mirror of
				https://github.com/python/cpython.git
				synced 2025-10-31 21:51:50 +00:00 
			
		
		
		
	 7f14f0d8a0
			
		
	
	
		7f14f0d8a0
		
	
	
	
	
		
			
			svn+ssh://pythondev@svn.python.org/python/branches/py3k
................
  r81032 | antoine.pitrou | 2010-05-09 17:52:27 +0200 (dim., 09 mai 2010) | 9 lines
  Recorded merge of revisions 81029 via svnmerge from
  svn+ssh://pythondev@svn.python.org/python/trunk
  ........
    r81029 | antoine.pitrou | 2010-05-09 16:46:46 +0200 (dim., 09 mai 2010) | 3 lines
    Untabify C files. Will watch buildbots.
  ........
................
		
	
			
		
			
				
	
	
		
			278 lines
		
	
	
	
		
			7.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			278 lines
		
	
	
	
		
			7.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include "Python.h"
 | |
| 
 | |
| #ifdef X87_DOUBLE_ROUNDING
 | |
| /* On x86 platforms using an x87 FPU, this function is called from the
 | |
|    Py_FORCE_DOUBLE macro (defined in pymath.h) to force a floating-point
 | |
|    number out of an 80-bit x87 FPU register and into a 64-bit memory location,
 | |
|    thus rounding from extended precision to double precision. */
 | |
| double _Py_force_double(double x)
 | |
| {
 | |
|     volatile double y;
 | |
|     y = x;
 | |
|     return y;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef HAVE_GCC_ASM_FOR_X87
 | |
| 
 | |
| /* inline assembly for getting and setting the 387 FPU control word on
 | |
|    gcc/x86 */
 | |
| 
 | |
| unsigned short _Py_get_387controlword(void) {
 | |
|     unsigned short cw;
 | |
|     __asm__ __volatile__ ("fnstcw %0" : "=m" (cw));
 | |
|     return cw;
 | |
| }
 | |
| 
 | |
| void _Py_set_387controlword(unsigned short cw) {
 | |
|     __asm__ __volatile__ ("fldcw %0" : : "m" (cw));
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #ifndef HAVE_HYPOT
 | |
| double hypot(double x, double y)
 | |
| {
 | |
|     double yx;
 | |
| 
 | |
|     x = fabs(x);
 | |
|     y = fabs(y);
 | |
|     if (x < y) {
 | |
|         double temp = x;
 | |
|         x = y;
 | |
|         y = temp;
 | |
|     }
 | |
|     if (x == 0.)
 | |
|         return 0.;
 | |
|     else {
 | |
|         yx = y/x;
 | |
|         return x*sqrt(1.+yx*yx);
 | |
|     }
 | |
| }
 | |
| #endif /* HAVE_HYPOT */
 | |
| 
 | |
| #ifndef HAVE_COPYSIGN
 | |
| double
 | |
| copysign(double x, double y)
 | |
| {
 | |
|     /* use atan2 to distinguish -0. from 0. */
 | |
|     if (y > 0. || (y == 0. && atan2(y, -1.) > 0.)) {
 | |
|         return fabs(x);
 | |
|     } else {
 | |
|         return -fabs(x);
 | |
|     }
 | |
| }
 | |
| #endif /* HAVE_COPYSIGN */
 | |
| 
 | |
| #ifndef HAVE_ROUND
 | |
| double
 | |
| round(double x)
 | |
| {
 | |
|     double absx, y;
 | |
|     absx = fabs(x);
 | |
|     y = floor(absx);
 | |
|     if (absx - y >= 0.5)
 | |
|     y += 1.0;
 | |
|     return copysign(y, x);
 | |
| }
 | |
| #endif /* HAVE_ROUND */
 | |
| 
 | |
| #ifndef HAVE_LOG1P
 | |
| #include <float.h>
 | |
| 
 | |
| double
 | |
| log1p(double x)
 | |
| {
 | |
|     /* For x small, we use the following approach.  Let y be the nearest
 | |
|        float to 1+x, then
 | |
| 
 | |
|          1+x = y * (1 - (y-1-x)/y)
 | |
| 
 | |
|        so log(1+x) = log(y) + log(1-(y-1-x)/y).  Since (y-1-x)/y is tiny,
 | |
|        the second term is well approximated by (y-1-x)/y.  If abs(x) >=
