mirror of
				https://github.com/python/cpython.git
				synced 2025-10-25 18:54:53 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			5775 lines
		
	
	
	
		
			201 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			5775 lines
		
	
	
	
		
			201 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright (c) 2004 Python Software Foundation.
 | |
| # All rights reserved.
 | |
| 
 | |
| # Written by Eric Price <eprice at tjhsst.edu>
 | |
| #    and Facundo Batista <facundo at taniquetil.com.ar>
 | |
| #    and Raymond Hettinger <python at rcn.com>
 | |
| #    and Aahz <aahz at pobox.com>
 | |
| #    and Tim Peters
 | |
| 
 | |
| # This module should be kept in sync with the latest updates of the
 | |
| # IBM specification as it evolves.  Those updates will be treated
 | |
| # as bug fixes (deviation from the spec is a compatibility, usability
 | |
| # bug) and will be backported.  At this point the spec is stabilizing
 | |
| # and the updates are becoming fewer, smaller, and less significant.
 | |
| 
 | |
| """
 | |
| This is an implementation of decimal floating point arithmetic based on
 | |
| the General Decimal Arithmetic Specification:
 | |
| 
 | |
|     http://speleotrove.com/decimal/decarith.html
 | |
| 
 | |
| and IEEE standard 854-1987:
 | |
| 
 | |
|     www.cs.berkeley.edu/~ejr/projects/754/private/drafts/854-1987/dir.html
 | |
| 
 | |
| Decimal floating point has finite precision with arbitrarily large bounds.
 | |
| 
 | |
| The purpose of this module is to support arithmetic using familiar
 | |
| "schoolhouse" rules and to avoid some of the tricky representation
 | |
| issues associated with binary floating point.  The package is especially
 | |
| useful for financial applications or for contexts where users have
 | |
| expectations that are at odds with binary floating point (for instance,
 | |
| in binary floating point, 1.00 % 0.1 gives 0.09999999999999995 instead
 | |
| of the expected Decimal('0.00') returned by decimal floating point).
 | |
| 
 | |
| Here are some examples of using the decimal module:
 | |
| 
 | |
| >>> from decimal import *
 | |
| >>> setcontext(ExtendedContext)
 | |
| >>> Decimal(0)
 | |
| Decimal('0')
 | |
| >>> Decimal('1')
 | |
| Decimal('1')
 | |
| >>> Decimal('-.0123')
 | |
| Decimal('-0.0123')
 | |
| >>> Decimal(123456)
 | |
| Decimal('123456')
 | |
| >>> Decimal('123.45e12345678901234567890')
 | |
| Decimal('1.2345E+12345678901234567892')
 | |
| >>> Decimal('1.33') + Decimal('1.27')
 | |
| Decimal('2.60')
 | |
| >>> Decimal('12.34') + Decimal('3.87') - Decimal('18.41')
 | |
| Decimal('-2.20')
 | |
| >>> dig = Decimal(1)
 | |
| >>> print(dig / Decimal(3))
 | |
| 0.333333333
 | |
| >>> getcontext().prec = 18
 | |
| >>> print(dig / Decimal(3))
 | |
| 0.333333333333333333
 | |
| >>> print(dig.sqrt())
 | |
| 1
 | |
| >>> print(Decimal(3).sqrt())
 | |
| 1.73205080756887729
 | |
| >>> print(Decimal(3) ** 123)
 | |
| 4.85192780976896427E+58
 | |
| >>> inf = Decimal(1) / Decimal(0)
 | |
| >>> print(inf)
 | |
| Infinity
 | |
| >>> neginf = Decimal(-1) / Decimal(0)
 | |
| >>> print(neginf)
 | |
| -Infinity
 | |
| >>> print(neginf + inf)
 | |
| NaN
 | |
| >>> print(neginf * inf)
 | |
| -Infinity
 | |
| >>> print(dig / 0)
 | |
| Infinity
 | |
| >>> getcontext().traps[DivisionByZero] = 1
 | |
| >>> print(dig / 0)
 | |
| Traceback (most recent call last):
 | |
|   ...
 | |
|   ...
 | |
|   ...
 | |
| decimal.DivisionByZero: x / 0
 | |
| >>> c = Context()
 | |
| >>> c.traps[InvalidOperation] = 0
 | |
| >>> print(c.flags[InvalidOperation])
 | |
| 0
 | |
| >>> c.divide(Decimal(0), Decimal(0))
 | |
| Decimal('NaN')
 | |
| >>> c.traps[InvalidOperation] = 1
 | |
| >>> print(c.flags[InvalidOperation])
 | |
| 1
 | |
| >>> c.flags[InvalidOperation] = 0
 | |
| >>> print(c.flags[InvalidOperation])
 | |
| 0
 | |
| >>> print(c.divide(Decimal(0), Decimal(0)))
 | |
| Traceback (most recent call last):
 | |
|   ...
 | |
|   ...
 | |
|   ...
 | |
| decimal.InvalidOperation: 0 / 0
 | |
| >>> print(c.flags[InvalidOperation])
 | |
| 1
 | |
| >>> c.flags[InvalidOperation] = 0
 | |
| >>> c.traps[InvalidOperation] = 0
 | |
| >>> print(c.divide(Decimal(0), Decimal(0)))
 | |
| NaN
 | |
| >>> print(c.flags[InvalidOperation])
 | |
| 1
 | |
| >>>
 | |
| """
 | |
| 
 | |
| __all__ = [
 | |
|     # Two major classes
 | |
|     'Decimal', 'Context',
 | |
| 
 | |
|     # Contexts
 | |
|     'DefaultContext', 'BasicContext', 'ExtendedContext',
 | |
| 
 | |
|     # Exceptions
 | |
|     'DecimalException', 'Clamped', 'InvalidOperation', 'DivisionByZero',
 | |
|     'Inexact', 'Rounded', 'Subnormal', 'Overflow', 'Underflow',
 | |
| 
 | |
|     # Constants for use in setting up contexts
 | |
|     'ROUND_DOWN', 'ROUND_HALF_UP', 'ROUND_HALF_EVEN', 'ROUND_CEILING',
 | |
|     'ROUND_FLOOR', 'ROUND_UP', 'ROUND_HALF_DOWN', 'ROUND_05UP',
 | |
| 
 | |
|     # Functions for manipulating contexts
 | |
|     'setcontext', 'getcontext', 'localcontext'
 | |
| ]
 | |
| 
 | |
| __version__ = '1.70'    # Highest version of the spec this complies with
 | |
| 
 | |
| import copy as _copy
 | |
| import math as _math
 | |
| import numbers as _numbers
 | |
| 
 | |
| try:
 | |
|     from collections import namedtuple as _namedtuple
 | |
|     DecimalTuple = _namedtuple('DecimalTuple', 'sign digits exponent')
 | |
| except ImportError:
 | |
|     DecimalTuple = lambda *args: args
 | |
| 
 | |
| # Rounding
 | |
| ROUND_DOWN = 'ROUND_DOWN'
 | |
| ROUND_HALF_UP = 'ROUND_HALF_UP'
 | |
| ROUND_HALF_EVEN = 'ROUND_HALF_EVEN'
 | |
| ROUND_CEILING = 'ROUND_CEILING'
 | |
| ROUND_FLOOR = 'ROUND_FLOOR'
 | |
| ROUND_UP = 'ROUND_UP'
 | |
| ROUND_HALF_DOWN = 'ROUND_HALF_DOWN'
 | |
| ROUND_05UP = 'ROUND_05UP'
 | |
| 
 | |
| # Errors
 | |
| 
 | |
| class DecimalException(ArithmeticError):
 | |
|     """Base exception class.
 | |
| 
 | |
|     Used exceptions derive from this.
 | |
|     If an exception derives from another exception besides this (such as
 | |
|     Underflow (Inexact, Rounded, Subnormal) that indicates that it is only
 | |
|     called if the others are present.  This isn't actually used for
 | |
|     anything, though.
 | |
| 
 | |
|     handle  -- Called when context._raise_error is called and the
 | |
|                trap_enabler is set.  First argument is self, second is the
 | |
|                context.  More arguments can be given, those being after
 | |
|                the explanation in _raise_error (For example,
 | |
|                context._raise_error(NewError, '(-x)!', self._sign) would
 | |
|                call NewError().handle(context, self._sign).)
 | |
| 
 | |
|     To define a new exception, it should be sufficient to have it derive
 | |
|     from DecimalException.
 | |
|     """
 | |
|     def handle(self, context, *args):
 | |
|         pass
 | |
| 
 | |
| 
 | |
| class Clamped(DecimalException):
 | |
|     """Exponent of a 0 changed to fit bounds.
 | |
| 
 | |
|     This occurs and signals clamped if the exponent of a result has been
 | |
|     altered in order to fit the constraints of a specific concrete
 | |
|     representation.  This may occur when the exponent of a zero result would
 | |
|     be outside the bounds of a representation, or when a large normal
 | |
|     number would have an encoded exponent that cannot be represented.  In
 | |
|     this latter case, the exponent is reduced to fit and the corresponding
 | |
|     number of zero digits are appended to the coefficient ("fold-down").
 | |
|     """
 | |
| 
 | |
| class InvalidOperation(DecimalException):
 | |
|     """An invalid operation was performed.
 | |
| 
 | |
|     Various bad things cause this:
 | |
| 
 | |
|     Something creates a signaling NaN
 | |
|     -INF + INF
 | |
|     0 * (+-)INF
 | |
|     (+-)INF / (+-)INF
 | |
|     x % 0
 | |
|     (+-)INF % x
 | |
|     x._rescale( non-integer )
 | |
|     sqrt(-x) , x > 0
 | |
|     0 ** 0
 | |
|     x ** (non-integer)
 | |
|     x ** (+-)INF
 | |
|     An operand is invalid
 | |
| 
 | |
|     The result of the operation after these is a quiet positive NaN,
 | |
|     except when the cause is a signaling NaN, in which case the result is
 | |
|     also a quiet NaN, but with the original sign, and an optional
 | |
|     diagnostic information.
 | |
|     """
 | |
|     def handle(self, context, *args):
 | |
|         if args:
 | |
|             ans = _dec_from_triple(args[0]._sign, args[0]._int, 'n', True)
 | |
|             return ans._fix_nan(context)
 | |
|         return _NaN
 | |
| 
 | |
| class ConversionSyntax(InvalidOperation):
 | |
|     """Trying to convert badly formed string.
 | |
| 
 | |
|     This occurs and signals invalid-operation if an string is being
 | |
|     converted to a number and it does not conform to the numeric string
 | |
|     syntax.  The result is [0,qNaN].
 | |
|     """
 | |
|     def handle(self, context, *args):
 | |
|         return _NaN
 | |
| 
 | |
| class DivisionByZero(DecimalException, ZeroDivisionError):
 | |
|     """Division by 0.
 | |
| 
 | |
|     This occurs and signals division-by-zero if division of a finite number
 | |
|     by zero was attempted (during a divide-integer or divide operation, or a
 | |
|     power operation with negative right-hand operand), and the dividend was
 | |
|     not zero.
 | |
| 
 | |
|     The result of the operation is [sign,inf], where sign is the exclusive
 | |
|     or of the signs of the operands for divide, or is 1 for an odd power of
 | |
|     -0, for power.
 | |
|     """
 | |
| 
 | |
|     def handle(self, context, sign, *args):
 | |
|         return _SignedInfinity[sign]
 | |
| 
 | |
| class DivisionImpossible(InvalidOperation):
 | |
|     """Cannot perform the division adequately.
 | |
| 
 | |
|     This occurs and signals invalid-operation if the integer result of a
 | |
|     divide-integer or remainder operation had too many digits (would be
 | |
|     longer than precision).  The result is [0,qNaN].
 | |
|     """
 | |
| 
 | |
|     def handle(self, context, *args):
 | |
|         return _NaN
 | |
| 
 | |
| class DivisionUndefined(InvalidOperation, ZeroDivisionError):
 | |
|     """Undefined result of division.
 | |
| 
 | |
|     This occurs and signals invalid-operation if division by zero was
 | |
|     attempted (during a divide-integer, divide, or remainder operation), and
 | |
|     the dividend is also zero.  The result is [0,qNaN].
 | |
|     """
 | |
| 
 | |
|     def handle(self, context, *args):
 | |
|         return _NaN
 | |
| 
 | |
| class Inexact(DecimalException):
 | |
|     """Had to round, losing information.
 | |
| 
 | |
|     This occurs and signals inexact whenever the result of an operation is
 | |
|     not exact (that is, it needed to be rounded and any discarded digits
 | |
|     were non-zero), or if an overflow or underflow condition occurs.  The
 | |
|     result in all cases is unchanged.
 | |
| 
 | |
|     The inexact signal may be tested (or trapped) to determine if a given
 | |
|     operation (or sequence of operations) was inexact.
 | |
|     """
 | |
| 
 | |
| class InvalidContext(InvalidOperation):
 | |
|     """Invalid context.  Unknown rounding, for example.
 | |
| 
 | |
|     This occurs and signals invalid-operation if an invalid context was
 | |
|     detected during an operation.  This can occur if contexts are not checked
 | |
|     on creation and either the precision exceeds the capability of the
 | |
|     underlying concrete representation or an unknown or unsupported rounding
 | |
|     was specified.  These aspects of the context need only be checked when
 | |
|     the values are required to be used.  The result is [0,qNaN].
 | |
|     """
 | |
| 
 | |
|     def handle(self, context, *args):
 | |
|         return _NaN
 | |
| 
 | |
| class Rounded(DecimalException):
 | |
|     """Number got rounded (not  necessarily changed during rounding).
 | |
| 
 | |
|     This occurs and signals rounded whenever the result of an operation is
 | |
|     rounded (that is, some zero or non-zero digits were discarded from the
 | |
|     coefficient), or if an overflow or underflow condition occurs.  The
 | |
|     result in all cases is unchanged.
 | |
| 
 | |
|     The rounded signal may be tested (or trapped) to determine if a given
 | |
|     operation (or sequence of operations) caused a loss of precision.
 | |
|     """
 | |
| 
 | |
| class Subnormal(DecimalException):
 | |
|     """Exponent < Emin before rounding.
 | |
| 
 | |
|     This occurs and signals subnormal whenever the result of a conversion or
 | |
|     operation is subnormal (that is, its adjusted exponent is less than
 | |
|     Emin, before any rounding).  The result in all cases is unchanged.
 | |
| 
 | |
|     The subnormal signal may be tested (or trapped) to determine if a given
 | |
|     or operation (or sequence of operations) yielded a subnormal result.
 | |
|     """
 | |
| 
 | |
| class Overflow(Inexact, Rounded):
 | |
|     """Numerical overflow.
 | |
| 
 | |
|     This occurs and signals overflow if the adjusted exponent of a result
 | |
|     (from a conversion or from an operation that is not an attempt to divide
 | |
|     by zero), after rounding, would be greater than the largest value that
 | |
|     can be handled by the implementation (the value Emax).
 | |
| 
 | |
|     The result depends on the rounding mode:
 | |
| 
 | |
|     For round-half-up and round-half-even (and for round-half-down and
 | |
|     round-up, if implemented), the result of the operation is [sign,inf],
 | |
|     where sign is the sign of the intermediate result.  For round-down, the
 | |
|     result is the largest finite number that can be represented in the
 | |
|     current precision, with the sign of the intermediate result.  For
 | |
|     round-ceiling, the result is the same as for round-down if the sign of
 | |
|     the intermediate result is 1, or is [0,inf] otherwise.  For round-floor,
 | |
|     the result is the same as for round-down if the sign of the intermediate
 | |
|     result is 0, or is [1,inf] otherwise.  In all cases, Inexact and Rounded
 | |
|     will also be raised.
 | |
|     """
 | |
| 
 | |
|     def handle(self, context, sign, *args):
 | |
|         if context.rounding in (ROUND_HALF_UP, ROUND_HALF_EVEN,
 | |
|                                 ROUND_HALF_DOWN, ROUND_UP):
 | |
|             return _SignedInfinity[sign]
 | |
|         if sign == 0:
 | |
|             if context.rounding == ROUND_CEILING:
 | |
|                 return _SignedInfinity[sign]
 | |
|             return _dec_from_triple(sign, '9'*context.prec,
 | |
|                             context.Emax-context.prec+1)
 | |
|         if sign == 1:
 | |
|             if context.rounding == ROUND_FLOOR:
 | |
|                 return _SignedInfinity[sign]
 | |
|             return _dec_from_triple(sign, '9'*context.prec,
 | |
|                              context.Emax-context.prec+1)
 | |
| 
 | |
| 
 | |
| class Underflow(Inexact, Rounded, Subnormal):
 | |
|     """Numerical underflow with result rounded to 0.
 | |
| 
 | |
|     This occurs and signals underflow if a result is inexact and the
 | |
|     adjusted exponent of the result would be smaller (more negative) than
 | |
|     the smallest value that can be handled by the implementation (the value
 | |
|     Emin).  That is, the result is both inexact and subnormal.
 | |
| 
 | |
|     The result after an underflow will be a subnormal number rounded, if
 | |
|     necessary, so that its exponent is not less than Etiny.  This may result
 | |
|     in 0 with the sign of the intermediate result and an exponent of Etiny.
 | |
| 
 | |
|     In all cases, Inexact, Rounded, and Subnormal will also be raised.
 | |
|     """
 | |
| 
 | |
| # List of public traps and flags
 | |
| _signals = [Clamped, DivisionByZero, Inexact, Overflow, Rounded,
 | |
|            Underflow, InvalidOperation, Subnormal]
 | |
| 
 | |
| # Map conditions (per the spec) to signals
 | |
| _condition_map = {ConversionSyntax:InvalidOperation,
 | |
|                   DivisionImpossible:InvalidOperation,
 | |
|                   DivisionUndefined:InvalidOperation,
 | |
|                   InvalidContext:InvalidOperation}
 | |
| 
 | |
| ##### Context Functions ##################################################
 | |
| 
 | |
| # The getcontext() and setcontext() function manage access to a thread-local
 | |
| # current context.  Py2.4 offers direct support for thread locals.  If that
 | |
| # is not available, use threading.current_thread() which is slower but will
 | |
| # work for older Pythons.  If threads are not part of the build, create a
 | |
| # mock threading object with threading.local() returning the module namespace.
 | |
| 
 | |
| try:
 | |
|     import threading
 | |
| except ImportError:
 | |
|     # Python was compiled without threads; create a mock object instead
 | |
|     import sys
 | |
|     class MockThreading(object):
 | |
|         def local(self, sys=sys):
 | |
|             return sys.modules[__name__]
 | |
|     threading = MockThreading()
 | |
|     del sys, MockThreading
 | |
| 
 | |
| try:
 | |
|     threading.local
 | |
| 
 | |
| except AttributeError:
 | |
| 
 | |
|     # To fix reloading, force it to create a new context
 | |
|     # Old contexts have different exceptions in their dicts, making problems.
 | |
|     if hasattr(threading.current_thread(), '__decimal_context__'):
 | |
|         del threading.current_thread().__decimal_context__
 | |
| 
 | |
|     def setcontext(context):
 | |
|         """Set this thread's context to context."""
 | |
|         if context in (DefaultContext, BasicContext, ExtendedContext):
 | |
|             context = context.copy()
 | |
|             context.clear_flags()
 | |
|         threading.current_thread().__decimal_context__ = context
 | |
| 
 | |
|     def getcontext():
 | |
|         """Returns this thread's context.
 | |
| 
 | |
|         If this thread does not yet have a context, returns
 | |
|         a new context and sets this thread's context.
 | |
|         New contexts are copies of DefaultContext.
 | |
|         """
 | |
|         try:
 | |
|             return threading.current_thread().__decimal_context__
 | |
|         except AttributeError:
 | |
|             context = Context()
 | |
|             threading.current_thread().__decimal_context__ = context
 | |
|             return context
 | |
| 
 | |
| else:
 | |
| 
 | |
|     local = threading.local()
 | |
|     if hasattr(local, '__decimal_context__'):
 | |
|         del local.__decimal_context__
 | |
| 
 | |
|     def getcontext(_local=local):
 | |
|         """Returns this thread's context.
 | |
| 
 | |
|         If this thread does not yet have a context, returns
 | |
|         a new context and sets this thread's context.
 | |
|         New contexts are copies of DefaultContext.
 | |
|         """
 | |
|         try:
 | |
|             return _local.__decimal_context__
 | |
|         except AttributeError:
 | |
|             context = Context()
 | |
|             _local.__decimal_context__ = context
 | |
|             return context
 | |
| 
 | |
|     def setcontext(context, _local=local):
 | |
|         """Set this thread's context to context."""
 | |
|         if context in (DefaultContext, BasicContext, ExtendedContext):
 | |
|             context = context.copy()
 | |
|             context.clear_flags()
 | |
|         _local.__decimal_context__ = context
 | |
| 
 | |
|     del threading, local        # Don't contaminate the namespace
 | |
| 
 | |
| def localcontext(ctx=None):
 | |
|     """Return a context manager for a copy of the supplied context
 | |
| 
 | |
|     Uses a copy of the current context if no context is specified
 | |
|     The returned context manager creates a local decimal context
 | |
|     in a with statement:
 | |
|         def sin(x):
 | |
|              with localcontext() as ctx:
 | |
|                  ctx.prec += 2
 | |
|                  # Rest of sin calculation algorithm
 | |
|                  # uses a precision 2 greater than normal
 | |
|              return +s  # Convert result to normal precision
 | |
| 
 | |
|          def sin(x):
 | |
|              with localcontext(ExtendedContext):
 | |
|                  # Rest of sin calculation algorithm
 | |
|                  # uses the Extended Context from the
 | |
|                  # General Decimal Arithmetic Specification
 | |
|              return +s  # Convert result to normal context
 | |
| 
 | |
|     >>> setcontext(DefaultContext)
 | |
|     >>> print(getcontext().prec)
 | |
|     28
 | |
|     >>> with localcontext():
 | |
|     ...     ctx = getcontext()
 | |
|     ...     ctx.prec += 2
 | |
|     ...     print(ctx.prec)
 | |
|     ...
 | |
|     30
 | |
|     >>> with localcontext(ExtendedContext):
 | |
|     ...     print(getcontext().prec)
 | |
|     ...
 | |
|     9
 | |
|     >>> print(getcontext().prec)
 | |
|     28
 | |
|     """
 | |
|     if ctx is None: ctx = getcontext()
 | |
|     return _ContextManager(ctx)
 | |
| 
 | |
| 
 | |
| ##### Decimal class #######################################################
 | |
| 
 | |
| # Do not subclass Decimal from numbers.Real and do not register it as such
 | |
| # (because Decimals are not interoperable with floats).  See the notes in
 | |
| # numbers.py for more detail.
 | |
| 
 | |
| class Decimal(object):
 | |
|     """Floating point class for decimal arithmetic."""
 | |
| 
 | |
|     __slots__ = ('_exp','_int','_sign', '_is_special')
 | |
|     # Generally, the value of the Decimal instance is given by
 | |
|     #  (-1)**_sign * _int * 10**_exp
 | |
|     # Special values are signified by _is_special == True
 | |
| 
 | |
|     # We're immutable, so use __new__ not __init__
 | |
|     def __new__(cls, value="0", context=None):
 | |
|         """Create a decimal point instance.
 | |
| 
 | |
|         >>> Decimal('3.14')              # string input
 | |
|         Decimal('3.14')
 | |
|         >>> Decimal((0, (3, 1, 4), -2))  # tuple (sign, digit_tuple, exponent)
 | |
|         Decimal('3.14')
 | |
|         >>> Decimal(314)                 # int
 | |
|         Decimal('314')
 | |
|         >>> Decimal(Decimal(314))        # another decimal instance
 | |
|         Decimal('314')
 | |
|         >>> Decimal('  3.14  \\n')        # leading and trailing whitespace okay
 | |
|         Decimal('3.14')
 | |
|         """
 | |
| 
 | |
|         # Note that the coefficient, self._int, is actually stored as
 | |
|         # a string rather than as a tuple of digits.  This speeds up
 | |
|         # the "digits to integer" and "integer to digits" conversions
 | |
|         # that are used in almost every arithmetic operation on
 | |
|         # Decimals.  This is an internal detail: the as_tuple function
 | |
|         # and the Decimal constructor still deal with tuples of
 | |
|         # digits.
 | |
| 
 | |
|         self = object.__new__(cls)
 | |
| 
 | |
|         # From a string
 | |
|         # REs insist on real strings, so we can too.
 | |
|         if isinstance(value, str):
 | |
|             m = _parser(value.strip())
 | |
|             if m is None:
 | |
|                 if context is None:
 | |
|                     context = getcontext()
 | |
|                 return context._raise_error(ConversionSyntax,
 | |
|                                 "Invalid literal for Decimal: %r" % value)
 | |
| 
 | |
|             if m.group('sign') == "-":
 | |
|                 self._sign = 1
 | |
|             else:
 | |
|                 self._sign = 0
 | |
|             intpart = m.group('int')
 | |
|             if intpart is not None:
 | |
|                 # finite number
 | |
|                 fracpart = m.group('frac')
 | |
|                 exp = int(m.group('exp') or '0')
 | |
|                 if fracpart is not None:
 | |
|                     self._int = (intpart+fracpart).lstrip('0') or '0'
 | |
|                     self._exp = exp - len(fracpart)
 | |
|                 else:
 | |
|                     self._int = intpart.lstrip('0') or '0'
 | |
|                     self._exp = exp
 | |
|                 self._is_special = False
 | |
|             else:
 | |
|                 diag = m.group('diag')
 | |
|                 if diag is not None:
 | |
|                     # NaN
 | |
|                     self._int = diag.lstrip('0')
 | |
|                     if m.group('signal'):
 | |
|                         self._exp = 'N'
 | |
|                     else:
 | |
|                         self._exp = 'n'
 | |
|                 else:
 | |
|                     # infinity
 | |
|                     self._int = '0'
 | |
|                     self._exp = 'F'
 | |
|                 self._is_special = True
 | |
|             return self
 | |
| 
 | |
|         # From an integer
 | |
|         if isinstance(value, int):
 | |
|             if value >= 0:
 | |
|                 self._sign = 0
 | |
|             else:
 | |
|                 self._sign = 1
 | |
|             self._exp = 0
 | |
|             self._int = str(abs(value))
 | |
|             self._is_special = False
 | |
|             return self
 | |
| 
 | |
|         # From another decimal
 | |
|         if isinstance(value, Decimal):
 | |
|             self._exp  = value._exp
 | |
|             self._sign = value._sign
 | |
|             self._int  = value._int
 | |
|             self._is_special  = value._is_special
 | |
|             return self
 | |
| 
 | |
|         # From an internal working value
 | |
|         if isinstance(value, _WorkRep):
 | |
|             self._sign = value.sign
 | |
|             self._int = str(value.int)
 | |
|             self._exp = int(value.exp)
 | |
|             self._is_special = False
 | |
|             return self
 | |
| 
 | |
|         # tuple/list conversion (possibly from as_tuple())
 | |
|         if isinstance(value, (list,tuple)):
 | |
|             if len(value) != 3:
 | |
|                 raise ValueError('Invalid tuple size in creation of Decimal '
 | |
|                                  'from list or tuple.  The list or tuple '
 | |
|                                  'should have exactly three elements.')
 | |
|             # process sign.  The isinstance test rejects floats
 | |
|             if not (isinstance(value[0], int) and value[0] in (0,1)):
 | |
|                 raise ValueError("Invalid sign.  The first value in the tuple "
 | |
|                                  "should be an integer; either 0 for a "
 | |
|                                  "positive number or 1 for a negative number.")
 | |
|             self._sign = value[0]
 | |
|             if value[2] == 'F':
 | |
|                 # infinity: value[1] is ignored
 | |
|                 self._int = '0'
 | |
|                 self._exp = value[2]
 | |
|                 self._is_special = True
 | |
|             else:
 | |
|                 # process and validate the digits in value[1]
 | |
|                 digits = []
 | |
|                 for digit in value[1]:
 | |
|                     if isinstance(digit, int) and 0 <= digit <= 9:
 | |
|                         # skip leading zeros
 | |
|                         if digits or digit != 0:
 | |
|                             digits.append(digit)
 | |
|                     else:
 | |
|                         raise ValueError("The second value in the tuple must "
 | |
|                                          "be composed of integers in the range "
 | |
|                                          "0 through 9.")
 | |
|                 if value[2] in ('n', 'N'):
 | |
|                     # NaN: digits form the diagnostic
 | |
|                     self._int = ''.join(map(str, digits))
 | |
|                     self._exp = value[2]
 | |
|                     self._is_special = True
 | |
|                 elif isinstance(value[2], int):
 | |
|                     # finite number: digits give the coefficient
 | |
|                     self._int = ''.join(map(str, digits or [0]))
 | |
|                     self._exp = value[2]
 | |
|                     self._is_special = False
 | |
|                 else:
 | |
|                     raise ValueError("The third value in the tuple must "
 | |
|                                      "be an integer, or one of the "
 | |
|                                      "strings 'F', 'n', 'N'.")
 | |
|             return self
 | |
| 
 | |
|         if isinstance(value, float):
 | |
|             raise TypeError("Cannot convert float to Decimal.  " +
 | |
|                             "First convert the float to a string")
 | |
| 
 | |
|         raise TypeError("Cannot convert %r to Decimal" % value)
 | |
| 
 | |
|     # @classmethod, but @decorator is not valid Python 2.3 syntax, so
 | |
|     # don't use it (see notes on Py2.3 compatibility at top of file)
 | |
|     def from_float(cls, f):
 | |
|         """Converts a float to a decimal number, exactly.
 | |
| 
 | |
|         Note that Decimal.from_float(0.1) is not the same as Decimal('0.1').
 | |
|         Since 0.1 is not exactly representable in binary floating point, the
 | |
|         value is stored as the nearest representable value which is
 | |
|         0x1.999999999999ap-4.  The exact equivalent of the value in decimal
 | |
|         is 0.1000000000000000055511151231257827021181583404541015625.
 | |
| 
 | |
|         >>> Decimal.from_float(0.1)
 | |
|         Decimal('0.1000000000000000055511151231257827021181583404541015625')
 | |
|         >>> Decimal.from_float(float('nan'))
 | |
|         Decimal('NaN')
 | |
|         >>> Decimal.from_float(float('inf'))
 | |
|         Decimal('Infinity')
 | |
|         >>> Decimal.from_float(-float('inf'))
 | |
|         Decimal('-Infinity')
 | |
|         >>> Decimal.from_float(-0.0)
 | |
|         Decimal('-0')
 | |
| 
 | |
|         """
 | |
|         if isinstance(f, int):                # handle integer inputs
 | |
|             return cls(f)
 | |
|         if _math.isinf(f) or _math.isnan(f):  # raises TypeError if not a float
 | |
|             return cls(repr(f))
 | |
|         if _math.copysign(1.0, f) == 1.0:
 | |
|             sign = 0
 | |
|         else:
 | |
|             sign = 1
 | |
|         n, d = abs(f).as_integer_ratio()
 | |
|         k = d.bit_length() - 1
 | |
|         result = _dec_from_triple(sign, str(n*5**k), -k)
 | |
|         if cls is Decimal:
 | |
|             return result
 | |
|         else:
 | |
|             return cls(result)
 | |
|     from_float = classmethod(from_float)
 | |
| 
 | |
|     def _isnan(self):
 | |
|         """Returns whether the number is not actually one.
 | |
| 
 | |
|         0 if a number
 | |
|         1 if NaN
 | |
|         2 if sNaN
 | |
|         """
 | |
|         if self._is_special:
 | |
|             exp = self._exp
 | |
|             if exp == 'n':
 | |
|                 return 1
 | |
|             elif exp == 'N':
 | |
|                 return 2
 | |
|         return 0
 | |
| 
 | |
|     def _isinfinity(self):
 | |
|         """Returns whether the number is infinite
 | |
| 
 | |
|         0 if finite or not a number
 | |
|         1 if +INF
 | |
|         -1 if -INF
 | |
|         """
 | |
|         if self._exp == 'F':
 | |
|             if self._sign:
 | |
|                 return -1
 | |
|             return 1
 | |
|         return 0
 | |
| 
 | |
|     def _check_nans(self, other=None, context=None):
 | |
|         """Returns whether the number is not actually one.
