mirror of
				https://github.com/python/cpython.git
				synced 2025-11-02 22:51:25 +00:00 
			
		
		
		
	The patch also adds acosh, asinh, atanh, log1p and copysign to all platforms. Finally it fixes differences between platforms like different results or exceptions for edge cases. Have fun :)
		
			
				
	
	
		
			232 lines
		
	
	
	
		
			5.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			232 lines
		
	
	
	
		
			5.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
#include "Python.h"
 | 
						|
 | 
						|
#ifndef HAVE_HYPOT
 | 
						|
double hypot(double x, double y)
 | 
						|
{
 | 
						|
	double yx;
 | 
						|
 | 
						|
	x = fabs(x);
 | 
						|
	y = fabs(y);
 | 
						|
	if (x < y) {
 | 
						|
		double temp = x;
 | 
						|
		x = y;
 | 
						|
		y = temp;
 | 
						|
	}
 | 
						|
	if (x == 0.)
 | 
						|
		return 0.;
 | 
						|
	else {
 | 
						|
		yx = y/x;
 | 
						|
		return x*sqrt(1.+yx*yx);
 | 
						|
	}
 | 
						|
}
 | 
						|
#endif /* HAVE_HYPOT */
 | 
						|
 | 
						|
#ifndef HAVE_COPYSIGN
 | 
						|
static double
 | 
						|
copysign(double x, double y)
 | 
						|
{
 | 
						|
	/* use atan2 to distinguish -0. from 0. */
 | 
						|
	if (y > 0. || (y == 0. && atan2(y, -1.) > 0.)) {
 | 
						|
		return fabs(x);
 | 
						|
	} else {
 | 
						|
		return -fabs(x);
 | 
						|
	}
 | 
						|
}
 | 
						|
#endif /* HAVE_COPYSIGN */
 | 
						|
 | 
						|
#ifndef HAVE_LOG1P
 | 
						|
double
 | 
						|
log1p(double x)
 | 
						|
{
 | 
						|
	/* For x small, we use the following approach.  Let y be the nearest
 | 
						|
	   float to 1+x, then
 | 
						|
 | 
						|
	     1+x = y * (1 - (y-1-x)/y)
 | 
						|
 | 
						|
	   so log(1+x) = log(y) + log(1-(y-1-x)/y).  Since (y-1-x)/y is tiny,
 | 
						|
	   the second term is well approximated by (y-1-x)/y.  If abs(x) >=
 | 
						|
	   DBL_EPSILON/2 or the rounding-mode is some form of round-to-nearest
 | 
						|
	   then y-1-x will be exactly representable, and is computed exactly
 | 
						|
	   by (y-1)-x.
 | 
						|
 | 
						|
	   If abs(x) < DBL_EPSILON/2 and the rounding mode is not known to be
 | 
						|
	   round-to-nearest then this method is slightly dangerous: 1+x could
 | 
						|
	   be rounded up to 1+DBL_EPSILON instead of down to 1, and in that
 | 
						|
	   case y-1-x will not be exactly representable any more and the
 | 
						|
	   result can be off by many ulps.  But this is easily fixed: for a
 | 
						|
	   floating-point number |x| < DBL_EPSILON/2., the closest
 | 
						|
	   floating-point number to log(1+x) is exactly x.
 | 
						|
	*/
 | 
						|
 | 
						|
	double y;
 | 
						|
	if (fabs(x) < DBL_EPSILON/2.) {
 | 
						|
		return x;
 | 
						|
	} else if (-0.5 <= x && x <= 1.) {
 | 
						|
		/* WARNING: it's possible than an overeager compiler
 | 
						|
		   will incorrectly optimize the following two lines
 | 
						|
		   to the equivalent of "return log(1.+x)". If this
 | 
						|
		   happens, then results from log1p will be inaccurate
 | 
						|
		   for small x. */
 | 
						|
		y = 1.+x;
 | 
						|
		return log(y)-((y-1.)-x)/y;
 | 
						|
	} else {
 | 
						|
		/* NaNs and infinities should end up here */
 | 
						|
		return log(1.+x);
 | 
						|
	}
 | 
						|
}
 | 
						|
#endif /* HAVE_LOG1P */
 | 
						|
 | 
						|
/*
 | 
						|
 * ====================================================
 | 
						|
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 | 
						|
 *
 | 
						|
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 | 
						|
 * Permission to use, copy, modify, and distribute this
 | 
						|
 * software is freely granted, provided that this notice 
 | 
						|
 * is preserved.
 | 
						|
 * ====================================================
 | 
						|
 */
 | 
						|
 | 
						|
static const double ln2 = 6.93147180559945286227E-01;
 | 
						|
static const double two_pow_m28 = 3.7252902984619141E-09; /* 2**-28 */
 | 
						|
static const double two_pow_p28 = 268435456.0; /* 2**28 */
 | 
						|
static const double zero = 0.0;
 | 
						|
 | 
						|
/* asinh(x)
 | 
						|
 * Method :
 | 
						|
 *	Based on 
 | 
						|
 *		asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
 | 
						|
 *	we have
 | 
						|
 *	asinh(x) := x  if  1+x*x=1,
 | 
						|
 *		 := sign(x)*(log(x)+ln2)) for large |x|, else
 | 
						|
 *		 := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else
 | 
						|
 *		 := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2)))  
 | 
						|
 */
 | 
						|
 | 
						|
#ifndef HAVE_ASINH
 | 
						|
double
 | 
						|
asinh(double x)
 | 
						|
{	
 | 
						|
	double w;
 | 
						|
	double absx = fabs(x);
 | 
						|
 | 
						|
	if (Py_IS_NAN(x) || Py_IS_INFINITY(x)) {
 | 
						|
		return x+x;
 | 
						|
	}
 | 
						|
	if (absx < two_pow_m28) {	/* |x| < 2**-28 */
 | 
						|
		return x;	/* return x inexact except 0 */
 | 
						|
	} 
 | 
						|
	if (absx > two_pow_p28) {	/* |x| > 2**28 */
 | 
						|
		w = log(absx)+ln2;
 | 
						|
	}
 | 
						|
	else if (absx > 2.0) {		/* 2 < |x| < 2**28 */
 | 
						|
		w = log(2.0*absx + 1.0 / (sqrt(x*x + 1.0) + absx));
 | 
						|
	}
 | 
						|
	else {				/* 2**-28 <= |x| < 2= */
 | 
						|
		double t = x*x;
 | 
						|
		w = log1p(absx + t / (1.0 + sqrt(1.0 + t)));
 | 
						|
	}
 | 
						|
	return copysign(w, x);
 | 
						|
	
