mirror of
				https://github.com/python/cpython.git
				synced 2025-10-25 02:43:41 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			2446 lines
		
	
	
	
		
			68 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2446 lines
		
	
	
	
		
			68 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
 | |
| /* Float object implementation */
 | |
| 
 | |
| /* XXX There should be overflow checks here, but it's hard to check
 | |
|    for any kind of float exception without losing portability. */
 | |
| 
 | |
| #include "Python.h"
 | |
| #include "structseq.h"
 | |
| 
 | |
| #include <ctype.h>
 | |
| #include <float.h>
 | |
| 
 | |
| #undef MAX
 | |
| #undef MIN
 | |
| #define MAX(x, y) ((x) < (y) ? (y) : (x))
 | |
| #define MIN(x, y) ((x) < (y) ? (x) : (y))
 | |
| 
 | |
| 
 | |
| #ifdef _OSF_SOURCE
 | |
| /* OSF1 5.1 doesn't make this available with XOPEN_SOURCE_EXTENDED defined */
 | |
| extern int finite(double);
 | |
| #endif
 | |
| 
 | |
| /* Special free list
 | |
| 
 | |
|    Since some Python programs can spend much of their time allocating
 | |
|    and deallocating floats, these operations should be very fast.
 | |
|    Therefore we use a dedicated allocation scheme with a much lower
 | |
|    overhead (in space and time) than straight malloc(): a simple
 | |
|    dedicated free list, filled when necessary with memory from malloc().
 | |
| 
 | |
|    block_list is a singly-linked list of all PyFloatBlocks ever allocated,
 | |
|    linked via their next members.  PyFloatBlocks are never returned to the
 | |
|    system before shutdown (PyFloat_Fini).
 | |
| 
 | |
|    free_list is a singly-linked list of available PyFloatObjects, linked
 | |
|    via abuse of their ob_type members.
 | |
| */
 | |
| 
 | |
| #define BLOCK_SIZE      1000    /* 1K less typical malloc overhead */
 | |
| #define BHEAD_SIZE      8       /* Enough for a 64-bit pointer */
 | |
| #define N_FLOATOBJECTS  ((BLOCK_SIZE - BHEAD_SIZE) / sizeof(PyFloatObject))
 | |
| 
 | |
| struct _floatblock {
 | |
|     struct _floatblock *next;
 | |
|     PyFloatObject objects[N_FLOATOBJECTS];
 | |
| };
 | |
| 
 | |
| typedef struct _floatblock PyFloatBlock;
 | |
| 
 | |
| static PyFloatBlock *block_list = NULL;
 | |
| static PyFloatObject *free_list = NULL;
 | |
| 
 | |
| static PyFloatObject *
 | |
| fill_free_list(void)
 | |
| {
 | |
|     PyFloatObject *p, *q;
 | |
|     /* XXX Float blocks escape the object heap. Use PyObject_MALLOC ??? */
 | |
|     p = (PyFloatObject *) PyMem_MALLOC(sizeof(PyFloatBlock));
 | |
|     if (p == NULL)
 | |
|         return (PyFloatObject *) PyErr_NoMemory();
 | |
|     ((PyFloatBlock *)p)->next = block_list;
 | |
|     block_list = (PyFloatBlock *)p;
 | |
|     p = &((PyFloatBlock *)p)->objects[0];
 | |
|     q = p + N_FLOATOBJECTS;
 | |
|     while (--q > p)
 | |
|         Py_TYPE(q) = (struct _typeobject *)(q-1);
 | |
|     Py_TYPE(q) = NULL;
 | |
|     return p + N_FLOATOBJECTS - 1;
 | |
| }
 | |
| 
 | |
| double
 | |
| PyFloat_GetMax(void)
 | |
| {
 | |
|     return DBL_MAX;
 | |
| }
 | |
| 
 | |
| double
 | |
| PyFloat_GetMin(void)
 | |
| {
 | |
|     return DBL_MIN;
 | |
| }
 | |
| 
 | |
| static PyTypeObject FloatInfoType;
 | |
| 
 | |
| PyDoc_STRVAR(floatinfo__doc__,
 | |
| "sys.float_info\n\
 | |
| \n\
 | |
| A structseq holding information about the float type. It contains low level\n\
 | |
| information about the precision and internal representation. Please study\n\
 | |
| your system's :file:`float.h` for more information.");
 | |
| 
 | |
| static PyStructSequence_Field floatinfo_fields[] = {
 | |
|     {"max",             "DBL_MAX -- maximum representable finite float"},
 | |
|     {"max_exp",         "DBL_MAX_EXP -- maximum int e such that radix**(e-1) "
 | |
|                     "is representable"},
 | |
|     {"max_10_exp",      "DBL_MAX_10_EXP -- maximum int e such that 10**e "
 | |
|                     "is representable"},
 | |
|     {"min",             "DBL_MIN -- Minimum positive normalizer float"},
 | |
|     {"min_exp",         "DBL_MIN_EXP -- minimum int e such that radix**(e-1) "
 | |
|                     "is a normalized float"},
 | |
|     {"min_10_exp",      "DBL_MIN_10_EXP -- minimum int e such that 10**e is "
 | |
|                     "a normalized"},
 | |
|     {"dig",             "DBL_DIG -- digits"},
 | |
|     {"mant_dig",        "DBL_MANT_DIG -- mantissa digits"},
 | |
|     {"epsilon",         "DBL_EPSILON -- Difference between 1 and the next "
 | |
|                     "representable float"},
 | |
|     {"radix",           "FLT_RADIX -- radix of exponent"},
 | |
|     {"rounds",          "FLT_ROUNDS -- addition rounds"},
 | |
|     {0}
 | |
| };
 | |
| 
 | |
| static PyStructSequence_Desc floatinfo_desc = {
 | |
|     "sys.float_info",           /* name */
 | |
|     floatinfo__doc__,           /* doc */
 | |
|     floatinfo_fields,           /* fields */
 | |
|     11
 | |
| };
 | |
| 
 | |
| PyObject *
 | |
| PyFloat_GetInfo(void)
 | |
| {
 | |
|     PyObject* floatinfo;
 | |
|     int pos = 0;
 | |
| 
 | |
|     floatinfo = PyStructSequence_New(&FloatInfoType);
 | |
|     if (floatinfo == NULL) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
| #define SetIntFlag(flag) \
 | |
|     PyStructSequence_SET_ITEM(floatinfo, pos++, PyLong_FromLong(flag))
 | |
| #define SetDblFlag(flag) \
 | |
|     PyStructSequence_SET_ITEM(floatinfo, pos++, PyFloat_FromDouble(flag))
 | |
| 
 | |
|     SetDblFlag(DBL_MAX);
 | |
|     SetIntFlag(DBL_MAX_EXP);
 | |
|     SetIntFlag(DBL_MAX_10_EXP);
 | |
|     SetDblFlag(DBL_MIN);
 | |
|     SetIntFlag(DBL_MIN_EXP);
 | |
|     SetIntFlag(DBL_MIN_10_EXP);
 | |
|     SetIntFlag(DBL_DIG);
 | |
|     SetIntFlag(DBL_MANT_DIG);
 | |
|     SetDblFlag(DBL_EPSILON);
 | |
|     SetIntFlag(FLT_RADIX);
 | |
|     SetIntFlag(FLT_ROUNDS);
 | |
| #undef SetIntFlag
 | |
| #undef SetDblFlag
 | |
| 
 | |
|     if (PyErr_Occurred()) {
 | |
|         Py_CLEAR(floatinfo);
 | |
|         return NULL;
 | |
|     }
 | |
|     return floatinfo;
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| PyFloat_FromDouble(double fval)
 | |
| {
 | |
|     register PyFloatObject *op;
 | |
|     if (free_list == NULL) {
 | |
|         if ((free_list = fill_free_list()) == NULL)
 | |
|             return NULL;
 | |
|     }
 | |
|     /* Inline PyObject_New */
 | |
|     op = free_list;
 | |
|     free_list = (PyFloatObject *)Py_TYPE(op);
 | |
|     PyObject_INIT(op, &PyFloat_Type);
 | |
|     op->ob_fval = fval;
 | |
|     return (PyObject *) op;
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| PyFloat_FromString(PyObject *v)
 | |
| {
 | |
|     const char *s, *last, *end;
 | |
|     double x;
 | |
|     char buffer[256]; /* for errors */
 | |
|     char *s_buffer = NULL;
 | |
|     Py_ssize_t len;
 | |
|     PyObject *result = NULL;
 | |
| 
 | |
|     if (PyUnicode_Check(v)) {
 | |
|         s_buffer = (char *)PyMem_MALLOC(PyUnicode_GET_SIZE(v)+1);
 | |
|         if (s_buffer == NULL)
 | |
|             return PyErr_NoMemory();
 | |
|         if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v),
 | |
|                                     PyUnicode_GET_SIZE(v),
 | |
|                                     s_buffer,
 | |
|                                     NULL))
 | |
|             goto error;
 | |
|         s = s_buffer;
 | |
|         len = strlen(s);
 | |
|     }
 | |
|     else if (PyObject_AsCharBuffer(v, &s, &len)) {
 | |
|         PyErr_SetString(PyExc_TypeError,
 | |
|             "float() argument must be a string or a number");
 | |
|         return NULL;
 | |
|     }
 | |
|     last = s + len;
 | |
| 
 | |
|     while (Py_ISSPACE(*s))
 | |
|         s++;
 | |
|     /* We don't care about overflow or underflow.  If the platform
 | |
|      * supports them, infinities and signed zeroes (on underflow) are
 | |
|      * fine. */
 | |
|     x = PyOS_string_to_double(s, (char **)&end, NULL);
 | |
|     if (x == -1.0 && PyErr_Occurred())
 | |
|         goto error;
 | |
|     while (Py_ISSPACE(*end))
 | |
|         end++;
 | |
|     if (end == last)
 | |
|         result = PyFloat_FromDouble(x);
 | |
|     else {
 | |
|         PyOS_snprintf(buffer, sizeof(buffer),
 | |
|                       "invalid literal for float(): %.200s", s);
 | |
|         PyErr_SetString(PyExc_ValueError, buffer);
 | |
|         result = NULL;
 | |
|     }
 | |
| 
 | |
|   error:
 | |
|     if (s_buffer)
 | |
|         PyMem_FREE(s_buffer);
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static void
 | |
| float_dealloc(PyFloatObject *op)
 | |
| {
 | |
|     if (PyFloat_CheckExact(op)) {
 | |
|         Py_TYPE(op) = (struct _typeobject *)free_list;
 | |
|         free_list = op;
 | |
|     }
 | |
|     else
 | |
|         Py_TYPE(op)->tp_free((PyObject *)op);
 | |
| }
 | |
| 
 | |
| double
 | |
| PyFloat_AsDouble(PyObject *op)
 | |
| {
 | |
|     PyNumberMethods *nb;
 | |
|     PyFloatObject *fo;
 | |
|     double val;
 | |
| 
 | |
|     if (op && PyFloat_Check(op))
 | |
|         return PyFloat_AS_DOUBLE((PyFloatObject*) op);
 | |
| 
 | |
|     if (op == NULL) {
 | |
|         PyErr_BadArgument();
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if ((nb = Py_TYPE(op)->tp_as_number) == NULL || nb->nb_float == NULL) {
 | |
|         PyErr_SetString(PyExc_TypeError, "a float is required");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     fo = (PyFloatObject*) (*nb->nb_float) (op);
 | |
|     if (fo == NULL)
 | |
|         return -1;
 | |
|     if (!PyFloat_Check(fo)) {
 | |
|         PyErr_SetString(PyExc_TypeError,
 | |
|                         "nb_float should return float object");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     val = PyFloat_AS_DOUBLE(fo);
 | |
|     Py_DECREF(fo);
 | |
| 
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| /* Macro and helper that convert PyObject obj to a C double and store
 | |
|    the value in dbl.  If conversion to double raises an exception, obj is
 | |
|    set to NULL, and the function invoking this macro returns NULL.  If
 | |
|    obj is not of float, int or long type, Py_NotImplemented is incref'ed,
 | |
|    stored in obj, and returned from the function invoking this macro.