 | |
| 
 | |
|         if self, other are sNaN, signal
 | |
|         if self, other are NaN return nan
 | |
|         return 0
 | |
| 
 | |
|         Done before operations.
 | |
|         """
 | |
| 
 | |
|         self_is_nan = self._isnan()
 | |
|         if other is None:
 | |
|             other_is_nan = False
 | |
|         else:
 | |
|             other_is_nan = other._isnan()
 | |
| 
 | |
|         if self_is_nan or other_is_nan:
 | |
|             if context is None:
 | |
|                 context = getcontext()
 | |
| 
 | |
|             if self_is_nan == 2:
 | |
|                 return context._raise_error(InvalidOperation, 'sNaN',
 | |
|                                         self)
 | |
|             if other_is_nan == 2:
 | |
|                 return context._raise_error(InvalidOperation, 'sNaN',
 | |
|                                         other)
 | |
|             if self_is_nan:
 | |
|                 return self._fix_nan(context)
 | |
| 
 | |
|             return other._fix_nan(context)
 | |
|         return 0
 | |
| 
 | |
|     def _compare_check_nans(self, other, context):
 | |
|         """Version of _check_nans used for the signaling comparisons
 | |
|         compare_signal, __le__, __lt__, __ge__, __gt__.
 | |
| 
 | |
|         Signal InvalidOperation if either self or other is a (quiet
 | |
|         or signaling) NaN.  Signaling NaNs take precedence over quiet
 | |
|         NaNs.
 | |
| 
 | |
|         Return 0 if neither operand is a NaN.
 | |
| 
 | |
|         """
 | |
|         if context is None:
 | |
|             context = getcontext()
 | |
| 
 | |
|         if self._is_special or other._is_special:
 | |
|             if self.is_snan():
 | |
|                 return context._raise_error(InvalidOperation,
 | |
|                                             'comparison involving sNaN',
 | |
|                                             self)
 | |
|             elif other.is_snan():
 | |
|                 return context._raise_error(InvalidOperation,
 | |
|                                             'comparison involving sNaN',
 | |
|                                             other)
 | |
|             elif self.is_qnan():
 | |
|                 return context._raise_error(InvalidOperation,
 | |
|                                             'comparison involving NaN',
 | |
|                                             self)
 | |
|             elif other.is_qnan():
 | |
|                 return context._raise_error(InvalidOperation,
 | |
|                                             'comparison involving NaN',
 | |
|                                             other)
 | |
|         return 0
 | |
| 
 | |
|     def __bool__(self):
 | |
|         """Return True if self is nonzero; otherwise return False.
 | |
| 
 | |
|         NaNs and infinities are considered nonzero.
 | |
|         """
 | |
|         return self._is_special or self._int != '0'
 | |
| 
 | |
|     def _cmp(self, other):
 | |
|         """Compare the two non-NaN decimal instances self and other.
 | |
| 
 | |
|         Returns -1 if self < other, 0 if self == other and 1
 | |
|         if self > other.  This routine is for internal use only."""
 | |
| 
 | |
|         if self._is_special or other._is_special:
 | |
|             self_inf = self._isinfinity()
 | |
|             other_inf = other._isinfinity()
 | |
|             if self_inf == other_inf:
 | |
|                 return 0
 | |
|             elif self_inf < other_inf:
 | |
|                 return -1
 | |
|             else:
 | |
|                 return 1
 | |
| 
 | |
|         # check for zeros;  Decimal('0') == Decimal('-0')
 | |
|         if not self:
 | |
|             if not other:
 | |
|                 return 0
 | |
|             else:
 | |
|                 return -((-1)**other._sign)
 | |
|         if not other:
 | |
|             return (-1)**self._sign
 | |
| 
 | |
|         # If different signs, neg one is less
 | |
|         if other._sign < self._sign:
 | |
|             return -1
 | |
|         if self._sign < other._sign:
 | |
|             return 1
 | |
| 
 | |
|         self_adjusted = self.adjusted()
 | |
|         other_adjusted = other.adjusted()
 | |
|         if self_adjusted == other_adjusted:
 | |
|             self_padded = self._int + '0'*(self._exp - other._exp)
 | |
|             other_padded = other._int + '0'*(other._exp - self._exp)
 | |
|             if self_padded == other_padded:
 | |
|                 return 0
 | |
|             elif self_padded < other_padded:
 | |
|                 return -(-1)**self._sign
 | |
|             else:
 | |
|                 return (-1)**self._sign
 | |
|         elif self_adjusted > other_adjusted:
 | |
|             return (-1)**self._sign
 | |
|         else: # self_adjusted < other_adjusted
 | |
|             return -((-1)**self._sign)
 | |
| 
 | |
|     # Note: The Decimal standard doesn't cover rich comparisons for
 | |
|     # Decimals.  In particular, the specification is silent on the
 | |
|     # subject of what should happen for a comparison involving a NaN.
 | |
|     # We take the following approach:
 | |
|     #
 | |
|     #   == comparisons involving a NaN always return False
 | |
|     #   != comparisons involving a NaN always return True
 | |
|     #   <, >, <= and >= comparisons involving a (quiet or signaling)
 | |
|     #      NaN signal InvalidOperation, and return False if the
 | |
|     #      InvalidOperation is not trapped.
 | |
|     #
 | |
|     # This behavior is designed to conform as closely as possible to
 | |
|     # that specified by IEEE 754.
 | |
| 
 | |
|     def __eq__(self, other):
 | |
|         other = _convert_other(other)
 | |
|         if other is NotImplemented:
 | |
|             return other
 | |
|         if self.is_nan() or other.is_nan():
 | |
|             return False
 | |
|         return self._cmp(other) == 0
 | |
| 
 | |
|     def __ne__(self, other):
 | |
|         other = _convert_other(other)
 | |
|         if other is NotImplemented:
 | |
|             return other
 | |
|         if self.is_nan() or other.is_nan():
 | |
|             return True
 | |
|         return self._cmp(other) != 0
 | |
| 
 | |
| 
 | |
|     def __lt__(self, other, context=None):
 | |
|         other = _convert_other(other)
 | |
|         if other is NotImplemented:
 | |
|             return other
 | |
|         ans = self._compare_check_nans(other, context)
 | |
|         if ans:
 | |
|             return False
 | |
|         return self._cmp(other) < 0
 | |
| 
 | |
|     def __le__(self, other, context=None):
 | |
|         other = _convert_other(other)
 | |
|         if other is NotImplemented:
 | |
|             return other
 | |
|         ans = self._compare_check_nans(other, context)
 | |
|         if ans:
 | |
|             return False
 | |
|         return self._cmp(other) <= 0
 | |
| 
 | |
|     def __gt__(self, other, context=None):
 | |
|         other = _convert_other(other)
 | |
|         if other is NotImplemented:
 | |
|             return other
 | |
|         ans = self._compare_check_nans(other, context)
 | |
|         if ans:
 | |
|             return False
 | |
|         return self._cmp(other) > 0
 | |
| 
 | |
|     def __ge__(self, other, context=None):
 | |
|         other = _convert_other(other)
 | |
|         if other is NotImplemented:
 | |
|             return other
 | |
|         ans = self._compare_check_nans(other, context)
 | |
|         if ans:
 | |
|             return False
 | |
|         return self._cmp(other) >= 0
 | |
| 
 | |
|     def compare(self, other, context=None):
 | |
|         """Compares one to another.
 | |
| 
 | |
|         -1 => a < b
 | |
|         0  => a = b
 | |
|         1  => a > b
 | |
|         NaN => one is NaN
 | |
|         Like __cmp__, but returns Decimal instances.
 | |
|         """
 | |
|         other = _convert_other(other, raiseit=True)
 | |
| 
 | |
|         # Compare(NaN, NaN) = NaN
 | |
|         if (self._is_special or other and other._is_special):
 | |
|             ans = self._check_nans(other, context)
 | |
|             if ans:
 | |
|                 return ans
 | |
| 
 | |
|         return Decimal(self._cmp(other))
 | |
| 
 | |
|     def __hash__(self):
 | |
|         """x.__hash__() <==> hash(x)"""
 | |
|         # Decimal integers must hash the same as the ints
 | |
|         #
 | |
|         # The hash of a nonspecial noninteger Decimal must depend only
 | |
|         # on the value of that Decimal, and not on its representation.
 | |
|         # For example: hash(Decimal('100E-1')) == hash(Decimal('10')).
 | |
|         if self._is_special:
 | |
|             if self._isnan():
 | |
|                 raise TypeError('Cannot hash a NaN value.')
 | |
|             return hash(str(self))
 | |
|         if not self:
 | |
|             return 0
 | |
|         if self._isinteger():
 | |
|             op = _WorkRep(self.to_integral_value())
 | |
|             # to make computation feasible for Decimals with large
 | |
|             # exponent, we use the fact that hash(n) == hash(m) for
 | |
|             # any two nonzero integers n and m such that (i) n and m
 | |
|             # have the same sign, and (ii) n is congruent to m modulo
 | |
|             # 2**64-1.  So we can replace hash((-1)**s*c*10**e) with
 | |
|             # hash((-1)**s*c*pow(10, e, 2**64-1).
 | |
|             return hash((-1)**op.sign*op.int*pow(10, op.exp, 2**64-1))
 | |
|         # The value of a nonzero nonspecial Decimal instance is
 | |
|         # faithfully represented by the triple consisting of its sign,
 | |
|         # its adjusted exponent, and its coefficient with trailing
 | |
|         # zeros removed.
 | |
|         return hash((self._sign,
 | |
|                      self._exp+len(self._int),
 | |
|                      self._int.rstrip('0')))
 | |
| 
 | |
|     def as_tuple(self):
 | |
|         """Represents the number as a triple tuple.
 | |
| 
 | |
|         To show the internals exactly as they are.
 | |
|         """
 | |
|         return DecimalTuple(self._sign, tuple(map(int, self._int)), self._exp)
 | |
| 
 | |
|     def __repr__(self):
 | |
|         """Represents the number as an instance of Decimal."""
 | |
|         # Invariant:  eval(repr(d)) == d
 | |
|         return "Decimal('%s')" % str(self)
 | |
| 
 | |
|     def __str__(self, eng=False, context=None):
 | |
|         """Return string representation of the number in scientific notation.
 | |
| 
 | |
|         Captures all of the information in the underlying representation.
 | |
|         """
 | |
| 
 | |
|         sign = ['', '-'][self._sign]
 | |
|         if self._is_special:
 | |
|             if self._exp == 'F':
 | |
|                 return sign + 'Infinity'
 | |
|             elif self._exp == 'n':
 | |
|                 return sign + 'NaN' + self._int
 | |
|             else: # self._exp == 'N'
 | |
|                 return sign + 'sNaN' + self._int
 | |
| 
 | |
|         # number of digits of self._int to left of decimal point
 | |
|         leftdigits = self._exp + len(self._int)
 | |
| 
 | |
|         # dotplace is number of digits of self._int to the left of the
 | |
|         # decimal point in the mantissa of the output string (that is,
 | |
|         # after adjusting the exponent)
 | |
|         if self._exp <= 0 and leftdigits > -6:
 | |
|             # no exponent required
 | |
|             dotplace = leftdigits
 | |
|         elif not eng:
 | |
|             # usual scientific notation: 1 digit on left of the point
 | |
|             dotplace = 1
 | |
|         elif self._int == '0':
 | |
|             # engineering notation, zero
 | |
|             dotplace = (leftdigits + 1) % 3 - 1
 | |
|         else:
 | |
|             # engineering notation, nonzero
 | |
|             dotplace = (leftdigits - 1) % 3 + 1
 | |
| 
 | |
|         if dotplace <= 0:
 | |
|             intpart = '0'
 | |
|             fracpart = '.' + '0'*(-dotplace) + self._int
 | |
|         elif dotplace >= len(self._int):
 | |
|             intpart = self._int+'0'*(dotplace-len(self._int))
 | |
|             fracpart = ''
 | |
|         else:
 | |
|             intpart = self._int[:dotplace]
 | |
|             fracpart = '.' + self._int[dotplace:]
 | |
|         if leftdigits == dotplace:
 | |
|             exp = ''
 | |
|         else:
 | |
|             if context is None:
 | |
|                 context = getcontext()
 | |
|             exp = ['e', 'E'][context.capitals] + "%+d" % (leftdigits-dotplace)
 | |
| 
 | |
|         return sign + intpart + fracpart + exp
 | |
| 
 | |
|     def to_eng_string(self, context=None):
 | |
|         """Convert to engineering-type string.
 | |
| 
 | |
|         Engineering notation has an exponent which is a multiple of 3, so there
 | |
|         are up to 3 digits left of the decimal place.
 | |
| 
 | |
|         Same rules for when in exponential and when as a value as in __str__.
 | |
|         """
 | |
|         return self.__str__(eng=True, context=context)
 | |
| 
 | |
|     def __neg__(self, context=None):
 | |
|         """Returns a copy with the sign switched.
 | |
| 
 | |
|         Rounds, if it has reason.
 | |
|         """
 | |
|         if self._is_special:
 | |
|             ans = self._check_nans(context=context)
 | |
|             if ans:
 | |
|                 return ans
 | |
| 
 | |
|         if not self:
 | |
|             # -Decimal('0') is Decimal('0'), not Decimal('-0')
 | |
|             ans = self.copy_abs()
 | |
|         else:
 | |
|             ans = self.copy_negate()
 | |
| 
 | |
|         if context is None:
 | |
|             context = getcontext()
 | |
|         return ans._fix(context)
 | |
| 
 | |
|     def __pos__(self, context=None):
 | |
|         """Returns a copy, unless it is a sNaN.
 | |
| 
 | |
|         Rounds the number (if more then precision digits)
 | |
|         """
 | |
|         if self._is_special:
 | |
|             ans = self._check_nans(context=context)
 | |
|             if ans:
 | |
|                 return ans
 | |
| 
 | |
|         if not self:
 | |
|             # + (-0) = 0
 | |
|             ans = self.copy_abs()
 | |
|         else:
 | |
|             ans = Decimal(self)
 | |
| 
 | |
|         if context is None:
 | |
|             context = getcontext()
 | |
|         return ans._fix(context)
 | |
| 
 | |
|     def __abs__(self, round=True, context=None):
 | |
|         """Returns the absolute value of self.
 | |
| 
 | |
|         If the keyword argument 'round' is false, do not round.  The
 | |
|         expression self.__abs__(round=False) is equivalent to
 | |
|         self.copy_abs().
 | |
|         """
 | |
|         if not round:
 | |
|             return self.copy_abs()
 | |
| 
 | |
|         if self._is_special:
 | |
|             ans = self._check_nans(context=context)
 | |
|             if ans:
 | |
|                 return ans
 | |
| 
 | |
|         if self._sign:
 | |
|             ans = self.__neg__(context=context)
 | |
|         else:
 | |
|             ans = self.__pos__(context=context)
 | |
| 
 | |
|         return ans
 | |
| 
 | |
|     def __add__(self, other, context=None):
 | |
|         """Returns self + other.
 | |
| 
 | |
|         -INF + INF (or the reverse) cause InvalidOperation errors.
 | |
|         """
 | |
|         other = _convert_other(other)
 | |
|         if other is NotImplemented:
 | |
|             return other
 | |
| 
 | |
|         if context is None:
 | |
|             context = getcontext()
 | |
| 
 | |
|         if self._is_special or other._is_special:
 | |
|             ans = self._check_nans(other, context)
 | |
|             if ans:
 | |
|                 return ans
 | |
| 
 | |
|             if self._isinfinity():
 | |
|                 # If both INF, same sign => same as both, opposite => error.
 | |
|                 if self._sign != other._sign and other._isinfinity():
 | |
|                     return context._raise_error(InvalidOperation, '-INF + INF')
 | |
|                 return Decimal(self)
 | |
|             if other._isinfinity():
 | |
|                 return Decimal(other)  # Can't both be infinity here
 | |
| 
 | |
|         exp = min(self._exp, other._exp)
 | |
|         negativezero = 0
 | |
|         if context.rounding == ROUND_FLOOR and self._sign != other._sign:
 | |
|             # If the answer is 0, the sign should be negative, in this case.
 | |
|             negativezero = 1
 | |
| 
 | |
|         if not self and not other:
 | |
|             sign = min(self._sign, other._sign)
 | |
|             if negativezero:
 | |
|                 sign = 1
 | |
|             ans = _dec_from_triple(sign, '0', exp)
 | |
|             ans = ans._fix(context)
 | |
|             return ans
 | |
|         if not self:
 | |
|             exp = max(exp, other._exp - context.prec-1)
 | |
|             ans = other._rescale(exp, context.rounding)
 | |
|             ans = ans._fix(context)
 | |
|             return ans
 | |
|         if not other:
 | |
|             exp = max(exp, self._exp - context.prec-1)
 | |
|             ans = self._rescale(exp, context.rounding)
 | |
|             ans = ans._fix(context)
 | |
|             return ans
 | |
| 
 | |
|         op1 = _WorkRep(self)
 | |
|         op2 = _WorkRep(other)
 | |
|         op1, op2 = _normalize(op1, op2, context.prec)
 | |
| 
 | |
|         result = _WorkRep()
 | |
|         if op1.sign != op2.sign:
 | |
|             # Equal and opposite
 | |
|             if op1.int == op2.int:
 | |
|                 ans = _dec_from_triple(negativezero, '0', exp)
 | |
|                 ans = ans._fix(context)
 | |
|                 return ans
 | |
|             if op1.int < op2.int:
 | |
|                 op1, op2 = op2, op1
 | |
|                 # OK, now abs(op1) > abs(op2)
 | |
|             if op1.sign == 1:
 | |
|                 result.sign = 1
 | |
|                 op1.sign, op2.sign = op2.sign, op1.sign
 | |
|             else:
 | |
|                 result.sign = 0
 | |
|                 # So we know the sign, and op1 > 0.
 | |
|         elif op1.sign == 1:
 | |
|             result.sign = 1
 | |
|             op1.sign, op2.sign = (0, 0)
 | |
|         else:
 | |
|             result.sign = 0
 | |
|         # Now, op1 > abs(op2) > 0
 | |
| 
 | |
|         if op2.sign == 0:
 | |
|             result.int = op1.int + op2.int
 | |
|         else:
 | |
|             result.int = op1.int - op2.int
 | |
| 
 | |
|         result.exp = op1.exp
 | |
|         ans = Decimal(result)
 | |
|         ans = ans._fix(context)
 | |
|         return ans
 | |
| 
 | |
|     __radd__ = __add__
 | |
| 
 | |
|     def __sub__(self, other, context=None):
 | |
|         """Return self - other"""
 | |
|         other = _convert_other(other)
 | |
|         if other is NotImplemented:
 | |
|             return other
 | |
| 
 | |
|         if self._is_special or other._is_special:
 | |
|             ans = self._check_nans(other, context=context)
 | |
|             if ans:
 | |
|                 return ans
 | |
| 
 | |
|         # self - other is computed as self + other.copy_negate()
 | |
|         return self.__add__(other.copy_negate(), context=context)
 | |
| 
 | |
|     def __rsub__(self, other, context=None):
 | |
|         """Return other - self"""
 | |
|         other = _convert_other(other)
 | |
|         if other is NotImplemented:
 | |
|             return other
 | |
| 
 | |
|         return other.__sub__(self, context=context)
 | |
| 
 | |
|     def __mul__(self, other, context=None):
 | |
|         """Return self * other.
 | |
| 
 | |
|         (+-) INF * 0 (or its reverse) raise InvalidOperation.
 | |
|         """
 | |
|         other = _convert_other(other)
 | |
|         if other is NotImplemented:
 | |
|             return other
 | |
| 
 | |
|         if context is None:
 | |
|             context = getcontext()
 | |
| 
 | |
|         resultsign = self._sign ^ other._sign
 | |
| 
 | |
|         if self._is_special or other._is_special:
 | |
|             ans = self._check_nans(other, context)
 | |
|             if ans:
 | |
|                 return ans
 | |
| 
 | |
|             if self._isinfinity():
 | |
|                 if not other:
 | |
|                     return context._raise_error(InvalidOperation, '(+-)INF * 0')
 | |
|                 return _SignedInfinity[resultsign]
 | |
| 
 | |
|             if other._isinfinity():
 | |
|                 if not self:
 | |
|                     return context._raise_error(InvalidOperation, '0 * (+-)INF')
 | |
|                 return _SignedInfinity[resultsign]
 | |
| 
 | |
|         resultexp = self._exp + other._exp
 | |
| 
 | |
|         # Special case for multiplying by zero
 | |
|         if not self or not other:
 | |
|             ans = _dec_from_triple(resultsign, '0', resultexp)
 | |
|             # Fixing in case the exponent is out of bounds
 | |
|             ans = ans._fix(context)
 | |
|             return ans
 | |
| 
 | |
|         # Special case for multiplying by power of 10
 | |
|         if self._int == '1':
 | |
|             ans = _dec_from_triple(resultsign, other._int, resultexp)
 | |
|             ans = ans._fix(context)
 | |
|             return ans
 | |
|         if other._int == '1':
 | |
|             ans = _dec_from_triple(resultsign, self._int, resultexp)
 | |
|             ans = ans._fix(context)
 | |
|             return ans
 | |
| 
 | |
|         op1 = _WorkRep(self)
 | |
|         op2 = _WorkRep(other)
 | |
| 
 | |
|         ans = _dec_from_triple(resultsign, str(op1.int * op2.int), resultexp)
 | |
|         ans = ans._fix(context)
 | |
| 
 | |
|         return ans
 | |
|     __rmul__ = __mul__
 | |
| 
 | |
|     def __truediv__(self, other, context=None):
 | |
|         """Return self / other."""
 | |
|         other = _convert_other(other)
 | |
|         if other is NotImplemented:
 | |
|             return NotImplemented
 | |
| 
 | |
|         if context is None:
 | |
|             context = getcontext()
 | |
| 
 | |
|         sign = self._sign ^ other._sign
 | |
| 
 | |
|         if self._is_special or other._is_special:
 | |
|             ans = self._check_nans(other, context)
 | |
|             if ans:
 | |
|                 return ans
 | |
| 
 | |
|             if self._isinfinity() and other._isinfinity():
 | |
|                 return context._raise_error(InvalidOperation, '(+-)INF/(+-)INF')
 | |
| 
 | |
|             if self._isinfinity():
 | |
|                 return _SignedInfinity[sign]
 | |
| 
 | |
|             if other._isinfinity():
 | |
|                 context._raise_error(Clamped, 'Division by infinity')
 | |
|                 return _dec_from_triple(sign, '0', context.Etiny())
 | |
| 
 | |
|         # Special cases for zeroes
 | |
|         if not other:
 | |
|             if not self:
 | |
|                 return context._raise_error(DivisionUndefined, '0 / 0')
 | |
|             return context._raise_error(DivisionByZero, 'x / 0', sign)
 | |
| 
 | |
|         if not self:
 | |
|             exp = self._exp - other._exp
 | |
|             coeff = 0
 | |
|         else:
 | |
|             # OK, so neither = 0, INF or NaN
 | |
|             shift = len(other._int) - len(self._int) + context.prec + 1
 | |
|             exp = self._exp - other._exp - shift
 | |
|             op1 = _WorkRep(self)
 | |
|             op2 = _WorkRep(other)
 | |
|             if shift >= 0:
 | |
|                 coeff, remainder = divmod(op1.int * 10**shift, op2.int)
 | |
|             else:
 | |
|                 coeff, remainder = divmod(op1.int, op2.int * 10**-shift)
 | |
|             if remainder:
 | |
|                 # result is not exact; adjust to ensure correct rounding
 | |
|                 if coeff % 5 == 0:
 | |
|                     coeff += 1
 | |
|             else:
 | |
|                 # result is exact; get as close to ideal exponent as possible
 | |
|                 ideal_exp = self._exp - other._exp
 | |
|                 while exp < ideal_exp and coeff % 10 == 0:
 | |
|                     coeff //= 10
 | |
|                     exp += 1
 | |
| 
 | |
|         ans = _dec_from_triple(sign, str(coeff), exp)
 | |
|         return ans._fix(context)
 | |
| 
 | |
|     def _divide(self, other, context):
 | |
|         """Return (self // other, self % other), to context.prec precision.
 | |
| 
 | |
|         Assumes that neither self nor other is a NaN, that self is not
 | |
|         infinite and that other is nonzero.
 | |
|         """
 | |
|         sign = self._sign ^ other._sign
 | |
|         if other._isinfinity():
 | |
|             ideal_exp = self._exp
 | |
|         else:
 | |
|             ideal_exp = min(self._exp, other._exp)
 | |
| 
 | |
|         expdiff = self.adjusted() - other.adjusted()
 | |
|         if not self or other._isinfinity() or expdiff <= -2:
 | |
|             return (_dec_from_triple(sign, '0', 0),
 | |
|                     self._rescale(ideal_exp, context.rounding))
 | |
|         if expdiff <= context.prec:
 | |
|             op1 = _WorkRep(self)
 | |
|             op2 = _WorkRep(other)
 | |
|             if op1.exp >= op2.exp:
 | |
|                 op1.int *= 10**(op1.exp - op2.exp)
 | |
|             else:
 | |
|                 op2.int *= 10**(op2.exp - op1.exp)
 | |
|             q, r = divmod(op1.int, op2.int)
 | |
|             if q < 10**context.prec:
 | |
|                 return (_dec_from_triple(sign, str(q), 0),
 | |
|                         _dec_from_triple(self._sign, str(r), ideal_exp))
 | |
| 
 | |
|         # Here the quotient is too large to be representable
 | |
|         ans = context._raise_error(DivisionImpossible,
 | |
|                                    'quotient too large in //, % or divmod')
 | |
|         return ans, ans
 | |
| 
 | |
|     def __rtruediv__(self, other, context=None):
 | |
|         """Swaps self/other and returns __truediv__."""
 | |
|         other = _convert_other(other)
 | |
|         if other is NotImplemented:
 | |
|             return other
 | |
|         return other.__truediv__(self, context=context)
 | |
| 
 | |
|     def __divmod__(self, other, context=None):
 | |
|         """
 | |
|         Return (self // other, self % other)
 | |
|         """
 | |
|         other = _convert_other(other)
 | |
|         if other is NotImplemented:
 | |
|             return other
 | |
| 
 | |
|         if context is None:
 | |
|             context = getcontext()
 | |
| 
 | |
|         ans = self._check_nans(other, context)
 | |
|         if ans:
 | |
|             return (ans, ans)
 | |
| 
 | |
|         sign = self._sign ^ other._sign
 | |
|         if self._isinfinity():
 | |
|             if other._isinfinity():
 | |
|                 ans = context._raise_error(InvalidOperation, 'divmod(INF, INF)')
 | |
|                 return ans, ans
 | |
|             else:
 | |
|                 return (_SignedInfinity[sign],
 | |
|                         context._raise_error(InvalidOperation, 'INF % x'))
 | |
| 
 | |
|         if not other:
 | |
|             if not self:
 | |
|                 ans = context._raise_error(DivisionUndefined, 'divmod(0, 0)')
 | |
|                 return ans, ans
 | |
|             else:
 | |
|                 return (context._raise_error(DivisionByZero, 'x // 0', sign),
 | |
|                         context._raise_error(InvalidOperation, 'x % 0'))
 | |
| 
 | |
|         quotient, remainder = self._divide(other, context)
 | |
|         remainder = remainder._fix(context)
 | |
|         return quotient, remainder
 | |
| 
 | |
|     def __rdivmod__(self, other, context=None):
 | |
|         """Swaps self/other and returns __divmod__."""
 | |
|         other = _convert_other(other)
 | |
|         if other is NotImplemented:
 | |
|             return other
 | |
|         return other.__divmod__(self, context=context)
 | |
| 
 | |
|     def __mod__(self, other, context=None):
 | |
|         """
 | |
|         self % other
 | |
|         """
 | |
|         other = _convert_other(other)
 | |
|         if other is NotImplemented:
 | |
|             return other
 | |
| 
 | |
|         if context is None:
 | |
|             context = getcontext()
 | |
| 
 | |
|         ans = self._check_nans(other, context)
 | |
|         if ans:
 | |
|             return ans
 | |
| 
 | |
|         if self._isinfinity():
 | |
|             return context._raise_error(InvalidOperation, 'INF % x')
 | |
|         elif not other:
 | |
|             if self:
 | |
|                 return context._raise_error(InvalidOperation, 'x % 0')
 | |
|             else:
 | |
|                 return context._raise_error(DivisionUndefined, '0 % 0')
 | |
| 
 | |
|         remainder = self._divide(other, context)[1]
 | |
|         remainder = remainder._fix(context)
 | |
|         return remainder
 | |
| 
 | |
|     def __rmod__(self, other, context=None):
 | |
|         """Swaps self/other and returns __mod__."""
 | |
|         other = _convert_other(other)
 | |
|         if other is NotImplemented:
 | |
|             return other
 | |
|         return other.__mod__(self, context=context)
 | |
| 
 | |
|     def remainder_near(self, other, context=None):
 | |
|         """
 | |
|         Remainder nearest to 0-  abs(remainder-near) <= other/2
 | |
|         """
 | |
|         if context is None:
 | |
|             context = getcontext()
 | |
| 
 | |
|         other = _convert_other(other, raiseit=True)
 | |
| 
 | |
|         ans = self._check_nans(other, context)
 | |
|         if ans:
 | |
|             return ans
 | |
| 
 | |
|         # self == +/-infinity -> InvalidOperation
 | |
|         if self._isinfinity():
 | |
|             return context._raise_error(InvalidOperation,
 | |
|                                         'remainder_near(infinity, x)')
 | |
| 
 | |
|         # other == 0 -> either InvalidOperation or DivisionUndefined
 | |
|         if not other:
 | |
|             if self:
 | |
|                 return context._raise_error(InvalidOperation,
 | |
|                                             'remainder_near(x, 0)')
 | |
|             else:
 | |
|                 return context._raise_error(DivisionUndefined,
 | |
|                                             'remainder_near(0, 0)')
 | |
| 
 | |
|         # other = +/-infinity -> remainder = self
 | |
|         if other._isinfinity():
 | |
|             ans = Decimal(self)
 | |
|             return ans._fix(context)
 | |
| 
 | |
|         # self = 0 -> remainder = self, with ideal exponent
 | |
|         ideal_exponent = min(self._exp, other._exp)
 | |
|         if not self:
 | |
|             ans = _dec_from_triple(self._sign, '0', ideal_exponent)
 | |
|             return ans._fix(context)
 | |
| 
 | |
|         # catch most cases of large or small quotient
 | |
|         expdiff = self.adjusted() - other.adjusted()
 | |
|         if expdiff >= context.prec + 1:
 | |
|             # expdiff >= prec+1 => abs(self/other) > 10**prec
 | |
|             return context._raise_error(DivisionImpossible)
 | |
|         if expdiff <= -2:
 | |
|             # expdiff <= -2 => abs(self/other) < 0.1
 | |
|             ans = self._rescale(ideal_exponent, context.rounding)
 | |
|             return ans._fix(context)
 | |
| 
 | |
|         # adjust both arguments to have the same exponent, then divide
 | |
|         op1 = _WorkRep(self)
 | |
|         op2 = _WorkRep(other)
 | |
|         if op1.exp >= op2.exp:
 | |
|             op1.int *= 10**(op1.exp - op2.exp)
 | |
|         else:
 | |
|             op2.int *= 10**(op2.exp - op1.exp)
 | |
|         q, r = divmod(op1.int, op2.int)
 | |
|         # remainder is r*10**ideal_exponent; other is +/-op2.int *
 | |
|         # 10**ideal_exponent.   Apply correction to ensure that
 | |
|         # abs(remainder) <= abs(other)/2
 | |
|         if 2*r + (q&1) > op2.int:
 | |
|             r -= op2.int
 | |
|             q += 1
 | |
| 
 | |
|         if q >= 10**context.prec:
 | |
|             return context._raise_error(DivisionImpossible)
 | |
| 
 | |
|         # result has same sign as self unless r is negative
 | |
|         sign = self._sign
 | |
|         if r < 0:
 | |
|             sign = 1-sign
 | |
|             r = -r
 | |
| 
 | |
|         ans = _dec_from_triple(sign, str(r), ideal_exponent)
 | |
|         return ans._fix(context)
 | |
| 
 | |
|     def __floordiv__(self, other, context=None):
 | |
|         """self // other"""
 | |
|         other = _convert_other(other)
 | |
|         if other is NotImplemented:
 | |
|             return other
 | |
| 
 | |
|         if context is None:
 | |
|             context = getcontext()
 | |
| 
 | |
|         ans = self._check_nans(other, context)
 | |
|         if ans:
 | |
|             return ans
 | |
| 
 | |
|         if self._isinfinity():
 | |
|             if other._isinfinity():
 | |
|                 return context._raise_error(InvalidOperation, 'INF // INF')
 | |
|             else:
 | |
|                 return _SignedInfinity[self._sign ^ other._sign]
 | |
| 
 | |
|         if not other:
 | |
|             if self:
 | |
|                 return context._raise_error(DivisionByZero, 'x // 0',
 | |
|                                             self._sign ^ other._sign)
 | |
|             else:
 | |
|                 return context._raise_error(DivisionUndefined, '0 // 0')
 | |
| 
 | |
|         return self._divide(other, context)[0]
 | |
| 
 | |
|     def __rfloordiv__(self, other, context=None):
 | |
|         """Swaps self/other and returns __floordiv__."""
