mirror of
				https://github.com/python/cpython.git
				synced 2025-10-31 13:41:24 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			517 lines
		
	
	
	
		
			20 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			517 lines
		
	
	
	
		
			20 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #!/usr/bin/env python
 | |
| 
 | |
| import unittest
 | |
| import random
 | |
| import time
 | |
| import pickle
 | |
| import warnings
 | |
| from math import log, exp, sqrt, pi
 | |
| from test import test_support
 | |
| 
 | |
| class TestBasicOps(unittest.TestCase):
 | |
|     # Superclass with tests common to all generators.
 | |
|     # Subclasses must arrange for self.gen to retrieve the Random instance
 | |
|     # to be tested.
 | |
| 
 | |
|     def randomlist(self, n):
 | |
|         """Helper function to make a list of random numbers"""
 | |
|         return [self.gen.random() for i in xrange(n)]
 | |
| 
 | |
|     def test_autoseed(self):
 | |
|         self.gen.seed()
 | |
|         state1 = self.gen.getstate()
 | |
|         time.sleep(0.1)
 | |
|         self.gen.seed()      # diffent seeds at different times
 | |
|         state2 = self.gen.getstate()
 | |
|         self.assertNotEqual(state1, state2)
 | |
| 
 | |
|     def test_saverestore(self):
 | |
|         N = 1000
 | |
|         self.gen.seed()
 | |
|         state = self.gen.getstate()
 | |
|         randseq = self.randomlist(N)
 | |
|         self.gen.setstate(state)    # should regenerate the same sequence
 | |
|         self.assertEqual(randseq, self.randomlist(N))
 | |
| 
 | |
|     def test_seedargs(self):
 | |
|         for arg in [None, 0, 0L, 1, 1L, -1, -1L, 10**20, -(10**20),
 | |
|                     3.14, 1+2j, 'a', tuple('abc')]:
 | |
|             self.gen.seed(arg)
 | |
|         for arg in [range(3), dict(one=1)]:
 | |
|             self.assertRaises(TypeError, self.gen.seed, arg)
 | |
|         self.assertRaises(TypeError, self.gen.seed, 1, 2)
 | |
|         self.assertRaises(TypeError, type(self.gen), [])
 | |
| 
 | |
|     def test_jumpahead(self):
 | |
|         self.gen.seed()
 | |
|         state1 = self.gen.getstate()
 | |
|         self.gen.jumpahead(100)
 | |
|         state2 = self.gen.getstate()    # s/b distinct from state1
 | |
|         self.assertNotEqual(state1, state2)
 | |
|         self.gen.jumpahead(100)
 | |
|         state3 = self.gen.getstate()    # s/b distinct from state2
 | |
|         self.assertNotEqual(state2, state3)
 | |
| 
 | |
|         self.assertRaises(TypeError, self.gen.jumpahead)  # needs an arg
 | |
|         self.assertRaises(TypeError, self.gen.jumpahead, "ick")  # wrong type
 | |
|         self.assertRaises(TypeError, self.gen.jumpahead, 2.3)  # wrong type
 | |
|         self.assertRaises(TypeError, self.gen.jumpahead, 2, 3)  # too many
 | |
| 
 | |
|     def test_sample(self):
 | |
|         # For the entire allowable range of 0 <= k <= N, validate that
 | |
|         # the sample is of the correct length and contains only unique items
 | |
|         N = 100
 | |
|         population = xrange(N)
 | |
|         for k in xrange(N+1):
 | |
|             s = self.gen.sample(population, k)
 | |
|             self.assertEqual(len(s), k)
 | |
|             uniq = set(s)
 | |
|             self.assertEqual(len(uniq), k)
 | |
|             self.failUnless(uniq <= set(population))
 | |