 | |
| */
 | |
| #define CONVERT_TO_DOUBLE(obj, dbl)                     \
 | |
|     if (PyFloat_Check(obj))                             \
 | |
|         dbl = PyFloat_AS_DOUBLE(obj);                   \
 | |
|     else if (convert_to_double(&(obj), &(dbl)) < 0)     \
 | |
|         return obj;
 | |
| 
 | |
| /* Methods */
 | |
| 
 | |
| static int
 | |
| convert_to_double(PyObject **v, double *dbl)
 | |
| {
 | |
|     register PyObject *obj = *v;
 | |
| 
 | |
|     if (PyLong_Check(obj)) {
 | |
|         *dbl = PyLong_AsDouble(obj);
 | |
|         if (*dbl == -1.0 && PyErr_Occurred()) {
 | |
|             *v = NULL;
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         Py_INCREF(Py_NotImplemented);
 | |
|         *v = Py_NotImplemented;
 | |
|         return -1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_repr(PyFloatObject *v)
 | |
| {
 | |
|     PyObject *result;
 | |
|     char *buf = PyOS_double_to_string(PyFloat_AS_DOUBLE(v),
 | |
|                                       'r', 0,
 | |
|                                       Py_DTSF_ADD_DOT_0,
 | |
|                                       NULL);
 | |
|     if (!buf)
 | |
|         return PyErr_NoMemory();
 | |
|     result = PyUnicode_FromString(buf);
 | |
|     PyMem_Free(buf);
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /* Comparison is pretty much a nightmare.  When comparing float to float,
 | |
|  * we do it as straightforwardly (and long-windedly) as conceivable, so
 | |
|  * that, e.g., Python x == y delivers the same result as the platform
 | |
|  * C x == y when x and/or y is a NaN.
 | |
|  * When mixing float with an integer type, there's no good *uniform* approach.
 | |
|  * Converting the double to an integer obviously doesn't work, since we
 | |
|  * may lose info from fractional bits.  Converting the integer to a double
 | |
|  * also has two failure modes:  (1) a long int may trigger overflow (too
 | |
|  * large to fit in the dynamic range of a C double); (2) even a C long may have
 | |
|  * more bits than fit in a C double (e.g., on a a 64-bit box long may have
 | |
|  * 63 bits of precision, but a C double probably has only 53), and then
 | |
|  * we can falsely claim equality when low-order integer bits are lost by
 | |
|  * coercion to double.  So this part is painful too.
 | |
|  */
 | |
| 
 | |
| static PyObject*
 | |
| float_richcompare(PyObject *v, PyObject *w, int op)
 | |
| {
 | |
|     double i, j;
 | |
|     int r = 0;
 | |
| 
 | |
|     assert(PyFloat_Check(v));
 | |
|     i = PyFloat_AS_DOUBLE(v);
 | |
| 
 | |
|     /* Switch on the type of w.  Set i and j to doubles to be compared,
 | |
|      * and op to the richcomp to use.
 | |
|      */
 | |
|     if (PyFloat_Check(w))
 | |
|         j = PyFloat_AS_DOUBLE(w);
 | |
| 
 | |
|     else if (!Py_IS_FINITE(i)) {
 | |
|         if (PyLong_Check(w))
 | |
|             /* If i is an infinity, its magnitude exceeds any
 | |
|              * finite integer, so it doesn't matter which int we
 | |
|              * compare i with.  If i is a NaN, similarly.
 | |
|              */
 | |
|             j = 0.0;
 | |
|         else
 | |
|             goto Unimplemented;
 | |
|     }
 | |
| 
 | |
|     else if (PyLong_Check(w)) {
 | |
|         int vsign = i == 0.0 ? 0 : i < 0.0 ? -1 : 1;
 | |
|         int wsign = _PyLong_Sign(w);
 | |
|         size_t nbits;
 | |
|         int exponent;
 | |
| 
 | |
|         if (vsign != wsign) {
 | |
|             /* Magnitudes are irrelevant -- the signs alone
 | |
|              * determine the outcome.
 | |
|              */
 | |
|             i = (double)vsign;
 | |
|             j = (double)wsign;
 | |
|             goto Compare;
 | |
|         }
 | |
|         /* The signs are the same. */
 | |
|         /* Convert w to a double if it fits.  In particular, 0 fits. */
 | |
|         nbits = _PyLong_NumBits(w);
 | |
|         if (nbits == (size_t)-1 && PyErr_Occurred()) {
 | |
|             /* This long is so large that size_t isn't big enough
 | |
|              * to hold the # of bits.  Replace with little doubles
 | |
|              * that give the same outcome -- w is so large that
 | |
|              * its magnitude must exceed the magnitude of any
 | |
|              * finite float.
 | |
|              */
 | |
|             PyErr_Clear();
 | |
|             i = (double)vsign;
 | |
|             assert(wsign != 0);
 | |
|             j = wsign * 2.0;
 | |
|             goto Compare;
 | |
|         }
 | |
|         if (nbits <= 48) {
 | |
|             j = PyLong_AsDouble(w);
 | |
|             /* It's impossible that <= 48 bits overflowed. */
 | |
|             assert(j != -1.0 || ! PyErr_Occurred());
 | |
|             goto Compare;
 | |
|         }
 | |
|         assert(wsign != 0); /* else nbits was 0 */
 | |
|         assert(vsign != 0); /* if vsign were 0, then since wsign is
 | |
|                              * not 0, we would have taken the
 | |
|                              * vsign != wsign branch at the start */
 | |
|         /* We want to work with non-negative numbers. */
 | |
|         if (vsign < 0) {
 | |
|             /* "Multiply both sides" by -1; this also swaps the
 | |
|              * comparator.
 | |
|              */
 | |
|             i = -i;
 | |
|             op = _Py_SwappedOp[op];
 | |
|         }
 | |
|         assert(i > 0.0);
 | |
|         (void) frexp(i, &exponent);
 | |
|         /* exponent is the # of bits in v before the radix point;
 | |
|          * we know that nbits (the # of bits in w) > 48 at this point
 | |
|          */
 | |
|         if (exponent < 0 || (size_t)exponent < nbits) {
 | |
|             i = 1.0;
 | |
|             j = 2.0;
 | |
|             goto Compare;
 | |
|         }
 | |
|         if ((size_t)exponent > nbits) {
 | |
|             i = 2.0;
 | |
|             j = 1.0;
 | |
|             goto Compare;
 | |
|         }
 | |
|         /* v and w have the same number of bits before the radix
 | |
|          * point.  Construct two longs that have the same comparison
 | |
|          * outcome.
 | |
|          */
 | |
|         {
 | |
|             double fracpart;
 | |
|             double intpart;
 | |
|             PyObject *result = NULL;
 | |
|             PyObject *one = NULL;
 | |
|             PyObject *vv = NULL;
 | |
|             PyObject *ww = w;
 | |
| 
 | |
|             if (wsign < 0) {
 | |
|                 ww = PyNumber_Negative(w);
 | |
|                 if (ww == NULL)
 | |
|                     goto Error;
 | |
|             }
 | |
|             else
 | |
|                 Py_INCREF(ww);
 | |
| 
 | |
|             fracpart = modf(i, &intpart);
 | |
|             vv = PyLong_FromDouble(intpart);
 | |
|             if (vv == NULL)
 | |
|                 goto Error;
 | |
| 
 | |
|             if (fracpart != 0.0) {
 | |
|                 /* Shift left, and or a 1 bit into vv
 | |
|                  * to represent the lost fraction.
 | |
|                  */
 | |
|                 PyObject *temp;
 | |
| 
 | |
|                 one = PyLong_FromLong(1);
 | |
|                 if (one == NULL)
 | |
|                     goto Error;
 | |
| 
 | |
|                 temp = PyNumber_Lshift(ww, one);
 | |
|                 if (temp == NULL)
 | |
|                     goto Error;
 | |
|                 Py_DECREF(ww);
 | |
|                 ww = temp;
 | |
| 
 | |
|                 temp = PyNumber_Lshift(vv, one);
 | |
|                 if (temp == NULL)
 | |
|                     goto Error;
 | |
|                 Py_DECREF(vv);
 | |
|                 vv = temp;
 | |
| 
 | |
|                 temp = PyNumber_Or(vv, one);
 | |
|                 if (temp == NULL)
 | |
|                     goto Error;
 | |
|                 Py_DECREF(vv);
 | |
|                 vv = temp;
 | |
|             }
 | |
| 
 | |
|             r = PyObject_RichCompareBool(vv, ww, op);
 | |
|             if (r < 0)
 | |
|                 goto Error;
 | |
|             result = PyBool_FromLong(r);
 | |
|          Error:
 | |
|             Py_XDECREF(vv);
 | |
|             Py_XDECREF(ww);
 | |
|             Py_XDECREF(one);
 | |
|             return result;
 | |
|         }
 | |
|     } /* else if (PyLong_Check(w)) */
 | |
| 
 | |
|     else        /* w isn't float, int, or long */
 | |
|         goto Unimplemented;
 | |
| 
 | |
|  Compare:
 | |
|     PyFPE_START_PROTECT("richcompare", return NULL)
 | |
|     switch (op) {
 | |
|     case Py_EQ:
 | |
|         r = i == j;
 | |
|         break;
 | |
|     case Py_NE:
 | |
|         r = i != j;
 | |
|         break;
 | |
|     case Py_LE:
 | |
|         r = i <= j;
 | |
|         break;
 | |
|     case Py_GE:
 | |
|         r = i >= j;
 | |
|         break;
 | |
|     case Py_LT:
 | |
|         r = i < j;
 | |
|         break;
 | |
|     case Py_GT:
 | |
|         r = i > j;
 | |
|         break;
 | |
|     }
 | |
|     PyFPE_END_PROTECT(r)
 | |
|     return PyBool_FromLong(r);
 | |
| 
 | |
|  Unimplemented:
 | |
|     Py_INCREF(Py_NotImplemented);
 | |
|     return Py_NotImplemented;
 | |
| }
 | |
| 
 | |
| static long
 | |
| float_hash(PyFloatObject *v)
 | |
| {
 | |
|     return _Py_HashDouble(v->ob_fval);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_add(PyObject *v, PyObject *w)
 | |
| {
 | |
|     double a,b;
 | |
|     CONVERT_TO_DOUBLE(v, a);
 | |
|     CONVERT_TO_DOUBLE(w, b);
 | |
|     PyFPE_START_PROTECT("add", return 0)
 | |
|     a = a + b;
 | |
|     PyFPE_END_PROTECT(a)
 | |
|     return PyFloat_FromDouble(a);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_sub(PyObject *v, PyObject *w)
 | |
| {
 | |
|     double a,b;
 | |
|     CONVERT_TO_DOUBLE(v, a);
 | |
|     CONVERT_TO_DOUBLE(w, b);
 | |
|     PyFPE_START_PROTECT("subtract", return 0)
 | |
|     a = a - b;
 | |
|     PyFPE_END_PROTECT(a)
 | |
|     return PyFloat_FromDouble(a);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_mul(PyObject *v, PyObject *w)
 | |
| {
 | |
|     double a,b;
 | |
|     CONVERT_TO_DOUBLE(v, a);
 | |
|     CONVERT_TO_DOUBLE(w, b);
 | |
|     PyFPE_START_PROTECT("multiply", return 0)
 | |
|     a = a * b;
 | |
|     PyFPE_END_PROTECT(a)
 | |
|     return PyFloat_FromDouble(a);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_div(PyObject *v, PyObject *w)
 | |
| {
 | |
|     double a,b;
 | |
|     CONVERT_TO_DOUBLE(v, a);
 | |
|     CONVERT_TO_DOUBLE(w, b);
 | |
| #ifdef Py_NAN
 | |
|     if (b == 0.0) {
 | |
|         PyErr_SetString(PyExc_ZeroDivisionError,
 | |
|                         "float division by zero");
 | |
|         return NULL;
 | |
|     }
 | |
| #endif
 | |
|     PyFPE_START_PROTECT("divide", return 0)
 | |
|     a = a / b;
 | |
|     PyFPE_END_PROTECT(a)
 | |
|     return PyFloat_FromDouble(a);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_rem(PyObject *v, PyObject *w)
 | |
| {
 | |
|     double vx, wx;
 | |
|     double mod;
 | |
|     CONVERT_TO_DOUBLE(v, vx);
 | |
|     CONVERT_TO_DOUBLE(w, wx);
 | |
| #ifdef Py_NAN
 | |
|     if (wx == 0.0) {
 | |
|         PyErr_SetString(PyExc_ZeroDivisionError,
 | |
|                         "float modulo");
 | |
|         return NULL;
 | |
|     }
 | |
| #endif
 | |
|     PyFPE_START_PROTECT("modulo", return 0)
 | |
|     mod = fmod(vx, wx);
 | |
|     /* note: checking mod*wx < 0 is incorrect -- underflows to
 | |
|        0 if wx < sqrt(smallest nonzero double) */
 | |
|     if (mod && ((wx < 0) != (mod < 0))) {
 | |
|         mod += wx;
 | |
|     }
 | |
|     PyFPE_END_PROTECT(mod)
 | |
|     return PyFloat_FromDouble(mod);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_divmod(PyObject *v, PyObject *w)
 | |
| {
 | |
|     double vx, wx;
 | |
|     double div, mod, floordiv;
 | |
|     CONVERT_TO_DOUBLE(v, vx);
 | |
|     CONVERT_TO_DOUBLE(w, wx);
 | |
|     if (wx == 0.0) {
 | |
|         PyErr_SetString(PyExc_ZeroDivisionError, "float divmod()");
 | |
|         return NULL;
 | |
|     }
 | |
|     PyFPE_START_PROTECT("divmod", return 0)
 | |
|     mod = fmod(vx, wx);
 | |
|     /* fmod is typically exact, so vx-mod is *mathematically* an
 | |
|        exact multiple of wx.  But this is fp arithmetic, and fp
 | |
|        vx - mod is an approximation; the result is that div may
 | |
|        not be an exact integral value after the division, although
 | |
|        it will always be very close to one.