 | |
|         other = _convert_other(other)
 | |
|         if other is NotImplemented:
 | |
|             return other
 | |
|         return other.__floordiv__(self, context=context)
 | |
| 
 | |
|     def __float__(self):
 | |
|         """Float representation."""
 | |
|         return float(str(self))
 | |
| 
 | |
|     def __int__(self):
 | |
|         """Converts self to an int, truncating if necessary."""
 | |
|         if self._is_special:
 | |
|             if self._isnan():
 | |
|                 context = getcontext()
 | |
|                 return context._raise_error(InvalidContext)
 | |
|             elif self._isinfinity():
 | |
|                 raise OverflowError("Cannot convert infinity to int")
 | |
|         s = (-1)**self._sign
 | |
|         if self._exp >= 0:
 | |
|             return s*int(self._int)*10**self._exp
 | |
|         else:
 | |
|             return s*int(self._int[:self._exp] or '0')
 | |
| 
 | |
|     __trunc__ = __int__
 | |
| 
 | |
|     def real(self):
 | |
|         return self
 | |
|     real = property(real)
 | |
| 
 | |
|     def imag(self):
 | |
|         return Decimal(0)
 | |
|     imag = property(imag)
 | |
| 
 | |
|     def conjugate(self):
 | |
|         return self
 | |
| 
 | |
|     def __complex__(self):
 | |
|         return complex(float(self))
 | |
| 
 | |
|     def _fix_nan(self, context):
 | |
|         """Decapitate the payload of a NaN to fit the context"""
 | |
|         payload = self._int
 | |
| 
 | |
|         # maximum length of payload is precision if _clamp=0,
 | |
|         # precision-1 if _clamp=1.
 | |
|         max_payload_len = context.prec - context._clamp
 | |
|         if len(payload) > max_payload_len:
 | |
|             payload = payload[len(payload)-max_payload_len:].lstrip('0')
 | |
|             return _dec_from_triple(self._sign, payload, self._exp, True)
 | |
|         return Decimal(self)
 | |
| 
 | |
|     def _fix(self, context):
 | |
|         """Round if it is necessary to keep self within prec precision.
 | |
| 
 | |
|         Rounds and fixes the exponent.  Does not raise on a sNaN.
 | |
| 
 | |
|         Arguments:
 | |
|         self - Decimal instance
 | |
|         context - context used.
 | |
|         """
 | |
| 
 | |
|         if self._is_special:
 | |
|             if self._isnan():
 | |
|                 # decapitate payload if necessary
 | |
|                 return self._fix_nan(context)
 | |
|             else:
 | |
|                 # self is +/-Infinity; return unaltered
 | |
|                 return Decimal(self)
 | |
| 
 | |
|         # if self is zero then exponent should be between Etiny and
 | |
|         # Emax if _clamp==0, and between Etiny and Etop if _clamp==1.
 | |
|         Etiny = context.Etiny()
 | |
|         Etop = context.Etop()
 | |
|         if not self:
 | |
|             exp_max = [context.Emax, Etop][context._clamp]
 | |
|             new_exp = min(max(self._exp, Etiny), exp_max)
 | |
|             if new_exp != self._exp:
 | |
|                 context._raise_error(Clamped)
 | |
|                 return _dec_from_triple(self._sign, '0', new_exp)
 | |
|             else:
 | |
|                 return Decimal(self)
 | |
| 
 | |
|         # exp_min is the smallest allowable exponent of the result,
 | |
|         # equal to max(self.adjusted()-context.prec+1, Etiny)
 | |
|         exp_min = len(self._int) + self._exp - context.prec
 | |
|         if exp_min > Etop:
 | |
|             # overflow: exp_min > Etop iff self.adjusted() > Emax
 | |
|             context._raise_error(Inexact)
 | |
|             context._raise_error(Rounded)
 | |
|             return context._raise_error(Overflow, 'above Emax', self._sign)
 | |
|         self_is_subnormal = exp_min < Etiny
 | |
|         if self_is_subnormal:
 | |
|             context._raise_error(Subnormal)
 | |
|             exp_min = Etiny
 | |
| 
 | |
|         # round if self has too many digits
 | |
|         if self._exp < exp_min:
 | |
|             context._raise_error(Rounded)
 | |
|             digits = len(self._int) + self._exp - exp_min
 | |
|             if digits < 0:
 | |
|                 self = _dec_from_triple(self._sign, '1', exp_min-1)
 | |
|                 digits = 0
 | |
|             this_function = getattr(self, self._pick_rounding_function[context.rounding])
 | |
|             changed = this_function(digits)
 | |
|             coeff = self._int[:digits] or '0'
 | |
|             if changed == 1:
 | |
|                 coeff = str(int(coeff)+1)
 | |
|             ans = _dec_from_triple(self._sign, coeff, exp_min)
 | |
| 
 | |
|             if changed:
 | |
|                 context._raise_error(Inexact)
 | |
|                 if self_is_subnormal:
 | |
|                     context._raise_error(Underflow)
 | |
|                     if not ans:
 | |
|                         # raise Clamped on underflow to 0
 | |
|                         context._raise_error(Clamped)
 | |
|                 elif len(ans._int) == context.prec+1:
 | |
|                     # we get here only if rescaling rounds the
 | |
|                     # cofficient up to exactly 10**context.prec
 | |
|                     if ans._exp < Etop:
 | |
|                         ans = _dec_from_triple(ans._sign,
 | |
|                                                    ans._int[:-1], ans._exp+1)
 | |
|                     else:
 | |
|                         # Inexact and Rounded have already been raised
 | |
|                         ans = context._raise_error(Overflow, 'above Emax',
 | |
|                                                    self._sign)
 | |
|             return ans
 | |
| 
 | |
|         # fold down if _clamp == 1 and self has too few digits
 | |
|         if context._clamp == 1 and self._exp > Etop:
 | |
|             context._raise_error(Clamped)
 | |
|             self_padded = self._int + '0'*(self._exp - Etop)
 | |
|             return _dec_from_triple(self._sign, self_padded, Etop)
 | |
| 
 | |
|         # here self was representable to begin with; return unchanged
 | |
|         return Decimal(self)
 | |
| 
 | |
|     _pick_rounding_function = {}
 | |
| 
 | |
|     # for each of the rounding functions below:
 | |
|     #   self is a finite, nonzero Decimal
 | |
|     #   prec is an integer satisfying 0 <= prec < len(self._int)
 | |
|     #
 | |
|     # each function returns either -1, 0, or 1, as follows:
 | |
|     #   1 indicates that self should be rounded up (away from zero)
 | |
|     #   0 indicates that self should be truncated, and that all the
 | |
|     #     digits to be truncated are zeros (so the value is unchanged)
 | |
|     #  -1 indicates that there are nonzero digits to be truncated
 | |
| 
 | |
|     def _round_down(self, prec):
 | |
|         """Also known as round-towards-0, truncate."""
 | |
|         if _all_zeros(self._int, prec):
 | |
|             return 0
 | |
|         else:
 | |
|             return -1
 | |
| 
 | |
|     def _round_up(self, prec):
 | |
|         """Rounds away from 0."""
 | |
|         return -self._round_down(prec)
 | |
| 
 | |
|     def _round_half_up(self, prec):
 | |
|         """Rounds 5 up (away from 0)"""
 | |
|         if self._int[prec] in '56789':
 | |
|             return 1
 | |
|         elif _all_zeros(self._int, prec):
 | |
|             return 0
 | |
|         else:
 | |
|             return -1
 | |
| 
 | |
|     def _round_half_down(self, prec):
 | |
|         """Round 5 down"""
 | |
|         if _exact_half(self._int, prec):
 | |
|             return -1
 | |
|         else:
 | |
|             return self._round_half_up(prec)
 | |
| 
 | |
|     def _round_half_even(self, prec):
 | |
|         """Round 5 to even, rest to nearest."""
 | |
|         if _exact_half(self._int, prec) and \
 | |
|                 (prec == 0 or self._int[prec-1] in '02468'):
 | |
|             return -1
 | |
|         else:
 | |
|             return self._round_half_up(prec)
 | |
| 
 | |
|     def _round_ceiling(self, prec):
 | |
|         """Rounds up (not away from 0 if negative.)"""
 | |
|         if self._sign:
 | |
|             return self._round_down(prec)
 | |
|         else:
 | |
|             return -self._round_down(prec)
 | |
| 
 | |
|     def _round_floor(self, prec):
 | |
|         """Rounds down (not towards 0 if negative)"""
 | |
|         if not self._sign:
 | |
|             return self._round_down(prec)
 | |
|         else:
 | |
|             return -self._round_down(prec)
 | |
| 
 | |
|     def _round_05up(self, prec):
 | |
|         """Round down unless digit prec-1 is 0 or 5."""
 | |
|         if prec and self._int[prec-1] not in '05':
 | |
|             return self._round_down(prec)
 | |
|         else:
 | |
|             return -self._round_down(prec)
 | |
| 
 | |
|     def __round__(self, n=None):
 | |
|         """Round self to the nearest integer, or to a given precision.
 | |
| 
 | |
|         If only one argument is supplied, round a finite Decimal
 | |
|         instance self to the nearest integer.  If self is infinite or
 | |
|         a NaN then a Python exception is raised.  If self is finite
 | |
|         and lies exactly halfway between two integers then it is
 | |
|         rounded to the integer with even last digit.
 | |
| 
 | |
|         >>> round(Decimal('123.456'))
 | |
|         123
 | |
|         >>> round(Decimal('-456.789'))
 | |
|         -457
 | |
|         >>> round(Decimal('-3.0'))
 | |
|         -3
 | |
|         >>> round(Decimal('2.5'))
 | |
|         2
 | |
|         >>> round(Decimal('3.5'))
 | |
|         4
 | |
|         >>> round(Decimal('Inf'))
 | |
|         Traceback (most recent call last):
 | |
|           ...
 | |
|         OverflowError: cannot round an infinity
 | |
|         >>> round(Decimal('NaN'))
 | |
|         Traceback (most recent call last):
 | |
|           ...
 | |
|         ValueError: cannot round a NaN
 | |
| 
 | |
|         If a second argument n is supplied, self is rounded to n
 | |
|         decimal places using the rounding mode for the current
 | |
|         context.
 | |
| 
 | |
|         For an integer n, round(self, -n) is exactly equivalent to
 | |
|         self.quantize(Decimal('1En')).
 | |
| 
 | |
|         >>> round(Decimal('123.456'), 0)
 | |
|         Decimal('123')
 | |
|         >>> round(Decimal('123.456'), 2)
 | |
|         Decimal('123.46')
 | |
|         >>> round(Decimal('123.456'), -2)
 | |
|         Decimal('1E+2')
 | |
|         >>> round(Decimal('-Infinity'), 37)
 | |
|         Decimal('NaN')
 | |
|         >>> round(Decimal('sNaN123'), 0)
 | |
|         Decimal('NaN123')
 | |
| 
 | |
|         """
 | |
|         if n is not None:
 | |
|             # two-argument form: use the equivalent quantize call
 | |
|             if not isinstance(n, int):
 | |
|                 raise TypeError('Second argument to round should be integral')
 | |
|             exp = _dec_from_triple(0, '1', -n)
 | |
|             return self.quantize(exp)
 | |
| 
 | |
|         # one-argument form
 | |
|         if self._is_special:
 | |
|             if self.is_nan():
 | |
|                 raise ValueError("cannot round a NaN")
 | |
|             else:
 | |
|                 raise OverflowError("cannot round an infinity")
 | |
|         return int(self._rescale(0, ROUND_HALF_EVEN))
 | |
| 
 | |
|     def __floor__(self):
 | |
|         """Return the floor of self, as an integer.
 | |
| 
 | |
|         For a finite Decimal instance self, return the greatest
 | |
|         integer n such that n <= self.  If self is infinite or a NaN
 | |
|         then a Python exception is raised.
 | |
| 
 | |
|         """
 | |
|         if self._is_special:
 | |
|             if self.is_nan():
 | |
|                 raise ValueError("cannot round a NaN")
 | |
|             else:
 | |
|                 raise OverflowError("cannot round an infinity")
 | |
|         return int(self._rescale(0, ROUND_FLOOR))
 | |
| 
 | |
|     def __ceil__(self):
 | |
|         """Return the ceiling of self, as an integer.
 | |
| 
 | |
|         For a finite Decimal instance self, return the least integer n
 | |
|         such that n >= self.  If self is infinite or a NaN then a
 | |
|         Python exception is raised.
 | |
| 
 | |
|         """
 | |
|         if self._is_special:
 | |
|             if self.is_nan():
 | |
|                 raise ValueError("cannot round a NaN")
 | |
|             else:
 | |
|                 raise OverflowError("cannot round an infinity")
 | |
|         return int(self._rescale(0, ROUND_CEILING))
 | |
| 
 | |
|     def fma(self, other, third, context=None):
 | |
|         """Fused multiply-add.
 | |
| 
 | |
|         Returns self*other+third with no rounding of the intermediate
 | |
|         product self*other.
 | |
| 
 | |
|         self and other are multiplied together, with no rounding of
 | |
|         the result.  The third operand is then added to the result,
 | |
|         and a single final rounding is performed.
 | |
|         """
 | |
| 
 | |
|         other = _convert_other(other, raiseit=True)
 | |
| 
 | |
|         # compute product; raise InvalidOperation if either operand is
 | |
|         # a signaling NaN or if the product is zero times infinity.
 | |
|         if self._is_special or other._is_special:
 | |
|             if context is None:
 | |
|                 context = getcontext()
 | |
|             if self._exp == 'N':
 | |
|                 return context._raise_error(InvalidOperation, 'sNaN', self)
 | |
|             if other._exp == 'N':
 | |
|                 return context._raise_error(InvalidOperation, 'sNaN', other)
 | |
|             if self._exp == 'n':
 | |
|                 product = self
 | |
|             elif other._exp == 'n':
 | |
|                 product = other
 | |
|             elif self._exp == 'F':
 | |
|                 if not other:
 | |
|                     return context._raise_error(InvalidOperation,
 | |
|                                                 'INF * 0 in fma')
 | |
|                 product = _SignedInfinity[self._sign ^ other._sign]
 | |
|             elif other._exp == 'F':
 | |
|                 if not self:
 | |
|                     return context._raise_error(InvalidOperation,
 | |
|                                                 '0 * INF in fma')
 | |
|                 product = _SignedInfinity[self._sign ^ other._sign]
 | |
|         else:
 | |
|             product = _dec_from_triple(self._sign ^ other._sign,
 | |
|                                        str(int(self._int) * int(other._int)),
 | |
|                                        self._exp + other._exp)
 | |
| 
 | |
|         third = _convert_other(third, raiseit=True)
 | |
|         return product.__add__(third, context)
 | |
| 
 | |
|     def _power_modulo(self, other, modulo, context=None):
 | |
|         """Three argument version of __pow__"""
 | |
| 
 | |
|         # if can't convert other and modulo to Decimal, raise
 | |
|         # TypeError; there's no point returning NotImplemented (no
 | |
|         # equivalent of __rpow__ for three argument pow)
 | |
|         other = _convert_other(other, raiseit=True)
 | |
|         modulo = _convert_other(modulo, raiseit=True)
 | |
| 
 | |
|         if context is None:
 | |
|             context = getcontext()
 | |
| 
 | |
|         # deal with NaNs: if there are any sNaNs then first one wins,
 | |
|         # (i.e. behaviour for NaNs is identical to that of fma)
 | |
|         self_is_nan = self._isnan()
 | |
|         other_is_nan = other._isnan()
 | |
|         modulo_is_nan = modulo._isnan()
 | |
|         if self_is_nan or other_is_nan or modulo_is_nan:
 | |
|             if self_is_nan == 2:
 | |
|                 return context._raise_error(InvalidOperation, 'sNaN',
 | |
|                                         self)
 | |
|             if other_is_nan == 2:
 | |
|                 return context._raise_error(InvalidOperation, 'sNaN',
 | |
|                                         other)
 | |
|             if modulo_is_nan == 2:
 | |
|                 return context._raise_error(InvalidOperation, 'sNaN',
 | |
|                                         modulo)
 | |
|             if self_is_nan:
 | |
|                 return self._fix_nan(context)
 | |
|             if other_is_nan:
 | |
|                 return other._fix_nan(context)
 | |
|             return modulo._fix_nan(context)
 | |
| 
 | |
|         # check inputs: we apply same restrictions as Python's pow()
 | |
|         if not (self._isinteger() and
 | |
|                 other._isinteger() and
 | |
|                 modulo._isinteger()):
 | |
|             return context._raise_error(InvalidOperation,
 | |
|                                         'pow() 3rd argument not allowed '
 | |
|                                         'unless all arguments are integers')
 | |
|         if other < 0:
 | |
|             return context._raise_error(InvalidOperation,
 | |
|                                         'pow() 2nd argument cannot be '
 | |
|                                         'negative when 3rd argument specified')
 | |
|         if not modulo:
 | |
|             return context._raise_error(InvalidOperation,
 | |
|                                         'pow() 3rd argument cannot be 0')
 | |
| 
 | |
|         # additional restriction for decimal: the modulus must be less
 | |
|         # than 10**prec in absolute value
 | |
|         if modulo.adjusted() >= context.prec:
 | |
|             return context._raise_error(InvalidOperation,
 | |
|                                         'insufficient precision: pow() 3rd '
 | |
|                                         'argument must not have more than '
 | |
|                                         'precision digits')
 | |
| 
 | |
|         # define 0**0 == NaN, for consistency with two-argument pow
 | |
|         # (even though it hurts!)
 | |
|         if not other and not self:
 | |
|             return context._raise_error(InvalidOperation,
 | |
|                                         'at least one of pow() 1st argument '
 | |
|                                         'and 2nd argument must be nonzero ;'
 | |
|                                         '0**0 is not defined')
 | |
| 
 | |
|         # compute sign of result
 | |
|         if other._iseven():
 | |
|             sign = 0
 | |
|         else:
 | |
|             sign = self._sign
 | |
| 
 | |
|         # convert modulo to a Python integer, and self and other to
 | |
|         # Decimal integers (i.e. force their exponents to be >= 0)
 | |
|         modulo = abs(int(modulo))
 | |
|         base = _WorkRep(self.to_integral_value())
 | |
|         exponent = _WorkRep(other.to_integral_value())
 | |
| 
 | |
|         # compute result using integer pow()
 | |
|         base = (base.int % modulo * pow(10, base.exp, modulo)) % modulo
 | |
|         for i in range(exponent.exp):
 | |
|             base = pow(base, 10, modulo)
 | |
|         base = pow(base, exponent.int, modulo)
 | |
| 
 | |
|         return _dec_from_triple(sign, str(base), 0)
 | |
| 
 | |
|     def _power_exact(self, other, p):
 | |
|         """Attempt to compute self**other exactly.
 | |
| 
 | |
|         Given Decimals self and other and an integer p, attempt to
 | |
|         compute an exact result for the power self**other, with p
 | |
|         digits of precision.  Return None if self**other is not
 | |
|         exactly representable in p digits.
 | |
| 
 | |
|         Assumes that elimination of special cases has already been
 | |
|         performed: self and other must both be nonspecial; self must
 | |
|         be positive and not numerically equal to 1; other must be
 | |
|         nonzero.  For efficiency, other._exp should not be too large,
 | |
|         so that 10**abs(other._exp) is a feasible calculation."""
 | |
| 
 | |
|         # In the comments below, we write x for the value of self and
 | |
|         # y for the value of other.  Write x = xc*10**xe and y =
 | |
|         # yc*10**ye.
 | |
| 
 | |
|         # The main purpose of this method is to identify the *failure*
 | |
|         # of x**y to be exactly representable with as little effort as
 | |
|         # possible.  So we look for cheap and easy tests that
 | |
|         # eliminate the possibility of x**y being exact.  Only if all
 | |
|         # these tests are passed do we go on to actually compute x**y.
 | |
| 
 | |
|         # Here's the main idea.  First normalize both x and y.  We
 | |
|         # express y as a rational m/n, with m and n relatively prime
 | |
|         # and n>0.  Then for x**y to be exactly representable (at
 | |
|         # *any* precision), xc must be the nth power of a positive
 | |
|         # integer and xe must be divisible by n.  If m is negative
 | |
|         # then additionally xc must be a power of either 2 or 5, hence
 | |
|         # a power of 2**n or 5**n.
 | |
|         #
 | |
|         # There's a limit to how small |y| can be: if y=m/n as above
 | |
|         # then:
 | |
|         #
 | |
|         #  (1) if xc != 1 then for the result to be representable we
 | |
|         #      need xc**(1/n) >= 2, and hence also xc**|y| >= 2.  So
 | |
|         #      if |y| <= 1/nbits(xc) then xc < 2**nbits(xc) <=
 | |
|         #      2**(1/|y|), hence xc**|y| < 2 and the result is not
 | |
|         #      representable.
 | |
|         #
 | |
|         #  (2) if xe != 0, |xe|*(1/n) >= 1, so |xe|*|y| >= 1.  Hence if
 | |
|         #      |y| < 1/|xe| then the result is not representable.
 | |
|         #
 | |
|         # Note that since x is not equal to 1, at least one of (1) and
 | |
|         # (2) must apply.  Now |y| < 1/nbits(xc) iff |yc|*nbits(xc) <
 | |
|         # 10**-ye iff len(str(|yc|*nbits(xc)) <= -ye.
 | |
|         #
 | |
|         # There's also a limit to how large y can be, at least if it's
 | |
|         # positive: the normalized result will have coefficient xc**y,
 | |
|         # so if it's representable then xc**y < 10**p, and y <
 | |
|         # p/log10(xc).  Hence if y*log10(xc) >= p then the result is
 | |
|         # not exactly representable.
 | |
| 
 | |
|         # if len(str(abs(yc*xe)) <= -ye then abs(yc*xe) < 10**-ye,
 | |
|         # so |y| < 1/xe and the result is not representable.
 | |
|         # Similarly, len(str(abs(yc)*xc_bits)) <= -ye implies |y|
 | |
|         # < 1/nbits(xc).
 | |
| 
 | |
|         x = _WorkRep(self)
 | |
|         xc, xe = x.int, x.exp
 | |
|         while xc % 10 == 0:
 | |
|             xc //= 10
 | |
|             xe += 1
 | |
| 
 | |
|         y = _WorkRep(other)
 | |
|         yc, ye = y.int, y.exp
 | |
|         while yc % 10 == 0:
 | |
|             yc //= 10
 | |
|             ye += 1
 | |
| 
 | |
|         # case where xc == 1: result is 10**(xe*y), with xe*y
 | |
|         # required to be an integer
 | |
|         if xc == 1:
 | |
|             if ye >= 0:
 | |
|                 exponent = xe*yc*10**ye
 | |
|             else:
 | |
|                 exponent, remainder = divmod(xe*yc, 10**-ye)
 | |
|                 if remainder:
 | |
|                     return None
 | |
|             if y.sign == 1:
 | |
|                 exponent = -exponent
 | |
|             # if other is a nonnegative integer, use ideal exponent
 | |
|             if other._isinteger() and other._sign == 0:
 | |
|                 ideal_exponent = self._exp*int(other)
 | |
|                 zeros = min(exponent-ideal_exponent, p-1)
 | |
|             else:
 | |
|                 zeros = 0
 | |
|             return _dec_from_triple(0, '1' + '0'*zeros, exponent-zeros)
 | |
| 
 | |
|         # case where y is negative: xc must be either a power
 | |
|         # of 2 or a power of 5.
 | |
|         if y.sign == 1:
 | |
|             last_digit = xc % 10
 | |
|             if last_digit in (2,4,6,8):
 | |
|                 # quick test for power of 2
 | |
|                 if xc & -xc != xc:
 | |
|                     return None
 | |
|                 # now xc is a power of 2; e is its exponent
 | |
|                 e = _nbits(xc)-1
 | |
|                 # find e*y and xe*y; both must be integers
 | |
|                 if ye >= 0:
 | |
|                     y_as_int = yc*10**ye
 | |
|                     e = e*y_as_int
 | |
|                     xe = xe*y_as_int
 | |
|                 else:
 | |
|                     ten_pow = 10**-ye
 | |
|                     e, remainder = divmod(e*yc, ten_pow)
 | |
|                     if remainder:
 | |
|                         return None
 | |
|                     xe, remainder = divmod(xe*yc, ten_pow)
 | |
|                     if remainder:
 | |
|                         return None
 | |
| 
 | |
|                 if e*65 >= p*93: # 93/65 > log(10)/log(5)
 | |
|                     return None
 | |
|                 xc = 5**e
 | |
| 
 | |
|             elif last_digit == 5:
 | |
|                 # e >= log_5(xc) if xc is a power of 5; we have
 | |
|                 # equality all the way up to xc=5**2658
 | |
|                 e = _nbits(xc)*28//65
 | |
|                 xc, remainder = divmod(5**e, xc)
 | |
|                 if remainder:
 | |
|                     return None
 | |
|                 while xc % 5 == 0:
 | |
|                     xc //= 5
 | |
|                     e -= 1
 | |
|                 if ye >= 0:
 | |
|                     y_as_integer = yc*10**ye
 | |
|                     e = e*y_as_integer
 | |
|                     xe = xe*y_as_integer
 | |
|                 else:
 | |
|                     ten_pow = 10**-ye
 | |
|                     e, remainder = divmod(e*yc, ten_pow)
 | |
|                     if remainder:
 | |
|                         return None
 | |
|                     xe, remainder = divmod(xe*yc, ten_pow)
 | |
|                     if remainder:
 | |
|                         return None
 | |
|                 if e*3 >= p*10: # 10/3 > log(10)/log(2)
 | |
|                     return None
 | |
|                 xc = 2**e
 | |
|             else:
 | |
|                 return None
 | |
| 
 | |
|             if xc >= 10**p:
 | |
|                 return None
 | |
|             xe = -e-xe
 | |
|             return _dec_from_triple(0, str(xc), xe)
 | |
| 
 | |
|         # now y is positive; find m and n such that y = m/n
 | |
|         if ye >= 0:
 | |
|             m, n = yc*10**ye, 1
 | |
|         else:
 | |
|             if xe != 0 and len(str(abs(yc*xe))) <= -ye:
 | |
|                 return None
 | |
|             xc_bits = _nbits(xc)
 | |
|             if xc != 1 and len(str(abs(yc)*xc_bits)) <= -ye:
 | |
|                 return None
 | |
|             m, n = yc, 10**(-ye)
 | |
|             while m % 2 == n % 2 == 0:
 | |
|                 m //= 2
 | |
|                 n //= 2
 | |
|             while m % 5 == n % 5 == 0:
 | |
|                 m //= 5
 | |
|                 n //= 5
 | |
| 
 | |
|         # compute nth root of xc*10**xe
 | |
|         if n > 1:
 | |
|             # if 1 < xc < 2**n then xc isn't an nth power
 | |
|             if xc != 1 and xc_bits <= n:
 | |
|                 return None
 | |
| 
 | |
|             xe, rem = divmod(xe, n)
 | |
|             if rem != 0:
 | |
|                 return None
 | |
| 
 | |
|             # compute nth root of xc using Newton's method
 | |
|             a = 1 << -(-_nbits(xc)//n) # initial estimate
 | |
|             while True:
 | |
|                 q, r = divmod(xc, a**(n-1))
 | |
|                 if a <= q:
 | |
|                     break
 | |
|                 else:
 | |
|                     a = (a*(n-1) + q)//n
 | |
|             if not (a == q and r == 0):
 | |
|                 return None
 | |
|             xc = a
 | |
| 
 | |
|         # now xc*10**xe is the nth root of the original xc*10**xe
 | |
|         # compute mth power of xc*10**xe
 | |
| 
 | |
|         # if m > p*100//_log10_lb(xc) then m > p/log10(xc), hence xc**m >
 | |
|         # 10**p and the result is not representable.
 | |
|         if xc > 1 and m > p*100//_log10_lb(xc):
 | |
|             return None
 | |
|         xc = xc**m
 | |
|         xe *= m
 | |
|         if xc > 10**p:
 | |
|             return None
 | |
| 
 | |
|         # by this point the result *is* exactly representable
 | |
|         # adjust the exponent to get as close as possible to the ideal
 | |
|         # exponent, if necessary
 | |
|         str_xc = str(xc)
 | |
|         if other._isinteger() and other._sign == 0:
 | |
|             ideal_exponent = self._exp*int(other)
 | |
|             zeros = min(xe-ideal_exponent, p-len(str_xc))
 | |
|         else:
 | |
|             zeros = 0
 | |
|         return _dec_from_triple(0, str_xc+'0'*zeros, xe-zeros)
 | |
| 
 | |
|     def __pow__(self, other, modulo=None, context=None):
 | |
|         """Return self ** other [ % modulo].
 | |
| 
 | |
|         With two arguments, compute self**other.
 | |
| 
 | |
|         With three arguments, compute (self**other) % modulo.  For the
 | |
|         three argument form, the following restrictions on the
 | |
|         arguments hold:
 | |
| 
 | |
|          - all three arguments must be integral
 | |
|          - other must be nonnegative
 | |
|          - either self or other (or both) must be nonzero
 | |
|          - modulo must be nonzero and must have at most p digits,
 | |
|            where p is the context precision.
 | |
| 
 | |
|         If any of these restrictions is violated the InvalidOperation
 | |
|         flag is raised.
 | |
| 
 | |
|         The result of pow(self, other, modulo) is identical to the
 | |
|         result that would be obtained by computing (self**other) %
 | |
|         modulo with unbounded precision, but is computed more
 | |
|         efficiently.  It is always exact.