|         self.assertEqual(self.gen.sample([], 0), [])  # test edge case N==k==0
 | |
| 
 | |
|     def test_sample_distribution(self):
 | |
|         # For the entire allowable range of 0 <= k <= N, validate that
 | |
|         # sample generates all possible permutations
 | |
|         n = 5
 | |
|         pop = range(n)
 | |
|         trials = 10000  # large num prevents false negatives without slowing normal case
 | |
|         def factorial(n):
 | |
|             return reduce(int.__mul__, xrange(1, n), 1)
 | |
|         for k in xrange(n):
 | |
|             expected = factorial(n) // factorial(n-k)
 | |
|             perms = {}
 | |
|             for i in xrange(trials):
 | |
|                 perms[tuple(self.gen.sample(pop, k))] = None
 | |
|                 if len(perms) == expected:
 | |
|                     break
 | |
|             else:
 | |
|                 self.fail()
 | |
| 
 | |
|     def test_sample_inputs(self):
 | |
|         # SF bug #801342 -- population can be any iterable defining __len__()
 | |
|         self.gen.sample(set(range(20)), 2)
 | |
|         self.gen.sample(range(20), 2)
 | |
|         self.gen.sample(xrange(20), 2)
 | |
|         self.gen.sample(dict.fromkeys('abcdefghijklmnopqrst'), 2)
 | |
|         self.gen.sample(str('abcdefghijklmnopqrst'), 2)
 | |
|         self.gen.sample(tuple('abcdefghijklmnopqrst'), 2)
 | |
| 
 | |
|     def test_gauss(self):
 | |
|         # Ensure that the seed() method initializes all the hidden state.  In
 | |
|         # particular, through 2.2.1 it failed to reset a piece of state used
 | |
|         # by (and only by) the .gauss() method.
 | |
| 
 | |
|         for seed in 1, 12, 123, 1234, 12345, 123456, 654321:
 | |
|             self.gen.seed(seed)
 | |
|             x1 = self.gen.random()
 | |
|             y1 = self.gen.gauss(0, 1)
 | |
| 
 | |
|             self.gen.seed(seed)
 | |
|             x2 = self.gen.random()
 | |
|             y2 = self.gen.gauss(0, 1)
 | |
| 
 | |
|             self.assertEqual(x1, x2)
 | |
|             self.assertEqual(y1, y2)
 | |
| 
 | |
|     def test_pickling(self):
 | |
|         state = pickle.dumps(self.gen)
 | |
|         origseq = [self.gen.random() for i in xrange(10)]
 | |
|         newgen = pickle.loads(state)
 | |
|         restoredseq = [newgen.random() for i in xrange(10)]
 | |
|         self.assertEqual(origseq, restoredseq)
 | |
| 
 | |
| class WichmannHill_TestBasicOps(TestBasicOps):
 | |
|     gen = random.WichmannHill()
 | |
| 
 | |
|     def test_setstate_first_arg(self):
 | |
|         self.assertRaises(ValueError, self.gen.setstate, (2, None, None))
 | |
| 
 | |
|     def test_strong_jumpahead(self):
 | |
|         # tests that jumpahead(n) semantics correspond to n calls to random()
 | |
|         N = 1000
 | |
|         s = self.gen.getstate()
 | |
|         self.gen.jumpahead(N)
 | |
|         r1 = self.gen.random()
 | |
|         # now do it the slow way
 | |
|         self.gen.setstate(s)
 | |
|         for i in xrange(N):
 | |
|             self.gen.random()
 | |
|         r2 = self.gen.random()
 | |
|         self.assertEqual(r1, r2)
 | |
| 
 | |
|     def test_gauss_with_whseed(self):
 | |
|         # Ensure that the seed() method initializes all the hidden state.  In
 | |
|         # particular, through 2.2.1 it failed to reset a piece of state used
 | |
|         # by (and only by) the .gauss() method.