 | |
|     */
 | |
|     div = (vx - mod) / wx;
 | |
|     if (mod) {
 | |
|         /* ensure the remainder has the same sign as the denominator */
 | |
|         if ((wx < 0) != (mod < 0)) {
 | |
|             mod += wx;
 | |
|             div -= 1.0;
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         /* the remainder is zero, and in the presence of signed zeroes
 | |
|            fmod returns different results across platforms; ensure
 | |
|            it has the same sign as the denominator; we'd like to do
 | |
|            "mod = wx * 0.0", but that may get optimized away */
 | |
|         mod *= mod;  /* hide "mod = +0" from optimizer */
 | |
|         if (wx < 0.0)
 | |
|             mod = -mod;
 | |
|     }
 | |
|     /* snap quotient to nearest integral value */
 | |
|     if (div) {
 | |
|         floordiv = floor(div);
 | |
|         if (div - floordiv > 0.5)
 | |
|             floordiv += 1.0;
 | |
|     }
 | |
|     else {
 | |
|         /* div is zero - get the same sign as the true quotient */
 | |
|         div *= div;             /* hide "div = +0" from optimizers */
 | |
|         floordiv = div * vx / wx; /* zero w/ sign of vx/wx */
 | |
|     }
 | |
|     PyFPE_END_PROTECT(floordiv)
 | |
|     return Py_BuildValue("(dd)", floordiv, mod);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_floor_div(PyObject *v, PyObject *w)
 | |
| {
 | |
|     PyObject *t, *r;
 | |
| 
 | |
|     t = float_divmod(v, w);
 | |
|     if (t == NULL || t == Py_NotImplemented)
 | |
|         return t;
 | |
|     assert(PyTuple_CheckExact(t));
 | |
|     r = PyTuple_GET_ITEM(t, 0);
 | |
|     Py_INCREF(r);
 | |
|     Py_DECREF(t);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| /* determine whether x is an odd integer or not;  assumes that
 | |
|    x is not an infinity or nan. */
 | |
| #define DOUBLE_IS_ODD_INTEGER(x) (fmod(fabs(x), 2.0) == 1.0)
 | |
| 
 | |
| static PyObject *
 | |
| float_pow(PyObject *v, PyObject *w, PyObject *z)
 | |
| {
 | |
|     double iv, iw, ix;
 | |
|     int negate_result = 0;
 | |
| 
 | |
|     if ((PyObject *)z != Py_None) {
 | |
|         PyErr_SetString(PyExc_TypeError, "pow() 3rd argument not "
 | |
|             "allowed unless all arguments are integers");
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     CONVERT_TO_DOUBLE(v, iv);
 | |
|     CONVERT_TO_DOUBLE(w, iw);
 | |
| 
 | |
|     /* Sort out special cases here instead of relying on pow() */
 | |
|     if (iw == 0) {              /* v**0 is 1, even 0**0 */
 | |
|         return PyFloat_FromDouble(1.0);
 | |
|     }
 | |
|     if (Py_IS_NAN(iv)) {        /* nan**w = nan, unless w == 0 */
 | |
|         return PyFloat_FromDouble(iv);
 | |
|     }
 | |
|     if (Py_IS_NAN(iw)) {        /* v**nan = nan, unless v == 1; 1**nan = 1 */
 | |
|         return PyFloat_FromDouble(iv == 1.0 ? 1.0 : iw);
 | |
|     }
 | |
|     if (Py_IS_INFINITY(iw)) {
 | |
|         /* v**inf is: 0.0 if abs(v) < 1; 1.0 if abs(v) == 1; inf if
 | |
|          *     abs(v) > 1 (including case where v infinite)
 | |
|          *
 | |
|          * v**-inf is: inf if abs(v) < 1; 1.0 if abs(v) == 1; 0.0 if
 | |
|          *     abs(v) > 1 (including case where v infinite)
 | |
|          */
 | |
|         iv = fabs(iv);
 | |
|         if (iv == 1.0)
 | |
|             return PyFloat_FromDouble(1.0);
 | |
|         else if ((iw > 0.0) == (iv > 1.0))
 | |
|             return PyFloat_FromDouble(fabs(iw)); /* return inf */
 | |
|         else
 | |
|             return PyFloat_FromDouble(0.0);
 | |
|     }
 | |
|     if (Py_IS_INFINITY(iv)) {
 | |
|         /* (+-inf)**w is: inf for w positive, 0 for w negative; in
 | |
|          *     both cases, we need to add the appropriate sign if w is
 | |
|          *     an odd integer.
 | |
|          */
 | |
|         int iw_is_odd = DOUBLE_IS_ODD_INTEGER(iw);
 | |
|         if (iw > 0.0)
 | |
|             return PyFloat_FromDouble(iw_is_odd ? iv : fabs(iv));
 | |
|         else
 | |
|             return PyFloat_FromDouble(iw_is_odd ?
 | |
|                                       copysign(0.0, iv) : 0.0);
 | |
|     }
 | |
|     if (iv == 0.0) {  /* 0**w is: 0 for w positive, 1 for w zero
 | |
|                          (already dealt with above), and an error
 | |
|                          if w is negative. */
 | |
|         int iw_is_odd = DOUBLE_IS_ODD_INTEGER(iw);
 | |
|         if (iw < 0.0) {
 | |
|             PyErr_SetString(PyExc_ZeroDivisionError,
 | |
|                             "0.0 cannot be raised to a "
 | |
|                             "negative power");
 | |
|             return NULL;
 | |
|         }
 | |
|         /* use correct sign if iw is odd */
 | |
|         return PyFloat_FromDouble(iw_is_odd ? iv : 0.0);
 | |
|     }
 | |
| 
 | |
|     if (iv < 0.0) {
 | |
|         /* Whether this is an error is a mess, and bumps into libm
 | |
|          * bugs so we have to figure it out ourselves.
 | |
|          */
 | |
|         if (iw != floor(iw)) {
 | |
|             /* Negative numbers raised to fractional powers
 | |
|              * become complex.
 | |
|              */
 | |
|             return PyComplex_Type.tp_as_number->nb_power(v, w, z);
 | |
|         }
 | |
|         /* iw is an exact integer, albeit perhaps a very large
 | |
|          * one.  Replace iv by its absolute value and remember
 | |
|          * to negate the pow result if iw is odd.
 | |
|          */
 | |
|         iv = -iv;
 | |
|         negate_result = DOUBLE_IS_ODD_INTEGER(iw);
 | |
|     }
 | |
| 
 | |
|     if (iv == 1.0) { /* 1**w is 1, even 1**inf and 1**nan */
 | |
|         /* (-1) ** large_integer also ends up here.  Here's an
 | |
|          * extract from the comments for the previous
 | |
|          * implementation explaining why this special case is
 | |
|          * necessary:
 | |
|          *
 | |
|          * -1 raised to an exact integer should never be exceptional.
 | |
|          * Alas, some libms (chiefly glibc as of early 2003) return
 | |
|          * NaN and set EDOM on pow(-1, large_int) if the int doesn't
 | |
|          * happen to be representable in a *C* integer.  That's a
 | |
|          * bug.
 | |
|          */
 | |
|         return PyFloat_FromDouble(negate_result ? -1.0 : 1.0);
 | |
|     }
 | |
| 
 | |
|     /* Now iv and iw are finite, iw is nonzero, and iv is
 | |
|      * positive and not equal to 1.0.  We finally allow
 | |
|      * the platform pow to step in and do the rest.
 | |
|      */
 | |
|     errno = 0;
 | |
|     PyFPE_START_PROTECT("pow", return NULL)
 | |
|     ix = pow(iv, iw);
 | |
|     PyFPE_END_PROTECT(ix)
 | |
|     Py_ADJUST_ERANGE1(ix);
 | |
|     if (negate_result)
 | |
|         ix = -ix;
 | |
| 
 | |
|     if (errno != 0) {
 | |
|         /* We don't expect any errno value other than ERANGE, but
 | |
|          * the range of libm bugs appears unbounded.
 | |
|          */
 | |
|         PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError :
 | |
|                              PyExc_ValueError);
 | |
|         return NULL;
 | |
|     }
 | |
|     return PyFloat_FromDouble(ix);
 | |
| }
 | |
| 
 | |
| #undef DOUBLE_IS_ODD_INTEGER
 | |
| 
 | |
| static PyObject *
 | |
| float_neg(PyFloatObject *v)
 | |
| {
 | |
|     return PyFloat_FromDouble(-v->ob_fval);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_abs(PyFloatObject *v)
 | |
| {
 | |
|     return PyFloat_FromDouble(fabs(v->ob_fval));
 | |
| }
 | |
| 
 | |
| static int
 | |
| float_bool(PyFloatObject *v)
 | |
| {
 | |
|     return v->ob_fval != 0.0;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_is_integer(PyObject *v)
 | |
| {
 | |
|     double x = PyFloat_AsDouble(v);
 | |
|     PyObject *o;
 | |
| 
 | |
|     if (x == -1.0 && PyErr_Occurred())
 | |
|         return NULL;
 | |
|     if (!Py_IS_FINITE(x))
 | |
|         Py_RETURN_FALSE;
 | |
|     errno = 0;
 | |
|     PyFPE_START_PROTECT("is_integer", return NULL)
 | |
|     o = (floor(x) == x) ? Py_True : Py_False;
 | |
|     PyFPE_END_PROTECT(x)
 | |
|     if (errno != 0) {
 | |
|         PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError :
 | |
|                              PyExc_ValueError);
 | |
|         return NULL;
 | |
|     }
 | |
|     Py_INCREF(o);
 | |
|     return o;
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| static PyObject *
 | |
| float_is_inf(PyObject *v)
 | |
| {
 | |
|     double x = PyFloat_AsDouble(v);
 | |
|     if (x == -1.0 && PyErr_Occurred())
 | |
|         return NULL;
 | |
|     return PyBool_FromLong((long)Py_IS_INFINITY(x));
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_is_nan(PyObject *v)
 | |
| {
 | |
|     double x = PyFloat_AsDouble(v);
 | |
|     if (x == -1.0 && PyErr_Occurred())
 | |
|         return NULL;
 | |
|     return PyBool_FromLong((long)Py_IS_NAN(x));
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_is_finite(PyObject *v)
 | |
| {
 | |
|     double x = PyFloat_AsDouble(v);
 | |
|     if (x == -1.0 && PyErr_Occurred())
 | |
|         return NULL;
 | |
|     return PyBool_FromLong((long)Py_IS_FINITE(x));
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static PyObject *
 | |
| float_trunc(PyObject *v)
 | |
| {
 | |
|     double x = PyFloat_AsDouble(v);
 | |
|     double wholepart;           /* integral portion of x, rounded toward 0 */
 | |
| 
 | |
|     (void)modf(x, &wholepart);
 | |
|     /* Try to get out cheap if this fits in a Python int.  The attempt
 | |
|      * to cast to long must be protected, as C doesn't define what
 | |
|      * happens if the double is too big to fit in a long.  Some rare
 | |
|      * systems raise an exception then (RISCOS was mentioned as one,
 | |
|      * and someone using a non-default option on Sun also bumped into
 | |
|      * that).  Note that checking for >= and <= LONG_{MIN,MAX} would
 | |
|      * still be vulnerable:  if a long has more bits of precision than
 | |
|      * a double, casting MIN/MAX to double may yield an approximation,
 | |
|      * and if that's rounded up, then, e.g., wholepart=LONG_MAX+1 would
 | |
|      * yield true from the C expression wholepart<=LONG_MAX, despite
 | |
|      * that wholepart is actually greater than LONG_MAX.
