc * rdigits + msdigits
 | |
|  *                 = q * rdigits + (qsrc * rdigits + (r + msdigits))
 | |
|  *
 | |
|  *  The result has q zero words, followed by the coefficient that
 | |
|  *  is left-shifted by r. The case r == 0 is trivial. For r > 0, it
 | |
|  *  is important to keep in mind that we always read m source words,
 | |
|  *  but write m+1 destination words if r + msdigits > rdigits, m words
 | |
|  *  otherwise.
 | |
|  */
 | |
| void
 | |
| _mpd_baseshiftl(mpd_uint_t *dest, mpd_uint_t *src, mpd_size_t n, mpd_size_t m,
 | |
|                 mpd_size_t shift)
 | |
| {
 | |
| #if defined(__GNUC__) && !defined(__INTEL_COMPILER) && !defined(__clang__)
 | |
|     /* spurious uninitialized warnings */
 | |
|     mpd_uint_t l=l, lprev=lprev, h=h;
 | |
| #else
 | |
|     mpd_uint_t l, lprev, h;
 | |
| #endif
 | |
|     mpd_uint_t q, r;
 | |
|     mpd_uint_t ph;
 | |
| 
 | |
|     assert(m > 0 && n >= m);
 | |
| 
 | |
|     _mpd_div_word(&q, &r, (mpd_uint_t)shift, MPD_RDIGITS);
 | |
| 
 | |
|     if (r != 0) {
 | |
| 
 | |
|         ph = mpd_pow10[r];
 | |
| 
 | |
|         --m; --n;
 | |
|         _mpd_divmod_pow10(&h, &lprev, src[m--], MPD_RDIGITS-r);
 | |
|         if (h != 0) { /* r + msdigits > rdigits <==> h != 0 */
 | |
|             dest[n--] = h;
 | |
|         }
 | |
|         /* write m-1 shifted words */
 | |
|         for (; m != MPD_SIZE_MAX; m--,n--) {
 | |
|             _mpd_divmod_pow10(&h, &l, src[m], MPD_RDIGITS-r);
 | |
|             dest[n] = ph * lprev + h;
 | |
|             lprev = l;
 | |
|         }
 | |
|         /* write least significant word */
 | |
|         dest[q] = ph * lprev;
 | |
|     }
 | |
|     else {
 | |
|         while (--m != MPD_SIZE_MAX) {
 | |
|             dest[m+q] = src[m];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     mpd_uint_zero(dest, q);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Right shift of src by 'shift' digits; src may equal dest.
 | |
|  * Assumption: srcdigits-shift > 0.
 | |
|  *
 | |
|  *  dest := area with space for srcdigits-shift digits.
 | |
|  *  src  := coefficient with length 'slen'.
 | |
|  *
 | |
|  * The case splits in the function rely on the following equations:
 | |
|  *
 | |
|  *  Let msdigits denote the number of digits in the most significant
 | |
|  *  word of src. Then 1 <= msdigits <= rdigits.
 | |
|  *
 | |
|  *  1) shift = q * rdigits + r
 | |
|  *  2) srcdigits = qsrc * rdigits + msdigits
 | |
|  *  3) destdigits = srcdigits - shift
 | |
|  *                = qsrc * rdigits + msdigits - (q * rdigits + r)
 | |
|  *                = (qsrc - q) * rdigits + msdigits - r
 | |
|  *
 | |
|  * Since destdigits > 0 and 1 <= msdigits <= rdigits:
 | |
|  *
 | |
|  *  4) qsrc >= q
 | |
|  *  5) qsrc == q  ==>  msdigits > r
 | |
|  *
 | |
|  * The result has slen-q words if msdigits > r, slen-q-1 words otherwise.
 | |
|  */
 | |
| mpd_uint_t
 | |
| _mpd_baseshiftr(mpd_uint_t *dest, mpd_uint_t *src, mpd_size_t slen,
 | |
|                 mpd_size_t shift)
 | |
| {
 | |
| #if defined(__GNUC__) && !defined(__INTEL_COMPILER) && !defined(__clang__)
 | |
|     /* spurious uninitialized warnings */
 | |
|     mpd_uint_t l=l, h=h, hprev=hprev; /* low, high, previous high */
 | |
| #else
 | |
|     mpd_uint_t l, h, hprev; /* low, high, previous high */
 | |
| #endif
 | |
|     mpd_uint_t rnd, rest;   /* rounding digit, rest */
 | |
|     mpd_uint_t q, r;
 | |
|     mpd_size_t i, j;
 | |
|     mpd_uint_t ph;
 | |
| 
 | |
|     assert(slen > 0);
 | |
| 
 | |
|     _mpd_div_word(&q, &r, (mpd_uint_t)shift, MPD_RDIGITS);
 | |
| 
 | |
|     rnd = rest = 0;
 | |
|     if (r != 0) {
 | |
| 
 | |
|         ph = mpd_pow10[MPD_RDIGITS-r];
 | |
| 
 | |
|         _mpd_divmod_pow10(&hprev, &rest, src[q], r);
 | |
|         _mpd_divmod_pow10(&rnd, &rest, rest, r-1);
 | |
| 
 | |
|         if (rest == 0 && q > 0) {
 | |
|             rest = !_mpd_isallzero(src, q);
 | |
|         }
 | |
|         /* write slen-q-1 words */
 | |
|         for (j=0,i=q+1; i<slen; i++,j++) {
 | |
|             _mpd_divmod_pow10(&h, &l, src[i], r);
 | |
|             dest[j] = ph * l + hprev;
 | |
|             hprev = h;
 | |
|         }
 | |
|         /* write most significant word */
 | |
|         if (hprev != 0) { /* always the case if slen==q-1 */
 | |
|             dest[j] = hprev;
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         if (q > 0) {
 | |
|             _mpd_divmod_pow10(&rnd, &rest, src[q-1], MPD_RDIGITS-1);
 | |
|             /* is there any non-zero digit below rnd? */
 | |
|             if (rest == 0) rest = !_mpd_isallzero(src, q-1);
 | |
|         }
 | |
|         for (j = 0; j < slen-q; j++) {
 | |
|             dest[j] = src[q+j];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* 0-4  ==> rnd+rest < 0.5   */
 | |
|     /* 5    ==> rnd+rest == 0.5  */
 | |
|     /* 6-9  ==> rnd+rest > 0.5   */
 | |
|     return (rnd == 0 || rnd == 5) ? rnd + !!rest : rnd;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*********************************************************************/
 | |
| /*                      Calculations in base b                       */
 | |
| /*********************************************************************/
 | |
| 
 | |
| /*
 | |
|  * Add v to w (len m). The calling function has to handle a possible
 | |
|  * final carry. Assumption: m > 0.