 | |
| 
 | |
|         for seed in 1, 12, 123, 1234, 12345, 123456, 654321:
 | |
|             self.gen.whseed(seed)
 | |
|             x1 = self.gen.random()
 | |
|             y1 = self.gen.gauss(0, 1)
 | |
| 
 | |
|             self.gen.whseed(seed)
 | |
|             x2 = self.gen.random()
 | |
|             y2 = self.gen.gauss(0, 1)
 | |
| 
 | |
|             self.assertEqual(x1, x2)
 | |
|             self.assertEqual(y1, y2)
 | |
| 
 | |
|     def test_bigrand(self):
 | |
|         # Verify warnings are raised when randrange is too large for random()
 | |
|         oldfilters = warnings.filters[:]
 | |
|         warnings.filterwarnings("error", "Underlying random")
 | |
|         self.assertRaises(UserWarning, self.gen.randrange, 2**60)
 | |
|         warnings.filters[:] = oldfilters
 | |
| 
 | |
| class SystemRandom_TestBasicOps(TestBasicOps):
 | |
|     gen = random.SystemRandom()
 | |
| 
 | |
|     def test_autoseed(self):
 | |
|         # Doesn't need to do anything except not fail
 | |
|         self.gen.seed()
 | |
| 
 | |
|     def test_saverestore(self):
 | |
|         self.assertRaises(NotImplementedError, self.gen.getstate)
 | |
|         self.assertRaises(NotImplementedError, self.gen.setstate, None)
 | |
| 
 | |
|     def test_seedargs(self):
 | |
|         # Doesn't need to do anything except not fail
 | |
|         self.gen.seed(100)
 | |
| 
 | |
|     def test_jumpahead(self):
 | |
|         # Doesn't need to do anything except not fail
 | |
|         self.gen.jumpahead(100)
 | |
| 
 | |
|     def test_gauss(self):
 | |
|         self.gen.gauss_next = None
 | |
|         self.gen.seed(100)
 | |
|         self.assertEqual(self.gen.gauss_next, None)
 | |
| 
 | |
|     def test_pickling(self):
 | |
|         self.assertRaises(NotImplementedError, pickle.dumps, self.gen)
 | |
| 
 | |
|     def test_53_bits_per_float(self):
 | |
|         # This should pass whenever a C double has 53 bit precision.
 | |
|         span = 2 ** 53
 | |
|         cum = 0
 | |
|         for i in xrange(100):
 | |
|             cum |= int(self.gen.random() * span)
 | |
|         self.assertEqual(cum, span-1)
 | |
| 
 | |
|     def test_bigrand(self):
 | |
|         # The randrange routine should build-up the required number of bits
 | |
|         # in stages so that all bit positions are active.
 | |
|         span = 2 ** 500
 | |
|         cum = 0
 | |
|         for i in xrange(100):
 | |
|             r = self.gen.randrange(span)
 | |
|             self.assert_(0 <= r < span)
 | |
|             cum |= r
 | |
|         self.assertEqual(cum, span-1)
 | |
| 
 | |
|     def test_bigrand_ranges(self):
 | |
|         for i in [40,80, 160, 200, 211, 250, 375, 512, 550]:
 | |
|             start = self.gen.randrange(2 ** i)
 | |
|             stop = self.gen.randrange(2 ** (i-2))
 | |
|             if stop <= start:
 | |
|                 return
 | |
|             self.assert_(start <= self.gen.randrange(start, stop) < stop)
 | |
| 
 | |
|     def test_rangelimits(self):
 | |
|         for start, stop in [(-2,0), (-(2**60)-2,-(2**60)), (2**60,2**60+2)]:
 | |
|             self.assertEqual(set(range(start,stop)),
 | |
|                 set([self.gen.randrange(start,stop) for i in xrange(100)]))
 | |
| 
 | |
|     def test_genrandbits(self):
 | |
|         # Verify ranges
 | |
|         for k in xrange(1, 1000):
 | |
|             self.assert_(0 <= self.gen.getrandbits(k) < 2**k)
 | |
| 
 | |
|         # Verify all bits active
 | |
|         getbits = self.gen.getrandbits
 | |
|         for span in [1, 2, 3, 4, 31, 32, 32, 52, 53, 54, 119, 127, 128, 129]:
 | |
|             cum = 0
 | |
|             for i in xrange(100):
 | |
|                 cum |= getbits(span)
 | |
|             self.assertEqual(cum, 2**span-1)
 | |
| 
 | |
|         # Verify argument checking
 | |
|         self.assertRaises(TypeError, self.gen.getrandbits)
 | |
|         self.assertRaises(TypeError, self.gen.getrandbits, 1, 2)
 | |
|         self.assertRaises(ValueError, self.gen.getrandbits, 0)