 | |
|      */
 | |
|     if (LONG_MIN < wholepart && wholepart < LONG_MAX) {
 | |
|         const long aslong = (long)wholepart;
 | |
|         return PyLong_FromLong(aslong);
 | |
|     }
 | |
|     return PyLong_FromDouble(wholepart);
 | |
| }
 | |
| 
 | |
| /* double_round: rounds a finite double to the closest multiple of
 | |
|    10**-ndigits; here ndigits is within reasonable bounds (typically, -308 <=
 | |
|    ndigits <= 323).  Returns a Python float, or sets a Python error and
 | |
|    returns NULL on failure (OverflowError and memory errors are possible). */
 | |
| 
 | |
| #ifndef PY_NO_SHORT_FLOAT_REPR
 | |
| /* version of double_round that uses the correctly-rounded string<->double
 | |
|    conversions from Python/dtoa.c */
 | |
| 
 | |
| static PyObject *
 | |
| double_round(double x, int ndigits) {
 | |
| 
 | |
|     double rounded;
 | |
|     Py_ssize_t buflen, mybuflen=100;
 | |
|     char *buf, *buf_end, shortbuf[100], *mybuf=shortbuf;
 | |
|     int decpt, sign;
 | |
|     PyObject *result = NULL;
 | |
| 
 | |
|     /* round to a decimal string */
 | |
|     buf = _Py_dg_dtoa(x, 3, ndigits, &decpt, &sign, &buf_end);
 | |
|     if (buf == NULL) {
 | |
|         PyErr_NoMemory();
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     /* Get new buffer if shortbuf is too small.  Space needed <= buf_end -
 | |
|     buf + 8: (1 extra for '0', 1 for sign, 5 for exp, 1 for '\0').  */
 | |
|     buflen = buf_end - buf;
 | |
|     if (buflen + 8 > mybuflen) {
 | |
|         mybuflen = buflen+8;
 | |
|         mybuf = (char *)PyMem_Malloc(mybuflen);
 | |
|         if (mybuf == NULL) {
 | |
|             PyErr_NoMemory();
 | |
|             goto exit;
 | |
|         }
 | |
|     }
 | |
|     /* copy buf to mybuf, adding exponent, sign and leading 0 */
 | |
|     PyOS_snprintf(mybuf, mybuflen, "%s0%se%d", (sign ? "-" : ""),
 | |
|                   buf, decpt - (int)buflen);
 | |
| 
 | |
|     /* and convert the resulting string back to a double */
 | |
|     errno = 0;
 | |
|     rounded = _Py_dg_strtod(mybuf, NULL);
 | |
|     if (errno == ERANGE && fabs(rounded) >= 1.)
 | |
|         PyErr_SetString(PyExc_OverflowError,
 | |
|                         "rounded value too large to represent");
 | |
|     else
 | |
|         result = PyFloat_FromDouble(rounded);
 | |
| 
 | |
|     /* done computing value;  now clean up */
 | |
|     if (mybuf != shortbuf)
 | |
|         PyMem_Free(mybuf);
 | |
|   exit:
 | |
|     _Py_dg_freedtoa(buf);
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| #else /* PY_NO_SHORT_FLOAT_REPR */
 | |
| 
 | |
| /* fallback version, to be used when correctly rounded binary<->decimal
 | |
|    conversions aren't available */
 | |
| 
 | |
| static PyObject *
 | |
| double_round(double x, int ndigits) {
 | |
|     double pow1, pow2, y, z;
 | |
|     if (ndigits >= 0) {
 | |
|         if (ndigits > 22) {
 | |
|             /* pow1 and pow2 are each safe from overflow, but
 | |
|                pow1*pow2 ~= pow(10.0, ndigits) might overflow */
 | |
|             pow1 = pow(10.0, (double)(ndigits-22));
 | |
|             pow2 = 1e22;
 | |
|         }
 | |
|         else {
 | |
|             pow1 = pow(10.0, (double)ndigits);
 | |
|             pow2 = 1.0;
 | |
|         }
 | |
|         y = (x*pow1)*pow2;
 | |
|         /* if y overflows, then rounded value is exactly x */
 | |
|         if (!Py_IS_FINITE(y))
 | |
|             return PyFloat_FromDouble(x);
 | |
|     }
 | |
|     else {
 | |
|         pow1 = pow(10.0, (double)-ndigits);
 | |
|         pow2 = 1.0; /* unused; silences a gcc compiler warning */
 | |
|         y = x / pow1;
 | |
|     }
 | |
| 
 | |
|     z = round(y);
 | |
|     if (fabs(y-z) == 0.5)
 | |
|         /* halfway between two integers; use round-half-even */
 | |
|         z = 2.0*round(y/2.0);
 | |
| 
 | |
|     if (ndigits >= 0)
 | |
|         z = (z / pow2) / pow1;
 | |
|     else
 | |
|         z *= pow1;
 | |
| 
 | |
|     /* if computation resulted in overflow, raise OverflowError */
 | |
|     if (!Py_IS_FINITE(z)) {
 | |
|         PyErr_SetString(PyExc_OverflowError,
 | |
|                         "overflow occurred during round");
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     return PyFloat_FromDouble(z);
 | |
| }
 | |
| 
 | |
| #endif /* PY_NO_SHORT_FLOAT_REPR */
 | |
| 
 | |
| /* round a Python float v to the closest multiple of 10**-ndigits */
 | |
| 
 | |
| static PyObject *
 | |
| float_round(PyObject *v, PyObject *args)
 | |
| {
 | |
|     double x, rounded;
 | |
|     PyObject *o_ndigits = NULL;
 | |
|     Py_ssize_t ndigits;
 | |
| 
 | |
|     x = PyFloat_AsDouble(v);
 | |
|     if (!PyArg_ParseTuple(args, "|O", &o_ndigits))
 | |
|         return NULL;
 | |
|     if (o_ndigits == NULL) {
 | |
|         /* single-argument round: round to nearest integer */
 | |
|         rounded = round(x);
 | |
|         if (fabs(x-rounded) == 0.5)
 | |
|             /* halfway case: round to even */
 | |
|             rounded = 2.0*round(x/2.0);
 | |
|         return PyLong_FromDouble(rounded);
 | |
|     }
 | |
| 
 | |
|     /* interpret second argument as a Py_ssize_t; clips on overflow */
 | |
|     ndigits = PyNumber_AsSsize_t(o_ndigits, NULL);
 | |
|     if (ndigits == -1 && PyErr_Occurred())
 | |
|         return NULL;
 | |
| 
 | |
|     /* nans and infinities round to themselves */
 | |
|     if (!Py_IS_FINITE(x))
 | |
|         return PyFloat_FromDouble(x);
 | |
| 
 | |
|     /* Deal with extreme values for ndigits. For ndigits > NDIGITS_MAX, x
 | |
|        always rounds to itself.  For ndigits < NDIGITS_MIN, x always
 | |
|        rounds to +-0.0.  Here 0.30103 is an upper bound for log10(2). */
 | |
| #define NDIGITS_MAX ((int)((DBL_MANT_DIG-DBL_MIN_EXP) * 0.30103))
 | |
| #define NDIGITS_MIN (-(int)((DBL_MAX_EXP + 1) * 0.30103))
 | |
|     if (ndigits > NDIGITS_MAX)
 | |
|         /* return x */
 | |
|         return PyFloat_FromDouble(x);
 | |
|     else if (ndigits < NDIGITS_MIN)
 | |
|         /* return 0.0, but with sign of x */
 | |
|         return PyFloat_FromDouble(0.0*x);
 | |
|     else
 | |
|         /* finite x, and ndigits is not unreasonably large */
 | |
|         return double_round(x, (int)ndigits);
 | |
| #undef NDIGITS_MAX
 | |
| #undef NDIGITS_MIN
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_float(PyObject *v)
 | |
| {
 | |
|     if (PyFloat_CheckExact(v))
 | |
|         Py_INCREF(v);
 | |
|     else
 | |
|         v = PyFloat_FromDouble(((PyFloatObject *)v)->ob_fval);
 | |
|     return v;
 | |
| }
 | |
| 
 | |
| /* turn ASCII hex characters into integer values and vice versa */
 | |
| 
 | |
| static char
 | |
| char_from_hex(int x)
 | |
| {
 | |
|     assert(0 <= x && x < 16);
 | |
|     return "0123456789abcdef"[x];
 | |
| }
 | |
| 
 | |
| static int
 | |
| hex_from_char(char c) {
 | |
|     int x;
 | |
|     switch(c) {
 | |
|     case '0':
 | |
|         x = 0;
 | |
|         break;
 | |
|     case '1':
 | |
|         x = 1;
 | |
|         break;
 | |
|     case '2':
 | |
|         x = 2;
 | |
|         break;
 | |
|     case '3':
 | |
|         x = 3;
 | |
|         break;
 | |
|     case '4':
 | |
|         x = 4;
 | |
|         break;
 | |
|     case '5':
 | |
|         x = 5;
 | |
|         break;
 | |
|     case '6':
 | |
|         x = 6;
 | |
|         break;
 | |
|     case '7':
 | |
|         x = 7;
 | |
|         break;
 | |
|     case '8':
 | |
|         x = 8;
 | |
|         break;
 | |
|     case '9':
 | |
|         x = 9;
 | |
|         break;
 | |
|     case 'a':
 | |
|     case 'A':
 | |
|         x = 10;
 | |
|         break;
 | |
|     case 'b':
 | |
|     case 'B':
 | |
|         x = 11;
 | |
|         break;
 | |
|     case 'c':
 | |
|     case 'C':
 | |
|         x = 12;
 | |
|         break;
 | |
|     case 'd':
 | |
|     case 'D':
 | |
|         x = 13;
 | |
|         break;
 | |
|     case 'e':
 | |
|     case 'E':
 | |
|         x = 14;
 | |
|         break;
 | |
|     case 'f':
 | |
|     case 'F':
 | |
|         x = 15;
 | |
|         break;
 | |
|     default:
 | |
|         x = -1;
 | |
|         break;
 | |
|     }
 | |
|     return x;
 | |
| }
 | |
| 
 | |
| /* convert a float to a hexadecimal string */
 | |
| 
 | |
| /* TOHEX_NBITS is DBL_MANT_DIG rounded up to the next integer
 | |
|    of the form 4k+1. */
 | |
| #define TOHEX_NBITS DBL_MANT_DIG + 3 - (DBL_MANT_DIG+2)%4
 | |
| 
 | |
| static PyObject *
 | |
| float_hex(PyObject *v)
 | |
| {
 | |
|     double x, m;
 | |
|     int e, shift, i, si, esign;
 | |
|     /* Space for 1+(TOHEX_NBITS-1)/4 digits, a decimal point, and the
 | |
|        trailing NUL byte. */
 | |
|     char s[(TOHEX_NBITS-1)/4+3];
 | |
| 
 | |
|     CONVERT_TO_DOUBLE(v, x);
 | |
| 
 | |
|     if (Py_IS_NAN(x) || Py_IS_INFINITY(x))
 | |
|         return float_repr((PyFloatObject *)v);
 | |
| 
 | |
|     if (x == 0.0) {
 | |
|         if (copysign(1.0, x) == -1.0)
 | |
|             return PyUnicode_FromString("-0x0.0p+0");
 | |
|         else
 | |
|             return PyUnicode_FromString("0x0.0p+0");
 | |
|     }
 | |
| 
 | |
|     m = frexp(fabs(x), &e);
 | |
|     shift = 1 - MAX(DBL_MIN_EXP - e, 0);
 | |
|     m = ldexp(m, shift);
 | |
|     e -= shift;
 | |
| 
 | |
|     si = 0;
 | |
|     s[si] = char_from_hex((int)m);
 | |
|     si++;
 | |
|     m -= (int)m;
 | |
|     s[si] = '.';
 | |
|     si++;
 | |
|     for (i=0; i < (TOHEX_NBITS-1)/4; i++) {
 | |
|         m *= 16.0;
 | |
|         s[si] = char_from_hex((int)m);
 | |
|         si++;
 | |
|         m -= (int)m;
 | |
|     }
 | |
|     s[si] = '\0';
 | |
| 
 | |
|     if (e < 0) {
 | |
|         esign = (int)'-';
 | |
|         e = -e;
 | |
|     }
 | |
|     else
 | |
|         esign = (int)'+';
 | |
| 
 | |
|     if (x < 0.0)
 | |
|         return PyUnicode_FromFormat("-0x%sp%c%d", s, esign, e);
 | |
|     else
 | |
|         return PyUnicode_FromFormat("0x%sp%c%d", s, esign, e);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(float_hex_doc,
 | |
| "float.hex() -> string\n\
 | |
| \n\
 | |
| Return a hexadecimal representation of a floating-point number.\n\
 | |
| >>> (-0.1).hex()\n\
 | |
| '-0x1.999999999999ap-4'\n\
 | |
| >>> 3.14159.hex()\n\
 | |
| '0x1.921f9f01b866ep+1'");
 | |
| 
 | |
| /* Convert a hexadecimal string to a float. */
 | |
| 
 | |
| static PyObject *
 | |
| float_fromhex(PyObject *cls, PyObject *arg)
 | |
| {
 | |
|     PyObject *result_as_float, *result;
 | |
|     double x;
 | |
|     long exp, top_exp, lsb, key_digit;
 | |
|     char *s, *coeff_start, *s_store, *coeff_end, *exp_start, *s_end;
 | |
|     int half_eps, digit, round_up, negate=0;
 | |
|     Py_ssize_t length, ndigits, fdigits, i;
 | |
| 
 | |
|     /*
 | |
|      * For the sake of simplicity and correctness, we impose an artificial
 | |
|      * limit on ndigits, the total number of hex digits in the coefficient
 | |
|      * The limit is chosen to ensure that, writing exp for the exponent,
 | |
|      *
 | |
|      *   (1) if exp > LONG_MAX/2 then the value of the hex string is
 | |
|      *   guaranteed to overflow (provided it's nonzero)
 | |
|      *
 | |
|      *   (2) if exp < LONG_MIN/2 then the value of the hex string is
 | |
|      *   guaranteed to underflow to 0.