 | |
|         """
 | |
| 
 | |
|         if modulo is not None:
 | |
|             return self._power_modulo(other, modulo, context)
 | |
| 
 | |
|         other = _convert_other(other)
 | |
|         if other is NotImplemented:
 | |
|             return other
 | |
| 
 | |
|         if context is None:
 | |
|             context = getcontext()
 | |
| 
 | |
|         # either argument is a NaN => result is NaN
 | |
|         ans = self._check_nans(other, context)
 | |
|         if ans:
 | |
|             return ans
 | |
| 
 | |
|         # 0**0 = NaN (!), x**0 = 1 for nonzero x (including +/-Infinity)
 | |
|         if not other:
 | |
|             if not self:
 | |
|                 return context._raise_error(InvalidOperation, '0 ** 0')
 | |
|             else:
 | |
|                 return _One
 | |
| 
 | |
|         # result has sign 1 iff self._sign is 1 and other is an odd integer
 | |
|         result_sign = 0
 | |
|         if self._sign == 1:
 | |
|             if other._isinteger():
 | |
|                 if not other._iseven():
 | |
|                     result_sign = 1
 | |
|             else:
 | |
|                 # -ve**noninteger = NaN
 | |
|                 # (-0)**noninteger = 0**noninteger
 | |
|                 if self:
 | |
|                     return context._raise_error(InvalidOperation,
 | |
|                         'x ** y with x negative and y not an integer')
 | |
|             # negate self, without doing any unwanted rounding
 | |
|             self = self.copy_negate()
 | |
| 
 | |
|         # 0**(+ve or Inf)= 0; 0**(-ve or -Inf) = Infinity
 | |
|         if not self:
 | |
|             if other._sign == 0:
 | |
|                 return _dec_from_triple(result_sign, '0', 0)
 | |
|             else:
 | |
|                 return _SignedInfinity[result_sign]
 | |
| 
 | |
|         # Inf**(+ve or Inf) = Inf; Inf**(-ve or -Inf) = 0
 | |
|         if self._isinfinity():
 | |
|             if other._sign == 0:
 | |
|                 return _SignedInfinity[result_sign]
 | |
|             else:
 | |
|                 return _dec_from_triple(result_sign, '0', 0)
 | |
| 
 | |
|         # 1**other = 1, but the choice of exponent and the flags
 | |
|         # depend on the exponent of self, and on whether other is a
 | |
|         # positive integer, a negative integer, or neither
 | |
|         if self == _One:
 | |
|             if other._isinteger():
 | |
|                 # exp = max(self._exp*max(int(other), 0),
 | |
|                 # 1-context.prec) but evaluating int(other) directly
 | |
|                 # is dangerous until we know other is small (other
 | |
|                 # could be 1e999999999)
 | |
|                 if other._sign == 1:
 | |
|                     multiplier = 0
 | |
|                 elif other > context.prec:
 | |
|                     multiplier = context.prec
 | |
|                 else:
 | |
|                     multiplier = int(other)
 | |
| 
 | |
|                 exp = self._exp * multiplier
 | |
|                 if exp < 1-context.prec:
 | |
|                     exp = 1-context.prec
 | |
|                     context._raise_error(Rounded)
 | |
|             else:
 | |
|                 context._raise_error(Inexact)
 | |
|                 context._raise_error(Rounded)
 | |
|                 exp = 1-context.prec
 | |
| 
 | |
|             return _dec_from_triple(result_sign, '1'+'0'*-exp, exp)
 | |
| 
 | |
|         # compute adjusted exponent of self
 | |
|         self_adj = self.adjusted()
 | |
| 
 | |
|         # self ** infinity is infinity if self > 1, 0 if self < 1
 | |
|         # self ** -infinity is infinity if self < 1, 0 if self > 1
 | |
|         if other._isinfinity():
 | |
|             if (other._sign == 0) == (self_adj < 0):
 | |
|                 return _dec_from_triple(result_sign, '0', 0)
 | |
|             else:
 | |
|                 return _SignedInfinity[result_sign]
 | |
| 
 | |
|         # from here on, the result always goes through the call
 | |
|         # to _fix at the end of this function.
 | |
|         ans = None
 | |
| 
 | |
|         # crude test to catch cases of extreme overflow/underflow.  If
 | |
|         # log10(self)*other >= 10**bound and bound >= len(str(Emax))
 | |
|         # then 10**bound >= 10**len(str(Emax)) >= Emax+1 and hence
 | |
|         # self**other >= 10**(Emax+1), so overflow occurs.  The test
 | |
|         # for underflow is similar.
 | |
|         bound = self._log10_exp_bound() + other.adjusted()
 | |
|         if (self_adj >= 0) == (other._sign == 0):
 | |
|             # self > 1 and other +ve, or self < 1 and other -ve
 | |
|             # possibility of overflow
 | |
|             if bound >= len(str(context.Emax)):
 | |
|                 ans = _dec_from_triple(result_sign, '1', context.Emax+1)
 | |
|         else:
 | |
|             # self > 1 and other -ve, or self < 1 and other +ve
 | |
|             # possibility of underflow to 0
 | |
|             Etiny = context.Etiny()
 | |
|             if bound >= len(str(-Etiny)):
 | |
|                 ans = _dec_from_triple(result_sign, '1', Etiny-1)
 | |
| 
 | |
|         # try for an exact result with precision +1
 | |
|         if ans is None:
 | |
|             ans = self._power_exact(other, context.prec + 1)
 | |
|             if ans is not None and result_sign == 1:
 | |
|                 ans = _dec_from_triple(1, ans._int, ans._exp)
 | |
| 
 | |
|         # usual case: inexact result, x**y computed directly as exp(y*log(x))
 | |
|         if ans is None:
 | |
|             p = context.prec
 | |
|             x = _WorkRep(self)
 | |
|             xc, xe = x.int, x.exp
 | |
|             y = _WorkRep(other)
 | |
|             yc, ye = y.int, y.exp
 | |
|             if y.sign == 1:
 | |
|                 yc = -yc
 | |
| 
 | |
|             # compute correctly rounded result:  start with precision +3,
 | |
|             # then increase precision until result is unambiguously roundable
 | |
|             extra = 3
 | |
|             while True:
 | |
|                 coeff, exp = _dpower(xc, xe, yc, ye, p+extra)
 | |
|                 if coeff % (5*10**(len(str(coeff))-p-1)):
 | |
|                     break
 | |
|                 extra += 3
 | |
| 
 | |
|             ans = _dec_from_triple(result_sign, str(coeff), exp)
 | |
| 
 | |
|         # the specification says that for non-integer other we need to
 | |
|         # raise Inexact, even when the result is actually exact.  In
 | |
|         # the same way, we need to raise Underflow here if the result
 | |
|         # is subnormal.  (The call to _fix will take care of raising
 | |
|         # Rounded and Subnormal, as usual.)
 | |
|         if not other._isinteger():
 | |
|             context._raise_error(Inexact)
 | |
|             # pad with zeros up to length context.prec+1 if necessary
 | |
|             if len(ans._int) <= context.prec:
 | |
|                 expdiff = context.prec+1 - len(ans._int)
 | |
|                 ans = _dec_from_triple(ans._sign, ans._int+'0'*expdiff,
 | |
|                                        ans._exp-expdiff)
 | |
|             if ans.adjusted() < context.Emin:
 | |
|                 context._raise_error(Underflow)
 | |
| 
 | |
|         # unlike exp, ln and log10, the power function respects the
 | |
|         # rounding mode; no need to use ROUND_HALF_EVEN here
 | |
|         ans = ans._fix(context)
 | |
|         return ans
 | |
| 
 | |
|     def __rpow__(self, other, context=None):
 | |
|         """Swaps self/other and returns __pow__."""
 | |
|         other = _convert_other(other)
 | |
|         if other is NotImplemented:
 | |
|             return other
 | |
|         return other.__pow__(self, context=context)
 | |
| 
 | |
|     def normalize(self, context=None):
 | |
|         """Normalize- strip trailing 0s, change anything equal to 0 to 0e0"""
 | |
| 
 | |
|         if context is None:
 | |
|             context = getcontext()
 | |
| 
 | |
|         if self._is_special:
 | |
|             ans = self._check_nans(context=context)
 | |
|             if ans:
 | |
|                 return ans
 | |
| 
 | |
|         dup = self._fix(context)
 | |
|         if dup._isinfinity():
 | |
|             return dup
 | |
| 
 | |
|         if not dup:
 | |
|             return _dec_from_triple(dup._sign, '0', 0)
 | |
|         exp_max = [context.Emax, context.Etop()][context._clamp]
 | |
|         end = len(dup._int)
 | |
|         exp = dup._exp
 | |
|         while dup._int[end-1] == '0' and exp < exp_max:
 | |
|             exp += 1
 | |
|             end -= 1
 | |
|         return _dec_from_triple(dup._sign, dup._int[:end], exp)
 | |
| 
 | |
|     def quantize(self, exp, rounding=None, context=None, watchexp=True):
 | |
|         """Quantize self so its exponent is the same as that of exp.
 | |
| 
 | |
|         Similar to self._rescale(exp._exp) but with error checking.
 | |
|         """
 | |
|         exp = _convert_other(exp, raiseit=True)
 | |
| 
 | |
|         if context is None:
 | |
|             context = getcontext()
 | |
|         if rounding is None:
 | |
|             rounding = context.rounding
 | |
| 
 | |
|         if self._is_special or exp._is_special:
 | |
|             ans = self._check_nans(exp, context)
 | |
|             if ans:
 | |
|                 return ans
 | |
| 
 | |
|             if exp._isinfinity() or self._isinfinity():
 | |
|                 if exp._isinfinity() and self._isinfinity():
 | |
|                     return Decimal(self)  # if both are inf, it is OK
 | |
|                 return context._raise_error(InvalidOperation,
 | |
|                                         'quantize with one INF')
 | |
| 
 | |
|         # if we're not watching exponents, do a simple rescale
 | |
|         if not watchexp:
 | |
|             ans = self._rescale(exp._exp, rounding)
 | |
|             # raise Inexact and Rounded where appropriate
 | |
|             if ans._exp > self._exp:
 | |
|                 context._raise_error(Rounded)
 | |
|                 if ans != self:
 | |
|                     context._raise_error(Inexact)
 | |
|             return ans
 | |
| 
 | |
|         # exp._exp should be between Etiny and Emax
 | |
|         if not (context.Etiny() <= exp._exp <= context.Emax):
 | |
|             return context._raise_error(InvalidOperation,
 | |
|                    'target exponent out of bounds in quantize')
 | |
| 
 | |
|         if not self:
 | |
|             ans = _dec_from_triple(self._sign, '0', exp._exp)
 | |
|             return ans._fix(context)
 | |
| 
 | |
|         self_adjusted = self.adjusted()
 | |
|         if self_adjusted > context.Emax:
 | |
|             return context._raise_error(InvalidOperation,
 | |
|                                         'exponent of quantize result too large for current context')
 | |
|         if self_adjusted - exp._exp + 1 > context.prec:
 | |
|             return context._raise_error(InvalidOperation,
 | |
|                                         'quantize result has too many digits for current context')
 | |
| 
 | |
|         ans = self._rescale(exp._exp, rounding)
 | |
|         if ans.adjusted() > context.Emax:
 | |
|             return context._raise_error(InvalidOperation,
 | |
|                                         'exponent of quantize result too large for current context')
 | |
|         if len(ans._int) > context.prec:
 | |
|             return context._raise_error(InvalidOperation,
 | |
|                                         'quantize result has too many digits for current context')
 | |
| 
 | |
|         # raise appropriate flags
 | |
|         if ans._exp > self._exp:
 | |
|             context._raise_error(Rounded)
 | |
|             if ans != self:
 | |
|                 context._raise_error(Inexact)
 | |
|         if ans and ans.adjusted() < context.Emin:
 | |
|             context._raise_error(Subnormal)
 | |
| 
 | |
|         # call to fix takes care of any necessary folddown
 | |
|         ans = ans._fix(context)
 | |
|         return ans
 | |
| 
 | |
|     def same_quantum(self, other):
 | |
|         """Return True if self and other have the same exponent; otherwise
 | |
|         return False.
 | |
| 
 | |
|         If either operand is a special value, the following rules are used:
 | |
|            * return True if both operands are infinities
 | |
|            * return True if both operands are NaNs
 | |
|            * otherwise, return False.
 | |
|         """
 | |
|         other = _convert_other(other, raiseit=True)
 | |
|         if self._is_special or other._is_special:
 | |
|             return (self.is_nan() and other.is_nan() or
 | |
|                     self.is_infinite() and other.is_infinite())
 | |
|         return self._exp == other._exp
 | |
| 
 | |
|     def _rescale(self, exp, rounding):
 | |
|         """Rescale self so that the exponent is exp, either by padding with zeros
 | |
|         or by truncating digits, using the given rounding mode.
 | |
| 
 | |
|         Specials are returned without change.  This operation is
 | |
|         quiet: it raises no flags, and uses no information from the
 | |
|         context.
 | |
| 
 | |
|         exp = exp to scale to (an integer)
 | |
|         rounding = rounding mode
 | |
|         """
 | |
|         if self._is_special:
 | |
|             return Decimal(self)
 | |
|         if not self:
 | |
|             return _dec_from_triple(self._sign, '0', exp)
 | |
| 
 | |
|         if self._exp >= exp:
 | |
|             # pad answer with zeros if necessary
 | |
|             return _dec_from_triple(self._sign,
 | |
|                                         self._int + '0'*(self._exp - exp), exp)
 | |
| 
 | |
|         # too many digits; round and lose data.  If self.adjusted() <
 | |
|         # exp-1, replace self by 10**(exp-1) before rounding
 | |
|         digits = len(self._int) + self._exp - exp
 | |
|         if digits < 0:
 | |
|             self = _dec_from_triple(self._sign, '1', exp-1)
 | |
|             digits = 0
 | |
|         this_function = getattr(self, self._pick_rounding_function[rounding])
 | |
|         changed = this_function(digits)
 | |
|         coeff = self._int[:digits] or '0'
 | |
|         if changed == 1:
 | |
|             coeff = str(int(coeff)+1)
 | |
|         return _dec_from_triple(self._sign, coeff, exp)
 | |
| 
 | |
|     def _round(self, places, rounding):
 | |
|         """Round a nonzero, nonspecial Decimal to a fixed number of
 | |
|         significant figures, using the given rounding mode.
 | |
| 
 | |
|         Infinities, NaNs and zeros are returned unaltered.
 | |
| 
 | |
|         This operation is quiet: it raises no flags, and uses no
 | |
|         information from the context.
 | |
| 
 | |
|         """
 | |
|         if places <= 0:
 | |
|             raise ValueError("argument should be at least 1 in _round")
 | |
|         if self._is_special or not self:
 | |
|             return Decimal(self)
 | |
|         ans = self._rescale(self.adjusted()+1-places, rounding)
 | |
|         # it can happen that the rescale alters the adjusted exponent;
 | |
|         # for example when rounding 99.97 to 3 significant figures.
 | |
|         # When this happens we end up with an extra 0 at the end of
 | |
|         # the number; a second rescale fixes this.
 | |
|         if ans.adjusted() != self.adjusted():
 | |
|             ans = ans._rescale(ans.adjusted()+1-places, rounding)
 | |
|         return ans
 | |
| 
 | |
|     def to_integral_exact(self, rounding=None, context=None):
 | |
|         """Rounds to a nearby integer.
 | |
| 
 | |
|         If no rounding mode is specified, take the rounding mode from
 | |
|         the context.  This method raises the Rounded and Inexact flags
 | |
|         when appropriate.
 | |
| 
 | |
|         See also: to_integral_value, which does exactly the same as
 | |
|         this method except that it doesn't raise Inexact or Rounded.
 | |
|         """
 | |
|         if self._is_special:
 | |
|             ans = self._check_nans(context=context)
 | |
|             if ans:
 | |
|                 return ans
 | |
|             return Decimal(self)
 | |
|         if self._exp >= 0:
 | |
|             return Decimal(self)
 | |
|         if not self:
 | |
|             return _dec_from_triple(self._sign, '0', 0)
 | |
|         if context is None:
 | |
|             context = getcontext()
 | |
|         if rounding is None:
 | |
|             rounding = context.rounding
 | |
|         context._raise_error(Rounded)
 | |
|         ans = self._rescale(0, rounding)
 | |
|         if ans != self:
 | |
|             context._raise_error(Inexact)
 | |
|         return ans
 | |
| 
 | |
|     def to_integral_value(self, rounding=None, context=None):
 | |
|         """Rounds to the nearest integer, without raising inexact, rounded."""
 | |
|         if context is None:
 | |
|             context = getcontext()
 | |
|         if rounding is None:
 | |
|             rounding = context.rounding
 | |
|         if self._is_special:
 | |
|             ans = self._check_nans(context=context)
 | |
|             if ans:
 | |
|                 return ans
 | |
|             return Decimal(self)
 | |
|         if self._exp >= 0:
 | |
|             return Decimal(self)
 | |
|         else:
 | |
|             return self._rescale(0, rounding)
 | |
| 
 | |
|     # the method name changed, but we provide also the old one, for compatibility
 | |
|     to_integral = to_integral_value
 | |
| 
 | |
|     def sqrt(self, context=None):
 | |
|         """Return the square root of self."""
 | |
|         if context is None:
 | |
|             context = getcontext()
 | |
| 
 | |
|         if self._is_special:
 | |
|             ans = self._check_nans(context=context)
 | |
|             if ans:
 | |
|                 return ans
 | |
| 
 | |
|             if self._isinfinity() and self._sign == 0:
 | |
|                 return Decimal(self)
 | |
| 
 | |
|         if not self:
 | |
|             # exponent = self._exp // 2.  sqrt(-0) = -0
 | |
|             ans = _dec_from_triple(self._sign, '0', self._exp // 2)
 | |
|             return ans._fix(context)
 | |
| 
 | |
|         if self._sign == 1:
 | |
|             return context._raise_error(InvalidOperation, 'sqrt(-x), x > 0')
 | |
| 
 | |
|         # At this point self represents a positive number.  Let p be
 | |
|         # the desired precision and express self in the form c*100**e
 | |
|         # with c a positive real number and e an integer, c and e
 | |
|         # being chosen so that 100**(p-1) <= c < 100**p.  Then the
 | |
|         # (exact) square root of self is sqrt(c)*10**e, and 10**(p-1)
 | |
|         # <= sqrt(c) < 10**p, so the closest representable Decimal at
 | |
|         # precision p is n*10**e where n = round_half_even(sqrt(c)),
 | |
|         # the closest integer to sqrt(c) with the even integer chosen
 | |
|         # in the case of a tie.
 | |
|         #
 | |
|         # To ensure correct rounding in all cases, we use the
 | |
|         # following trick: we compute the square root to an extra
 | |
|         # place (precision p+1 instead of precision p), rounding down.
 | |
|         # Then, if the result is inexact and its last digit is 0 or 5,
 | |
|         # we increase the last digit to 1 or 6 respectively; if it's
 | |
|         # exact we leave the last digit alone.  Now the final round to
 | |
|         # p places (or fewer in the case of underflow) will round
 | |
|         # correctly and raise the appropriate flags.
 | |
| 
 | |
|         # use an extra digit of precision
 | |
|         prec = context.prec+1
 | |
| 
 | |
|         # write argument in the form c*100**e where e = self._exp//2
 | |
|         # is the 'ideal' exponent, to be used if the square root is
 | |
|         # exactly representable.  l is the number of 'digits' of c in
 | |
|         # base 100, so that 100**(l-1) <= c < 100**l.
 | |
|         op = _WorkRep(self)
 | |
|         e = op.exp >> 1
 | |
|         if op.exp & 1:
 | |
|             c = op.int * 10
 | |
|             l = (len(self._int) >> 1) + 1
 | |
|         else:
 | |
|             c = op.int
 | |
|             l = len(self._int)+1 >> 1
 | |
| 
 | |
|         # rescale so that c has exactly prec base 100 'digits'
 | |
|         shift = prec-l
 | |
|         if shift >= 0:
 | |
|             c *= 100**shift
 | |
|             exact = True
 | |
|         else:
 | |
|             c, remainder = divmod(c, 100**-shift)
 | |
|             exact = not remainder
 | |
|         e -= shift
 | |
| 
 | |
|         # find n = floor(sqrt(c)) using Newton's method
 | |
|         n = 10**prec
 | |
|         while True:
 | |
|             q = c//n
 | |
|             if n <= q:
 | |
|                 break
 | |
|             else:
 | |
|                 n = n + q >> 1
 | |
|         exact = exact and n*n == c
 | |
| 
 | |
|         if exact:
 | |
|             # result is exact; rescale to use ideal exponent e
 | |
|             if shift >= 0:
 | |
|                 # assert n % 10**shift == 0
 | |
|                 n //= 10**shift
 | |
|             else:
 | |
|                 n *= 10**-shift
 | |
|             e += shift
 | |
|         else:
 | |
|             # result is not exact; fix last digit as described above
 | |
|             if n % 5 == 0:
 | |
|                 n += 1
 | |
| 
 | |
|         ans = _dec_from_triple(0, str(n), e)
 | |
| 
 | |
|         # round, and fit to current context
 | |
|         context = context._shallow_copy()
 | |
|         rounding = context._set_rounding(ROUND_HALF_EVEN)
 | |
|         ans = ans._fix(context)
 | |
|         context.rounding = rounding
 | |
| 
 | |
|         return ans
 | |
| 
 | |
|     def max(self, other, context=None):
 | |
|         """Returns the larger value.
 | |
| 
 | |
|         Like max(self, other) except if one is not a number, returns
 | |
|         NaN (and signals if one is sNaN).  Also rounds.
 | |
|         """
 | |
|         other = _convert_other(other, raiseit=True)
 | |
| 
 | |
|         if context is None:
 | |
|             context = getcontext()
 | |
| 
 | |
|         if self._is_special or other._is_special:
 | |
|             # If one operand is a quiet NaN and the other is number, then the
 | |
|             # number is always returned
 | |
|             sn = self._isnan()
 | |
|             on = other._isnan()
 | |
|             if sn or on:
 | |
|                 if on == 1 and sn == 0:
 | |
|                     return self._fix(context)
 | |
|                 if sn == 1 and on == 0:
 | |
|                     return other._fix(context)
 | |
|                 return self._check_nans(other, context)
 | |
| 
 | |
|         c = self._cmp(other)
 | |
|         if c == 0:
 | |
|             # If both operands are finite and equal in numerical value
 | |
|             # then an ordering is applied:
 | |
|             #
 | |
|             # If the signs differ then max returns the operand with the
 | |
|             # positive sign and min returns the operand with the negative sign
 | |
|             #
 | |
|             # If the signs are the same then the exponent is used to select
 | |
|             # the result.  This is exactly the ordering used in compare_total.
 | |
|             c = self.compare_total(other)
 | |
| 
 | |
|         if c == -1:
 | |
|             ans = other
 | |
|         else:
 | |
|             ans = self
 | |
| 
 | |
|         return ans._fix(context)
 | |
| 
 | |
|     def min(self, other, context=None):
 | |
|         """Returns the smaller value.
 | |
| 
 | |
|         Like min(self, other) except if one is not a number, returns
 | |
|         NaN (and signals if one is sNaN).  Also rounds.
 | |
|         """
 | |
|         other = _convert_other(other, raiseit=True)
 | |
| 
 | |
|         if context is None:
 | |
|             context = getcontext()
 | |
| 
 | |
|         if self._is_special or other._is_special:
 | |
|             # If one operand is a quiet NaN and the other is number, then the
 | |
|             # number is always returned
 | |
|             sn = self._isnan()
 | |
|             on = other._isnan()
 | |
|             if sn or on:
 | |
|                 if on == 1 and sn == 0:
 | |
|                     return self._fix(context)
 | |
|                 if sn == 1 and on == 0:
 | |
|                     return other._fix(context)
 | |
|                 return self._check_nans(other, context)
 | |
| 
 | |
|         c = self._cmp(other)
 | |
|         if c == 0:
 | |
|             c = self.compare_total(other)
 | |
| 
 | |
|         if c == -1:
 | |
|             ans = self
 | |
|         else:
 | |
|             ans = other
 | |
| 
 | |
|         return ans._fix(context)
 | |
| 
 | |
|     def _isinteger(self):
 | |
|         """Returns whether self is an integer"""
 | |
|         if self._is_special:
 | |
|             return False
 | |
|         if self._exp >= 0:
 | |
|             return True
 | |
|         rest = self._int[self._exp:]
 | |
|         return rest == '0'*len(rest)
 | |
| 
 | |
|     def _iseven(self):
 | |
|         """Returns True if self is even.  Assumes self is an integer."""
 | |
|         if not self or self._exp > 0:
 | |
|             return True
 | |
|         return self._int[-1+self._exp] in '02468'
 | |
| 
 | |
|     def adjusted(self):
 | |
|         """Return the adjusted exponent of self"""
 | |
|         try:
 | |
|             return self._exp + len(self._int) - 1
 | |
|         # If NaN or Infinity, self._exp is string
 | |
|         except TypeError:
 | |
|             return 0
 | |
| 
 | |
|     def canonical(self, context=None):
 | |
|         """Returns the same Decimal object.
 | |
| 
 | |
|         As we do not have different encodings for the same number, the
 | |
|         received object already is in its canonical form.
 | |
|         """
 | |
|         return self
 | |
| 
 | |
|     def compare_signal(self, other, context=None):
 | |
|         """Compares self to the other operand numerically.
 | |
| 
 | |
|         It's pretty much like compare(), but all NaNs signal, with signaling
 | |
|         NaNs taking precedence over quiet NaNs.
 | |
|         """
 | |
|         other = _convert_other(other, raiseit = True)
 | |
|         ans = self._compare_check_nans(other, context)
 | |
|         if ans:
 | |
|             return ans
 | |
|         return self.compare(other, context=context)
 | |
| 
 | |
|     def compare_total(self, other):
 | |
|         """Compares self to other using the abstract representations.
 | |
| 
 | |
|         This is not like the standard compare, which use their numerical
 | |
|         value. Note that a total ordering is defined for all possible abstract
 | |
|         representations.
 | |
|         """
 | |
|         # if one is negative and the other is positive, it's easy
 | |
|         if self._sign and not other._sign:
 | |
|             return _NegativeOne
 | |
|         if not self._sign and other._sign:
 | |
|             return _One
 | |
|         sign = self._sign
 | |
| 
 | |
|         # let's handle both NaN types
 | |
|         self_nan = self._isnan()
 | |
|         other_nan = other._isnan()
 | |
|         if self_nan or other_nan:
 | |
|             if self_nan == other_nan:
 | |
|                 if self._int < other._int:
 | |
|                     if sign:
 | |
|                         return _One
 | |
|                     else:
 | |
|                         return _NegativeOne
 | |
|                 if self._int > other._int:
 | |
|                     if sign:
 | |
|                         return _NegativeOne
 | |
|                     else:
 | |
|                         return _One
 | |
|                 return _Zero
 | |
| 
 | |
|             if sign:
 | |
|                 if self_nan == 1:
 | |
|                     return _NegativeOne
 | |
|                 if other_nan == 1:
 | |
|                     return _One
 | |
|                 if self_nan == 2:
 | |
|                     return _NegativeOne
 | |
|                 if other_nan == 2:
 | |
|                     return _One
 | |
|             else:
 | |
|                 if self_nan == 1:
 | |
|                     return _One
 | |
|                 if other_nan == 1:
 | |
|                     return _NegativeOne
 | |
|                 if self_nan == 2:
 | |
|                     return _One
 | |
|                 if other_nan == 2:
 | |
|                     return _NegativeOne
 | |
| 
 | |
|         if self < other:
 | |
|             return _NegativeOne
 | |
|         if self > other:
 | |
|             return _One
 | |
| 
 | |
|         if self._exp < other._exp:
 | |
|             if sign:
 | |
|                 return _One
 | |
|             else:
 | |
|                 return _NegativeOne
 | |
|         if self._exp > other._exp:
 | |
|             if sign:
 | |
|                 return _NegativeOne
 | |
|             else:
 | |
|                 return _One
 | |
|         return _Zero
 | |
| 
 | |
| 
 | |
|     def compare_total_mag(self, other):
 | |
|         """Compares self to other using abstract repr., ignoring sign.
 | |
| 
 | |
|         Like compare_total, but with operand's sign ignored and assumed to be 0.
 | |
|         """
 | |
|         s = self.copy_abs()
 | |
|         o = other.copy_abs()
 | |
|         return s.compare_total(o)
 | |
| 
 | |
|     def copy_abs(self):
 | |
|         """Returns a copy with the sign set to 0. """
 | |
|         return _dec_from_triple(0, self._int, self._exp, self._is_special)
 | |
| 
 | |
|     def copy_negate(self):
 | |
|         """Returns a copy with the sign inverted."""
 | |
|         if self._sign:
 | |
|             return _dec_from_triple(0, self._int, self._exp, self._is_special)
 | |
|         else:
 | |
|             return _dec_from_triple(1, self._int, self._exp, self._is_special)
 | |
| 
 | |
|     def copy_sign(self, other):
 | |
|         """Returns self with the sign of other."""
 | |
|         return _dec_from_triple(other._sign, self._int,
 | |
|                                 self._exp, self._is_special)
 | |
| 
 | |
|     def exp(self, context=None):
 | |
|         """Returns e ** self."""
 | |
| 
 | |
|         if context is None:
 | |
|             context = getcontext()
 | |
| 
 | |
|         # exp(NaN) = NaN
 | |
|         ans = self._check_nans(context=context)
 | |
|         if ans:
 | |
|             return ans
 | |
| 
 | |
|         # exp(-Infinity) = 0
 | |
|         if self._isinfinity() == -1:
 | |
|             return _Zero
 | |
| 
 | |
|         # exp(0) = 1
 | |
|         if not self:
 | |
|             return _One
 | |
| 
 | |
|         # exp(Infinity) = Infinity
 | |
|         if self._isinfinity() == 1:
 | |
|             return Decimal(self)
 | |
| 
 | |
|         # the result is now guaranteed to be inexact (the true
 | |
|         # mathematical result is transcendental). There's no need to
 | |
|         # raise Rounded and Inexact here---they'll always be raised as
 | |
|         # a result of the call to _fix.
 | |
|         p = context.prec
 | |
|         adj = self.adjusted()
 | |
| 
 | |
|         # we only need to do any computation for quite a small range
 | |
|         # of adjusted exponents---for example, -29 <= adj <= 10 for
 | |
|         # the default context.  For smaller exponent the result is
 | |
|         # indistinguishable from 1 at the given precision, while for
 | |
|         # larger exponent the result either overflows or underflows.
 | |
|         if self._sign == 0 and adj > len(str((context.Emax+1)*3)):
 | |
|             # overflow
 | |
|             ans = _dec_from_triple(0, '1', context.Emax+1)
 | |
|         elif self._sign == 1 and adj > len(str((-context.Etiny()+1)*3)):
 | |
|             # underflow to 0
 | |
|             ans = _dec_from_triple(0, '1', context.Etiny()-1)
 | |
|         elif self._sign == 0 and adj < -p:
 | |
|             # p+1 digits; final round will raise correct flags
 | |
|             ans = _dec_from_triple(0, '1' + '0'*(p-1) + '1', -p)
 | |
|         elif self._sign == 1 and adj < -p-1:
 | |
|             # p+1 digits; final round will raise correct flags
 | |
|             ans = _dec_from_triple(0, '9'*(p+1), -p-1)
 | |
|         # general case
 | |
|         else:
 | |
|             op = _WorkRep(self)
 | |
|             c, e = op.int, op.exp
 | |
|             if op.sign == 1:
 | |
|                 c = -c
 | |
| 
 | |
|             # compute correctly rounded result: increase precision by
 | |
|             # 3 digits at a time until we get an unambiguously
 | |
|             # roundable result
 | |
|             extra = 3
 | |
|             while True:
 | |
|                 coeff, exp = _dexp(c, e, p+extra)
 | |
|                 if coeff % (5*10**(len(str(coeff))-p-1)):
 | |
|                     break
 | |
|                 extra += 3
 | |
| 
 | |
|             ans = _dec_from_triple(0, str(coeff), exp)
 | |
| 
 | |
|         # at this stage, ans should round correctly with *any*
 | |
|         # rounding mode, not just with ROUND_HALF_EVEN
 | |
|         context = context._shallow_copy()
 | |
|         rounding = context._set_rounding(ROUND_HALF_EVEN)
 | |
|         ans = ans._fix(context)
 | |
|         context.rounding = rounding
 | |
| 
 | |
|         return ans
 | |
| 
 | |
|     def is_canonical(self):
 | |
|         """Return True if self is canonical; otherwise return False.
