mirror of
				https://github.com/python/cpython.git
				synced 2025-10-30 21:21:22 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			74 lines
		
	
	
	
		
			3 KiB
		
	
	
	
		
			TeX
		
	
	
	
	
	
			
		
		
	
	
			74 lines
		
	
	
	
		
			3 KiB
		
	
	
	
		
			TeX
		
	
	
	
	
	
| \section{Built-in Module \sectcode{mpz}}
 | |
| \bimodindex{mpz}
 | |
| 
 | |
| This module implements the interface to part of the GNU MP library.
 | |
| This library contains arbitrary precision integer and rational number
 | |
| arithmetic routines. Only the interfaces to the \emph{integer}
 | |
| (\samp{mpz_{\rm \ldots}}) routines are provided. If not stated
 | |
| otherwise, the description in the GNU MP documentation can be applied.
 | |
| 
 | |
| In general, \dfn{mpz}-numbers can be used just like other standard
 | |
| Python numbers, e.g.\ you can use the built-in operators like \code{+},
 | |
| \code{*}, etc., as well as the standard built-in functions like
 | |
| \code{abs}, \code{int}, \ldots, \code{divmod}, \code{pow}.
 | |
| \strong{Please note:} the {\it bitwise-xor} operation has been implemented as
 | |
| a bunch of {\it and}s, {\it invert}s and {\it or}s, because the library
 | |
| lacks an \code{mpz_xor} function, and I didn't need one.
 | |
| 
 | |
| You create an mpz-number by calling the function called \code{mpz} (see
 | |
| below for an exact description). An mpz-number is printed like this:
 | |
| \code{mpz(\var{value})}.
 | |
| 
 | |
| \renewcommand{\indexsubitem}{(in module mpz)}
 | |
| \begin{funcdesc}{mpz}{value}
 | |
|   Create a new mpz-number. \var{value} can be an integer, a long,
 | |
|   another mpz-number, or even a string. If it is a string, it is
 | |
|   interpreted as an array of radix-256 digits, least significant digit
 | |
|   first, resulting in a positive number. See also the \code{binary}
 | |
|   method, described below.
 | |
| \end{funcdesc}
 | |
| 
 | |
| A number of {\em extra} functions are defined in this module. Non
 | |
| mpz-arguments are converted to mpz-values first, and the functions
 | |
| return mpz-numbers.
 | |
| 
 | |
| \begin{funcdesc}{powm}{base\, exponent\, modulus}
 | |
|   Return \code{pow(\var{base}, \var{exponent}) \%{} \var{modulus}}. If
 | |
|   \code{\var{exponent} == 0}, return \code{mpz(1)}. In contrast to the
 | |
|   \C-library function, this version can handle negative exponents.
 | |
| \end{funcdesc}
 | |
| 
 | |
| \begin{funcdesc}{gcd}{op1\, op2}
 | |
|   Return the greatest common divisor of \var{op1} and \var{op2}.
 | |
| \end{funcdesc}
 | |
| 
 | |
| \begin{funcdesc}{gcdext}{a\, b}
 | |
|   Return a tuple \code{(\var{g}, \var{s}, \var{t})}, such that
 | |
|   \code{\var{a}*\var{s} + \var{b}*\var{t} == \var{g} == gcd(\var{a}, \var{b})}.
 | |
| \end{funcdesc}
 | |
| 
 | |
| \begin{funcdesc}{sqrt}{op}
 | |
|   Return the square root of \var{op}. The result is rounded towards zero.
 | |
| \end{funcdesc}
 | |
| 
 | |
| \begin{funcdesc}{sqrtrem}{op}
 | |
|   Return a tuple \code{(\var{root}, \var{remainder})}, such that
 | |
|   \code{\var{root}*\var{root} + \var{remainder} == \var{op}}.
 | |
| \end{funcdesc}
 | |
| 
 | |
| \begin{funcdesc}{divm}{numerator\, denominator\, modulus}
 | |
|   Returns a number \var{q}. such that
 | |
|   \code{\var{q} * \var{denominator} \%{} \var{modulus} == \var{numerator}}.
 | |
|   One could also implement this function in Python, using \code{gcdext}.
 | |
| \end{funcdesc}
 | |
| 
 | |
| An mpz-number has one method:
 | |
| 
 | |
| \renewcommand{\indexsubitem}{(mpz method)}
 | |
| \begin{funcdesc}{binary}{}
 | |
|   Convert this mpz-number to a binary string, where the number has been
 | |
|   stored as an array of radix-256 digits, least significant digit first.
 | |
| 
 | |
|   The mpz-number must have a value greater than or equal to zero,
 | |
|   otherwise a \code{ValueError}-exception will be raised.
 | |
| \end{funcdesc}
 | 