 | |
|      *
 | |
|      *   (3) if LONG_MIN/2 <= exp <= LONG_MAX/2 then there's no danger of
 | |
|      *   overflow in the calculation of exp and top_exp below.
 | |
|      *
 | |
|      * More specifically, ndigits is assumed to satisfy the following
 | |
|      * inequalities:
 | |
|      *
 | |
|      *   4*ndigits <= DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2
 | |
|      *   4*ndigits <= LONG_MAX/2 + 1 - DBL_MAX_EXP
 | |
|      *
 | |
|      * If either of these inequalities is not satisfied, a ValueError is
 | |
|      * raised.  Otherwise, write x for the value of the hex string, and
 | |
|      * assume x is nonzero.  Then
 | |
|      *
 | |
|      *   2**(exp-4*ndigits) <= |x| < 2**(exp+4*ndigits).
 | |
|      *
 | |
|      * Now if exp > LONG_MAX/2 then:
 | |
|      *
 | |
|      *   exp - 4*ndigits >= LONG_MAX/2 + 1 - (LONG_MAX/2 + 1 - DBL_MAX_EXP)
 | |
|      *                    = DBL_MAX_EXP
 | |
|      *
 | |
|      * so |x| >= 2**DBL_MAX_EXP, which is too large to be stored in C
 | |
|      * double, so overflows.  If exp < LONG_MIN/2, then
 | |
|      *
 | |
|      *   exp + 4*ndigits <= LONG_MIN/2 - 1 + (
 | |
|      *                      DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2)
 | |
|      *                    = DBL_MIN_EXP - DBL_MANT_DIG - 1
 | |
|      *
 | |
|      * and so |x| < 2**(DBL_MIN_EXP-DBL_MANT_DIG-1), hence underflows to 0
 | |
|      * when converted to a C double.
 | |
|      *
 | |
|      * It's easy to show that if LONG_MIN/2 <= exp <= LONG_MAX/2 then both
 | |
|      * exp+4*ndigits and exp-4*ndigits are within the range of a long.
 | |
|      */
 | |
| 
 | |
|     s = _PyUnicode_AsStringAndSize(arg, &length);
 | |
|     if (s == NULL)
 | |
|         return NULL;
 | |
|     s_end = s + length;
 | |
| 
 | |
|     /********************
 | |
|      * Parse the string *
 | |
|      ********************/
 | |
| 
 | |
|     /* leading whitespace */
 | |
|     while (Py_ISSPACE(*s))
 | |
|         s++;
 | |
| 
 | |
|     /* infinities and nans */
 | |
|     x = _Py_parse_inf_or_nan(s, &coeff_end);
 | |
|     if (coeff_end != s) {
 | |
|         s = coeff_end;
 | |
|         goto finished;
 | |
|     }
 | |
| 
 | |
|     /* optional sign */
 | |
|     if (*s == '-') {
 | |
|         s++;
 | |
|         negate = 1;
 | |
|     }
 | |
|     else if (*s == '+')
 | |
|         s++;
 | |
| 
 | |
|     /* [0x] */
 | |
|     s_store = s;
 | |
|     if (*s == '0') {
 | |
|         s++;
 | |
|         if (*s == 'x' || *s == 'X')
 | |
|             s++;
 | |
|         else
 | |
|             s = s_store;
 | |
|     }
 | |
| 
 | |
|     /* coefficient: <integer> [. <fraction>] */
 | |
|     coeff_start = s;
 | |
|     while (hex_from_char(*s) >= 0)
 | |
|         s++;
 | |
|     s_store = s;
 | |
|     if (*s == '.') {
 | |
|         s++;
 | |
|         while (hex_from_char(*s) >= 0)
 | |
|             s++;
 | |
|         coeff_end = s-1;
 | |
|     }
 | |
|     else
 | |
|         coeff_end = s;
 | |
| 
 | |
|     /* ndigits = total # of hex digits; fdigits = # after point */
 | |
|     ndigits = coeff_end - coeff_start;
 | |
|     fdigits = coeff_end - s_store;
 | |
|     if (ndigits == 0)
 | |
|         goto parse_error;
 | |
|     if (ndigits > MIN(DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2,
 | |
|                       LONG_MAX/2 + 1 - DBL_MAX_EXP)/4)
 | |
|         goto insane_length_error;
 | |
| 
 | |
|     /* [p <exponent>] */
 | |
|     if (*s == 'p' || *s == 'P') {
 | |
|         s++;
 | |
|         exp_start = s;
 | |
|         if (*s == '-' || *s == '+')
 | |
|             s++;
 | |
|         if (!('0' <= *s && *s <= '9'))
 | |
|             goto parse_error;
 | |
|         s++;
 | |
|         while ('0' <= *s && *s <= '9')
 | |
|             s++;
 | |
|         exp = strtol(exp_start, NULL, 10);
 | |
|     }
 | |
|     else
 | |
|         exp = 0;
 | |
| 
 | |
| /* for 0 <= j < ndigits, HEX_DIGIT(j) gives the jth most significant digit */
 | |
| #define HEX_DIGIT(j) hex_from_char(*((j) < fdigits ?            \
 | |
|                      coeff_end-(j) :                                    \
 | |
|                      coeff_end-1-(j)))
 | |
| 
 | |
|     /*******************************************
 | |
|      * Compute rounded value of the hex string *
 | |
|      *******************************************/
 | |
| 
 | |
|     /* Discard leading zeros, and catch extreme overflow and underflow */
 | |
|     while (ndigits > 0 && HEX_DIGIT(ndigits-1) == 0)
 | |
|         ndigits--;
 | |
|     if (ndigits == 0 || exp < LONG_MIN/2) {
 | |
|         x = 0.0;
 | |
|         goto finished;
 | |
|     }
 | |
|     if (exp > LONG_MAX/2)
 | |
|         goto overflow_error;
 | |
| 
 | |
|     /* Adjust exponent for fractional part. */
 | |
|     exp = exp - 4*((long)fdigits);
 | |
| 
 | |
|     /* top_exp = 1 more than exponent of most sig. bit of coefficient */
 | |
|     top_exp = exp + 4*((long)ndigits - 1);
 | |
|     for (digit = HEX_DIGIT(ndigits-1); digit != 0; digit /= 2)
 | |
|         top_exp++;
 | |
| 
 | |
|     /* catch almost all nonextreme cases of overflow and underflow here */
 | |
|     if (top_exp < DBL_MIN_EXP - DBL_MANT_DIG) {
 | |
|         x = 0.0;
 | |
|         goto finished;
 | |
|     }
 | |
|     if (top_exp > DBL_MAX_EXP)
 | |
|         goto overflow_error;
 | |
| 
 | |
|     /* lsb = exponent of least significant bit of the *rounded* value.