 | 
						|
}
 | 
						|
#endif /* HAVE_ASINH */
 | 
						|
 | 
						|
/* acosh(x)
 | 
						|
 * Method :
 | 
						|
 *      Based on
 | 
						|
 *	      acosh(x) = log [ x + sqrt(x*x-1) ]
 | 
						|
 *      we have
 | 
						|
 *	      acosh(x) := log(x)+ln2, if x is large; else
 | 
						|
 *	      acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
 | 
						|
 *	      acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
 | 
						|
 *
 | 
						|
 * Special cases:
 | 
						|
 *      acosh(x) is NaN with signal if x<1.
 | 
						|
 *      acosh(NaN) is NaN without signal.
 | 
						|
 */
 | 
						|
 | 
						|
#ifndef HAVE_ACOSH
 | 
						|
double
 | 
						|
acosh(double x)
 | 
						|
{
 | 
						|
	if (Py_IS_NAN(x)) {
 | 
						|
		return x+x;
 | 
						|
	}
 | 
						|
	if (x < 1.) {			/* x < 1;  return a signaling NaN */
 | 
						|
		errno = EDOM;
 | 
						|
#ifdef Py_NAN
 | 
						|
		return Py_NAN;
 | 
						|
#else
 | 
						|
		return (x-x)/(x-x);
 | 
						|
#endif
 | 
						|
	}
 | 
						|
	else if (x >= two_pow_p28) {	/* x > 2**28 */
 | 
						|
		if (Py_IS_INFINITY(x)) {
 | 
						|
			return x+x;
 | 
						|
		} else {
 | 
						|
			return log(x)+ln2;	/* acosh(huge)=log(2x) */
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else if (x == 1.) {
 | 
						|
		return 0.0;			/* acosh(1) = 0 */
 | 
						|
	}
 | 
						|
	else if (x > 2.) {			/* 2 < x < 2**28 */
 | 
						|
		double t = x*x;
 | 
						|
		return log(2.0*x - 1.0 / (x + sqrt(t - 1.0)));
 | 
						|
	}
 | 
						|
	else {				/* 1 < x <= 2 */
 | 
						|
		double t = x - 1.0;
 | 
						|
		return log1p(t + sqrt(2.0*t + t*t));
 | 
						|
	}
 | 
						|
}
 | 
						|
#endif /* HAVE_ACOSH */
 | 
						|
 | 
						|
/* atanh(x)
 | 
						|
 * Method :
 | 
						|
 *    1.Reduced x to positive by atanh(-x) = -atanh(x)
 | 
						|
 *    2.For x>=0.5
 | 
						|
 *		  1	      2x			  x
 | 
						|
 *      atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------)
 | 
						|
 *		  2	     1 - x		      1 - x
 | 
						|
 *
 | 
						|
 *      For x<0.5
 | 
						|
 *      atanh(x) = 0.5*log1p(2x+2x*x/(1-x))
 | 
						|
 *
 | 
						|
 * Special cases:
 | 
						|
 *      atanh(x) is NaN if |x| >= 1 with signal;
 | 
						|
 *      atanh(NaN) is that NaN with no signal;
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
#ifndef HAVE_ATANH
 | 
						|
double
 | 
						|
atanh(double x)
 | 
						|
{
 | 
						|
	double absx;
 | 
						|
	double t;
 | 
						|
 | 
						|
	if (Py_IS_NAN(x)) {
 | 
						|
		return x+x;
 | 
						|
	}
 | 
						|
	absx = fabs(x);
 | 
						|
	if (absx >= 1.) {		/* |x| >= 1 */
 | 
						|
		errno = EDOM;
 | 
						|
#ifdef Py_NAN
 | 
						|
		return Py_NAN;
 | 
						|
#else
 | 
						|
		return x/zero;
 | 
						|
#endif
 | 
						|
	}
 | 
						|
	if (absx < two_pow_m28) {	/* |x| < 2**-28 */
 | 
						|
		return x;
 | 
						|
	}
 | 
						|
	if (absx < 0.5) {		/* |x| < 0.5 */
 | 
						|
		t = absx+absx;
 | 
						|
		t = 0.5 * log1p(t + t*absx / (1.0 - absx));
 | 
						|
	} 
 | 
						|
	else {				/* 0.5 <= |x| <= 1.0 */
 | 
						|
		t = 0.5 * log1p((absx + absx) / (1.0 - absx));
 | 
						|
	}
 | 
						|
	return copysign(t, x);
 | 
						|
}
 | 
						|
#endif /* HAVE_ATANH */
 |