 | |
| 
 | |
|         Currently, the encoding of a Decimal instance is always
 | |
|         canonical, so this method returns True for any Decimal.
 | |
|         """
 | |
|         return True
 | |
| 
 | |
|     def is_finite(self):
 | |
|         """Return True if self is finite; otherwise return False.
 | |
| 
 | |
|         A Decimal instance is considered finite if it is neither
 | |
|         infinite nor a NaN.
 | |
|         """
 | |
|         return not self._is_special
 | |
| 
 | |
|     def is_infinite(self):
 | |
|         """Return True if self is infinite; otherwise return False."""
 | |
|         return self._exp == 'F'
 | |
| 
 | |
|     def is_nan(self):
 | |
|         """Return True if self is a qNaN or sNaN; otherwise return False."""
 | |
|         return self._exp in ('n', 'N')
 | |
| 
 | |
|     def is_normal(self, context=None):
 | |
|         """Return True if self is a normal number; otherwise return False."""
 | |
|         if self._is_special or not self:
 | |
|             return False
 | |
|         if context is None:
 | |
|             context = getcontext()
 | |
|         return context.Emin <= self.adjusted() <= context.Emax
 | |
| 
 | |
|     def is_qnan(self):
 | |
|         """Return True if self is a quiet NaN; otherwise return False."""
 | |
|         return self._exp == 'n'
 | |
| 
 | |
|     def is_signed(self):
 | |
|         """Return True if self is negative; otherwise return False."""
 | |
|         return self._sign == 1
 | |
| 
 | |
|     def is_snan(self):
 | |
|         """Return True if self is a signaling NaN; otherwise return False."""
 | |
|         return self._exp == 'N'
 | |
| 
 | |
|     def is_subnormal(self, context=None):
 | |
|         """Return True if self is subnormal; otherwise return False."""
 | |
|         if self._is_special or not self:
 | |
|             return False
 | |
|         if context is None:
 | |
|             context = getcontext()
 | |
|         return self.adjusted() < context.Emin
 | |
| 
 | |
|     def is_zero(self):
 | |
|         """Return True if self is a zero; otherwise return False."""
 | |
|         return not self._is_special and self._int == '0'
 | |
| 
 | |
|     def _ln_exp_bound(self):
 | |
|         """Compute a lower bound for the adjusted exponent of self.ln().
 | |
|         In other words, compute r such that self.ln() >= 10**r.  Assumes
 | |
|         that self is finite and positive and that self != 1.
 | |
|         """
 | |
| 
 | |
|         # for 0.1 <= x <= 10 we use the inequalities 1-1/x <= ln(x) <= x-1
 | |
|         adj = self._exp + len(self._int) - 1
 | |
|         if adj >= 1:
 | |
|             # argument >= 10; we use 23/10 = 2.3 as a lower bound for ln(10)
 | |
|             return len(str(adj*23//10)) - 1
 | |
|         if adj <= -2:
 | |
|             # argument <= 0.1
 | |
|             return len(str((-1-adj)*23//10)) - 1
 | |
|         op = _WorkRep(self)
 | |
|         c, e = op.int, op.exp
 | |
|         if adj == 0:
 | |
|             # 1 < self < 10
 | |
|             num = str(c-10**-e)
 | |
|             den = str(c)
 | |
|             return len(num) - len(den) - (num < den)
 | |
|         # adj == -1, 0.1 <= self < 1
 | |
|         return e + len(str(10**-e - c)) - 1
 | |
| 
 | |
| 
 | |
|     def ln(self, context=None):
 | |
|         """Returns the natural (base e) logarithm of self."""
 | |
| 
 | |
|         if context is None:
 | |
|             context = getcontext()
 | |
| 
 | |
|         # ln(NaN) = NaN
 | |
|         ans = self._check_nans(context=context)
 | |
|         if ans:
 | |
|             return ans
 | |
| 
 | |
|         # ln(0.0) == -Infinity
 | |
|         if not self:
 | |
|             return _NegativeInfinity
 | |
| 
 | |
|         # ln(Infinity) = Infinity
 | |
|         if self._isinfinity() == 1:
 | |
|             return _Infinity
 | |
| 
 | |
|         # ln(1.0) == 0.0
 | |
|         if self == _One:
 | |
|             return _Zero
 | |
| 
 | |
|         # ln(negative) raises InvalidOperation
 | |
|         if self._sign == 1:
 | |
|             return context._raise_error(InvalidOperation,
 | |
|                                         'ln of a negative value')
 | |
| 
 | |
|         # result is irrational, so necessarily inexact
 | |
|         op = _WorkRep(self)
 | |
|         c, e = op.int, op.exp
 | |
|         p = context.prec
 | |
| 
 | |
|         # correctly rounded result: repeatedly increase precision by 3
 | |
|         # until we get an unambiguously roundable result
 | |
|         places = p - self._ln_exp_bound() + 2 # at least p+3 places
 | |
|         while True:
 | |
|             coeff = _dlog(c, e, places)
 | |
|             # assert len(str(abs(coeff)))-p >= 1
 | |
|             if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
 | |
|                 break
 | |
|             places += 3
 | |
|         ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places)
 | |
| 
 | |
|         context = context._shallow_copy()
 | |
|         rounding = context._set_rounding(ROUND_HALF_EVEN)
 | |
|         ans = ans._fix(context)
 | |
|         context.rounding = rounding
 | |
|         return ans
 | |
| 
 | |
|     def _log10_exp_bound(self):
 | |
|         """Compute a lower bound for the adjusted exponent of self.log10().
 | |
|         In other words, find r such that self.log10() >= 10**r.
 | |
|         Assumes that self is finite and positive and that self != 1.
 | |
|         """
 | |
| 
 | |
|         # For x >= 10 or x < 0.1 we only need a bound on the integer
 | |
|         # part of log10(self), and this comes directly from the
 | |
|         # exponent of x.  For 0.1 <= x <= 10 we use the inequalities
 | |
|         # 1-1/x <= log(x) <= x-1. If x > 1 we have |log10(x)| >
 | |
|         # (1-1/x)/2.31 > 0.  If x < 1 then |log10(x)| > (1-x)/2.31 > 0
 | |
| 
 | |
|         adj = self._exp + len(self._int) - 1
 | |
|         if adj >= 1:
 | |
|             # self >= 10
 | |
|             return len(str(adj))-1
 | |
|         if adj <= -2:
 | |
|             # self < 0.1
 | |
|             return len(str(-1-adj))-1
 | |
|         op = _WorkRep(self)
 | |
|         c, e = op.int, op.exp
 | |
|         if adj == 0:
 | |
|             # 1 < self < 10
 | |
|             num = str(c-10**-e)
 | |
|             den = str(231*c)
 | |
|             return len(num) - len(den) - (num < den) + 2
 | |
|         # adj == -1, 0.1 <= self < 1
 | |
|         num = str(10**-e-c)
 | |
|         return len(num) + e - (num < "231") - 1
 | |
| 
 | |
|     def log10(self, context=None):
 | |
|         """Returns the base 10 logarithm of self."""
 | |
| 
 | |
|         if context is None:
 | |
|             context = getcontext()
 | |
| 
 | |
|         # log10(NaN) = NaN
 | |
|         ans = self._check_nans(context=context)
 | |
|         if ans:
 | |
|             return ans
 | |
| 
 | |
|         # log10(0.0) == -Infinity
 | |
|         if not self:
 | |
|             return _NegativeInfinity
 | |
| 
 | |
|         # log10(Infinity) = Infinity
 | |
|         if self._isinfinity() == 1:
 | |
|             return _Infinity
 | |
| 
 | |
|         # log10(negative or -Infinity) raises InvalidOperation
 | |
|         if self._sign == 1:
 | |
|             return context._raise_error(InvalidOperation,
 | |
|                                         'log10 of a negative value')
 | |
| 
 | |
|         # log10(10**n) = n
 | |
|         if self._int[0] == '1' and self._int[1:] == '0'*(len(self._int) - 1):
 | |
|             # answer may need rounding
 | |
|             ans = Decimal(self._exp + len(self._int) - 1)
 | |
|         else:
 | |
|             # result is irrational, so necessarily inexact
 | |
|             op = _WorkRep(self)
 | |
|             c, e = op.int, op.exp
 | |
|             p = context.prec
 | |
| 
 | |
|             # correctly rounded result: repeatedly increase precision
 | |
|             # until result is unambiguously roundable
 | |
|             places = p-self._log10_exp_bound()+2
 | |
|             while True:
 | |
|                 coeff = _dlog10(c, e, places)
 | |
|                 # assert len(str(abs(coeff)))-p >= 1
 | |
|                 if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
 | |
|                     break
 | |
|                 places += 3
 | |
|             ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places)
 | |
| 
 | |
|         context = context._shallow_copy()
 | |
|         rounding = context._set_rounding(ROUND_HALF_EVEN)
 | |
|         ans = ans._fix(context)
 | |
|         context.rounding = rounding
 | |
|         return ans
 | |
| 
 | |
|     def logb(self, context=None):
 | |
|         """ Returns the exponent of the magnitude of self's MSD.
 | |
| 
 | |
|         The result is the integer which is the exponent of the magnitude
 | |
|         of the most significant digit of self (as though it were truncated
 | |
|         to a single digit while maintaining the value of that digit and
 | |
|         without limiting the resulting exponent).
 | |
|         """
 | |
|         # logb(NaN) = NaN
 | |
|         ans = self._check_nans(context=context)
 | |
|         if ans:
 | |
|             return ans
 | |
| 
 | |
|         if context is None:
 | |
|             context = getcontext()
 | |
| 
 | |
|         # logb(+/-Inf) = +Inf
 | |
|         if self._isinfinity():
 | |
|             return _Infinity
 | |
| 
 | |
|         # logb(0) = -Inf, DivisionByZero
 | |
|         if not self:
 | |
|             return context._raise_error(DivisionByZero, 'logb(0)', 1)
 | |
| 
 | |
|         # otherwise, simply return the adjusted exponent of self, as a
 | |
|         # Decimal.  Note that no attempt is made to fit the result
 | |
|         # into the current context.
 | |
|         return Decimal(self.adjusted())
 | |
| 
 | |
|     def _islogical(self):
 | |
|         """Return True if self is a logical operand.
 | |
| 
 | |
|         For being logical, it must be a finite number with a sign of 0,
 | |
|         an exponent of 0, and a coefficient whose digits must all be
 | |
|         either 0 or 1.
 | |
|         """
 | |
|         if self._sign != 0 or self._exp != 0:
 | |
|             return False
 | |
|         for dig in self._int:
 | |
|             if dig not in '01':
 | |
|                 return False
 | |
|         return True
 | |
| 
 | |
|     def _fill_logical(self, context, opa, opb):
 | |
|         dif = context.prec - len(opa)
 | |
|         if dif > 0:
 | |
|             opa = '0'*dif + opa
 | |
|         elif dif < 0:
 | |
|             opa = opa[-context.prec:]
 | |
|         dif = context.prec - len(opb)
 | |
|         if dif > 0:
 | |
|             opb = '0'*dif + opb
 | |
|         elif dif < 0:
 | |
|             opb = opb[-context.prec:]
 | |
|         return opa, opb
 | |
| 
 | |
|     def logical_and(self, other, context=None):
 | |
|         """Applies an 'and' operation between self and other's digits."""
 | |
|         if context is None:
 | |
|             context = getcontext()
 | |
|         if not self._islogical() or not other._islogical():
 | |
|             return context._raise_error(InvalidOperation)
 | |
| 
 | |
|         # fill to context.prec
 | |
|         (opa, opb) = self._fill_logical(context, self._int, other._int)
 | |
| 
 | |
|         # make the operation, and clean starting zeroes
 | |
|         result = "".join([str(int(a)&int(b)) for a,b in zip(opa,opb)])
 | |
|         return _dec_from_triple(0, result.lstrip('0') or '0', 0)
 | |
| 
 | |
|     def logical_invert(self, context=None):
 | |
|         """Invert all its digits."""
 | |
|         if context is None:
 | |
|             context = getcontext()
 | |
|         return self.logical_xor(_dec_from_triple(0,'1'*context.prec,0),
 | |
|                                 context)
 | |
| 
 | |
|     def logical_or(self, other, context=None):
 | |
|         """Applies an 'or' operation between self and other's digits."""
 | |
|         if context is None:
 | |
|             context = getcontext()
 | |
|         if not self._islogical() or not other._islogical():
 | |
|             return context._raise_error(InvalidOperation)
 | |
| 
 | |
|         # fill to context.prec
 | |
|         (opa, opb) = self._fill_logical(context, self._int, other._int)
 | |
| 
 | |
|         # make the operation, and clean starting zeroes
 | |
|         result = "".join([str(int(a)|int(b)) for a,b in zip(opa,opb)])
 | |
|         return _dec_from_triple(0, result.lstrip('0') or '0', 0)
 | |
| 
 | |
|     def logical_xor(self, other, context=None):
 | |
|         """Applies an 'xor' operation between self and other's digits."""
 | |
|         if context is None:
 | |
|             context = getcontext()
 | |
|         if not self._islogical() or not other._islogical():
 | |
|             return context._raise_error(InvalidOperation)
 | |
| 
 | |
|         # fill to context.prec
 | |
|         (opa, opb) = self._fill_logical(context, self._int, other._int)
 | |
| 
 | |
|         # make the operation, and clean starting zeroes
 | |
|         result = "".join([str(int(a)^int(b)) for a,b in zip(opa,opb)])
 | |
|         return _dec_from_triple(0, result.lstrip('0') or '0', 0)
 | |
| 
 | |
|     def max_mag(self, other, context=None):
 | |
|         """Compares the values numerically with their sign ignored."""
 | |
|         other = _convert_other(other, raiseit=True)
 | |
| 
 | |
|         if context is None:
 | |
|             context = getcontext()
 | |
| 
 | |
|         if self._is_special or other._is_special:
 | |
|             # If one operand is a quiet NaN and the other is number, then the
 | |
|             # number is always returned
 | |
|             sn = self._isnan()
 | |
|             on = other._isnan()
 | |
|             if sn or on:
 | |
|                 if on == 1 and sn == 0:
 | |
|                     return self._fix(context)
 | |
|                 if sn == 1 and on == 0:
 | |
|                     return other._fix(context)
 | |
|                 return self._check_nans(other, context)
 | |
| 
 | |
|         c = self.copy_abs()._cmp(other.copy_abs())
 | |
|         if c == 0:
 | |
|             c = self.compare_total(other)
 | |
| 
 | |
|         if c == -1:
 | |
|             ans = other
 | |
|         else:
 | |
|             ans = self
 | |
| 
 | |
|         return ans._fix(context)
 | |
| 
 | |
|     def min_mag(self, other, context=None):
 | |
|         """Compares the values numerically with their sign ignored."""
 | |
|         other = _convert_other(other, raiseit=True)
 | |
| 
 | |
|         if context is None:
 | |
|             context = getcontext()
 | |
| 
 | |
|         if self._is_special or other._is_special:
 | |
|             # If one operand is a quiet NaN and the other is number, then the
 | |
|             # number is always returned
 | |
|             sn = self._isnan()
 | |
|             on = other._isnan()
 | |
|             if sn or on:
 | |
|                 if on == 1 and sn == 0:
 | |
|                     return self._fix(context)
 | |
|                 if sn == 1 and on == 0:
 | |
|                     return other._fix(context)
 | |
|                 return self._check_nans(other, context)
 | |
| 
 | |
|         c = self.copy_abs()._cmp(other.copy_abs())
 | |
|         if c == 0:
 | |
|             c = self.compare_total(other)
 | |
| 
 | |
|         if c == -1:
 | |
|             ans = self
 | |
|         else:
 | |
|             ans = other
 | |
| 
 | |
|         return ans._fix(context)
 | |
| 
 | |
|     def next_minus(self, context=None):
 | |
|         """Returns the largest representable number smaller than itself."""
 | |
|         if context is None:
 | |
|             context = getcontext()
 | |
| 
 | |
|         ans = self._check_nans(context=context)
 | |
|         if ans:
 | |
|             return ans
 | |
| 
 | |
|         if self._isinfinity() == -1:
 | |
|             return _NegativeInfinity
 | |
|         if self._isinfinity() == 1:
 | |
|             return _dec_from_triple(0, '9'*context.prec, context.Etop())
 | |
| 
 | |
|         context = context.copy()
 | |
|         context._set_rounding(ROUND_FLOOR)
 | |
|         context._ignore_all_flags()
 | |
|         new_self = self._fix(context)
 | |
|         if new_self != self:
 | |
|             return new_self
 | |
|         return self.__sub__(_dec_from_triple(0, '1', context.Etiny()-1),
 | |
|                             context)
 | |
| 
 | |
|     def next_plus(self, context=None):
 | |
|         """Returns the smallest representable number larger than itself."""
 | |
|         if context is None:
 | |
|             context = getcontext()
 | |
| 
 | |
|         ans = self._check_nans(context=context)
 | |
|         if ans:
 | |
|             return ans
 | |
| 
 | |
|         if self._isinfinity() == 1:
 | |
|             return _Infinity
 | |
|         if self._isinfinity() == -1:
 | |
|             return _dec_from_triple(1, '9'*context.prec, context.Etop())
 | |
| 
 | |
|         context = context.copy()
 | |
|         context._set_rounding(ROUND_CEILING)
 | |
|         context._ignore_all_flags()
 | |
|         new_self = self._fix(context)
 | |
|         if new_self != self:
 | |
|             return new_self
 | |
|         return self.__add__(_dec_from_triple(0, '1', context.Etiny()-1),
 | |
|                             context)
 | |
| 
 | |
|     def next_toward(self, other, context=None):
 | |
|         """Returns the number closest to self, in the direction towards other.
 | |
| 
 | |
|         The result is the closest representable number to self
 | |
|         (excluding self) that is in the direction towards other,
 | |
|         unless both have the same value.  If the two operands are
 | |
|         numerically equal, then the result is a copy of self with the
 | |
|         sign set to be the same as the sign of other.
 | |
|         """
 | |
|         other = _convert_other(other, raiseit=True)
 | |
| 
 | |
|         if context is None:
 | |
|             context = getcontext()
 | |
| 
 | |
|         ans = self._check_nans(other, context)
 | |
|         if ans:
 | |
|             return ans
 | |
| 
 | |
|         comparison = self._cmp(other)
 | |
|         if comparison == 0:
 | |
|             return self.copy_sign(other)
 | |
| 
 | |
|         if comparison == -1:
 | |
|             ans = self.next_plus(context)
 | |
|         else: # comparison == 1
 | |
|             ans = self.next_minus(context)
 | |
| 
 | |
|         # decide which flags to raise using value of ans
 | |
|         if ans._isinfinity():
 | |
|             context._raise_error(Overflow,
 | |
|                                  'Infinite result from next_toward',
 | |
|                                  ans._sign)
 | |
|             context._raise_error(Rounded)
 | |
|             context._raise_error(Inexact)
 | |
|         elif ans.adjusted() < context.Emin:
 | |
|             context._raise_error(Underflow)
 | |
|             context._raise_error(Subnormal)
 | |
|             context._raise_error(Rounded)
 | |
|             context._raise_error(Inexact)
 | |
|             # if precision == 1 then we don't raise Clamped for a
 | |
|             # result 0E-Etiny.
 | |
|             if not ans:
 | |
|                 context._raise_error(Clamped)
 | |
| 
 | |
|         return ans
 | |
| 
 | |
|     def number_class(self, context=None):
 | |
|         """Returns an indication of the class of self.
 | |
| 
 | |
|         The class is one of the following strings:
 | |
|           sNaN
 | |
|           NaN
 | |
|           -Infinity
 | |
|           -Normal
 | |
|           -Subnormal
 | |
|           -Zero
 | |
|           +Zero
 | |
|           +Subnormal
 | |
|           +Normal
 | |
|           +Infinity
 | |
|         """
 | |
|         if self.is_snan():
 | |
|             return "sNaN"
 | |
|         if self.is_qnan():
 | |
|             return "NaN"
 | |
|         inf = self._isinfinity()
 | |
|         if inf == 1:
 | |
|             return "+Infinity"
 | |
|         if inf == -1:
 | |
|             return "-Infinity"
 | |
|         if self.is_zero():
 | |
|             if self._sign:
 | |
|                 return "-Zero"
 | |
|             else:
 | |
|                 return "+Zero"
 | |
|         if context is None:
 | |
|             context = getcontext()
 | |
|         if self.is_subnormal(context=context):
 | |
|             if self._sign:
 | |
|                 return "-Subnormal"
 | |
|             else:
 | |
|                 return "+Subnormal"
 | |
|         # just a normal, regular, boring number, :)
 | |
|         if self._sign:
 | |
|             return "-Normal"
 | |
|         else:
 | |
|             return "+Normal"
 | |
| 
 | |
|     def radix(self):
 | |
|         """Just returns 10, as this is Decimal, :)"""
 | |
|         return Decimal(10)
 | |
| 
 | |
|     def rotate(self, other, context=None):
 | |
|         """Returns a rotated copy of self, value-of-other times."""
 | |
|         if context is None:
 | |
|             context = getcontext()
 | |
| 
 | |
|         ans = self._check_nans(other, context)
 | |
|         if ans:
 | |
|             return ans
 | |
| 
 | |
|         if other._exp != 0:
 | |
|             return context._raise_error(InvalidOperation)
 | |
|         if not (-context.prec <= int(other) <= context.prec):
 | |
|             return context._raise_error(InvalidOperation)
 | |
| 
 | |
|         if self._isinfinity():
 | |
|             return Decimal(self)
 | |
| 
 | |
|         # get values, pad if necessary
 | |
|         torot = int(other)
 | |
|         rotdig = self._int
 | |
|         topad = context.prec - len(rotdig)
 | |
|         if topad:
 | |
|             rotdig = '0'*topad + rotdig
 | |
| 
 | |
|         # let's rotate!
 | |
|         rotated = rotdig[torot:] + rotdig[:torot]
 | |
|         return _dec_from_triple(self._sign,
 | |
|                                 rotated.lstrip('0') or '0', self._exp)
 | |
| 
 | |
|     def scaleb (self, other, context=None):
 | |
|         """Returns self operand after adding the second value to its exp."""
 | |
|         if context is None:
 | |
|             context = getcontext()
 | |
| 
 | |
|         ans = self._check_nans(other, context)
 | |
|         if ans:
 | |
|             return ans
 | |
| 
 | |
|         if other._exp != 0:
 | |
|             return context._raise_error(InvalidOperation)
 | |
|         liminf = -2 * (context.Emax + context.prec)
 | |
|         limsup =  2 * (context.Emax + context.prec)
 | |
|         if not (liminf <= int(other) <= limsup):
 | |
|             return context._raise_error(InvalidOperation)
 | |
| 
 | |
|         if self._isinfinity():
 | |
|             return Decimal(self)
 | |
| 
 | |
|         d = _dec_from_triple(self._sign, self._int, self._exp + int(other))
 | |
|         d = d._fix(context)
 | |
|         return d
 | |
| 
 | |
|     def shift(self, other, context=None):
 | |
|         """Returns a shifted copy of self, value-of-other times."""
 | |
|         if context is None:
 | |
|             context = getcontext()
 | |
| 
 | |
|         ans = self._check_nans(other, context)
 | |
|         if ans:
 | |
|             return ans
 | |
| 
 | |
|         if other._exp != 0:
 | |
|             return context._raise_error(InvalidOperation)
 | |
|         if not (-context.prec <= int(other) <= context.prec):
 | |
|             return context._raise_error(InvalidOperation)
 | |
| 
 | |
|         if self._isinfinity():
 | |
|             return Decimal(self)
 | |
| 
 | |
|         # get values, pad if necessary
 | |
|         torot = int(other)
 | |
|         if not torot:
 | |
|             return Decimal(self)
 | |
|         rotdig = self._int
 | |
|         topad = context.prec - len(rotdig)
 | |
|         if topad:
 | |
|             rotdig = '0'*topad + rotdig
 | |
| 
 | |
|         # let's shift!
 | |
|         if torot < 0:
 | |
|             rotated = rotdig[:torot]
 | |
|         else:
 | |
|             rotated = rotdig + '0'*torot
 | |
|             rotated = rotated[-context.prec:]
 | |
| 
 | |
|         return _dec_from_triple(self._sign,
 | |
|                                     rotated.lstrip('0') or '0', self._exp)
 | |
| 
 | |
|     # Support for pickling, copy, and deepcopy
 | |
|     def __reduce__(self):
 | |
|         return (self.__class__, (str(self),))
 | |
| 
 | |
|     def __copy__(self):
 | |
|         if type(self) == Decimal:
 | |
|             return self     # I'm immutable; therefore I am my own clone
 | |
|         return self.__class__(str(self))
 | |
| 
 | |
|     def __deepcopy__(self, memo):
 | |
|         if type(self) == Decimal:
 | |
|             return self     # My components are also immutable
 | |
|         return self.__class__(str(self))
 | |
| 
 | |
|     # PEP 3101 support.  the _localeconv keyword argument should be
 | |
|     # considered private: it's provided for ease of testing only.
 | |
|     def __format__(self, specifier, context=None, _localeconv=None):
 | |
|         """Format a Decimal instance according to the given specifier.
 | |
| 
 | |
|         The specifier should be a standard format specifier, with the
 | |
|         form described in PEP 3101.  Formatting types 'e', 'E', 'f',
 | |
|         'F', 'g', 'G', 'n' and '%' are supported.  If the formatting
 | |
|         type is omitted it defaults to 'g' or 'G', depending on the
 | |
|         value of context.capitals.
 | |
|         """
 | |
| 
 | |
|         # Note: PEP 3101 says that if the type is not present then
 | |
|         # there should be at least one digit after the decimal point.
 | |
|         # We take the liberty of ignoring this requirement for
 | |
|         # Decimal---it's presumably there to make sure that
 | |
|         # format(float, '') behaves similarly to str(float).
 | |
|         if context is None:
 | |
|             context = getcontext()
 | |
| 
 | |
|         spec = _parse_format_specifier(specifier, _localeconv=_localeconv)
 | |
| 
 | |
|         # special values don't care about the type or precision
 | |
|         if self._is_special:
 | |
|             sign = _format_sign(self._sign, spec)
 | |
|             body = str(self.copy_abs())
 | |
|             return _format_align(sign, body, spec)
 | |
| 
 | |
|         # a type of None defaults to 'g' or 'G', depending on context
 | |
|         if spec['type'] is None:
 | |
|             spec['type'] = ['g', 'G'][context.capitals]
 | |
| 
 | |
|         # if type is '%', adjust exponent of self accordingly
 | |
|         if spec['type'] == '%':
 | |
|             self = _dec_from_triple(self._sign, self._int, self._exp+2)
 | |
| 
 | |
|         # round if necessary, taking rounding mode from the context
 | |
|         rounding = context.rounding
 | |
|         precision = spec['precision']
 | |
|         if precision is not None:
 | |
|             if spec['type'] in 'eE':
 | |
|                 self = self._round(precision+1, rounding)
 | |
|             elif spec['type'] in 'fF%':
 | |
|                 self = self._rescale(-precision, rounding)
 | |
|             elif spec['type'] in 'gG' and len(self._int) > precision:
 | |
|                 self = self._round(precision, rounding)
 | |
|         # special case: zeros with a positive exponent can't be
 | |
|         # represented in fixed point; rescale them to 0e0.
 | |
|         if not self and self._exp > 0 and spec['type'] in 'fF%':
 | |
|             self = self._rescale(0, rounding)
 | |
| 
 | |
|         # figure out placement of the decimal point
 | |
|         leftdigits = self._exp + len(self._int)
 | |
|         if spec['type'] in 'eE':
 | |
|             if not self and precision is not None:
 | |
|                 dotplace = 1 - precision
 | |
|             else:
 | |
|                 dotplace = 1
 | |
|         elif spec['type'] in 'fF%':
 | |
|             dotplace = leftdigits
 | |
|         elif spec['type'] in 'gG':
 | |
|             if self._exp <= 0 and leftdigits > -6:
 | |
|                 dotplace = leftdigits
 | |
|             else:
 | |
|                 dotplace = 1
 | |
| 
 | |
|         # find digits before and after decimal point, and get exponent
 | |
|         if dotplace < 0:
 | |
|             intpart = '0'
 | |
|             fracpart = '0'*(-dotplace) + self._int
 | |
|         elif dotplace > len(self._int):
 | |
|             intpart = self._int + '0'*(dotplace-len(self._int))
 | |
|             fracpart = ''
 | |
|         else:
 | |
|             intpart = self._int[:dotplace] or '0'
 | |
|             fracpart = self._int[dotplace:]
 | |
|         exp = leftdigits-dotplace
 | |
| 
 | |
|         # done with the decimal-specific stuff;  hand over the rest
 | |
|         # of the formatting to the _format_number function
 | |
|         return _format_number(self._sign, intpart, fracpart, exp, spec)
 | |
| 
 | |
| def _dec_from_triple(sign, coefficient, exponent, special=False):
 | |
|     """Create a decimal instance directly, without any validation,
 | |
|     normalization (e.g. removal of leading zeros) or argument
 | |
|     conversion.
 | |
| 
 | |
|     This function is for *internal use only*.
 | |
|     """
 | |
| 
 | |
|     self = object.__new__(Decimal)
 | |
|     self._sign = sign
 | |
|     self._int = coefficient
 | |
|     self._exp = exponent
 | |
|     self._is_special = special
 | |
| 
 | |
|     return self
 | |
| 
 | |
| # Register Decimal as a kind of Number (an abstract base class).
 | |
| # However, do not register it as Real (because Decimals are not
 | |
| # interoperable with floats).
 | |
| _numbers.Number.register(Decimal)
 | |
| 
 | |
| 
 | |
| ##### Context class #######################################################
 | |
| 
 | |
| 
 | |
| # get rounding method function:
 | |
| rounding_functions = [name for name in Decimal.__dict__.keys()
 | |
|                                     if name.startswith('_round_')]
 | |
| for name in rounding_functions:
 | |
|     # name is like _round_half_even, goes to the global ROUND_HALF_EVEN value.
 | |
|     globalname = name[1:].upper()
 | |
|     val = globals()[globalname]
 | |
|     Decimal._pick_rounding_function[val] = name
 | |
| 
 | |
| del name, val, globalname, rounding_functions
 | |
| 
 | |
| class _ContextManager(object):
 | |
|     """Context manager class to support localcontext().
 | |
| 
 | |
|       Sets a copy of the supplied context in __enter__() and restores
 | |
|       the previous decimal context in __exit__()
 | |
|     """
 | |
|     def __init__(self, new_context):
 | |
|         self.new_context = new_context.copy()
 | |
|     def __enter__(self):
 | |
|         self.saved_context = getcontext()
 | |
|         setcontext(self.new_context)
 | |
|         return self.new_context
 | |
|     def __exit__(self, t, v, tb):
 | |
|         setcontext(self.saved_context)
 | |
| 
 | |
| class Context(object):
 | |
|     """Contains the context for a Decimal instance.
 | |
| 
 | |
|     Contains:
 | |
|     prec - precision (for use in rounding, division, square roots..)
 | |
|     rounding - rounding type (how you round)
 | |
|     traps - If traps[exception] = 1, then the exception is
 | |
|                     raised when it is caused.  Otherwise, a value is
 | |
|                     substituted in.
 | |
|     flags  - When an exception is caused, flags[exception] is set.
 | |
|              (Whether or not the trap_enabler is set)
 | |
|              Should be reset by user of Decimal instance.