 | |
|        This is top_exp - DBL_MANT_DIG unless result is subnormal. */
 | |
|     lsb = MAX(top_exp, (long)DBL_MIN_EXP) - DBL_MANT_DIG;
 | |
| 
 | |
|     x = 0.0;
 | |
|     if (exp >= lsb) {
 | |
|         /* no rounding required */
 | |
|         for (i = ndigits-1; i >= 0; i--)
 | |
|             x = 16.0*x + HEX_DIGIT(i);
 | |
|         x = ldexp(x, (int)(exp));
 | |
|         goto finished;
 | |
|     }
 | |
|     /* rounding required.  key_digit is the index of the hex digit
 | |
|        containing the first bit to be rounded away. */
 | |
|     half_eps = 1 << (int)((lsb - exp - 1) % 4);
 | |
|     key_digit = (lsb - exp - 1) / 4;
 | |
|     for (i = ndigits-1; i > key_digit; i--)
 | |
|         x = 16.0*x + HEX_DIGIT(i);
 | |
|     digit = HEX_DIGIT(key_digit);
 | |
|     x = 16.0*x + (double)(digit & (16-2*half_eps));
 | |
| 
 | |
|     /* round-half-even: round up if bit lsb-1 is 1 and at least one of
 | |
|        bits lsb, lsb-2, lsb-3, lsb-4, ... is 1. */
 | |
|     if ((digit & half_eps) != 0) {
 | |
|         round_up = 0;
 | |
|         if ((digit & (3*half_eps-1)) != 0 ||
 | |
|             (half_eps == 8 && (HEX_DIGIT(key_digit+1) & 1) != 0))
 | |
|             round_up = 1;
 | |
|         else
 | |
|             for (i = key_digit-1; i >= 0; i--)
 | |
|                 if (HEX_DIGIT(i) != 0) {
 | |
|                     round_up = 1;
 | |
|                     break;
 | |
|                 }
 | |
|         if (round_up) {
 | |
|             x += 2*half_eps;
 | |
|             if (top_exp == DBL_MAX_EXP &&
 | |
|                 x == ldexp((double)(2*half_eps), DBL_MANT_DIG))
 | |
|                 /* overflow corner case: pre-rounded value <
 | |
|                    2**DBL_MAX_EXP; rounded=2**DBL_MAX_EXP. */
 | |
|                 goto overflow_error;
 | |
|         }
 | |
|     }
 | |
|     x = ldexp(x, (int)(exp+4*key_digit));
 | |
| 
 | |
|   finished:
 | |
|     /* optional trailing whitespace leading to the end of the string */
 | |
|     while (Py_ISSPACE(*s))
 | |
|         s++;
 | |
|     if (s != s_end)
 | |
|         goto parse_error;
 | |
|     result_as_float = Py_BuildValue("(d)", negate ? -x : x);
 | |
|     if (result_as_float == NULL)
 | |
|         return NULL;
 | |
|     result = PyObject_CallObject(cls, result_as_float);
 | |
|     Py_DECREF(result_as_float);
 | |
|     return result;
 | |
| 
 | |
|   overflow_error:
 | |
|     PyErr_SetString(PyExc_OverflowError,
 | |
|                     "hexadecimal value too large to represent as a float");
 | |
|     return NULL;
 | |
| 
 | |
|   parse_error:
 | |
|     PyErr_SetString(PyExc_ValueError,
 | |
|                     "invalid hexadecimal floating-point string");
 | |
|     return NULL;
 | |
| 
 | |
|   insane_length_error:
 | |
|     PyErr_SetString(PyExc_ValueError,
 | |
|                     "hexadecimal string too long to convert");
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(float_fromhex_doc,
 | |
| "float.fromhex(string) -> float\n\
 | |
| \n\
 | |
| Create a floating-point number from a hexadecimal string.\n\
 | |
| >>> float.fromhex('0x1.ffffp10')\n\
 | |
| 2047.984375\n\
 | |
| >>> float.fromhex('-0x1p-1074')\n\
 | |
| -4.9406564584124654e-324");
 | |
| 
 | |
| 
 | |
| static PyObject *
 | |
| float_as_integer_ratio(PyObject *v, PyObject *unused)
 | |
| {
 | |
|     double self;
 | |
|     double float_part;
 | |
|     int exponent;
 | |
|     int i;
 | |
| 
 | |
|     PyObject *prev;
 | |
|     PyObject *py_exponent = NULL;
 | |
|     PyObject *numerator = NULL;
 | |
|     PyObject *denominator = NULL;
 | |
|     PyObject *result_pair = NULL;
 | |
|     PyNumberMethods *long_methods = PyLong_Type.tp_as_number;
 | |
| 
 | |
| #define INPLACE_UPDATE(obj, call) \
 | |
|     prev = obj; \
 | |
|     obj = call; \
 | |
|     Py_DECREF(prev); \
 | |
| 
 | |
|     CONVERT_TO_DOUBLE(v, self);
 | |
| 
 | |
|     if (Py_IS_INFINITY(self)) {
 | |
|       PyErr_SetString(PyExc_OverflowError,
 | |
|                       "Cannot pass infinity to float.as_integer_ratio.");
 | |
|       return NULL;
 | |
|     }
 | |
| #ifdef Py_NAN
 | |
|     if (Py_IS_NAN(self)) {
 | |
|       PyErr_SetString(PyExc_ValueError,
 | |
|                       "Cannot pass NaN to float.as_integer_ratio.");
 | |
|       return NULL;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     PyFPE_START_PROTECT("as_integer_ratio", goto error);
 | |
|     float_part = frexp(self, &exponent);        /* self == float_part * 2**exponent exactly */
 | |
|     PyFPE_END_PROTECT(float_part);
 | |
| 
 | |
|     for (i=0; i<300 && float_part != floor(float_part) ; i++) {
 | |
|         float_part *= 2.0;
 | |
|         exponent--;
 | |
|     }
 | |
|     /* self == float_part * 2**exponent exactly and float_part is integral.
 | |
|        If FLT_RADIX != 2, the 300 steps may leave a tiny fractional part
 | |
|        to be truncated by PyLong_FromDouble(). */
 | |
| 
 | |
|     numerator = PyLong_FromDouble(float_part);
 | |
|     if (numerator == NULL) goto error;
 | |
| 
 | |
|     /* fold in 2**exponent */
 | |
|     denominator = PyLong_FromLong(1);
 | |
|     py_exponent = PyLong_FromLong(labs((long)exponent));
 | |
|     if (py_exponent == NULL) goto error;
 | |
|     INPLACE_UPDATE(py_exponent,
 | |
|                    long_methods->nb_lshift(denominator, py_exponent));
 | |
|     if (py_exponent == NULL) goto error;
 | |
|     if (exponent > 0) {
 | |
|         INPLACE_UPDATE(numerator,
 | |
|                        long_methods->nb_multiply(numerator, py_exponent));
 | |
|         if (numerator == NULL) goto error;
 | |
|     }
 | |
|     else {
 | |
|         Py_DECREF(denominator);
 | |
|         denominator = py_exponent;
 | |
|         py_exponent = NULL;
 | |
|     }
 | |
| 
 | |
|     result_pair = PyTuple_Pack(2, numerator, denominator);
 | |
| 
 | |
| #undef INPLACE_UPDATE
 | |
| error:
 | |
|     Py_XDECREF(py_exponent);
 | |
|     Py_XDECREF(denominator);
 | |
|     Py_XDECREF(numerator);
 | |
|     return result_pair;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(float_as_integer_ratio_doc,
 | |
| "float.as_integer_ratio() -> (int, int)\n"
 | |
| "\n"
 | |
| "Returns a pair of integers, whose ratio is exactly equal to the original\n"
 | |
| "float and with a positive denominator.\n"
 | |
| "Raises OverflowError on infinities and a ValueError on NaNs.\n"
 | |
| "\n"
 | |
| ">>> (10.0).as_integer_ratio()\n"
 | |
| "(10, 1)\n"
 | |
| ">>> (0.0).as_integer_ratio()\n"
 | |
| "(0, 1)\n"
 | |
| ">>> (-.25).as_integer_ratio()\n"
 | |
| "(-1, 4)");
 | |
| 
 | |
| 
 | |
| static PyObject *
 | |
| float_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds);
 | |
| 
 | |
| static PyObject *
 | |
| float_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
 | |
| {
 | |
|     PyObject *x = Py_False; /* Integer zero */
 | |
|     static char *kwlist[] = {"x", 0};
 | |
| 
 | |
|     if (type != &PyFloat_Type)
 | |
|         return float_subtype_new(type, args, kwds); /* Wimp out */
 | |
|     if (!PyArg_ParseTupleAndKeywords(args, kwds, "|O:float", kwlist, &x))
 | |
|         return NULL;
 | |
|     /* If it's a string, but not a string subclass, use
 | |
|        PyFloat_FromString. */
 | |
|     if (PyUnicode_CheckExact(x))
 | |
|         return PyFloat_FromString(x);
 | |
|     return PyNumber_Float(x);
 | |
| }
 | |
| 
 | |
| /* Wimpy, slow approach to tp_new calls for subtypes of float:
 | |
|    first create a regular float from whatever arguments we got,
 | |
|    then allocate a subtype instance and initialize its ob_fval
 | |
|    from the regular float.  The regular float is then thrown away.
 | |
| */
 | |
| static PyObject *
 | |
| float_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
 | |
| {
 | |
|     PyObject *tmp, *newobj;
 | |
| 
 | |
|     assert(PyType_IsSubtype(type, &PyFloat_Type));
 | |
|     tmp = float_new(&PyFloat_Type, args, kwds);
 | |
|     if (tmp == NULL)
 | |
|         return NULL;
 | |
|     assert(PyFloat_CheckExact(tmp));
 | |
|     newobj = type->tp_alloc(type, 0);
 | |
|     if (newobj == NULL) {
 | |
|         Py_DECREF(tmp);
 | |
|         return NULL;
 | |
|     }
 | |
|     ((PyFloatObject *)newobj)->ob_fval = ((PyFloatObject *)tmp)->ob_fval;
 | |
|     Py_DECREF(tmp);
 | |
|     return newobj;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_getnewargs(PyFloatObject *v)
 | |
| {
 | |
|     return Py_BuildValue("(d)", v->ob_fval);
 | |
| }
 | |
| 
 | |
| /* this is for the benefit of the pack/unpack routines below */
 | |
| 
 | |
| typedef enum {
 | |
|     unknown_format, ieee_big_endian_format, ieee_little_endian_format
 | |
| } float_format_type;
 | |
| 
 | |
| static float_format_type double_format, float_format;
 | |
| static float_format_type detected_double_format, detected_float_format;
 | |
| 
 | |
| static PyObject *
 | |
| float_getformat(PyTypeObject *v, PyObject* arg)
 | |
| {
 | |
|     char* s;
 | |
|     float_format_type r;
 | |
| 
 | |
|     if (!PyUnicode_Check(arg)) {
 | |
|         PyErr_Format(PyExc_TypeError,
 | |
|          "__getformat__() argument must be string, not %.500s",
 | |
|                          Py_TYPE(arg)->tp_name);
 | |
|         return NULL;
 | |
|     }
 | |
|     s = _PyUnicode_AsString(arg);
 | |
|     if (s == NULL)
 | |
|         return NULL;
 | |
|     if (strcmp(s, "double") == 0) {
 | |
|         r = double_format;
 | |
|     }
 | |
|     else if (strcmp(s, "float") == 0) {
 | |
|         r = float_format;
 | |
|     }
 | |
|     else {
 | |
|         PyErr_SetString(PyExc_ValueError,
 | |
|                         "__getformat__() argument 1 must be "
 | |
|                         "'double' or 'float'");
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     switch (r) {
 | |
|     case unknown_format:
 | |
|         return PyUnicode_FromString("unknown");
 | |
|     case ieee_little_endian_format:
 | |
|         return PyUnicode_FromString("IEEE, little-endian");
 | |
|     case ieee_big_endian_format:
 | |
|         return PyUnicode_FromString("IEEE, big-endian");
 | |
|     default:
 | |
|         Py_FatalError("insane float_format or double_format");
 | |
|         return NULL;
 | |
|     }
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(float_getformat_doc,
 | |
| "float.__getformat__(typestr) -> string\n"
 | |
| "\n"
 | |
| "You probably don't want to use this function.  It exists mainly to be\n"
 | |
| "used in Python's test suite.\n"
 | |
| "\n"
 | |
| "typestr must be 'double' or 'float'.  This function returns whichever of\n"
 | |
| "'unknown', 'IEEE, big-endian' or 'IEEE, little-endian' best describes the\n"
 | |
| "format of floating point numbers used by the C type named by typestr.");
 | |
| 
 | |
| static PyObject *
 | |
| float_setformat(PyTypeObject *v, PyObject* args)
 | |
| {
 | |
|     char* typestr;
 | |
|     char* format;
 | |
|     float_format_type f;
 | |
|     float_format_type detected;
 | |
|     float_format_type *p;
 | |
| 
 | |
|     if (!PyArg_ParseTuple(args, "ss:__setformat__", &typestr, &format))
 | |
|         return NULL;
 | |
| 
 | |
|     if (strcmp(typestr, "double") == 0) {
 | |
|         p = &double_format;
 | |
|         detected = detected_double_format;
 | |
|     }
 | |
|     else if (strcmp(typestr, "float") == 0) {
 | |
|         p = &float_format;
 | |
|         detected = detected_float_format;
 | |
|     }
 | |
|     else {
 | |
|         PyErr_SetString(PyExc_ValueError,
 | |
|                         "__setformat__() argument 1 must "
 | |
|                         "be 'double' or 'float'");
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     if (strcmp(format, "unknown") == 0) {
 | |
|         f = unknown_format;
 | |
|     }
 | |
|     else if (strcmp(format, "IEEE, little-endian") == 0) {
 | |
|         f = ieee_little_endian_format;
 | |
|     }
 | |
|     else if (strcmp(format, "IEEE, big-endian") == 0) {
 | |
|         f = ieee_big_endian_format;
 | |
|     }
 | |
|     else {
 | |
|         PyErr_SetString(PyExc_ValueError,
 | |
|                         "__setformat__() argument 2 must be "
 | |
|                         "'unknown', 'IEEE, little-endian' or "
 | |
|                         "'IEEE, big-endian'");
 | |
|         return NULL;
 | |
| 
 | |
|     }
 | |
| 
 | |
|     if (f != unknown_format && f != detected) {
 | |
|         PyErr_Format(PyExc_ValueError,
 | |
|                      "can only set %s format to 'unknown' or the "
 | |
|                      "detected platform value", typestr);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     *p = f;
 | |
|     Py_RETURN_NONE;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(float_setformat_doc,
 | |
| "float.__setformat__(typestr, fmt) -> None\n"
 | |
| "\n"
 | |
| "You probably don't want to use this function.  It exists mainly to be\n"
 | |
| "used in Python's test suite.\n"
 | |
| "\n"
 | |
| "typestr must be 'double' or 'float'.  fmt must be one of 'unknown',\n"
 | |
| "'IEEE, big-endian' or 'IEEE, little-endian', and in addition can only be\n"
 | |
| "one of the latter two if it appears to match the underlying C reality.\n"
 | |
| "\n"
 | |
| "Overrides the automatic determination of C-level floating point type.\n"
 | |
| "This affects how floats are converted to and from binary strings.");