 | |
|         self.assertRaises(ValueError, self.gen.getrandbits, -1)
 | |
|         self.assertRaises(TypeError, self.gen.getrandbits, 10.1)
 | |
| 
 | |
|     def test_randbelow_logic(self, _log=log, int=int):
 | |
|         # check bitcount transition points:  2**i and 2**(i+1)-1
 | |
|         # show that: k = int(1.001 + _log(n, 2))
 | |
|         # is equal to or one greater than the number of bits in n
 | |
|         for i in xrange(1, 1000):
 | |
|             n = 1L << i # check an exact power of two
 | |
|             numbits = i+1
 | |
|             k = int(1.00001 + _log(n, 2))
 | |
|             self.assertEqual(k, numbits)
 | |
|             self.assert_(n == 2**(k-1))
 | |
| 
 | |
|             n += n - 1      # check 1 below the next power of two
 | |
|             k = int(1.00001 + _log(n, 2))
 | |
|             self.assert_(k in [numbits, numbits+1])
 | |
|             self.assert_(2**k > n > 2**(k-2))
 | |
| 
 | |
|             n -= n >> 15     # check a little farther below the next power of two
 | |
|             k = int(1.00001 + _log(n, 2))
 | |
|             self.assertEqual(k, numbits)        # note the stronger assertion
 | |
|             self.assert_(2**k > n > 2**(k-1))   # note the stronger assertion
 | |
| 
 | |
| 
 | |
| class MersenneTwister_TestBasicOps(TestBasicOps):
 | |
|     gen = random.Random()
 | |
| 
 | |
|     def test_setstate_first_arg(self):
 | |
|         self.assertRaises(ValueError, self.gen.setstate, (1, None, None))
 | |
| 
 | |
|     def test_setstate_middle_arg(self):
 | |
|         # Wrong type, s/b tuple
 | |
|         self.assertRaises(TypeError, self.gen.setstate, (2, None, None))
 | |
|         # Wrong length, s/b 625
 | |
|         self.assertRaises(ValueError, self.gen.setstate, (2, (1,2,3), None))
 | |
|         # Wrong type, s/b tuple of 625 ints
 | |
|         self.assertRaises(TypeError, self.gen.setstate, (2, ('a',)*625, None))
 | |
|         # Last element s/b an int also
 | |
|         self.assertRaises(TypeError, self.gen.setstate, (2, (0,)*624+('a',), None))
 | |
| 
 | |
|     def test_referenceImplementation(self):
 | |
|         # Compare the python implementation with results from the original
 | |
|         # code.  Create 2000 53-bit precision random floats.  Compare only
 | |
|         # the last ten entries to show that the independent implementations
 | |
|         # are tracking.  Here is the main() function needed to create the
 | |
|         # list of expected random numbers:
 | |
|         #    void main(void){
 | |
|         #         int i;
 | |
|         #         unsigned long init[4]={61731, 24903, 614, 42143}, length=4;
 | |
|         #         init_by_array(init, length);
 | |
|         #         for (i=0; i<2000; i++) {
 | |
|         #           printf("%.15f ", genrand_res53());
 | |
|         #           if (i%5==4) printf("\n");
 | |
|         #         }
 | |
|         #     }
 | |
|         expected = [0.45839803073713259,
 | |
|                     0.86057815201978782,
 | |
|                     0.92848331726782152,
 | |
|                     0.35932681119782461,
 | |
|                     0.081823493762449573,
 | |
|                     0.14332226470169329,
 | |
|                     0.084297823823520024,
 | |
|                     0.53814864671831453,
 | |
|                     0.089215024911993401,
 | |
|                     0.78486196105372907]
 | |
| 
 | |
|         self.gen.seed(61731L + (24903L<<32) + (614L<<64) + (42143L<<96))
 | |
|         actual = self.randomlist(2000)[-10:]
 | |
|         for a, e in zip(actual, expected):
 | |
|             self.assertAlmostEqual(a,e,places=14)
 | |
| 
 | |
|     def test_strong_reference_implementation(self):
 | |
|         # Like test_referenceImplementation, but checks for exact bit-level
 | |
|         # equality.  This should pass on any box where C double contains
 | |
|         # at least 53 bits of precision (the underlying algorithm suffers
 | |
|         # no rounding errors -- all results are exact).