 | |
|        DBL_EPSILON/2 or the rounding-mode is some form of round-to-nearest
 | |
|        then y-1-x will be exactly representable, and is computed exactly
 | |
|        by (y-1)-x.
 | |
| 
 | |
|        If abs(x) < DBL_EPSILON/2 and the rounding mode is not known to be
 | |
|        round-to-nearest then this method is slightly dangerous: 1+x could
 | |
|        be rounded up to 1+DBL_EPSILON instead of down to 1, and in that
 | |
|        case y-1-x will not be exactly representable any more and the
 | |
|        result can be off by many ulps.  But this is easily fixed: for a
 | |
|        floating-point number |x| < DBL_EPSILON/2., the closest
 | |
|        floating-point number to log(1+x) is exactly x.
 | |
|     */
 | |
| 
 | |
|     double y;
 | |
|     if (fabs(x) < DBL_EPSILON/2.) {
 | |
|         return x;
 | |
|     } else if (-0.5 <= x && x <= 1.) {
 | |
|         /* WARNING: it's possible than an overeager compiler
 | |
|            will incorrectly optimize the following two lines
 | |
|            to the equivalent of "return log(1.+x)". If this
 | |
|            happens, then results from log1p will be inaccurate
 | |
|            for small x. */
 | |
|         y = 1.+x;
 | |
|         return log(y)-((y-1.)-x)/y;
 | |
|     } else {
 | |
|         /* NaNs and infinities should end up here */
 | |
|         return log(1.+x);
 | |
|     }
 | |
| }
 | |
| #endif /* HAVE_LOG1P */
 | |
| 
 | |
| /*
 | |
|  * ====================================================
 | |
|  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 | |
|  *
 | |
|  * Developed at SunPro, a Sun Microsystems, Inc. business.
 | |
|  * Permission to use, copy, modify, and distribute this
 | |
|  * software is freely granted, provided that this notice
 | |
|  * is preserved.
 | |
|  * ====================================================
 | |
|  */
 | |
| 
 | |
| static const double ln2 = 6.93147180559945286227E-01;
 | |
| static const double two_pow_m28 = 3.7252902984619141E-09; /* 2**-28 */
 | |
| static const double two_pow_p28 = 268435456.0; /* 2**28 */
 | |
| static const double zero = 0.0;
 | |
| 
 | |
| /* asinh(x)
 | |
|  * Method :
 | |
|  *      Based on
 | |
|  *              asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
 | |
|  *      we have
 | |
|  *      asinh(x) := x  if  1+x*x=1,
 | |
|  *               := sign(x)*(log(x)+ln2)) for large |x|, else
 | |
|  *               := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else
 | |
|  *               := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2)))
 | |
|  */
 | |
| 
 | |
| #ifndef HAVE_ASINH
 | |
| double
 | |
| asinh(double x)
 | |
| {
 | |
|     double w;
 | |
|     double absx = fabs(x);
 | |
| 
 | |
|     if (Py_IS_NAN(x) || Py_IS_INFINITY(x)) {
 | |
|         return x+x;
 | |
|     }
 | |
|     if (absx < two_pow_m28) {           /* |x| < 2**-28 */
 | |
|         return x;               /* return x inexact except 0 */
 | |
|     }
 | |
|     if (absx > two_pow_p28) {           /* |x| > 2**28 */
 | |
|         w = log(absx)+ln2;
 | |
|     }
 | |
|     else if (absx > 2.0) {              /* 2 < |x| < 2**28 */
 | |
|         w = log(2.0*absx + 1.0 / (sqrt(x*x + 1.0) + absx));
 | |
|     }
 | |
|     else {                              /* 2**-28 <= |x| < 2= */
 | |
|         double t = x*x;
 | |