 | |
| 
 | |
| static PyObject *
 | |
| float_getzero(PyObject *v, void *closure)
 | |
| {
 | |
|     return PyFloat_FromDouble(0.0);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float__format__(PyObject *self, PyObject *args)
 | |
| {
 | |
|     PyObject *format_spec;
 | |
| 
 | |
|     if (!PyArg_ParseTuple(args, "U:__format__", &format_spec))
 | |
|         return NULL;
 | |
|     return _PyFloat_FormatAdvanced(self,
 | |
|                                    PyUnicode_AS_UNICODE(format_spec),
 | |
|                                    PyUnicode_GET_SIZE(format_spec));
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(float__format__doc,
 | |
| "float.__format__(format_spec) -> string\n"
 | |
| "\n"
 | |
| "Formats the float according to format_spec.");
 | |
| 
 | |
| 
 | |
| static PyMethodDef float_methods[] = {
 | |
|     {"conjugate",       (PyCFunction)float_float,       METH_NOARGS,
 | |
|      "Returns self, the complex conjugate of any float."},
 | |
|     {"__trunc__",       (PyCFunction)float_trunc, METH_NOARGS,
 | |
|      "Returns the Integral closest to x between 0 and x."},
 | |
|     {"__round__",       (PyCFunction)float_round, METH_VARARGS,
 | |
|      "Returns the Integral closest to x, rounding half toward even.\n"
 | |
|      "When an argument is passed, works like built-in round(x, ndigits)."},
 | |
|     {"as_integer_ratio", (PyCFunction)float_as_integer_ratio, METH_NOARGS,
 | |
|      float_as_integer_ratio_doc},
 | |
|     {"fromhex", (PyCFunction)float_fromhex,
 | |
|      METH_O|METH_CLASS, float_fromhex_doc},
 | |
|     {"hex", (PyCFunction)float_hex,
 | |
|      METH_NOARGS, float_hex_doc},
 | |
|     {"is_integer",      (PyCFunction)float_is_integer,  METH_NOARGS,
 | |
|      "Returns True if the float is an integer."},
 | |
| #if 0
 | |
|     {"is_inf",          (PyCFunction)float_is_inf,      METH_NOARGS,
 | |
|      "Returns True if the float is positive or negative infinite."},
 | |
|     {"is_finite",       (PyCFunction)float_is_finite,   METH_NOARGS,
 | |
|      "Returns True if the float is finite, neither infinite nor NaN."},
 | |
|     {"is_nan",          (PyCFunction)float_is_nan,      METH_NOARGS,
 | |
|      "Returns True if the float is not a number (NaN)."},
 | |
| #endif
 | |
|     {"__getnewargs__",          (PyCFunction)float_getnewargs,  METH_NOARGS},
 | |
|     {"__getformat__",           (PyCFunction)float_getformat,
 | |
|      METH_O|METH_CLASS,                 float_getformat_doc},
 | |
|     {"__setformat__",           (PyCFunction)float_setformat,
 | |
|      METH_VARARGS|METH_CLASS,           float_setformat_doc},
 | |
|     {"__format__",          (PyCFunction)float__format__,
 | |
|      METH_VARARGS,                  float__format__doc},
 | |
|     {NULL,              NULL}           /* sentinel */
 | |
| };
 | |
| 
 | |
| static PyGetSetDef float_getset[] = {
 | |
|     {"real",
 | |
|      (getter)float_float, (setter)NULL,
 | |
|      "the real part of a complex number",
 | |
|      NULL},
 | |
|     {"imag",
 | |
|      (getter)float_getzero, (setter)NULL,
 | |
|      "the imaginary part of a complex number",
 | |
|      NULL},
 | |
|     {NULL}  /* Sentinel */
 | |
| };
 | |
| 
 | |
| PyDoc_STRVAR(float_doc,
 | |
| "float(x) -> floating point number\n\
 | |
| \n\
 | |
| Convert a string or number to a floating point number, if possible.");
 | |
| 
 | |
| 
 | |
| static PyNumberMethods float_as_number = {
 | |
|     float_add,          /*nb_add*/
 | |
|     float_sub,          /*nb_subtract*/
 | |
|     float_mul,          /*nb_multiply*/
 | |
|     float_rem,          /*nb_remainder*/
 | |
|     float_divmod,       /*nb_divmod*/
 | |
|     float_pow,          /*nb_power*/
 | |
|     (unaryfunc)float_neg, /*nb_negative*/
 | |
|     (unaryfunc)float_float, /*nb_positive*/
 | |
|     (unaryfunc)float_abs, /*nb_absolute*/
 | |
|     (inquiry)float_bool, /*nb_bool*/
 | |
|     0,                  /*nb_invert*/
 | |
|     0,                  /*nb_lshift*/
 | |
|     0,                  /*nb_rshift*/
 | |
|     0,                  /*nb_and*/
 | |
|     0,                  /*nb_xor*/
 | |
|     0,                  /*nb_or*/
 | |
|     float_trunc,        /*nb_int*/
 | |
|     0,                  /*nb_reserved*/
 | |
|     float_float,        /*nb_float*/
 | |
|     0,                  /* nb_inplace_add */
 | |
|     0,                  /* nb_inplace_subtract */
 | |
|     0,                  /* nb_inplace_multiply */
 | |
|     0,                  /* nb_inplace_remainder */
 | |
|     0,                  /* nb_inplace_power */
 | |
|     0,                  /* nb_inplace_lshift */
 | |
|     0,                  /* nb_inplace_rshift */
 | |
|     0,                  /* nb_inplace_and */
 | |
|     0,                  /* nb_inplace_xor */
 | |
|     0,                  /* nb_inplace_or */
 | |
|     float_floor_div, /* nb_floor_divide */
 | |
|     float_div,          /* nb_true_divide */
 | |
|     0,                  /* nb_inplace_floor_divide */
 | |
|     0,                  /* nb_inplace_true_divide */
 | |
| };
 | |
| 
 | |
| PyTypeObject PyFloat_Type = {
 | |
|     PyVarObject_HEAD_INIT(&PyType_Type, 0)
 | |
|     "float",
 | |
|     sizeof(PyFloatObject),
 | |
|     0,
 | |
|     (destructor)float_dealloc,                  /* tp_dealloc */
 | |
|     0,                                          /* tp_print */
 | |
|     0,                                          /* tp_getattr */
 | |
|     0,                                          /* tp_setattr */
 | |
|     0,                                          /* tp_reserved */
 | |
|     (reprfunc)float_repr,                       /* tp_repr */
 | |
|     &float_as_number,                           /* tp_as_number */
 | |
|     0,                                          /* tp_as_sequence */
 | |
|     0,                                          /* tp_as_mapping */
 | |
|     (hashfunc)float_hash,                       /* tp_hash */
 | |
|     0,                                          /* tp_call */
 | |
|     (reprfunc)float_repr,                       /* tp_str */
 | |
|     PyObject_GenericGetAttr,                    /* tp_getattro */
 | |
|     0,                                          /* tp_setattro */
 | |
|     0,                                          /* tp_as_buffer */
 | |
|     Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
 | |
|     float_doc,                                  /* tp_doc */
 | |
|     0,                                          /* tp_traverse */
 | |
|     0,                                          /* tp_clear */
 | |
|     float_richcompare,                          /* tp_richcompare */
 | |
|     0,                                          /* tp_weaklistoffset */
 | |
|     0,                                          /* tp_iter */
 | |
|     0,                                          /* tp_iternext */
 | |
|     float_methods,                              /* tp_methods */
 | |
|     0,                                          /* tp_members */
 | |
|     float_getset,                               /* tp_getset */
 | |
|     0,                                          /* tp_base */
 | |
|     0,                                          /* tp_dict */
 | |
|     0,                                          /* tp_descr_get */
 | |
|     0,                                          /* tp_descr_set */
 | |
|     0,                                          /* tp_dictoffset */
 | |
|     0,                                          /* tp_init */
 | |
|     0,                                          /* tp_alloc */
 | |
|     float_new,                                  /* tp_new */
 | |
| };
 | |
| 
 | |
| void
 | |
| _PyFloat_Init(void)
 | |
| {
 | |
|     /* We attempt to determine if this machine is using IEEE
 | |
|        floating point formats by peering at the bits of some
 | |
|        carefully chosen values.  If it looks like we are on an
 | |
|        IEEE platform, the float packing/unpacking routines can
 | |
|        just copy bits, if not they resort to arithmetic & shifts
 | |
|        and masks.  The shifts & masks approach works on all finite
 | |
|        values, but what happens to infinities, NaNs and signed
 | |
|        zeroes on packing is an accident, and attempting to unpack
 | |
|        a NaN or an infinity will raise an exception.
 | |
| 
 | |
|        Note that if we're on some whacked-out platform which uses
 | |
|        IEEE formats but isn't strictly little-endian or big-
 | |
|        endian, we will fall back to the portable shifts & masks
 | |
|        method. */
 | |
| 
 | |
| #if SIZEOF_DOUBLE == 8
 | |
|     {
 | |
|         double x = 9006104071832581.0;
 | |
|         if (memcmp(&x, "\x43\x3f\xff\x01\x02\x03\x04\x05", 8) == 0)
 | |
|             detected_double_format = ieee_big_endian_format;
 | |
|         else if (memcmp(&x, "\x05\x04\x03\x02\x01\xff\x3f\x43", 8) == 0)
 | |
|             detected_double_format = ieee_little_endian_format;
 | |
|         else
 | |
|             detected_double_format = unknown_format;
 | |
|     }
 | |
| #else
 | |
|     detected_double_format = unknown_format;
 | |
| #endif
 | |
| 
 | |
| #if SIZEOF_FLOAT == 4
 | |
|     {
 | |
|         float y = 16711938.0;
 | |
|         if (memcmp(&y, "\x4b\x7f\x01\x02", 4) == 0)
 | |
|             detected_float_format = ieee_big_endian_format;
 | |
|         else if (memcmp(&y, "\x02\x01\x7f\x4b", 4) == 0)
 | |
|             detected_float_format = ieee_little_endian_format;
 | |
|         else
 | |
|             detected_float_format = unknown_format;
 | |
|     }
 | |
| #else
 | |
|     detected_float_format = unknown_format;
 | |
| #endif
 | |
| 
 | |
|     double_format = detected_double_format;
 | |
|     float_format = detected_float_format;
 | |
| 
 | |
|     /* Init float info */
 | |
|     if (FloatInfoType.tp_name == 0)
 | |
|         PyStructSequence_InitType(&FloatInfoType, &floatinfo_desc);
 | |
| }
 | |
| 
 | |
| int
 | |
| PyFloat_ClearFreeList(void)
 | |
| {
 | |
|     PyFloatObject *p;
 | |
|     PyFloatBlock *list, *next;
 | |
|     int i;
 | |
|     int u;                      /* remaining unfreed floats per block */
 | |
|     int freelist_size = 0;
 | |
| 
 | |
|     list = block_list;
 | |
|     block_list = NULL;
 | |
|     free_list = NULL;
 | |
|     while (list != NULL) {
 | |
|         u = 0;
 | |
|         for (i = 0, p = &list->objects[0];
 | |
|              i < N_FLOATOBJECTS;
 | |
|              i++, p++) {
 | |
|             if (PyFloat_CheckExact(p) && Py_REFCNT(p) != 0)
 | |
|                 u++;
 | |
|         }
 | |
|         next = list->next;
 | |
|         if (u) {
 | |
|             list->next = block_list;
 | |
|             block_list = list;
 | |
|             for (i = 0, p = &list->objects[0];
 | |
|                  i < N_FLOATOBJECTS;
 | |
|                  i++, p++) {
 | |
|                 if (!PyFloat_CheckExact(p) ||
 | |
|                     Py_REFCNT(p) == 0) {
 | |
|                     Py_TYPE(p) = (struct _typeobject *)
 | |
|                         free_list;
 | |
|                     free_list = p;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         else {
 | |
|             PyMem_FREE(list);
 | |
|         }
 | |
|         freelist_size += u;
 | |
|         list = next;
 | |
|     }
 | |
|     return freelist_size;
 | |
| }
 | |
| 
 | |
| void
 | |
| PyFloat_Fini(void)
 | |
| {
 | |
|     PyFloatObject *p;
 | |
|     PyFloatBlock *list;
 | |
|     int i;
 | |
|     int u;                      /* total unfreed floats per block */
 | |
| 
 | |
|     u = PyFloat_ClearFreeList();
 | |
| 
 | |
|     if (!Py_VerboseFlag)
 | |
|         return;
 | |
|     fprintf(stderr, "# cleanup floats");
 | |
|     if (!u) {
 | |
|         fprintf(stderr, "\n");
 | |
|     }
 | |
|     else {
 | |
|         fprintf(stderr,
 | |
|             ": %d unfreed float%s\n",
 | |
|             u, u == 1 ? "" : "s");
 | |
|     }
 | |
|     if (Py_VerboseFlag > 1) {
 | |
|         list = block_list;
 | |
|         while (list != NULL) {
 | |
|             for (i = 0, p = &list->objects[0];
 | |
|                  i < N_FLOATOBJECTS;
 | |
|                  i++, p++) {
 | |
|                 if (PyFloat_CheckExact(p) &&
 | |
|                     Py_REFCNT(p) != 0) {
 | |
|                     char *buf = PyOS_double_to_string(
 | |
|                         PyFloat_AS_DOUBLE(p), 'r',
 | |
|                         0, 0, NULL);
 | |
|                     if (buf) {
 | |
|                         /* XXX(twouters) cast
 | |
|                            refcount to long
 | |
|                            until %zd is
 | |
|                            universally
 | |
|                            available
 | |
|                         */
 | |
|                         fprintf(stderr,
 | |
|                  "#   <float at %p, refcnt=%ld, val=%s>\n",
 | |
|                                     p, (long)Py_REFCNT(p), buf);
 | |
|                                     PyMem_Free(buf);
 | |
|                             }
 | |
|                 }
 | |
|             }
 | |
|             list = list->next;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
|  * _PyFloat_{Pack,Unpack}{4,8}.  See floatobject.h.