 | |
|     Emin -   Minimum exponent
 | |
|     Emax -   Maximum exponent
 | |
|     capitals -      If 1, 1*10^1 is printed as 1E+1.
 | |
|                     If 0, printed as 1e1
 | |
|     _clamp - If 1, change exponents if too high (Default 0)
 | |
|     """
 | |
| 
 | |
|     def __init__(self, prec=None, rounding=None,
 | |
|                  traps=None, flags=None,
 | |
|                  Emin=None, Emax=None,
 | |
|                  capitals=None, _clamp=0,
 | |
|                  _ignored_flags=None):
 | |
|         if flags is None:
 | |
|             flags = []
 | |
|         if _ignored_flags is None:
 | |
|             _ignored_flags = []
 | |
|         if not isinstance(flags, dict):
 | |
|             flags = dict([(s, int(s in flags)) for s in _signals])
 | |
|         if traps is not None and not isinstance(traps, dict):
 | |
|             traps = dict([(s, int(s in traps)) for s in _signals])
 | |
|         for name, val in locals().items():
 | |
|             if val is None:
 | |
|                 setattr(self, name, _copy.copy(getattr(DefaultContext, name)))
 | |
|             else:
 | |
|                 setattr(self, name, val)
 | |
|         del self.self
 | |
| 
 | |
|     def __repr__(self):
 | |
|         """Show the current context."""
 | |
|         s = []
 | |
|         s.append('Context(prec=%(prec)d, rounding=%(rounding)s, '
 | |
|                  'Emin=%(Emin)d, Emax=%(Emax)d, capitals=%(capitals)d'
 | |
|                  % vars(self))
 | |
|         names = [f.__name__ for f, v in self.flags.items() if v]
 | |
|         s.append('flags=[' + ', '.join(names) + ']')
 | |
|         names = [t.__name__ for t, v in self.traps.items() if v]
 | |
|         s.append('traps=[' + ', '.join(names) + ']')
 | |
|         return ', '.join(s) + ')'
 | |
| 
 | |
|     def clear_flags(self):
 | |
|         """Reset all flags to zero"""
 | |
|         for flag in self.flags:
 | |
|             self.flags[flag] = 0
 | |
| 
 | |
|     def _shallow_copy(self):
 | |
|         """Returns a shallow copy from self."""
 | |
|         nc = Context(self.prec, self.rounding, self.traps,
 | |
|                      self.flags, self.Emin, self.Emax,
 | |
|                      self.capitals, self._clamp, self._ignored_flags)
 | |
|         return nc
 | |
| 
 | |
|     def copy(self):
 | |
|         """Returns a deep copy from self."""
 | |
|         nc = Context(self.prec, self.rounding, self.traps.copy(),
 | |
|                      self.flags.copy(), self.Emin, self.Emax,
 | |
|                      self.capitals, self._clamp, self._ignored_flags)
 | |
|         return nc
 | |
|     __copy__ = copy
 | |
| 
 | |
|     def _raise_error(self, condition, explanation = None, *args):
 | |
|         """Handles an error
 | |
| 
 | |
|         If the flag is in _ignored_flags, returns the default response.
 | |
|         Otherwise, it sets the flag, then, if the corresponding
 | |
|         trap_enabler is set, it reaises the exception.  Otherwise, it returns
 | |
|         the default value after setting the flag.
 | |
|         """
 | |
|         error = _condition_map.get(condition, condition)
 | |
|         if error in self._ignored_flags:
 | |
|             # Don't touch the flag
 | |
|             return error().handle(self, *args)
 | |
| 
 | |
|         self.flags[error] = 1
 | |
|         if not self.traps[error]:
 | |
|             # The errors define how to handle themselves.
 | |
|             return condition().handle(self, *args)
 | |
| 
 | |
|         # Errors should only be risked on copies of the context
 | |
|         # self._ignored_flags = []
 | |
|         raise error(explanation)
 | |
| 
 | |
|     def _ignore_all_flags(self):
 | |
|         """Ignore all flags, if they are raised"""
 | |
|         return self._ignore_flags(*_signals)
 | |
| 
 | |
|     def _ignore_flags(self, *flags):
 | |
|         """Ignore the flags, if they are raised"""
 | |
|         # Do not mutate-- This way, copies of a context leave the original
 | |
|         # alone.
 | |
|         self._ignored_flags = (self._ignored_flags + list(flags))
 | |
|         return list(flags)
 | |
| 
 | |
|     def _regard_flags(self, *flags):
 | |
|         """Stop ignoring the flags, if they are raised"""
 | |
|         if flags and isinstance(flags[0], (tuple,list)):
 | |
|             flags = flags[0]
 | |
|         for flag in flags:
 | |
|             self._ignored_flags.remove(flag)
 | |
| 
 | |
|     # We inherit object.__hash__, so we must deny this explicitly
 | |
|     __hash__ = None
 | |
| 
 | |
|     def Etiny(self):
 | |
|         """Returns Etiny (= Emin - prec + 1)"""
 | |
|         return int(self.Emin - self.prec + 1)
 | |
| 
 | |
|     def Etop(self):
 | |
|         """Returns maximum exponent (= Emax - prec + 1)"""
 | |
|         return int(self.Emax - self.prec + 1)
 | |
| 
 | |
|     def _set_rounding(self, type):
 | |
|         """Sets the rounding type.
 | |
| 
 | |
|         Sets the rounding type, and returns the current (previous)
 | |
|         rounding type.  Often used like:
 | |
| 
 | |
|         context = context.copy()
 | |
|         # so you don't change the calling context
 | |
|         # if an error occurs in the middle.
 | |
|         rounding = context._set_rounding(ROUND_UP)
 | |
|         val = self.__sub__(other, context=context)
 | |
|         context._set_rounding(rounding)
 | |
| 
 | |
|         This will make it round up for that operation.
 | |
|         """
 | |
|         rounding = self.rounding
 | |
|         self.rounding= type
 | |
|         return rounding
 | |
| 
 | |
|     def create_decimal(self, num='0'):
 | |
|         """Creates a new Decimal instance but using self as context.
 | |
| 
 | |
|         This method implements the to-number operation of the
 | |
|         IBM Decimal specification."""
 | |
| 
 | |
|         if isinstance(num, str) and num != num.strip():
 | |
|             return self._raise_error(ConversionSyntax,
 | |
|                                      "no trailing or leading whitespace is "
 | |
|                                      "permitted.")
 | |
| 
 | |
|         d = Decimal(num, context=self)
 | |
|         if d._isnan() and len(d._int) > self.prec - self._clamp:
 | |
|             return self._raise_error(ConversionSyntax,
 | |
|                                      "diagnostic info too long in NaN")
 | |
|         return d._fix(self)
 | |
| 
 | |
|     def create_decimal_from_float(self, f):
 | |
|         """Creates a new Decimal instance from a float but rounding using self
 | |
|         as the context.
 | |
| 
 | |
|         >>> context = Context(prec=5, rounding=ROUND_DOWN)
 | |
|         >>> context.create_decimal_from_float(3.1415926535897932)
 | |
|         Decimal('3.1415')
 | |
|         >>> context = Context(prec=5, traps=[Inexact])
 | |
|         >>> context.create_decimal_from_float(3.1415926535897932)
 | |
|         Traceback (most recent call last):
 | |
|             ...
 | |
|         decimal.Inexact: None
 | |
| 
 | |
|         """
 | |
|         d = Decimal.from_float(f)       # An exact conversion
 | |
|         return d._fix(self)             # Apply the context rounding
 | |
| 
 | |
|     # Methods
 | |
|     def abs(self, a):
 | |
|         """Returns the absolute value of the operand.
 | |
| 
 | |
|         If the operand is negative, the result is the same as using the minus
 | |
|         operation on the operand.  Otherwise, the result is the same as using
 | |
|         the plus operation on the operand.
 | |
| 
 | |
|         >>> ExtendedContext.abs(Decimal('2.1'))
 | |
|         Decimal('2.1')
 | |
|         >>> ExtendedContext.abs(Decimal('-100'))
 | |
|         Decimal('100')
 | |
|         >>> ExtendedContext.abs(Decimal('101.5'))
 | |
|         Decimal('101.5')
 | |
|         >>> ExtendedContext.abs(Decimal('-101.5'))
 | |
|         Decimal('101.5')
 | |
|         """
 | |
|         return a.__abs__(context=self)
 | |
| 
 | |
|     def add(self, a, b):
 | |
|         """Return the sum of the two operands.
 | |
| 
 | |
|         >>> ExtendedContext.add(Decimal('12'), Decimal('7.00'))
 | |
|         Decimal('19.00')
 | |
|         >>> ExtendedContext.add(Decimal('1E+2'), Decimal('1.01E+4'))
 | |
|         Decimal('1.02E+4')
 | |
|         """
 | |
|         return a.__add__(b, context=self)
 | |
| 
 | |
|     def _apply(self, a):
 | |
|         return str(a._fix(self))
 | |
| 
 | |
|     def canonical(self, a):
 | |
|         """Returns the same Decimal object.
 | |
| 
 | |
|         As we do not have different encodings for the same number, the
 | |
|         received object already is in its canonical form.
 | |
| 
 | |
|         >>> ExtendedContext.canonical(Decimal('2.50'))
 | |
|         Decimal('2.50')
 | |
|         """
 | |
|         return a.canonical(context=self)
 | |
| 
 | |
|     def compare(self, a, b):
 | |
|         """Compares values numerically.
 | |
| 
 | |
|         If the signs of the operands differ, a value representing each operand
 | |
|         ('-1' if the operand is less than zero, '0' if the operand is zero or
 | |
|         negative zero, or '1' if the operand is greater than zero) is used in
 | |
|         place of that operand for the comparison instead of the actual
 | |
|         operand.
 | |
| 
 | |
|         The comparison is then effected by subtracting the second operand from
 | |
|         the first and then returning a value according to the result of the
 | |
|         subtraction: '-1' if the result is less than zero, '0' if the result is
 | |
|         zero or negative zero, or '1' if the result is greater than zero.
 | |
| 
 | |
|         >>> ExtendedContext.compare(Decimal('2.1'), Decimal('3'))
 | |
|         Decimal('-1')
 | |
|         >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.1'))
 | |
|         Decimal('0')
 | |
|         >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.10'))
 | |
|         Decimal('0')
 | |
|         >>> ExtendedContext.compare(Decimal('3'), Decimal('2.1'))
 | |
|         Decimal('1')
 | |
|         >>> ExtendedContext.compare(Decimal('2.1'), Decimal('-3'))
 | |
|         Decimal('1')
 | |
|         >>> ExtendedContext.compare(Decimal('-3'), Decimal('2.1'))
 | |
|         Decimal('-1')
 | |
|         """
 | |
|         return a.compare(b, context=self)
 | |
| 
 | |
|     def compare_signal(self, a, b):
 | |
|         """Compares the values of the two operands numerically.
 | |
| 
 | |
|         It's pretty much like compare(), but all NaNs signal, with signaling
 | |
|         NaNs taking precedence over quiet NaNs.
 | |
| 
 | |
|         >>> c = ExtendedContext
 | |
|         >>> c.compare_signal(Decimal('2.1'), Decimal('3'))
 | |
|         Decimal('-1')
 | |
|         >>> c.compare_signal(Decimal('2.1'), Decimal('2.1'))
 | |
|         Decimal('0')
 | |
|         >>> c.flags[InvalidOperation] = 0
 | |
|         >>> print(c.flags[InvalidOperation])
 | |
|         0
 | |
|         >>> c.compare_signal(Decimal('NaN'), Decimal('2.1'))
 | |
|         Decimal('NaN')
 | |
|         >>> print(c.flags[InvalidOperation])
 | |
|         1
 | |
|         >>> c.flags[InvalidOperation] = 0
 | |
|         >>> print(c.flags[InvalidOperation])
 | |
|         0
 | |
|         >>> c.compare_signal(Decimal('sNaN'), Decimal('2.1'))
 | |
|         Decimal('NaN')
 | |
|         >>> print(c.flags[InvalidOperation])
 | |
|         1
 | |
|         """
 | |
|         return a.compare_signal(b, context=self)
 | |
| 
 | |
|     def compare_total(self, a, b):
 | |
|         """Compares two operands using their abstract representation.
 | |
| 
 | |
|         This is not like the standard compare, which use their numerical
 | |
|         value. Note that a total ordering is defined for all possible abstract
 | |
|         representations.
 | |
| 
 | |
|         >>> ExtendedContext.compare_total(Decimal('12.73'), Decimal('127.9'))
 | |
|         Decimal('-1')
 | |
|         >>> ExtendedContext.compare_total(Decimal('-127'),  Decimal('12'))
 | |
|         Decimal('-1')
 | |
|         >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.3'))
 | |
|         Decimal('-1')
 | |
|         >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.30'))
 | |
|         Decimal('0')
 | |
|         >>> ExtendedContext.compare_total(Decimal('12.3'),  Decimal('12.300'))
 | |
|         Decimal('1')
 | |
|         >>> ExtendedContext.compare_total(Decimal('12.3'),  Decimal('NaN'))
 | |
|         Decimal('-1')
 | |
|         """
 | |
|         return a.compare_total(b)
 | |
| 
 | |
|     def compare_total_mag(self, a, b):
 | |
|         """Compares two operands using their abstract representation ignoring sign.
 | |
| 
 | |
|         Like compare_total, but with operand's sign ignored and assumed to be 0.
 | |
|         """
 | |
|         return a.compare_total_mag(b)
 | |
| 
 | |
|     def copy_abs(self, a):
 | |
|         """Returns a copy of the operand with the sign set to 0.
 | |
| 
 | |
|         >>> ExtendedContext.copy_abs(Decimal('2.1'))
 | |
|         Decimal('2.1')
 | |
|         >>> ExtendedContext.copy_abs(Decimal('-100'))
 | |
|         Decimal('100')
 | |
|         """
 | |
|         return a.copy_abs()
 | |
| 
 | |
|     def copy_decimal(self, a):
 | |
|         """Returns a copy of the decimal objet.
 | |
| 
 | |
|         >>> ExtendedContext.copy_decimal(Decimal('2.1'))
 | |
|         Decimal('2.1')
 | |
|         >>> ExtendedContext.copy_decimal(Decimal('-1.00'))
 | |
|         Decimal('-1.00')
 | |
|         """
 | |
|         return Decimal(a)
 | |
| 
 | |
|     def copy_negate(self, a):
 | |
|         """Returns a copy of the operand with the sign inverted.
 | |
| 
 | |
|         >>> ExtendedContext.copy_negate(Decimal('101.5'))
 | |
|         Decimal('-101.5')
 | |
|         >>> ExtendedContext.copy_negate(Decimal('-101.5'))
 | |
|         Decimal('101.5')
 | |
|         """
 | |
|         return a.copy_negate()
 | |
| 
 | |
|     def copy_sign(self, a, b):
 | |
|         """Copies the second operand's sign to the first one.
 | |
| 
 | |
|         In detail, it returns a copy of the first operand with the sign
 | |
|         equal to the sign of the second operand.
 | |
| 
 | |
|         >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('7.33'))
 | |
|         Decimal('1.50')
 | |
|         >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('7.33'))
 | |
|         Decimal('1.50')
 | |
|         >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('-7.33'))
 | |
|         Decimal('-1.50')
 | |
|         >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('-7.33'))
 | |
|         Decimal('-1.50')
 | |
|         """
 | |
|         return a.copy_sign(b)
 | |
| 
 | |
|     def divide(self, a, b):
 | |
|         """Decimal division in a specified context.
 | |
| 
 | |
|         >>> ExtendedContext.divide(Decimal('1'), Decimal('3'))
 | |
|         Decimal('0.333333333')
 | |
|         >>> ExtendedContext.divide(Decimal('2'), Decimal('3'))
 | |
|         Decimal('0.666666667')
 | |
|         >>> ExtendedContext.divide(Decimal('5'), Decimal('2'))
 | |
|         Decimal('2.5')
 | |
|         >>> ExtendedContext.divide(Decimal('1'), Decimal('10'))
 | |
|         Decimal('0.1')
 | |
|         >>> ExtendedContext.divide(Decimal('12'), Decimal('12'))
 | |
|         Decimal('1')
 | |
|         >>> ExtendedContext.divide(Decimal('8.00'), Decimal('2'))
 | |
|         Decimal('4.00')
 | |
|         >>> ExtendedContext.divide(Decimal('2.400'), Decimal('2.0'))
 | |
|         Decimal('1.20')
 | |
|         >>> ExtendedContext.divide(Decimal('1000'), Decimal('100'))
 | |
|         Decimal('10')
 | |
|         >>> ExtendedContext.divide(Decimal('1000'), Decimal('1'))
 | |
|         Decimal('1000')
 | |
|         >>> ExtendedContext.divide(Decimal('2.40E+6'), Decimal('2'))
 | |
|         Decimal('1.20E+6')
 | |
|         """
 | |
|         return a.__truediv__(b, context=self)
 | |
| 
 | |
|     def divide_int(self, a, b):
 | |
|         """Divides two numbers and returns the integer part of the result.
 | |
| 
 | |
|         >>> ExtendedContext.divide_int(Decimal('2'), Decimal('3'))
 | |
|         Decimal('0')
 | |
|         >>> ExtendedContext.divide_int(Decimal('10'), Decimal('3'))
 | |
|         Decimal('3')
 | |
|         >>> ExtendedContext.divide_int(Decimal('1'), Decimal('0.3'))
 | |
|         Decimal('3')
 | |
|         """
 | |
|         return a.__floordiv__(b, context=self)
 | |
| 
 | |
|     def divmod(self, a, b):
 | |
|         return a.__divmod__(b, context=self)
 | |
| 
 | |
|     def exp(self, a):
 | |
|         """Returns e ** a.
 | |
| 
 | |
|         >>> c = ExtendedContext.copy()
 | |
|         >>> c.Emin = -999
 | |
|         >>> c.Emax = 999
 | |
|         >>> c.exp(Decimal('-Infinity'))
 | |
|         Decimal('0')
 | |
|         >>> c.exp(Decimal('-1'))
 | |
|         Decimal('0.367879441')
 | |
|         >>> c.exp(Decimal('0'))
 | |
|         Decimal('1')
 | |
|         >>> c.exp(Decimal('1'))
 | |
|         Decimal('2.71828183')
 | |
|         >>> c.exp(Decimal('0.693147181'))
 | |
|         Decimal('2.00000000')
 | |
|         >>> c.exp(Decimal('+Infinity'))
 | |
|         Decimal('Infinity')
 | |
|         """
 | |
|         return a.exp(context=self)
 | |
| 
 | |
|     def fma(self, a, b, c):
 | |
|         """Returns a multiplied by b, plus c.
 | |
| 
 | |
|         The first two operands are multiplied together, using multiply,
 | |
|         the third operand is then added to the result of that
 | |
|         multiplication, using add, all with only one final rounding.
 | |
| 
 | |
|         >>> ExtendedContext.fma(Decimal('3'), Decimal('5'), Decimal('7'))
 | |
|         Decimal('22')
 | |
|         >>> ExtendedContext.fma(Decimal('3'), Decimal('-5'), Decimal('7'))
 | |
|         Decimal('-8')
 | |
|         >>> ExtendedContext.fma(Decimal('888565290'), Decimal('1557.96930'), Decimal('-86087.7578'))
 | |
|         Decimal('1.38435736E+12')
 | |
|         """
 | |
|         return a.fma(b, c, context=self)
 | |
| 
 | |
|     def is_canonical(self, a):
 | |
|         """Return True if the operand is canonical; otherwise return False.
 | |
| 
 | |
|         Currently, the encoding of a Decimal instance is always
 | |
|         canonical, so this method returns True for any Decimal.
 | |
| 
 | |
|         >>> ExtendedContext.is_canonical(Decimal('2.50'))
 | |
|         True
 | |
|         """
 | |
|         return a.is_canonical()
 | |
| 
 | |
|     def is_finite(self, a):
 | |
|         """Return True if the operand is finite; otherwise return False.
 | |
| 
 | |
|         A Decimal instance is considered finite if it is neither
 | |
|         infinite nor a NaN.
 | |
| 
 | |
|         >>> ExtendedContext.is_finite(Decimal('2.50'))
 | |
|         True
 | |
|         >>> ExtendedContext.is_finite(Decimal('-0.3'))
 | |
|         True
 | |
|         >>> ExtendedContext.is_finite(Decimal('0'))
 | |
|         True
 | |
|         >>> ExtendedContext.is_finite(Decimal('Inf'))
 | |
|         False
 | |
|         >>> ExtendedContext.is_finite(Decimal('NaN'))
 | |
|         False
 | |
|         """
 | |
|         return a.is_finite()
 | |
| 
 | |
|     def is_infinite(self, a):
 | |
|         """Return True if the operand is infinite; otherwise return False.
 | |
| 
 | |
|         >>> ExtendedContext.is_infinite(Decimal('2.50'))
 | |
|         False
 | |
|         >>> ExtendedContext.is_infinite(Decimal('-Inf'))
 | |
|         True
 | |
|         >>> ExtendedContext.is_infinite(Decimal('NaN'))
 | |
|         False
 | |
|         """
 | |
|         return a.is_infinite()
 | |
| 
 | |
|     def is_nan(self, a):
 | |
|         """Return True if the operand is a qNaN or sNaN;
 | |
|         otherwise return False.
 | |
| 
 | |
|         >>> ExtendedContext.is_nan(Decimal('2.50'))
 | |
|         False
 | |
|         >>> ExtendedContext.is_nan(Decimal('NaN'))
 | |
|         True
 | |
|         >>> ExtendedContext.is_nan(Decimal('-sNaN'))
 | |
|         True
 | |
|         """
 | |
|         return a.is_nan()
 | |
| 
 | |
|     def is_normal(self, a):
 | |
|         """Return True if the operand is a normal number;
 | |
|         otherwise return False.
 | |
| 
 | |
|         >>> c = ExtendedContext.copy()
 | |
|         >>> c.Emin = -999
 | |
|         >>> c.Emax = 999
 | |
|         >>> c.is_normal(Decimal('2.50'))
 | |
|         True
 | |
|         >>> c.is_normal(Decimal('0.1E-999'))
 | |
|         False
 | |
|         >>> c.is_normal(Decimal('0.00'))
 | |
|         False
 | |
|         >>> c.is_normal(Decimal('-Inf'))
 | |
|         False
 | |
|         >>> c.is_normal(Decimal('NaN'))
 | |
|         False
 | |
|         """
 | |
|         return a.is_normal(context=self)
 | |
| 
 | |
|     def is_qnan(self, a):
 | |
|         """Return True if the operand is a quiet NaN; otherwise return False.
 | |
| 
 | |
|         >>> ExtendedContext.is_qnan(Decimal('2.50'))
 | |
|         False
 | |
|         >>> ExtendedContext.is_qnan(Decimal('NaN'))
 | |
|         True
 | |
|         >>> ExtendedContext.is_qnan(Decimal('sNaN'))
 | |
|         False
 | |
|         """
 | |
|         return a.is_qnan()
 | |
| 
 | |
|     def is_signed(self, a):
 | |
|         """Return True if the operand is negative; otherwise return False.
 | |
| 
 | |
|         >>> ExtendedContext.is_signed(Decimal('2.50'))
 | |
|         False
 | |
|         >>> ExtendedContext.is_signed(Decimal('-12'))
 | |
|         True
 | |
|         >>> ExtendedContext.is_signed(Decimal('-0'))
 | |
|         True
 | |
|         """
 | |
|         return a.is_signed()
 | |
| 
 | |
|     def is_snan(self, a):
 | |
|         """Return True if the operand is a signaling NaN;
 | |
|         otherwise return False.
 | |
| 
 | |
|         >>> ExtendedContext.is_snan(Decimal('2.50'))
 | |
|         False
 | |
|         >>> ExtendedContext.is_snan(Decimal('NaN'))
 | |
|         False
 | |
|         >>> ExtendedContext.is_snan(Decimal('sNaN'))
 | |
|         True
 | |
|         """
 | |
|         return a.is_snan()
 | |
| 
 | |
|     def is_subnormal(self, a):
 | |
|         """Return True if the operand is subnormal; otherwise return False.
 | |
| 
 | |
|         >>> c = ExtendedContext.copy()
 | |
|         >>> c.Emin = -999
 | |
|         >>> c.Emax = 999
 | |
|         >>> c.is_subnormal(Decimal('2.50'))
 | |
|         False
 | |
|         >>> c.is_subnormal(Decimal('0.1E-999'))
 | |
|         True
 | |
|         >>> c.is_subnormal(Decimal('0.00'))
 | |
|         False
 | |
|         >>> c.is_subnormal(Decimal('-Inf'))
 | |
|         False
 | |
|         >>> c.is_subnormal(Decimal('NaN'))
 | |
|         False
 | |
|         """
 | |
|         return a.is_subnormal(context=self)
 | |
| 
 | |
|     def is_zero(self, a):
 | |
|         """Return True if the operand is a zero; otherwise return False.
 | |
| 
 | |
|         >>> ExtendedContext.is_zero(Decimal('0'))
 | |
|         True
 | |
|         >>> ExtendedContext.is_zero(Decimal('2.50'))
 | |
|         False
 | |
|         >>> ExtendedContext.is_zero(Decimal('-0E+2'))
 | |
|         True
 | |
|         """
 | |
|         return a.is_zero()
 | |
| 
 | |
|     def ln(self, a):
 | |
|         """Returns the natural (base e) logarithm of the operand.
 | |
| 
 | |
|         >>> c = ExtendedContext.copy()
 | |
|         >>> c.Emin = -999
 | |
|         >>> c.Emax = 999
 | |
|         >>> c.ln(Decimal('0'))
 | |
|         Decimal('-Infinity')
 | |
|         >>> c.ln(Decimal('1.000'))
 | |
|         Decimal('0')
 | |
|         >>> c.ln(Decimal('2.71828183'))
 | |
|         Decimal('1.00000000')
 | |
|         >>> c.ln(Decimal('10'))
 | |
|         Decimal('2.30258509')
 | |
|         >>> c.ln(Decimal('+Infinity'))
 | |
|         Decimal('Infinity')
 | |
|         """
 | |
|         return a.ln(context=self)
 | |
| 
 | |
|     def log10(self, a):
 | |
|         """Returns the base 10 logarithm of the operand.
 | |
| 
 | |
|         >>> c = ExtendedContext.copy()
 | |
|         >>> c.Emin = -999
 | |
|         >>> c.Emax = 999
 | |
|         >>> c.log10(Decimal('0'))
 | |
|         Decimal('-Infinity')
 | |
|         >>> c.log10(Decimal('0.001'))
 | |
|         Decimal('-3')
 | |
|         >>> c.log10(Decimal('1.000'))
 | |
|         Decimal('0')
 | |
|         >>> c.log10(Decimal('2'))
 | |
|         Decimal('0.301029996')
 | |
|         >>> c.log10(Decimal('10'))
 | |
|         Decimal('1')
 | |
|         >>> c.log10(Decimal('70'))
 | |
|         Decimal('1.84509804')
 | |
|         >>> c.log10(Decimal('+Infinity'))
 | |
|         Decimal('Infinity')
 | |
|         """
 | |
|         return a.log10(context=self)
 | |
| 
 | |
|     def logb(self, a):
 | |
|         """ Returns the exponent of the magnitude of the operand's MSD.
 | |
| 
 | |
|         The result is the integer which is the exponent of the magnitude
 | |
|         of the most significant digit of the operand (as though the
 | |
|         operand were truncated to a single digit while maintaining the
 | |
|         value of that digit and without limiting the resulting exponent).
 | |
| 
 | |
|         >>> ExtendedContext.logb(Decimal('250'))
 | |
|         Decimal('2')
 | |
|         >>> ExtendedContext.logb(Decimal('2.50'))
 | |
|         Decimal('0')
 | |
|         >>> ExtendedContext.logb(Decimal('0.03'))
 | |
|         Decimal('-2')
 | |
|         >>> ExtendedContext.logb(Decimal('0'))
 | |
|         Decimal('-Infinity')
 | |
|         """
 | |
|         return a.logb(context=self)
 | |
| 
 | |
|     def logical_and(self, a, b):
 | |
|         """Applies the logical operation 'and' between each operand's digits.
 | |
| 
 | |
|         The operands must be both logical numbers.
 | |
| 
 | |
|         >>> ExtendedContext.logical_and(Decimal('0'), Decimal('0'))
 | |
|         Decimal('0')
 | |
|         >>> ExtendedContext.logical_and(Decimal('0'), Decimal('1'))
 | |
|         Decimal('0')
 | |
|         >>> ExtendedContext.logical_and(Decimal('1'), Decimal('0'))
 | |
|         Decimal('0')
 | |
|         >>> ExtendedContext.logical_and(Decimal('1'), Decimal('1'))
 | |
|         Decimal('1')
 | |
|         >>> ExtendedContext.logical_and(Decimal('1100'), Decimal('1010'))
 | |
|         Decimal('1000')
 | |
|         >>> ExtendedContext.logical_and(Decimal('1111'), Decimal('10'))
 | |
|         Decimal('10')
 | |
|         """
 | |
|         return a.logical_and(b, context=self)
 | |
| 
 | |
|     def logical_invert(self, a):
 | |
|         """Invert all the digits in the operand.
 | |
| 
 | |
|         The operand must be a logical number.
 | |
| 
 | |
|         >>> ExtendedContext.logical_invert(Decimal('0'))
 | |
|         Decimal('111111111')
 | |
|         >>> ExtendedContext.logical_invert(Decimal('1'))
 | |
|         Decimal('111111110')
 | |
|         >>> ExtendedContext.logical_invert(Decimal('111111111'))
 | |
|         Decimal('0')
 | |
|         >>> ExtendedContext.logical_invert(Decimal('101010101'))
 | |
|         Decimal('10101010')
 | |
|         """
 | |
|         return a.logical_invert(context=self)
 | |
| 
 | |
|     def logical_or(self, a, b):
 | |
|         """Applies the logical operation 'or' between each operand's digits.
 | |
| 
 | |
|         The operands must be both logical numbers.
 | |
| 
 | |
|         >>> ExtendedContext.logical_or(Decimal('0'), Decimal('0'))
 | |
|         Decimal('0')
 | |
|         >>> ExtendedContext.logical_or(Decimal('0'), Decimal('1'))
 | |
|         Decimal('1')
 | |
|         >>> ExtendedContext.logical_or(Decimal('1'), Decimal('0'))
 | |
|         Decimal('1')
 | |
|         >>> ExtendedContext.logical_or(Decimal('1'), Decimal('1'))
 | |
|         Decimal('1')
 | |
|         >>> ExtendedContext.logical_or(Decimal('1100'), Decimal('1010'))
 | |
|         Decimal('1110')
 | |
|         >>> ExtendedContext.logical_or(Decimal('1110'), Decimal('10'))
 | |
|         Decimal('1110')
 | |
|         """
 | |
|         return a.logical_or(b, context=self)
 | |
| 
 | |
|     def logical_xor(self, a, b):
 | |
|         """Applies the logical operation 'xor' between each operand's digits.
 | |
| 
 | |
|         The operands must be both logical numbers.
 | |
| 
 | |
|         >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('0'))
 | |
|         Decimal('0')
 | |
|         >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('1'))
 | |
|         Decimal('1')
 | |
|         >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('0'))
 | |
|         Decimal('1')
 | |
|         >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('1'))
 | |
|         Decimal('0')
 | |
|         >>> ExtendedContext.logical_xor(Decimal('1100'), Decimal('1010'))
 | |
|         Decimal('110')
 | |
|         >>> ExtendedContext.logical_xor(Decimal('1111'), Decimal('10'))
 | |
|         Decimal('1101')
 | |
|         """
 | |
|         return a.logical_xor(b, context=self)
 | |
| 
 | |
|     def max(self, a,b):
 | |
|         """max compares two values numerically and returns the maximum.