|         w = log1p(absx + t / (1.0 + sqrt(1.0 + t)));
 | |
|     }
 | |
|     return copysign(w, x);
 | |
| 
 | |
| }
 | |
| #endif /* HAVE_ASINH */
 | |
| 
 | |
| /* acosh(x)
 | |
|  * Method :
 | |
|  *      Based on
 | |
|  *            acosh(x) = log [ x + sqrt(x*x-1) ]
 | |
|  *      we have
 | |
|  *            acosh(x) := log(x)+ln2, if x is large; else
 | |
|  *            acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
 | |
|  *            acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
 | |
|  *
 | |
|  * Special cases:
 | |
|  *      acosh(x) is NaN with signal if x<1.
 | |
|  *      acosh(NaN) is NaN without signal.
 | |
|  */
 | |
| 
 | |
| #ifndef HAVE_ACOSH
 | |
| double
 | |
| acosh(double x)
 | |
| {
 | |
|     if (Py_IS_NAN(x)) {
 | |
|         return x+x;
 | |
|     }
 | |
|     if (x < 1.) {                       /* x < 1;  return a signaling NaN */
 | |
|         errno = EDOM;
 | |
| #ifdef Py_NAN
 | |
|         return Py_NAN;
 | |
| #else
 | |
|         return (x-x)/(x-x);
 | |
| #endif
 | |
|     }
 | |
|     else if (x >= two_pow_p28) {        /* x > 2**28 */
 | |
|         if (Py_IS_INFINITY(x)) {
 | |
|             return x+x;
 | |
|         } else {
 | |
|             return log(x)+ln2;                  /* acosh(huge)=log(2x) */
 | |
|         }
 | |
|     }
 | |
|     else if (x == 1.) {
 | |
|         return 0.0;                             /* acosh(1) = 0 */
 | |
|     }
 | |
|     else if (x > 2.) {                          /* 2 < x < 2**28 */
 | |
|         double t = x*x;
 | |
|         return log(2.0*x - 1.0 / (x + sqrt(t - 1.0)));
 | |
|     }
 | |
|     else {                              /* 1 < x <= 2 */
 | |
|         double t = x - 1.0;
 | |
|         return log1p(t + sqrt(2.0*t + t*t));
 | |
|     }
 | |
| }
 | |
| #endif /* HAVE_ACOSH */
 | |
| 
 | |
| /* atanh(x)
 | |
|  * Method :
 | |
|  *    1.Reduced x to positive by atanh(-x) = -atanh(x)
 | |
|  *    2.For x>=0.5
 | |
|  *                1           2x                          x
 | |
|  *      atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------)
 | |
|  *                2          1 - x                    1 - x
 | |
|  *
 | |
|  *      For x<0.5
 | |
|  *      atanh(x) = 0.5*log1p(2x+2x*x/(1-x))
 | |
|  *
 | |
|  * Special cases:
 | |
|  *      atanh(x) is NaN if |x| >= 1 with signal;
 | |
|  *      atanh(NaN) is that NaN with no signal;
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #ifndef HAVE_ATANH
 | |
| double
 | |
| atanh(double x)
 | |
| {
 | |
|     double absx;
 | |
|     double t;
 | |
| 
 | |
|     if (Py_IS_NAN(x)) {
 | |
|         return x+x;
 | |
|     }
 | |
|     absx = fabs(x);
 | |
|     if (absx >= 1.) {                   /* |x| >= 1 */
 | |
|         errno = EDOM;
 | |
| #ifdef Py_NAN
 | |
|         return Py_NAN;
 | |
| #else
 | |
|         return x/zero;
 | |
| #endif
 | |
|     }
 | |
|     if (absx < two_pow_m28) {           /* |x| < 2**-28 */
 | |
|         return x;
 | |
|     }
 | |
|     if (absx < 0.5) {                   /* |x| < 0.5 */
 | |
|         t = absx+absx;
 | |
|         t = 0.5 * log1p(t + t*absx / (1.0 - absx));
 | |
|     }
 | |
|     else {                              /* 0.5 <= |x| <= 1.0 */
 | |
|         t = 0.5 * log1p((absx + absx) / (1.0 - absx));
 | |
|     }
 | |
|     return copysign(t, x);
 | |
| }
 | |
| #endif /* HAVE_ATANH */
 |