 | |
|  */
 | |
| mpd_uint_t
 | |
| _mpd_shortadd_b(mpd_uint_t *w, mpd_size_t m, mpd_uint_t v, mpd_uint_t b)
 | |
| {
 | |
|     mpd_uint_t s;
 | |
|     mpd_uint_t carry;
 | |
|     mpd_size_t i;
 | |
| 
 | |
|     assert(m > 0);
 | |
| 
 | |
|     /* add v to w */
 | |
|     s = w[0] + v;
 | |
|     carry = (s < v) | (s >= b);
 | |
|     w[0] = carry ? s-b : s;
 | |
| 
 | |
|     /* if there is a carry, propagate it */
 | |
|     for (i = 1; carry && i < m; i++) {
 | |
|         s = w[i] + carry;
 | |
|         carry = (s == b);
 | |
|         w[i] = carry ? 0 : s;
 | |
|     }
 | |
| 
 | |
|     return carry;
 | |
| }
 | |
| 
 | |
| /* w := product of u (len n) and v (single word). Return carry. */
 | |
| mpd_uint_t
 | |
| _mpd_shortmul_c(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n, mpd_uint_t v)
 | |
| {
 | |
|     mpd_uint_t hi, lo;
 | |
|     mpd_uint_t carry = 0;
 | |
|     mpd_size_t i;
 | |
| 
 | |
|     assert(n > 0);
 | |
| 
 | |
|     for (i=0; i < n; i++) {
 | |
| 
 | |
|         _mpd_mul_words(&hi, &lo, u[i], v);
 | |
|         lo = carry + lo;
 | |
|         if (lo < carry) hi++;
 | |
| 
 | |
|         _mpd_div_words_r(&carry, &w[i], hi, lo);
 | |
|     }
 | |
| 
 | |
|     return carry;
 | |
| }
 | |
| 
 | |
| /* w := product of u (len n) and v (single word) */
 | |
| mpd_uint_t
 | |
| _mpd_shortmul_b(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n,
 | |
|                 mpd_uint_t v, mpd_uint_t b)
 | |
| {
 | |
|     mpd_uint_t hi, lo;
 | |
|     mpd_uint_t carry = 0;
 | |
|     mpd_size_t i;
 | |
| 
 | |
|     assert(n > 0);
 | |
| 
 | |
|     for (i=0; i < n; i++) {
 | |
| 
 | |
|         _mpd_mul_words(&hi, &lo, u[i], v);
 | |
|         lo = carry + lo;
 | |
|         if (lo < carry) hi++;
 | |
| 
 | |
|         _mpd_div_words(&carry, &w[i], hi, lo, b);
 | |
|     }
 | |
| 
 | |
|     return carry;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Knuth, TAOCP Volume 2, 4.3.1, exercise 16:
 | |
|  *     w := quotient of u (len n) divided by a single word v
 | |
|  */
 | |
| mpd_uint_t
 | |
| _mpd_shortdiv_b(mpd_uint_t *w, const mpd_uint_t *u, mpd_size_t n,
 | |
|                 mpd_uint_t v, mpd_uint_t b)
 | |
| {
 | |
|     mpd_uint_t hi, lo;
 | |
|     mpd_uint_t rem = 0;
 | |
|     mpd_size_t i;
 | |
| 
 | |
|     assert(n > 0);
 | |
| 
 | |
|     for (i=n-1; i != MPD_SIZE_MAX; i--) {
 | |
| 
 | |
|         _mpd_mul_words(&hi, &lo, rem, b);
 | |
|         lo = u[i] + lo;
 | |
|         if (lo < u[i]) hi++;
 | |
| 
 | |
|         _mpd_div_words(&w[i], &rem, hi, lo, v);
 | |
|     }
 | |
| 
 | |
|     return rem;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | 