 | |
| 
 | |
|         If either operand is a NaN then the general rules apply.
 | |
|         Otherwise, the operands are compared as though by the compare
 | |
|         operation.  If they are numerically equal then the left-hand operand
 | |
|         is chosen as the result.  Otherwise the maximum (closer to positive
 | |
|         infinity) of the two operands is chosen as the result.
 | |
| 
 | |
|         >>> ExtendedContext.max(Decimal('3'), Decimal('2'))
 | |
|         Decimal('3')
 | |
|         >>> ExtendedContext.max(Decimal('-10'), Decimal('3'))
 | |
|         Decimal('3')
 | |
|         >>> ExtendedContext.max(Decimal('1.0'), Decimal('1'))
 | |
|         Decimal('1')
 | |
|         >>> ExtendedContext.max(Decimal('7'), Decimal('NaN'))
 | |
|         Decimal('7')
 | |
|         """
 | |
|         return a.max(b, context=self)
 | |
| 
 | |
|     def max_mag(self, a, b):
 | |
|         """Compares the values numerically with their sign ignored."""
 | |
|         return a.max_mag(b, context=self)
 | |
| 
 | |
|     def min(self, a,b):
 | |
|         """min compares two values numerically and returns the minimum.
 | |
| 
 | |
|         If either operand is a NaN then the general rules apply.
 | |
|         Otherwise, the operands are compared as though by the compare
 | |
|         operation.  If they are numerically equal then the left-hand operand
 | |
|         is chosen as the result.  Otherwise the minimum (closer to negative
 | |
|         infinity) of the two operands is chosen as the result.
 | |
| 
 | |
|         >>> ExtendedContext.min(Decimal('3'), Decimal('2'))
 | |
|         Decimal('2')
 | |
|         >>> ExtendedContext.min(Decimal('-10'), Decimal('3'))
 | |
|         Decimal('-10')
 | |
|         >>> ExtendedContext.min(Decimal('1.0'), Decimal('1'))
 | |
|         Decimal('1.0')
 | |
|         >>> ExtendedContext.min(Decimal('7'), Decimal('NaN'))
 | |
|         Decimal('7')
 | |
|         """
 | |
|         return a.min(b, context=self)
 | |
| 
 | |
|     def min_mag(self, a, b):
 | |
|         """Compares the values numerically with their sign ignored."""
 | |
|         return a.min_mag(b, context=self)
 | |
| 
 | |
|     def minus(self, a):
 | |
|         """Minus corresponds to unary prefix minus in Python.
 | |
| 
 | |
|         The operation is evaluated using the same rules as subtract; the
 | |
|         operation minus(a) is calculated as subtract('0', a) where the '0'
 | |
|         has the same exponent as the operand.
 | |
| 
 | |
|         >>> ExtendedContext.minus(Decimal('1.3'))
 | |
|         Decimal('-1.3')
 | |
|         >>> ExtendedContext.minus(Decimal('-1.3'))
 | |
|         Decimal('1.3')
 | |
|         """
 | |
|         return a.__neg__(context=self)
 | |
| 
 | |
|     def multiply(self, a, b):
 | |
|         """multiply multiplies two operands.
 | |
| 
 | |
|         If either operand is a special value then the general rules apply.
 | |
|         Otherwise, the operands are multiplied together ('long multiplication'),
 | |
|         resulting in a number which may be as long as the sum of the lengths
 | |
|         of the two operands.
 | |
| 
 | |
|         >>> ExtendedContext.multiply(Decimal('1.20'), Decimal('3'))
 | |
|         Decimal('3.60')
 | |
|         >>> ExtendedContext.multiply(Decimal('7'), Decimal('3'))
 | |
|         Decimal('21')
 | |
|         >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('0.8'))
 | |
|         Decimal('0.72')
 | |
|         >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('-0'))
 | |
|         Decimal('-0.0')
 | |
|         >>> ExtendedContext.multiply(Decimal('654321'), Decimal('654321'))
 | |
|         Decimal('4.28135971E+11')
 | |
|         """
 | |
|         return a.__mul__(b, context=self)
 | |
| 
 | |
|     def next_minus(self, a):
 | |
|         """Returns the largest representable number smaller than a.
 | |
| 
 | |
|         >>> c = ExtendedContext.copy()
 | |
|         >>> c.Emin = -999
 | |
|         >>> c.Emax = 999
 | |
|         >>> ExtendedContext.next_minus(Decimal('1'))
 | |
|         Decimal('0.999999999')
 | |
|         >>> c.next_minus(Decimal('1E-1007'))
 | |
|         Decimal('0E-1007')
 | |
|         >>> ExtendedContext.next_minus(Decimal('-1.00000003'))
 | |
|         Decimal('-1.00000004')
 | |
|         >>> c.next_minus(Decimal('Infinity'))
 | |
|         Decimal('9.99999999E+999')
 | |
|         """
 | |
|         return a.next_minus(context=self)
 | |
| 
 | |
|     def next_plus(self, a):
 | |
|         """Returns the smallest representable number larger than a.
 | |
| 
 | |
|         >>> c = ExtendedContext.copy()
 | |
|         >>> c.Emin = -999
 | |
|         >>> c.Emax = 999
 | |
|         >>> ExtendedContext.next_plus(Decimal('1'))
 | |
|         Decimal('1.00000001')
 | |
|         >>> c.next_plus(Decimal('-1E-1007'))
 | |
|         Decimal('-0E-1007')
 | |
|         >>> ExtendedContext.next_plus(Decimal('-1.00000003'))
 | |
|         Decimal('-1.00000002')
 | |
|         >>> c.next_plus(Decimal('-Infinity'))
 | |
|         Decimal('-9.99999999E+999')
 | |
|         """
 | |
|         return a.next_plus(context=self)
 | |
| 
 | |
|     def next_toward(self, a, b):
 | |
|         """Returns the number closest to a, in direction towards b.
 | |
| 
 | |
|         The result is the closest representable number from the first
 | |
|         operand (but not the first operand) that is in the direction
 | |
|         towards the second operand, unless the operands have the same
 | |
|         value.
 | |
| 
 | |
|         >>> c = ExtendedContext.copy()
 | |
|         >>> c.Emin = -999
 | |
|         >>> c.Emax = 999
 | |
|         >>> c.next_toward(Decimal('1'), Decimal('2'))
 | |
|         Decimal('1.00000001')
 | |
|         >>> c.next_toward(Decimal('-1E-1007'), Decimal('1'))
 | |
|         Decimal('-0E-1007')
 | |
|         >>> c.next_toward(Decimal('-1.00000003'), Decimal('0'))
 | |
|         Decimal('-1.00000002')
 | |
|         >>> c.next_toward(Decimal('1'), Decimal('0'))
 | |
|         Decimal('0.999999999')
 | |
|         >>> c.next_toward(Decimal('1E-1007'), Decimal('-100'))
 | |
|         Decimal('0E-1007')
 | |
|         >>> c.next_toward(Decimal('-1.00000003'), Decimal('-10'))
 | |
|         Decimal('-1.00000004')
 | |
|         >>> c.next_toward(Decimal('0.00'), Decimal('-0.0000'))
 | |
|         Decimal('-0.00')
 | |
|         """
 | |
|         return a.next_toward(b, context=self)
 | |
| 
 | |
|     def normalize(self, a):
 | |
|         """normalize reduces an operand to its simplest form.
 | |
| 
 | |
|         Essentially a plus operation with all trailing zeros removed from the
 | |
|         result.
 | |
| 
 | |
|         >>> ExtendedContext.normalize(Decimal('2.1'))
 | |
|         Decimal('2.1')
 | |
|         >>> ExtendedContext.normalize(Decimal('-2.0'))
 | |
|         Decimal('-2')
 | |
|         >>> ExtendedContext.normalize(Decimal('1.200'))
 | |
|         Decimal('1.2')
 | |
|         >>> ExtendedContext.normalize(Decimal('-120'))
 | |
|         Decimal('-1.2E+2')
 | |
|         >>> ExtendedContext.normalize(Decimal('120.00'))
 | |
|         Decimal('1.2E+2')
 | |
|         >>> ExtendedContext.normalize(Decimal('0.00'))
 | |
|         Decimal('0')
 | |
|         """
 | |
|         return a.normalize(context=self)
 | |
| 
 | |
|     def number_class(self, a):
 | |
|         """Returns an indication of the class of the operand.
 | |
| 
 | |
|         The class is one of the following strings:
 | |
|           -sNaN
 | |
|           -NaN
 | |
|           -Infinity
 | |
|           -Normal
 | |
|           -Subnormal
 | |
|           -Zero
 | |
|           +Zero
 | |
|           +Subnormal
 | |
|           +Normal
 | |
|           +Infinity
 | |
| 
 | |
|         >>> c = Context(ExtendedContext)
 | |
|         >>> c.Emin = -999
 | |
|         >>> c.Emax = 999
 | |
|         >>> c.number_class(Decimal('Infinity'))
 | |
|         '+Infinity'
 | |
|         >>> c.number_class(Decimal('1E-10'))
 | |
|         '+Normal'
 | |
|         >>> c.number_class(Decimal('2.50'))
 | |
|         '+Normal'
 | |
|         >>> c.number_class(Decimal('0.1E-999'))
 | |
|         '+Subnormal'
 | |
|         >>> c.number_class(Decimal('0'))
 | |
|         '+Zero'
 | |
|         >>> c.number_class(Decimal('-0'))
 | |
|         '-Zero'
 | |
|         >>> c.number_class(Decimal('-0.1E-999'))
 | |
|         '-Subnormal'
 | |
|         >>> c.number_class(Decimal('-1E-10'))
 | |
|         '-Normal'
 | |
|         >>> c.number_class(Decimal('-2.50'))
 | |
|         '-Normal'
 | |
|         >>> c.number_class(Decimal('-Infinity'))
 | |
|         '-Infinity'
 | |
|         >>> c.number_class(Decimal('NaN'))
 | |
|         'NaN'
 | |
|         >>> c.number_class(Decimal('-NaN'))
 | |
|         'NaN'
 | |
|         >>> c.number_class(Decimal('sNaN'))
 | |
|         'sNaN'
 | |
|         """
 | |
|         return a.number_class(context=self)
 | |
| 
 | |
|     def plus(self, a):
 | |
|         """Plus corresponds to unary prefix plus in Python.
 | |
| 
 | |
|         The operation is evaluated using the same rules as add; the
 | |
|         operation plus(a) is calculated as add('0', a) where the '0'
 | |
|         has the same exponent as the operand.
 | |
| 
 | |
|         >>> ExtendedContext.plus(Decimal('1.3'))
 | |
|         Decimal('1.3')
 | |
|         >>> ExtendedContext.plus(Decimal('-1.3'))
 | |
|         Decimal('-1.3')
 | |
|         """
 | |
|         return a.__pos__(context=self)
 | |
| 
 | |
|     def power(self, a, b, modulo=None):
 | |
|         """Raises a to the power of b, to modulo if given.
 | |
| 
 | |
|         With two arguments, compute a**b.  If a is negative then b
 | |
|         must be integral.  The result will be inexact unless b is
 | |
|         integral and the result is finite and can be expressed exactly
 | |
|         in 'precision' digits.
 | |
| 
 | |
|         With three arguments, compute (a**b) % modulo.  For the
 | |
|         three argument form, the following restrictions on the
 | |
|         arguments hold:
 | |
| 
 | |
|          - all three arguments must be integral
 | |
|          - b must be nonnegative
 | |
|          - at least one of a or b must be nonzero
 | |
|          - modulo must be nonzero and have at most 'precision' digits
 | |
| 
 | |
|         The result of pow(a, b, modulo) is identical to the result
 | |
|         that would be obtained by computing (a**b) % modulo with
 | |
|         unbounded precision, but is computed more efficiently.  It is
 | |
|         always exact.
 | |
| 
 | |
|         >>> c = ExtendedContext.copy()
 | |
|         >>> c.Emin = -999
 | |
|         >>> c.Emax = 999
 | |
|         >>> c.power(Decimal('2'), Decimal('3'))
 | |
|         Decimal('8')
 | |
|         >>> c.power(Decimal('-2'), Decimal('3'))
 | |
|         Decimal('-8')
 | |
|         >>> c.power(Decimal('2'), Decimal('-3'))
 | |
|         Decimal('0.125')
 | |
|         >>> c.power(Decimal('1.7'), Decimal('8'))
 | |
|         Decimal('69.7575744')
 | |
|         >>> c.power(Decimal('10'), Decimal('0.301029996'))
 | |
|         Decimal('2.00000000')
 | |
|         >>> c.power(Decimal('Infinity'), Decimal('-1'))
 | |
|         Decimal('0')
 | |
|         >>> c.power(Decimal('Infinity'), Decimal('0'))
 | |
|         Decimal('1')
 | |
|         >>> c.power(Decimal('Infinity'), Decimal('1'))
 | |
|         Decimal('Infinity')
 | |
|         >>> c.power(Decimal('-Infinity'), Decimal('-1'))
 | |
|         Decimal('-0')
 | |
|         >>> c.power(Decimal('-Infinity'), Decimal('0'))
 | |
|         Decimal('1')
 | |
|         >>> c.power(Decimal('-Infinity'), Decimal('1'))
 | |
|         Decimal('-Infinity')
 | |
|         >>> c.power(Decimal('-Infinity'), Decimal('2'))
 | |
|         Decimal('Infinity')
 | |
|         >>> c.power(Decimal('0'), Decimal('0'))
 | |
|         Decimal('NaN')
 | |
| 
 | |
|         >>> c.power(Decimal('3'), Decimal('7'), Decimal('16'))
 | |
|         Decimal('11')
 | |
|         >>> c.power(Decimal('-3'), Decimal('7'), Decimal('16'))
 | |
|         Decimal('-11')
 | |
|         >>> c.power(Decimal('-3'), Decimal('8'), Decimal('16'))
 | |
|         Decimal('1')
 | |
|         >>> c.power(Decimal('3'), Decimal('7'), Decimal('-16'))
 | |
|         Decimal('11')
 | |
|         >>> c.power(Decimal('23E12345'), Decimal('67E189'), Decimal('123456789'))
 | |
|         Decimal('11729830')
 | |
|         >>> c.power(Decimal('-0'), Decimal('17'), Decimal('1729'))
 | |
|         Decimal('-0')
 | |
|         >>> c.power(Decimal('-23'), Decimal('0'), Decimal('65537'))
 | |
|         Decimal('1')
 | |
|         """
 | |
|         return a.__pow__(b, modulo, context=self)
 | |
| 
 | |
|     def quantize(self, a, b):
 | |
|         """Returns a value equal to 'a' (rounded), having the exponent of 'b'.
 | |
| 
 | |
|         The coefficient of the result is derived from that of the left-hand
 | |
|         operand.  It may be rounded using the current rounding setting (if the
 | |
|         exponent is being increased), multiplied by a positive power of ten (if
 | |
|         the exponent is being decreased), or is unchanged (if the exponent is
 | |
|         already equal to that of the right-hand operand).
 | |
| 
 | |
|         Unlike other operations, if the length of the coefficient after the
 | |
|         quantize operation would be greater than precision then an Invalid
 | |
|         operation condition is raised.  This guarantees that, unless there is
 | |
|         an error condition, the exponent of the result of a quantize is always
 | |
|         equal to that of the right-hand operand.
 | |
| 
 | |
|         Also unlike other operations, quantize will never raise Underflow, even
 | |
|         if the result is subnormal and inexact.
 | |
| 
 | |
|         >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.001'))
 | |
|         Decimal('2.170')
 | |
|         >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.01'))
 | |
|         Decimal('2.17')
 | |
|         >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.1'))
 | |
|         Decimal('2.2')
 | |
|         >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+0'))
 | |
|         Decimal('2')
 | |
|         >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+1'))
 | |
|         Decimal('0E+1')
 | |
|         >>> ExtendedContext.quantize(Decimal('-Inf'), Decimal('Infinity'))
 | |
|         Decimal('-Infinity')
 | |
|         >>> ExtendedContext.quantize(Decimal('2'), Decimal('Infinity'))
 | |
|         Decimal('NaN')
 | |
|         >>> ExtendedContext.quantize(Decimal('-0.1'), Decimal('1'))
 | |
|         Decimal('-0')
 | |
|         >>> ExtendedContext.quantize(Decimal('-0'), Decimal('1e+5'))
 | |
|         Decimal('-0E+5')
 | |
|         >>> ExtendedContext.quantize(Decimal('+35236450.6'), Decimal('1e-2'))
 | |
|         Decimal('NaN')
 | |
|         >>> ExtendedContext.quantize(Decimal('-35236450.6'), Decimal('1e-2'))
 | |
|         Decimal('NaN')
 | |
|         >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-1'))
 | |
|         Decimal('217.0')
 | |
|         >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-0'))
 | |
|         Decimal('217')
 | |
|         >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+1'))
 | |
|         Decimal('2.2E+2')
 | |
|         >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+2'))
 | |
|         Decimal('2E+2')
 | |
|         """
 | |
|         return a.quantize(b, context=self)
 | |
| 
 | |
|     def radix(self):
 | |
|         """Just returns 10, as this is Decimal, :)
 | |
| 
 | |
|         >>> ExtendedContext.radix()
 | |
|         Decimal('10')
 | |
|         """
 | |
|         return Decimal(10)
 | |
| 
 | |
|     def remainder(self, a, b):
 | |
|         """Returns the remainder from integer division.
 | |
| 
 | |
|         The result is the residue of the dividend after the operation of
 | |
|         calculating integer division as described for divide-integer, rounded
 | |
|         to precision digits if necessary.  The sign of the result, if
 | |
|         non-zero, is the same as that of the original dividend.
 | |
| 
 | |
|         This operation will fail under the same conditions as integer division
 | |
|         (that is, if integer division on the same two operands would fail, the
 | |
|         remainder cannot be calculated).
 | |
| 
 | |
|         >>> ExtendedContext.remainder(Decimal('2.1'), Decimal('3'))
 | |
|         Decimal('2.1')
 | |
|         >>> ExtendedContext.remainder(Decimal('10'), Decimal('3'))
 | |
|         Decimal('1')
 | |
|         >>> ExtendedContext.remainder(Decimal('-10'), Decimal('3'))
 | |
|         Decimal('-1')
 | |
|         >>> ExtendedContext.remainder(Decimal('10.2'), Decimal('1'))
 | |
|         Decimal('0.2')
 | |
|         >>> ExtendedContext.remainder(Decimal('10'), Decimal('0.3'))
 | |
|         Decimal('0.1')
 | |
|         >>> ExtendedContext.remainder(Decimal('3.6'), Decimal('1.3'))
 | |
|         Decimal('1.0')
 | |
|         """
 | |
|         return a.__mod__(b, context=self)
 | |
| 
 | |
|     def remainder_near(self, a, b):
 | |
|         """Returns to be "a - b * n", where n is the integer nearest the exact
 | |
|         value of "x / b" (if two integers are equally near then the even one
 | |
|         is chosen).  If the result is equal to 0 then its sign will be the
 | |
|         sign of a.
 | |
| 
 | |
|         This operation will fail under the same conditions as integer division
 | |
|         (that is, if integer division on the same two operands would fail, the
 | |
|         remainder cannot be calculated).
 | |
| 
 | |
|         >>> ExtendedContext.remainder_near(Decimal('2.1'), Decimal('3'))
 | |
|         Decimal('-0.9')
 | |
|         >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('6'))
 | |
|         Decimal('-2')
 | |
|         >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('3'))
 | |
|         Decimal('1')
 | |
|         >>> ExtendedContext.remainder_near(Decimal('-10'), Decimal('3'))
 | |
|         Decimal('-1')
 | |
|         >>> ExtendedContext.remainder_near(Decimal('10.2'), Decimal('1'))
 | |
|         Decimal('0.2')
 | |
|         >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('0.3'))
 | |
|         Decimal('0.1')
 | |
|         >>> ExtendedContext.remainder_near(Decimal('3.6'), Decimal('1.3'))
 | |
|         Decimal('-0.3')
 | |
|         """
 | |
|         return a.remainder_near(b, context=self)
 | |
| 
 | |
|     def rotate(self, a, b):
 | |
|         """Returns a rotated copy of a, b times.
 | |
| 
 | |
|         The coefficient of the result is a rotated copy of the digits in
 | |
|         the coefficient of the first operand.  The number of places of
 | |
|         rotation is taken from the absolute value of the second operand,
 | |
|         with the rotation being to the left if the second operand is
 | |
|         positive or to the right otherwise.
 | |
| 
 | |
|         >>> ExtendedContext.rotate(Decimal('34'), Decimal('8'))
 | |
|         Decimal('400000003')
 | |
|         >>> ExtendedContext.rotate(Decimal('12'), Decimal('9'))
 | |
|         Decimal('12')
 | |
|         >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('-2'))
 | |
|         Decimal('891234567')
 | |
|         >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('0'))
 | |
|         Decimal('123456789')
 | |
|         >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('+2'))
 | |
|         Decimal('345678912')
 | |
|         """
 | |
|         return a.rotate(b, context=self)
 | |
| 
 | |
|     def same_quantum(self, a, b):
 | |
|         """Returns True if the two operands have the same exponent.
 | |
| 
 | |
|         The result is never affected by either the sign or the coefficient of
 | |
|         either operand.
 | |
| 
 | |
|         >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.001'))
 | |
|         False
 | |
|         >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.01'))
 | |
|         True
 | |
|         >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('1'))
 | |
|         False
 | |
|         >>> ExtendedContext.same_quantum(Decimal('Inf'), Decimal('-Inf'))
 | |
|         True
 | |
|         """
 | |
|         return a.same_quantum(b)
 | |
| 
 | |
|     def scaleb (self, a, b):
 | |
|         """Returns the first operand after adding the second value its exp.
 | |
| 
 | |
|         >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('-2'))
 | |
|         Decimal('0.0750')
 | |
|         >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('0'))
 | |
|         Decimal('7.50')
 | |
|         >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('3'))
 | |
|         Decimal('7.50E+3')
 | |
|         """
 | |
|         return a.scaleb (b, context=self)
 | |
| 
 | |
|     def shift(self, a, b):
 | |
|         """Returns a shifted copy of a, b times.
 | |
| 
 | |
|         The coefficient of the result is a shifted copy of the digits
 | |
|         in the coefficient of the first operand.  The number of places
 | |
|         to shift is taken from the absolute value of the second operand,
 | |
|         with the shift being to the left if the second operand is
 | |
|         positive or to the right otherwise.  Digits shifted into the
 | |
|         coefficient are zeros.
 | |
| 
 | |
|         >>> ExtendedContext.shift(Decimal('34'), Decimal('8'))
 | |
|         Decimal('400000000')
 | |
|         >>> ExtendedContext.shift(Decimal('12'), Decimal('9'))
 | |
|         Decimal('0')
 | |
|         >>> ExtendedContext.shift(Decimal('123456789'), Decimal('-2'))
 | |
|         Decimal('1234567')
 | |
|         >>> ExtendedContext.shift(Decimal('123456789'), Decimal('0'))
 | |
|         Decimal('123456789')
 | |
|         >>> ExtendedContext.shift(Decimal('123456789'), Decimal('+2'))
 | |
|         Decimal('345678900')
 | |
|         """
 | |
|         return a.shift(b, context=self)
 | |
| 
 | |
|     def sqrt(self, a):
 | |
|         """Square root of a non-negative number to context precision.
 | |
| 
 | |
|         If the result must be inexact, it is rounded using the round-half-even
 | |
|         algorithm.
 | |
| 
 | |
|         >>> ExtendedContext.sqrt(Decimal('0'))
 | |
|         Decimal('0')
 | |
|         >>> ExtendedContext.sqrt(Decimal('-0'))
 | |
|         Decimal('-0')
 | |
|         >>> ExtendedContext.sqrt(Decimal('0.39'))
 | |
|         Decimal('0.624499800')
 | |
|         >>> ExtendedContext.sqrt(Decimal('100'))
 | |
|         Decimal('10')
 | |
|         >>> ExtendedContext.sqrt(Decimal('1'))
 | |
|         Decimal('1')
 | |
|         >>> ExtendedContext.sqrt(Decimal('1.0'))
 | |
|         Decimal('1.0')
 | |
|         >>> ExtendedContext.sqrt(Decimal('1.00'))
 | |
|         Decimal('1.0')
 | |
|         >>> ExtendedContext.sqrt(Decimal('7'))
 | |
|         Decimal('2.64575131')
 | |
|         >>> ExtendedContext.sqrt(Decimal('10'))
 | |
|         Decimal('3.16227766')
 | |
|         >>> ExtendedContext.prec
 | |
|         9
 | |
|         """
 | |
|         return a.sqrt(context=self)
 | |
| 
 | |
|     def subtract(self, a, b):
 | |
|         """Return the difference between the two operands.
 | |
| 
 | |
|         >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.07'))
 | |
|         Decimal('0.23')
 | |
|         >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.30'))
 | |
|         Decimal('0.00')
 | |
|         >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('2.07'))
 | |
|         Decimal('-0.77')
 | |
|         """
 | |
|         return a.__sub__(b, context=self)
 | |
| 
 | |
|     def to_eng_string(self, a):
 | |
|         """Converts a number to a string, using scientific notation.
 | |
| 
 | |
|         The operation is not affected by the context.
 | |
|         """
 | |
|         return a.to_eng_string(context=self)
 | |
| 
 | |
|     def to_sci_string(self, a):
 | |
|         """Converts a number to a string, using scientific notation.
 | |
| 
 | |
|         The operation is not affected by the context.
 | |
|         """
 | |
|         return a.__str__(context=self)
 | |
| 
 | |
|     def to_integral_exact(self, a):
 | |
|         """Rounds to an integer.
 | |
| 
 | |
|         When the operand has a negative exponent, the result is the same
 | |
|         as using the quantize() operation using the given operand as the
 | |
|         left-hand-operand, 1E+0 as the right-hand-operand, and the precision
 | |
|         of the operand as the precision setting; Inexact and Rounded flags
 | |
|         are allowed in this operation.  The rounding mode is taken from the
 | |
|         context.
 | |
| 
 | |
|         >>> ExtendedContext.to_integral_exact(Decimal('2.1'))
 | |
|         Decimal('2')
 | |
|         >>> ExtendedContext.to_integral_exact(Decimal('100'))
 | |
|         Decimal('100')
 | |
|         >>> ExtendedContext.to_integral_exact(Decimal('100.0'))
 | |
|         Decimal('100')
 | |
|         >>> ExtendedContext.to_integral_exact(Decimal('101.5'))
 | |
|         Decimal('102')
 | |
|         >>> ExtendedContext.to_integral_exact(Decimal('-101.5'))
 | |
|         Decimal('-102')
 | |
|         >>> ExtendedContext.to_integral_exact(Decimal('10E+5'))
 | |
|         Decimal('1.0E+6')
 | |
|         >>> ExtendedContext.to_integral_exact(Decimal('7.89E+77'))
 | |
|         Decimal('7.89E+77')
 | |
|         >>> ExtendedContext.to_integral_exact(Decimal('-Inf'))
 | |
|         Decimal('-Infinity')
 | |
|         """
 | |
|         return a.to_integral_exact(context=self)
 | |
| 
 | |
|     def to_integral_value(self, a):
 | |
|         """Rounds to an integer.
 | |
| 
 | |
|         When the operand has a negative exponent, the result is the same
 | |
|         as using the quantize() operation using the given operand as the
 | |
|         left-hand-operand, 1E+0 as the right-hand-operand, and the precision
 | |
|         of the operand as the precision setting, except that no flags will
 | |
|         be set.  The rounding mode is taken from the context.
 | |
| 
 | |
|         >>> ExtendedContext.to_integral_value(Decimal('2.1'))
 | |
|         Decimal('2')
 | |
|         >>> ExtendedContext.to_integral_value(Decimal('100'))
 | |
|         Decimal('100')
 | |
|         >>> ExtendedContext.to_integral_value(Decimal('100.0'))
 | |
|         Decimal('100')
 | |
|         >>> ExtendedContext.to_integral_value(Decimal('101.5'))
 | |
|         Decimal('102')
 | |
|         >>> ExtendedContext.to_integral_value(Decimal('-101.5'))
 | |
|         Decimal('-102')
 | |
|         >>> ExtendedContext.to_integral_value(Decimal('10E+5'))
 | |
|         Decimal('1.0E+6')
 | |
|         >>> ExtendedContext.to_integral_value(Decimal('7.89E+77'))
 | |
|         Decimal('7.89E+77')
 | |
|         >>> ExtendedContext.to_integral_value(Decimal('-Inf'))
 | |
|         Decimal('-Infinity')
 | |
|         """
 | |
|         return a.to_integral_value(context=self)
 | |
| 
 | |
|     # the method name changed, but we provide also the old one, for compatibility
 | |
|     to_integral = to_integral_value
 | |
| 
 | |
| class _WorkRep(object):
 | |
|     __slots__ = ('sign','int','exp')
 | |
|     # sign: 0 or 1
 | |
|     # int:  int
 | |
|     # exp:  None, int, or string
 | |
| 
 | |
|     def __init__(self, value=None):
 | |
|         if value is None:
 | |
|             self.sign = None
 | |
|             self.int = 0
 | |
|             self.exp = None
 | |
|         elif isinstance(value, Decimal):
 | |
|             self.sign = value._sign
 | |
|             self.int = int(value._int)
 | |
|             self.exp = value._exp
 | |
|         else:
 | |
|             # assert isinstance(value, tuple)
 | |
|             self.sign = value[0]
 | |
|             self.int = value[1]
 | |
|             self.exp = value[2]
 | |
| 
 | |
|     def __repr__(self):
 | |
|         return "(%r, %r, %r)" % (self.sign, self.int, self.exp)
 | |
| 
 | |
|     __str__ = __repr__
 | |
| 
 | |
| 
 | |
| 
 | |
| def _normalize(op1, op2, prec = 0):
 | |
|     """Normalizes op1, op2 to have the same exp and length of coefficient.
 | |
| 
 | |
|     Done during addition.
 | |
|     """
 | |
|     if op1.exp < op2.exp:
 | |
|         tmp = op2
 | |
|         other = op1
 | |
|     else:
 | |
|         tmp = op1
 | |
|         other = op2
 | |
| 
 | |
|     # Let exp = min(tmp.exp - 1, tmp.adjusted() - precision - 1).
 | |
|     # Then adding 10**exp to tmp has the same effect (after rounding)
 | |
|     # as adding any positive quantity smaller than 10**exp; similarly
 | |
|     # for subtraction.  So if other is smaller than 10**exp we replace
 | |
|     # it with 10**exp.  This avoids tmp.exp - other.exp getting too large.
 | |
|     tmp_len = len(str(tmp.int))
 | |
|     other_len = len(str(other.int))
 | |
|     exp = tmp.exp + min(-1, tmp_len - prec - 2)
 | |
|     if other_len + other.exp - 1 < exp:
 | |
|         other.int = 1
 | |
|         other.exp = exp
 | |
| 
 | |
|     tmp.int *= 10 ** (tmp.exp - other.exp)
 | |
|     tmp.exp = other.exp
 | |
|     return op1, op2
 | |
| 
 | |
| ##### Integer arithmetic functions used by ln, log10, exp and __pow__ #####
 | |
| 
 | |
| # This function from Tim Peters was taken from here:
 | |
| # http://mail.python.org/pipermail/python-list/1999-July/007758.html
 | |
| # The correction being in the function definition is for speed, and
 | |
| # the whole function is not resolved with math.log because of avoiding
 | |
| # the use of floats.
 | |
| def _nbits(n, correction = {
 | |
|         '0': 4, '1': 3, '2': 2, '3': 2,
 | |
|         '4': 1, '5': 1, '6': 1, '7': 1,
 | |
|         '8': 0, '9': 0, 'a': 0, 'b': 0,
 | |
|         'c': 0, 'd': 0, 'e': 0, 'f': 0}):
 | |
|     """Number of bits in binary representation of the positive integer n,
 | |
|     or 0 if n == 0.