 | |
|         from math import ldexp
 | |
| 
 | |
|         expected = [0x0eab3258d2231fL,
 | |
|                     0x1b89db315277a5L,
 | |
|                     0x1db622a5518016L,
 | |
|                     0x0b7f9af0d575bfL,
 | |
|                     0x029e4c4db82240L,
 | |
|                     0x04961892f5d673L,
 | |
|                     0x02b291598e4589L,
 | |
|                     0x11388382c15694L,
 | |
|                     0x02dad977c9e1feL,
 | |
|                     0x191d96d4d334c6L]
 | |
|         self.gen.seed(61731L + (24903L<<32) + (614L<<64) + (42143L<<96))
 | |
|         actual = self.randomlist(2000)[-10:]
 | |
|         for a, e in zip(actual, expected):
 | |
|             self.assertEqual(long(ldexp(a, 53)), e)
 | |
| 
 | |
|     def test_long_seed(self):
 | |
|         # This is most interesting to run in debug mode, just to make sure
 | |
|         # nothing blows up.  Under the covers, a dynamically resized array
 | |
|         # is allocated, consuming space proportional to the number of bits
 | |
|         # in the seed.  Unfortunately, that's a quadratic-time algorithm,
 | |
|         # so don't make this horribly big.
 | |
|         seed = (1L << (10000 * 8)) - 1  # about 10K bytes
 | |
|         self.gen.seed(seed)
 | |
| 
 | |
|     def test_53_bits_per_float(self):
 | |
|         # This should pass whenever a C double has 53 bit precision.
 | |
|         span = 2 ** 53
 | |
|         cum = 0
 | |
|         for i in xrange(100):
 | |
|             cum |= int(self.gen.random() * span)
 | |
|         self.assertEqual(cum, span-1)
 | |
| 
 | |
|     def test_bigrand(self):
 | |
|         # The randrange routine should build-up the required number of bits
 | |
|         # in stages so that all bit positions are active.