 | |
|     """
 | |
|     if n < 0:
 | |
|         raise ValueError("The argument to _nbits should be nonnegative.")
 | |
|     hex_n = "%x" % n
 | |
|     return 4*len(hex_n) - correction[hex_n[0]]
 | |
| 
 | |
| def _sqrt_nearest(n, a):
 | |
|     """Closest integer to the square root of the positive integer n.  a is
 | |
|     an initial approximation to the square root.  Any positive integer
 | |
|     will do for a, but the closer a is to the square root of n the
 | |
|     faster convergence will be.
 | |
| 
 | |
|     """
 | |
|     if n <= 0 or a <= 0:
 | |
|         raise ValueError("Both arguments to _sqrt_nearest should be positive.")
 | |
| 
 | |
|     b=0
 | |
|     while a != b:
 | |
|         b, a = a, a--n//a>>1
 | |
|     return a
 | |
| 
 | |
| def _rshift_nearest(x, shift):
 | |
|     """Given an integer x and a nonnegative integer shift, return closest
 | |
|     integer to x / 2**shift; use round-to-even in case of a tie.
 | |
| 
 | |
|     """
 | |
|     b, q = 1 << shift, x >> shift
 | |
|     return q + (2*(x & (b-1)) + (q&1) > b)
 | |
| 
 | |
| def _div_nearest(a, b):
 | |
|     """Closest integer to a/b, a and b positive integers; rounds to even
 | |
|     in the case of a tie.
 | |
| 
 | |
|     """
 | |
|     q, r = divmod(a, b)
 | |
|     return q + (2*r + (q&1) > b)
 | |
| 
 | |
| def _ilog(x, M, L = 8):
 | |
|     """Integer approximation to M*log(x/M), with absolute error boundable
 | |
|     in terms only of x/M.
 | |
| 
 | |
|     Given positive integers x and M, return an integer approximation to
 | |
|     M * log(x/M).  For L = 8 and 0.1 <= x/M <= 10 the difference
 | |
|     between the approximation and the exact result is at most 22.  For
 | |
|     L = 8 and 1.0 <= x/M <= 10.0 the difference is at most 15.  In
 | |
|     both cases these are upper bounds on the error; it will usually be
 | |
|     much smaller."""
 | |
| 
 | |
|     # The basic algorithm is the following: let log1p be the function
 | |
|     # log1p(x) = log(1+x).  Then log(x/M) = log1p((x-M)/M).  We use
 | |
|     # the reduction
 | |
|     #
 | |
|     #    log1p(y) = 2*log1p(y/(1+sqrt(1+y)))
 | |
|     #
 | |
|     # repeatedly until the argument to log1p is small (< 2**-L in
 | |
|     # absolute value).  For small y we can use the Taylor series
 | |
|     # expansion
 | |
|     #
 | |
|     #    log1p(y) ~ y - y**2/2 + y**3/3 - ... - (-y)**T/T
 | |
|     #
 | |
|     # truncating at T such that y**T is small enough.  The whole
 | |
|     # computation is carried out in a form of fixed-point arithmetic,
 | |
|     # with a real number z being represented by an integer
 | |
|     # approximation to z*M.  To avoid loss of precision, the y below
 | |
|     # is actually an integer approximation to 2**R*y*M, where R is the
 | |
|     # number of reductions performed so far.
 | |
| 
 | |
|     y = x-M
 | |
|     # argument reduction; R = number of reductions performed
 | |
|     R = 0
 | |
|     while (R <= L and abs(y) << L-R >= M or
 | |
|            R > L and abs(y) >> R-L >= M):
 | |
|         y = _div_nearest((M*y) << 1,
 | |
|                          M + _sqrt_nearest(M*(M+_rshift_nearest(y, R)), M))
 | |
|         R += 1
 | |
| 
 | |
|     # Taylor series with T terms
 | |
|     T = -int(-10*len(str(M))//(3*L))
 | |
|     yshift = _rshift_nearest(y, R)
 | |
|     w = _div_nearest(M, T)
 | |
|     for k in range(T-1, 0, -1):
 | |
|         w = _div_nearest(M, k) - _div_nearest(yshift*w, M)
 | |
| 
 | |
|     return _div_nearest(w*y, M)
 | |
| 
 | |
| def _dlog10(c, e, p):
 | |
|     """Given integers c, e and p with c > 0, p >= 0, compute an integer
 | |
|     approximation to 10**p * log10(c*10**e), with an absolute error of
 | |
|     at most 1.  Assumes that c*10**e is not exactly 1."""
 | |
| 
 | |
|     # increase precision by 2; compensate for this by dividing
 | |
|     # final result by 100
 | |
|     p += 2
 | |
| 
 | |
|     # write c*10**e as d*10**f with either:
 | |
|     #   f >= 0 and 1 <= d <= 10, or
 | |
|     #   f <= 0 and 0.1 <= d <= 1.
 | |
|     # Thus for c*10**e close to 1, f = 0
 | |
|     l = len(str(c))
 | |
|     f = e+l - (e+l >= 1)
 | |
| 
 | |
|     if p > 0:
 | |
|         M = 10**p
 | |
|         k = e+p-f
 | |
|         if k >= 0:
 | |
|             c *= 10**k
 | |
|         else:
 | |
|             c = _div_nearest(c, 10**-k)
 | |
| 
 | |
|         log_d = _ilog(c, M) # error < 5 + 22 = 27
 | |
|         log_10 = _log10_digits(p) # error < 1
 | |
|         log_d = _div_nearest(log_d*M, log_10)
 | |
|         log_tenpower = f*M # exact
 | |
|     else:
 | |
|         log_d = 0  # error < 2.31
 | |
|         log_tenpower = _div_nearest(f, 10**-p) # error < 0.5
 | |
| 
 | |
|     return _div_nearest(log_tenpower+log_d, 100)
 | |
| 
 | |
| def _dlog(c, e, p):
 | |
|     """Given integers c, e and p with c > 0, compute an integer
 | |
|     approximation to 10**p * log(c*10**e), with an absolute error of
 | |
|     at most 1.  Assumes that c*10**e is not exactly 1."""
 | |
| 
 | |
|     # Increase precision by 2. The precision increase is compensated
 | |
|     # for at the end with a division by 100.
 | |
|     p += 2
 | |
| 
 | |
|     # rewrite c*10**e as d*10**f with either f >= 0 and 1 <= d <= 10,
 | |
|     # or f <= 0 and 0.1 <= d <= 1.  Then we can compute 10**p * log(c*10**e)
 | |
|     # as 10**p * log(d) + 10**p*f * log(10).
 | |
|     l = len(str(c))
 | |
|     f = e+l - (e+l >= 1)
 | |
| 
 | |
|     # compute approximation to 10**p*log(d), with error < 27
 | |
|     if p > 0:
 | |
|         k = e+p-f
 | |
|         if k >= 0:
 | |
|             c *= 10**k
 | |
|         else:
 | |
|             c = _div_nearest(c, 10**-k)  # error of <= 0.5 in c
 | |
| 
 | |
|         # _ilog magnifies existing error in c by a factor of at most 10
 | |
|         log_d = _ilog(c, 10**p) # error < 5 + 22 = 27
 | |
|     else:
 | |
|         # p <= 0: just approximate the whole thing by 0; error < 2.31
 | |
|         log_d = 0
 | |
| 
 | |
|     # compute approximation to f*10**p*log(10), with error < 11.
 | |
|     if f:
 | |
|         extra = len(str(abs(f)))-1
 | |
|         if p + extra >= 0:
 | |
|             # error in f * _log10_digits(p+extra) < |f| * 1 = |f|
 | |
|             # after division, error < |f|/10**extra + 0.5 < 10 + 0.5 < 11
 | |
|             f_log_ten = _div_nearest(f*_log10_digits(p+extra), 10**extra)
 | |
|         else:
 | |
|             f_log_ten = 0
 | |
|     else:
 | |
|         f_log_ten = 0
 | |
| 
 | |
|     # error in sum < 11+27 = 38; error after division < 0.38 + 0.5 < 1
 | |
|     return _div_nearest(f_log_ten + log_d, 100)
 | |
| 
 | |
| class _Log10Memoize(object):
 | |
|     """Class to compute, store, and allow retrieval of, digits of the
 | |
|     constant log(10) = 2.302585....  This constant is needed by
 | |
|     Decimal.ln, Decimal.log10, Decimal.exp and Decimal.__pow__."""
 | |
|     def __init__(self):
 | |
|         self.digits = "23025850929940456840179914546843642076011014886"
 | |
| 
 | |
|     def getdigits(self, p):
 | |
|         """Given an integer p >= 0, return floor(10**p)*log(10).
 | |
| 
 | |
|         For example, self.getdigits(3) returns 2302.
 | |
|         """
 | |
|         # digits are stored as a string, for quick conversion to
 | |
|         # integer in the case that we've already computed enough
 | |
|         # digits; the stored digits should always be correct
 | |
|         # (truncated, not rounded to nearest).
 | |
|         if p < 0:
 | |
|             raise ValueError("p should be nonnegative")
 | |
| 
 | |
|         if p >= len(self.digits):
 | |
|             # compute p+3, p+6, p+9, ... digits; continue until at
 | |
|             # least one of the extra digits is nonzero
 | |
|             extra = 3
 | |
|             while True:
 | |
|                 # compute p+extra digits, correct to within 1ulp
 | |
|                 M = 10**(p+extra+2)
 | |
|                 digits = str(_div_nearest(_ilog(10*M, M), 100))
 | |
|                 if digits[-extra:] != '0'*extra:
 | |
|                     break
 | |
|                 extra += 3
 | |
|             # keep all reliable digits so far; remove trailing zeros
 | |
|             # and next nonzero digit
 | |
|             self.digits = digits.rstrip('0')[:-1]
 | |
|         return int(self.digits[:p+1])
 | |
| 
 | |
| _log10_digits = _Log10Memoize().getdigits
 | |
| 
 | |
| def _iexp(x, M, L=8):
 | |
|     """Given integers x and M, M > 0, such that x/M is small in absolute
 | |
|     value, compute an integer approximation to M*exp(x/M).  For 0 <=
 | |
|     x/M <= 2.4, the absolute error in the result is bounded by 60 (and
 | |
|     is usually much smaller)."""
 | |
| 
 | |
|     # Algorithm: to compute exp(z) for a real number z, first divide z
 | |
|     # by a suitable power R of 2 so that |z/2**R| < 2**-L.  Then
 | |
|     # compute expm1(z/2**R) = exp(z/2**R) - 1 using the usual Taylor
 | |
|     # series
 | |
|     #
 | |
|     #     expm1(x) = x + x**2/2! + x**3/3! + ...
 | |
|     #
 | |
|     # Now use the identity
 | |
|     #
 | |
|     #     expm1(2x) = expm1(x)*(expm1(x)+2)
 | |
|     #
 | |
|     # R times to compute the sequence expm1(z/2**R),
 | |
|     # expm1(z/2**(R-1)), ... , exp(z/2), exp(z).
 | |
| 
 | |
|     # Find R such that x/2**R/M <= 2**-L
 | |
|     R = _nbits((x<<L)//M)
 | |
| 
 | |
|     # Taylor series.  (2**L)**T > M
 | |
|     T = -int(-10*len(str(M))//(3*L))
 | |
|     y = _div_nearest(x, T)
 | |
|     Mshift = M<<R
 | |
|     for i in range(T-1, 0, -1):
 | |
|         y = _div_nearest(x*(Mshift + y), Mshift * i)
 | |
| 
 | |
|     # Expansion
 | |
|     for k in range(R-1, -1, -1):
 | |
|         Mshift = M<<(k+2)
 | |
|         y = _div_nearest(y*(y+Mshift), Mshift)
 | |
| 
 | |
|     return M+y
 | |
| 
 | |
| def _dexp(c, e, p):
 | |
|     """Compute an approximation to exp(c*10**e), with p decimal places of
 | |
|     precision.
 | |
| 
 | |
|     Returns integers d, f such that:
 | |
| 
 | |
|       10**(p-1) <= d <= 10**p, and
 | |
|       (d-1)*10**f < exp(c*10**e) < (d+1)*10**f
 | |
| 
 | |
|     In other words, d*10**f is an approximation to exp(c*10**e) with p
 | |
|     digits of precision, and with an error in d of at most 1.  This is
 | |
|     almost, but not quite, the same as the error being < 1ulp: when d
 | |
|     = 10**(p-1) the error could be up to 10 ulp."""
 | |
| 
 | |
|     # we'll call iexp with M = 10**(p+2), giving p+3 digits of precision
 | |
|     p += 2
 | |
| 
 | |
|     # compute log(10) with extra precision = adjusted exponent of c*10**e
 | |
|     extra = max(0, e + len(str(c)) - 1)
 | |
|     q = p + extra
 | |
| 
 | |
|     # compute quotient c*10**e/(log(10)) = c*10**(e+q)/(log(10)*10**q),
 | |
|     # rounding down
 | |
|     shift = e+q
 | |
|     if shift >= 0:
 | |
|         cshift = c*10**shift
 | |
|     else:
 | |
|         cshift = c//10**-shift
 | |
|     quot, rem = divmod(cshift, _log10_digits(q))
 | |
| 
 | |
|     # reduce remainder back to original precision
 | |
|     rem = _div_nearest(rem, 10**extra)
 | |
| 
 | |
|     # error in result of _iexp < 120;  error after division < 0.62
 | |
|     return _div_nearest(_iexp(rem, 10**p), 1000), quot - p + 3
 | |
| 
 | |
| def _dpower(xc, xe, yc, ye, p):
 | |
|     """Given integers xc, xe, yc and ye representing Decimals x = xc*10**xe and
 | |
|     y = yc*10**ye, compute x**y.  Returns a pair of integers (c, e) such that:
 | |
| 
 | |
|       10**(p-1) <= c <= 10**p, and
 | |
|       (c-1)*10**e < x**y < (c+1)*10**e
 | |
| 
 | |
|     in other words, c*10**e is an approximation to x**y with p digits
 | |
|     of precision, and with an error in c of at most 1.  (This is
 | |
|     almost, but not quite, the same as the error being < 1ulp: when c
 | |
|     == 10**(p-1) we can only guarantee error < 10ulp.)
 | |
| 
 | |
|     We assume that: x is positive and not equal to 1, and y is nonzero.
 | |
|     """
 | |
| 
 | |
|     # Find b such that 10**(b-1) <= |y| <= 10**b
 | |
|     b = len(str(abs(yc))) + ye
 | |
| 
 | |
|     # log(x) = lxc*10**(-p-b-1), to p+b+1 places after the decimal point
 | |
|     lxc = _dlog(xc, xe, p+b+1)
 | |
| 
 | |
|     # compute product y*log(x) = yc*lxc*10**(-p-b-1+ye) = pc*10**(-p-1)
 | |
|     shift = ye-b
 | |
|     if shift >= 0:
 | |
|         pc = lxc*yc*10**shift
 | |
|     else:
 | |
|         pc = _div_nearest(lxc*yc, 10**-shift)
 | |
| 
 | |
|     if pc == 0:
 | |
|         # we prefer a result that isn't exactly 1; this makes it
 | |
|         # easier to compute a correctly rounded result in __pow__
 | |
|         if ((len(str(xc)) + xe >= 1) == (yc > 0)): # if x**y > 1:
 | |
|             coeff, exp = 10**(p-1)+1, 1-p
 | |
|         else:
 | |
|             coeff, exp = 10**p-1, -p
 | |
|     else:
 | |
|         coeff, exp = _dexp(pc, -(p+1), p+1)
 | |
|         coeff = _div_nearest(coeff, 10)
 | |
|         exp += 1
 | |
| 
 | |
|     return coeff, exp
 | |
| 
 | |
| def _log10_lb(c, correction = {
 | |
|         '1': 100, '2': 70, '3': 53, '4': 40, '5': 31,
 | |
|         '6': 23, '7': 16, '8': 10, '9': 5}):
 | |
|     """Compute a lower bound for 100*log10(c) for a positive integer c."""
 | |
|     if c <= 0:
 | |
|         raise ValueError("The argument to _log10_lb should be nonnegative.")
 | |
|     str_c = str(c)
 | |
|     return 100*len(str_c) - correction[str_c[0]]
 | |
| 
 | |
| ##### Helper Functions ####################################################
 | |
| 
 | |
| def _convert_other(other, raiseit=False):
 | |
|     """Convert other to Decimal.
 | |
| 
 | |
|     Verifies that it's ok to use in an implicit construction.
 | |
|     """
 | |
|     if isinstance(other, Decimal):
 | |
|         return other
 | |
|     if isinstance(other, int):
 | |
|         return Decimal(other)
 | |
|     if raiseit:
 | |
|         raise TypeError("Unable to convert %s to Decimal" % other)
 | |
|     return NotImplemented
 | |
| 
 | |
| ##### Setup Specific Contexts ############################################
 | |
| 
 | |
| # The default context prototype used by Context()
 | |
| # Is mutable, so that new contexts can have different default values
 | |
| 
 | |
| DefaultContext = Context(
 | |
|         prec=28, rounding=ROUND_HALF_EVEN,
 | |
|         traps=[DivisionByZero, Overflow, InvalidOperation],
 | |
|         flags=[],
 | |
|         Emax=999999999,
 | |
|         Emin=-999999999,
 | |
|         capitals=1
 | |
| )
 | |
| 
 | |
| # Pre-made alternate contexts offered by the specification
 | |
| # Don't change these; the user should be able to select these
 | |
| # contexts and be able to reproduce results from other implementations
 | |
| # of the spec.
 | |
| 
 | |
| BasicContext = Context(
 | |
|         prec=9, rounding=ROUND_HALF_UP,
 | |
|         traps=[DivisionByZero, Overflow, InvalidOperation, Clamped, Underflow],
 | |
|         flags=[],
 | |
| )
 | |
| 
 | |
| ExtendedContext = Context(
 | |
|         prec=9, rounding=ROUND_HALF_EVEN,
 | |
|         traps=[],
 | |
|         flags=[],
 | |
| )
 | |
| 
 | |
| 
 | |
| ##### crud for parsing strings #############################################
 | |
| #
 | |
| # Regular expression used for parsing numeric strings.  Additional
 | |
| # comments:
 | |
| #
 | |
| # 1. Uncomment the two '\s*' lines to allow leading and/or trailing
 | |
| # whitespace.  But note that the specification disallows whitespace in
 | |
| # a numeric string.
 | |
| #
 | |
| # 2. For finite numbers (not infinities and NaNs) the body of the
 | |
| # number between the optional sign and the optional exponent must have
 | |
| # at least one decimal digit, possibly after the decimal point.  The
 | |
| # lookahead expression '(?=[0-9]|\.[0-9])' checks this.
 | |
| #
 | |
| # As the flag UNICODE is not enabled here, we're explicitly avoiding any
 | |
| # other meaning for \d than the numbers [0-9].
 | |
| 
 | |
| import re
 | |
| _parser = re.compile(r"""        # A numeric string consists of:
 | |
| #    \s*
 | |
|     (?P<sign>[-+])?              # an optional sign, followed by either...
 | |
|     (
 | |
|         (?=[0-9]|\.[0-9])        # ...a number (with at least one digit)
 | |
|         (?P<int>[0-9]*)          # having a (possibly empty) integer part
 | |
|         (\.(?P<frac>[0-9]*))?    # followed by an optional fractional part
 | |
|         (E(?P<exp>[-+]?[0-9]+))? # followed by an optional exponent, or...
 | |
|     |
 | |
|         Inf(inity)?              # ...an infinity, or...
 | |
|     |
 | |
|         (?P<signal>s)?           # ...an (optionally signaling)
 | |
|         NaN                      # NaN
 | |
|         (?P<diag>[0-9]*)         # with (possibly empty) diagnostic info.
 | |
|     )
 | |
| #    \s*
 | |
|     \Z
 | |
| """, re.VERBOSE | re.IGNORECASE).match
 | |
| 
 | |
| _all_zeros = re.compile('0*$').match
 | |
| _exact_half = re.compile('50*$').match
 | |
| 
 | |
| ##### PEP3101 support functions ##############################################
 | |
| # The functions in this section have little to do with the Decimal
 | |
| # class, and could potentially be reused or adapted for other pure
 | |
| # Python numeric classes that want to implement __format__
 | |
| #
 | |
| # A format specifier for Decimal looks like:
 | |
| #
 | |
| #   [[fill]align][sign][0][minimumwidth][,][.precision][type]
 | |
| 
 | |
| _parse_format_specifier_regex = re.compile(r"""\A
 | |
| (?:
 | |
|    (?P<fill>.)?
 | |
|    (?P<align>[<>=^])
 | |
| )?
 | |
| (?P<sign>[-+ ])?
 | |
| (?P<zeropad>0)?
 | |
| (?P<minimumwidth>(?!0)\d+)?
 | |
| (?P<thousands_sep>,)?
 | |
| (?:\.(?P<precision>0|(?!0)\d+))?
 | |
| (?P<type>[eEfFgGn%])?
 | |
| \Z
 | |
| """, re.VERBOSE)
 | |
| 
 | |
| del re
 | |
| 
 | |
| # The locale module is only needed for the 'n' format specifier.  The
 | |
| # rest of the PEP 3101 code functions quite happily without it, so we
 | |
| # don't care too much if locale isn't present.
 | |
| try:
 | |
|     import locale as _locale
 | |
| except ImportError:
 | |
|     pass
 | |
| 
 | |
| def _parse_format_specifier(format_spec, _localeconv=None):
 | |
|     """Parse and validate a format specifier.
 | |
| 
 | |
|     Turns a standard numeric format specifier into a dict, with the
 | |
|     following entries:
 | |
| 
 | |
|       fill: fill character to pad field to minimum width
 | |
|       align: alignment type, either '<', '>', '=' or '^'
 | |
|       sign: either '+', '-' or ' '
 | |
|       minimumwidth: nonnegative integer giving minimum width
 | |
|       zeropad: boolean, indicating whether to pad with zeros
 | |
|       thousands_sep: string to use as thousands separator, or ''
 | |
|       grouping: grouping for thousands separators, in format
 | |
|         used by localeconv
 | |
|       decimal_point: string to use for decimal point
 | |
|       precision: nonnegative integer giving precision, or None
 | |
|       type: one of the characters 'eEfFgG%', or None
 | |
| 
 | |
|     """
 | |
|     m = _parse_format_specifier_regex.match(format_spec)
 | |
|     if m is None:
 | |
|         raise ValueError("Invalid format specifier: " + format_spec)
 | |
| 
 | |
|     # get the dictionary
 | |
|     format_dict = m.groupdict()
 | |
| 
 | |
|     # zeropad; defaults for fill and alignment.  If zero padding
 | |
|     # is requested, the fill and align fields should be absent.
 | |
|     fill = format_dict['fill']
 | |
|     align = format_dict['align']
 | |
|     format_dict['zeropad'] = (format_dict['zeropad'] is not None)
 | |
|     if format_dict['zeropad']:
 | |
|         if fill is not None:
 | |
|             raise ValueError("Fill character conflicts with '0'"
 | |
|                              " in format specifier: " + format_spec)
 | |
|         if align is not None:
 | |
|             raise ValueError("Alignment conflicts with '0' in "
 | |
|                              "format specifier: " + format_spec)
 | |
|     format_dict['fill'] = fill or ' '
 | |
|     format_dict['align'] = align or '<'
 | |
| 
 | |
|     # default sign handling: '-' for negative, '' for positive
 | |
|     if format_dict['sign'] is None:
 | |
|         format_dict['sign'] = '-'
 | |
| 
 | |
|     # minimumwidth defaults to 0; precision remains None if not given
 | |
|     format_dict['minimumwidth'] = int(format_dict['minimumwidth'] or '0')
 | |
|     if format_dict['precision'] is not None:
 | |
|         format_dict['precision'] = int(format_dict['precision'])
 | |
| 
 | |
|     # if format type is 'g' or 'G' then a precision of 0 makes little
 | |
|     # sense; convert it to 1.  Same if format type is unspecified.
 | |
|     if format_dict['precision'] == 0:
 | |
|         if format_dict['type'] in 'gG' or format_dict['type'] is None:
 | |
|             format_dict['precision'] = 1
 | |
| 
 | |
|     # determine thousands separator, grouping, and decimal separator, and
 | |
|     # add appropriate entries to format_dict
 | |
|     if format_dict['type'] == 'n':
 | |
|         # apart from separators, 'n' behaves just like 'g'
 | |
|         format_dict['type'] = 'g'
 | |
|         if _localeconv is None:
 | |
|             _localeconv = _locale.localeconv()
 | |
|         if format_dict['thousands_sep'] is not None:
 | |
|             raise ValueError("Explicit thousands separator conflicts with "
 | |
|                              "'n' type in format specifier: " + format_spec)
 | |
|         format_dict['thousands_sep'] = _localeconv['thousands_sep']
 | |
|         format_dict['grouping'] = _localeconv['grouping']
 | |
|         format_dict['decimal_point'] = _localeconv['decimal_point']
 | |
|     else:
 | |
|         if format_dict['thousands_sep'] is None:
 | |
|             format_dict['thousands_sep'] = ''
 | |
|         format_dict['grouping'] = [3, 0]
 | |
|         format_dict['decimal_point'] = '.'
 | |
| 
 | |
|     return format_dict
 | |
| 
 | |
| def _format_align(sign, body, spec):
 | |
|     """Given an unpadded, non-aligned numeric string 'body' and sign
 | |
|     string 'sign', add padding and aligment conforming to the given
 | |
|     format specifier dictionary 'spec' (as produced by
 | |
|     parse_format_specifier).
 | |
| 
 | |
|     """
 | |
|     # how much extra space do we have to play with?
 | |
|     minimumwidth = spec['minimumwidth']
 | |
|     fill = spec['fill']
 | |
|     padding = fill*(minimumwidth - len(sign) - len(body))
 | |
| 
 | |
|     align = spec['align']
 | |
|     if align == '<':
 | |
|         result = sign + body + padding
 | |
|     elif align == '>':
 | |
|         result = padding + sign + body
 | |
|     elif align == '=':
 | |
|         result = sign + padding + body
 | |
|     elif align == '^':
 | |
|         half = len(padding)//2
 | |
|         result = padding[:half] + sign + body + padding[half:]
 | |
|     else:
 | |
|         raise ValueError('Unrecognised alignment field')
 | |
| 
 | |
|     return result
 | |
| 
 | |
| def _group_lengths(grouping):
 | |
|     """Convert a localeconv-style grouping into a (possibly infinite)
 | |
|     iterable of integers representing group lengths.
 | |
| 
 | |
|     """
 | |
|     # The result from localeconv()['grouping'], and the input to this
 | |
|     # function, should be a list of integers in one of the
 | |
|     # following three forms:
 | |
|     #
 | |
|     #   (1) an empty list, or
 | |
|     #   (2) nonempty list of positive integers + [0]
 | |
|     #   (3) list of positive integers + [locale.CHAR_MAX], or
 | |
| 
 | |
|     from itertools import chain, repeat
 | |
|     if not grouping:
 | |
|         return []
 | |
|     elif grouping[-1] == 0 and len(grouping) >= 2:
 | |
|         return chain(grouping[:-1], repeat(grouping[-2]))
 | |
|     elif grouping[-1] == _locale.CHAR_MAX:
 | |
|         return grouping[:-1]
 | |
|     else:
 | |
|         raise ValueError('unrecognised format for grouping')
 | |
| 
 | |
| def _insert_thousands_sep(digits, spec, min_width=1):
 | |
|     """Insert thousands separators into a digit string.
 | |
| 
 | |
|     spec is a dictionary whose keys should include 'thousands_sep' and
 | |
|     'grouping'; typically it's the result of parsing the format
 | |
|     specifier using _parse_format_specifier.
 | |
| 
 | |
|     The min_width keyword argument gives the minimum length of the
 | |
|     result, which will be padded on the left with zeros if necessary.
 | |
| 
 | |
|     If necessary, the zero padding adds an extra '0' on the left to
 | |
|     avoid a leading thousands separator.  For example, inserting
 | |
|     commas every three digits in '123456', with min_width=8, gives
 | |
|     '0,123,456', even though that has length 9.
 | |
| 
 | |
|     """
 | |
| 
 | |
|     sep = spec['thousands_sep']
 | |
|     grouping = spec['grouping']
 | |
| 
 | |
|     groups = []
 | |
|     for l in _group_lengths(grouping):
 | |
|         if l <= 0:
 | |
|             raise ValueError("group length should be positive")
 | |
|         # max(..., 1) forces at least 1 digit to the left of a separator
 | |
|         l = min(max(len(digits), min_width, 1), l)
 | |
|         groups.append('0'*(l - len(digits)) + digits[-l:])
 | |
|         digits = digits[:-l]
 | |
|         min_width -= l
 | |
|         if not digits and min_width <= 0:
 | |
|             break
 | |
|         min_width -= len(sep)
 | |
|     else:
 | |
|         l = max(len(digits), min_width, 1)
 | |
|         groups.append('0'*(l - len(digits)) + digits[-l:])
 | |
|     return sep.join(reversed(groups))
 | |
| 
 | |
| def _format_sign(is_negative, spec):
 | |
|     """Determine sign character."""
 | |
| 
 | |
|     if is_negative:
 | |
|         return '-'
 | |
|     elif spec['sign'] in ' +':
 | |
|         return spec['sign']
 | |
|     else:
 | |
|         return ''
 | |
| 
 | |
| def _format_number(is_negative, intpart, fracpart, exp, spec):
 | |
|     """Format a number, given the following data:
 | |
| 
 | |
|     is_negative: true if the number is negative, else false
 | |
|     intpart: string of digits that must appear before the decimal point
 | |
|     fracpart: string of digits that must come after the point
 | |
|     exp: exponent, as an integer
 | |
|     spec: dictionary resulting from parsing the format specifier
 | |
| 
 | |
|     This function uses the information in spec to:
 | |
|       insert separators (decimal separator and thousands separators)
 | |
|       format the sign
 | |
|       format the exponent
 | |
|       add trailing '%' for the '%' type
 | |
|       zero-pad if necessary
 | |
|       fill and align if necessary
 | |
|     """
 | |
| 
 | |
|     sign = _format_sign(is_negative, spec)
 | |
| 
 | |
|     if fracpart:
 | |
|         fracpart = spec['decimal_point'] + fracpart
 | |
| 
 | |
|     if exp != 0 or spec['type'] in 'eE':
 | |
|         echar = {'E': 'E', 'e': 'e', 'G': 'E', 'g': 'e'}[spec['type']]
 | |
|         fracpart += "{0}{1:+}".format(echar, exp)
 | |
|     if spec['type'] == '%':
 | |
|         fracpart += '%'
 | |
| 
 | |
|     if spec['zeropad']:
 | |
|         min_width = spec['minimumwidth'] - len(fracpart) - len(sign)
 | |
|     else:
 | |
|         min_width = 0
 | |
|     intpart = _insert_thousands_sep(intpart, spec, min_width)
 | |
| 
 | |
|     return _format_align(sign, intpart+fracpart, spec)
 | |
| 
 | |
| 
 | |
| ##### Useful Constants (internal use only) ################################
 | |
| 
 | |
| # Reusable defaults
 | |
| _Infinity = Decimal('Inf')
 | |
| _NegativeInfinity = Decimal('-Inf')
 | |
| _NaN = Decimal('NaN')
 | |
| _Zero = Decimal(0)
 | |
| _One = Decimal(1)
 | |
| _NegativeOne = Decimal(-1)
 | |
| 
 | |
| # _SignedInfinity[sign] is infinity w/ that sign
 | |
| _SignedInfinity = (_Infinity, _NegativeInfinity)
 | |
| 
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     import doctest, sys
 | |
|     doctest.testmod(sys.modules[__name__])
 | 