 | |
|         span = 2 ** 500
 | |
|         cum = 0
 | |
|         for i in xrange(100):
 | |
|             r = self.gen.randrange(span)
 | |
|             self.assert_(0 <= r < span)
 | |
|             cum |= r
 | |
|         self.assertEqual(cum, span-1)
 | |
| 
 | |
|     def test_bigrand_ranges(self):
 | |
|         for i in [40,80, 160, 200, 211, 250, 375, 512, 550]:
 | |
|             start = self.gen.randrange(2 ** i)
 | |
|             stop = self.gen.randrange(2 ** (i-2))
 | |
|             if stop <= start:
 | |
|                 return
 | |
|             self.assert_(start <= self.gen.randrange(start, stop) < stop)
 | |
| 
 | |
|     def test_rangelimits(self):
 | |
|         for start, stop in [(-2,0), (-(2**60)-2,-(2**60)), (2**60,2**60+2)]:
 | |
|             self.assertEqual(set(range(start,stop)),
 | |
|                 set([self.gen.randrange(start,stop) for i in xrange(100)]))
 | |
| 
 | |
|     def test_genrandbits(self):
 | |
|         # Verify cross-platform repeatability
 | |
|         self.gen.seed(1234567)
 | |
|         self.assertEqual(self.gen.getrandbits(100),
 | |
|                          97904845777343510404718956115L)
 | |
|         # Verify ranges
 | |
|         for k in xrange(1, 1000):
 | |
|             self.assert_(0 <= self.gen.getrandbits(k) < 2**k)
 | |
| 
 | |
|         # Verify all bits active
 | |
|         getbits = self.gen.getrandbits
 | |
|         for span in [1, 2, 3, 4, 31, 32, 32, 52, 53, 54, 119, 127, 128, 129]:
 | |
|             cum = 0
 | |
|             for i in xrange(100):
 | |
|                 cum |= getbits(span)
 | |
|             self.assertEqual(cum, 2**span-1)
 | |
| 
 | |
|         # Verify argument checking
 | |
|         self.assertRaises(TypeError, self.gen.getrandbits)
 | |
|         self.assertRaises(TypeError, self.gen.getrandbits, 'a')
 | |
|         self.assertRaises(TypeError, self.gen.getrandbits, 1, 2)
 | |
|         self.assertRaises(ValueError, self.gen.getrandbits, 0)
 | |
|         self.assertRaises(ValueError, self.gen.getrandbits, -1)
 | |
| 
 | |
|     def test_randbelow_logic(self, _log=log, int=int):
 | |
|         # check bitcount transition points:  2**i and 2**(i+1)-1
 | |
|         # show that: k = int(1.001 + _log(n, 2))
 | |
|         # is equal to or one greater than the number of bits in n
 | |
|         for i in xrange(1, 1000):
 | |
|             n = 1L << i # check an exact power of two
 | |
|             numbits = i+1
 | |
|             k = int(1.00001 + _log(n, 2))
 | |
|             self.assertEqual(k, numbits)
 | |
|             self.assert_(n == 2**(k-1))
 | |
| 
 | |
|             n += n - 1      # check 1 below the next power of two
 | |
|             k = int(1.00001 + _log(n, 2))
 | |
|             self.assert_(k in [numbits, numbits+1])
 | |
|             self.assert_(2**k > n > 2**(k-2))
 | |
| 
 | |
|             n -= n >> 15     # check a little farther below the next power of two
 | |
|             k = int(1.00001 + _log(n, 2))
 | |
|             self.assertEqual(k, numbits)        # note the stronger assertion
 | |
|             self.assert_(2**k > n > 2**(k-1))   # note the stronger assertion
 | |
| 
 | |
| _gammacoeff = (0.9999999999995183, 676.5203681218835, -1259.139216722289,
 | |
|               771.3234287757674,  -176.6150291498386, 12.50734324009056,
 | |
|               -0.1385710331296526, 0.9934937113930748e-05, 0.1659470187408462e-06)
 | |
| 
 | |
| def gamma(z, cof=_gammacoeff, g=7):
 | |
|     z -= 1.0
 | |
|     sum = cof[0]
 | |
|     for i in xrange(1,len(cof)):
 | |
|         sum += cof[i] / (z+i)
 | |
|     z += 0.5
 | |
|     return (z+g)**z / exp(z+g) * sqrt(2*pi) * sum
 | |
| 
 | |
| class TestDistributions(unittest.TestCase):
 | |
|     def test_zeroinputs(self):
 | |
|         # Verify that distributions can handle a series of zero inputs'
 | |
|         g = random.Random()
 | |
|         x = [g.random() for i in xrange(50)] + [0.0]*5
 | |
|         g.random = x[:].pop; g.uniform(1,10)
 | |
|         g.random = x[:].pop; g.paretovariate(1.0)
 | |
|         g.random = x[:].pop; g.expovariate(1.0)
 | |
|         g.random = x[:].pop; g.weibullvariate(1.0, 1.0)
 | |
|         g.random = x[:].pop; g.normalvariate(0.0, 1.0)
 | |
|         g.random = x[:].pop; g.gauss(0.0, 1.0)
 | |
|         g.random = x[:].pop; g.lognormvariate(0.0, 1.0)
 | |
|         g.random = x[:].pop; g.vonmisesvariate(0.0, 1.0)
 | |
|         g.random = x[:].pop; g.gammavariate(0.01, 1.0)
 | |
|         g.random = x[:].pop; g.gammavariate(1.0, 1.0)
 | |
|         g.random = x[:].pop; g.gammavariate(200.0, 1.0)
 | |
|         g.random = x[:].pop; g.betavariate(3.0, 3.0)
 | |
| 
 | |
|     def test_avg_std(self):
 | |
|         # Use integration to test distribution average and standard deviation.
 | |
|         # Only works for distributions which do not consume variates in pairs
 | |
|         g = random.Random()
 | |
|         N = 5000
 | |
|         x = [i/float(N) for i in xrange(1,N)]
 | |
|         for variate, args, mu, sigmasqrd in [
 | |
|                 (g.uniform, (1.0,10.0), (10.0+1.0)/2, (10.0-1.0)**2/12),
 | |
|                 (g.expovariate, (1.5,), 1/1.5, 1/1.5**2),
 | |
|                 (g.paretovariate, (5.0,), 5.0/(5.0-1),
 | |
|                                   5.0/((5.0-1)**2*(5.0-2))),
 | |
|                 (g.weibullvariate, (1.0, 3.0), gamma(1+1/3.0),
 | |
|                                   gamma(1+2/3.0)-gamma(1+1/3.0)**2) ]:
 | |
|             g.random = x[:].pop
 | |
|             y = []
 | |
|             for i in xrange(len(x)):
 | |
|                 try:
 | |
|                     y.append(variate(*args))
 | |
|                 except IndexError:
 | |
|                     pass
 | |
|             s1 = s2 = 0
 | |
|             for e in y:
 | |
|                 s1 += e
 | |
|                 s2 += (e - mu) ** 2
 | |
|             N = len(y)
 | |
|             self.assertAlmostEqual(s1/N, mu, 2)
 | |
|             self.assertAlmostEqual(s2/(N-1), sigmasqrd, 2)
 | |
| 
 | |
| class TestModule(unittest.TestCase):
 | |
|     def testMagicConstants(self):
 | |
|         self.assertAlmostEqual(random.NV_MAGICCONST, 1.71552776992141)
 | |
|         self.assertAlmostEqual(random.TWOPI, 6.28318530718)
 | |
|         self.assertAlmostEqual(random.LOG4, 1.38629436111989)
 | |
|         self.assertAlmostEqual(random.SG_MAGICCONST, 2.50407739677627)
 | |
| 
 | |
|     def test__all__(self):
 | |
|         # tests validity but not completeness of the __all__ list
 | |
|         self.failUnless(set(random.__all__) <= set(dir(random)))
 | |
| 
 | |
| def test_main(verbose=None):
 | |
|     testclasses =    [WichmannHill_TestBasicOps,
 | |
|                       MersenneTwister_TestBasicOps,
 | |
|                       TestDistributions,
 | |
|                       TestModule]
 | |
| 
 | |
|     try:
 | |
|         random.SystemRandom().random()
 | |
|     except NotImplementedError:
 | |
|         pass
 | |
|     else:
 | |
|         testclasses.append(SystemRandom_TestBasicOps)
 | |
| 
 | |
|     test_support.run_unittest(*testclasses)
 | |
| 
 | |
|     # verify reference counting
 | |
|     import sys
 | |
|     if verbose and hasattr(sys, "gettotalrefcount"):
 | |
|         counts = [None] * 5
 | |
|         for i in xrange(len(counts)):
 | |
|             test_support.run_unittest(*testclasses)
 | |
|             counts[i] = sys.gettotalrefcount()
 | |
|         print counts
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     test_main(verbose=True)
 | 