 | |
|  */
 | |
| int
 | |
| _PyFloat_Pack4(double x, unsigned char *p, int le)
 | |
| {
 | |
|     if (float_format == unknown_format) {
 | |
|         unsigned char sign;
 | |
|         int e;
 | |
|         double f;
 | |
|         unsigned int fbits;
 | |
|         int incr = 1;
 | |
| 
 | |
|         if (le) {
 | |
|             p += 3;
 | |
|             incr = -1;
 | |
|         }
 | |
| 
 | |
|         if (x < 0) {
 | |
|             sign = 1;
 | |
|             x = -x;
 | |
|         }
 | |
|         else
 | |
|             sign = 0;
 | |
| 
 | |
|         f = frexp(x, &e);
 | |
| 
 | |
|         /* Normalize f to be in the range [1.0, 2.0) */
 | |
|         if (0.5 <= f && f < 1.0) {
 | |
|             f *= 2.0;
 | |
|             e--;
 | |
|         }
 | |
|         else if (f == 0.0)
 | |
|             e = 0;
 | |
|         else {
 | |
|             PyErr_SetString(PyExc_SystemError,
 | |
|                             "frexp() result out of range");
 | |
|             return -1;
 | |
|         }
 | |
| 
 | |
|         if (e >= 128)
 | |
|             goto Overflow;
 | |
|         else if (e < -126) {
 | |
|             /* Gradual underflow */
 | |
|             f = ldexp(f, 126 + e);
 | |
|             e = 0;
 | |
|         }
 | |
|         else if (!(e == 0 && f == 0.0)) {
 | |
|             e += 127;
 | |
|             f -= 1.0; /* Get rid of leading 1 */
 | |
|         }
 | |
| 
 | |
|         f *= 8388608.0; /* 2**23 */
 | |
|         fbits = (unsigned int)(f + 0.5); /* Round */
 | |
|         assert(fbits <= 8388608);
 | |
|         if (fbits >> 23) {
 | |
|             /* The carry propagated out of a string of 23 1 bits. */
 | |
|             fbits = 0;
 | |
|             ++e;
 | |
|             if (e >= 255)
 | |
|                 goto Overflow;
 | |
|         }
 | |
| 
 | |
|         /* First byte */
 | |
|         *p = (sign << 7) | (e >> 1);
 | |
|         p += incr;
 | |
| 
 | |
|         /* Second byte */
 | |
|         *p = (char) (((e & 1) << 7) | (fbits >> 16));
 | |
|         p += incr;
 | |
| 
 | |
|         /* Third byte */
 | |
|         *p = (fbits >> 8) & 0xFF;
 | |
|         p += incr;
 | |
| 
 | |
|         /* Fourth byte */
 | |
|         *p = fbits & 0xFF;
 | |
| 
 | |
|         /* Done */
 | |
|         return 0;
 | |
| 
 | |
|     }
 | |
|     else {
 | |
|         float y = (float)x;
 | |
|         const char *s = (char*)&y;
 | |
|         int i, incr = 1;
 | |
| 
 | |
|         if (Py_IS_INFINITY(y) && !Py_IS_INFINITY(x))
 | |
|             goto Overflow;
 | |
| 
 | |
|         if ((float_format == ieee_little_endian_format && !le)
 | |
|             || (float_format == ieee_big_endian_format && le)) {
 | |
|             p += 3;
 | |
|             incr = -1;
 | |
|         }
 | |
| 
 | |
|         for (i = 0; i < 4; i++) {
 | |
|             *p = *s++;
 | |
|             p += incr;
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|   Overflow:
 | |
|     PyErr_SetString(PyExc_OverflowError,
 | |
|                     "float too large to pack with f format");
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| int
 | |
| _PyFloat_Pack8(double x, unsigned char *p, int le)
 | |
| {
 | |
|     if (double_format == unknown_format) {
 | |
|         unsigned char sign;
 | |
|         int e;
 | |
|         double f;
 | |
|         unsigned int fhi, flo;
 | |
|         int incr = 1;
 | |
| 
 | |
|         if (le) {
 | |
|             p += 7;
 | |
|             incr = -1;
 | |
|         }
 | |
| 
 | |
|         if (x < 0) {
 | |
|             sign = 1;
 | |
|             x = -x;
 | |
|         }
 | |
|         else
 | |
|             sign = 0;
 | |
| 
 | |
|         f = frexp(x, &e);
 | |
| 
 | |
|         /* Normalize f to be in the range [1.0, 2.0) */
 | |
|         if (0.5 <= f && f < 1.0) {
 | |
|             f *= 2.0;
 | |
|             e--;
 | |
|         }
 | |
|         else if (f == 0.0)
 | |
|             e = 0;
 | |
|         else {
 | |
|             PyErr_SetString(PyExc_SystemError,
 | |
|                             "frexp() result out of range");
 | |
|             return -1;
 | |
|         }
 | |
| 
 | |
|         if (e >= 1024)
 | |
|             goto Overflow;
 | |
|         else if (e < -1022) {
 | |
|             /* Gradual underflow */
 | |
|             f = ldexp(f, 1022 + e);
 | |
|             e = 0;
 | |
|         }
 | |
|         else if (!(e == 0 && f == 0.0)) {
 | |
|             e += 1023;
 | |
|             f -= 1.0; /* Get rid of leading 1 */
 | |
|         }
 | |
| 
 | |
|         /* fhi receives the high 28 bits; flo the low 24 bits (== 52 bits) */
 | |
|         f *= 268435456.0; /* 2**28 */
 | |
|         fhi = (unsigned int)f; /* Truncate */
 | |
|         assert(fhi < 268435456);
 | |
| 
 | |
|         f -= (double)fhi;
 | |
|         f *= 16777216.0; /* 2**24 */
 | |
|         flo = (unsigned int)(f + 0.5); /* Round */
 | |
|         assert(flo <= 16777216);
 | |
|         if (flo >> 24) {
 | |
|             /* The carry propagated out of a string of 24 1 bits. */
 | |
|             flo = 0;
 | |
|             ++fhi;
 | |
|             if (fhi >> 28) {
 | |
|                 /* And it also progagated out of the next 28 bits. */
 | |
|                 fhi = 0;
 | |
|                 ++e;
 | |
|                 if (e >= 2047)
 | |
|                     goto Overflow;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* First byte */
 | |
|         *p = (sign << 7) | (e >> 4);
 | |
|         p += incr;
 | |
| 
 | |
|         /* Second byte */
 | |
|         *p = (unsigned char) (((e & 0xF) << 4) | (fhi >> 24));
 | |
|         p += incr;
 | |
| 
 | |
|         /* Third byte */
 | |
|         *p = (fhi >> 16) & 0xFF;
 | |
|         p += incr;
 | |
| 
 | |
|         /* Fourth byte */
 | |
|         *p = (fhi >> 8) & 0xFF;
 | |
|         p += incr;
 | |
| 
 | |
|         /* Fifth byte */
 | |
|         *p = fhi & 0xFF;
 | |
|         p += incr;
 | |
| 
 | |
|         /* Sixth byte */
 | |
|         *p = (flo >> 16) & 0xFF;
 | |
|         p += incr;
 | |
| 
 | |
|         /* Seventh byte */
 | |
|         *p = (flo >> 8) & 0xFF;
 | |
|         p += incr;
 | |
| 
 | |
|         /* Eighth byte */
 | |
|         *p = flo & 0xFF;
 | |
|         p += incr;
 | |
| 
 | |
|         /* Done */
 | |
|         return 0;
 | |
| 
 | |
|       Overflow:
 | |
|         PyErr_SetString(PyExc_OverflowError,
 | |
|                         "float too large to pack with d format");
 | |
|         return -1;
 | |
|     }
 | |
|     else {
 | |
|         const char *s = (char*)&x;
 | |
|         int i, incr = 1;
 | |
| 
 | |
|         if ((double_format == ieee_little_endian_format && !le)
 | |
|             || (double_format == ieee_big_endian_format && le)) {
 | |
|             p += 7;
 | |
|             incr = -1;
 | |
|         }
 | |
| 
 | |
|         for (i = 0; i < 8; i++) {
 | |
|             *p = *s++;
 | |
|             p += incr;
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| double
 | |
| _PyFloat_Unpack4(const unsigned char *p, int le)
 | |
| {
 | |
|     if (float_format == unknown_format) {
 | |
|         unsigned char sign;
 | |
|         int e;
 | |
|         unsigned int f;
 | |
|         double x;
 | |
|         int incr = 1;
 | |
| 
 | |
|         if (le) {
 | |
|             p += 3;
 | |
|             incr = -1;
 | |
|         }
 | |
| 
 | |
|         /* First byte */
 | |
|         sign = (*p >> 7) & 1;
 | |
|         e = (*p & 0x7F) << 1;
 | |
|         p += incr;
 | |
| 
 | |
|         /* Second byte */
 | |
|         e |= (*p >> 7) & 1;
 | |
|         f = (*p & 0x7F) << 16;
 | |
|         p += incr;
 | |
| 
 | |
|         if (e == 255) {
 | |
|             PyErr_SetString(
 | |
|                 PyExc_ValueError,
 | |
|                 "can't unpack IEEE 754 special value "
 | |
|                 "on non-IEEE platform");
 | |
|             return -1;
 | |
|         }
 | |
| 
 | |
|         /* Third byte */
 | |
|         f |= *p << 8;
 | |
|         p += incr;
 | |
| 
 | |
|         /* Fourth byte */
 | |
|         f |= *p;
 | |
| 
 | |
|         x = (double)f / 8388608.0;
 | |
| 
 | |
|         /* XXX This sadly ignores Inf/NaN issues */
 | |
|         if (e == 0)
 | |
|             e = -126;
 | |
|         else {
 | |
|             x += 1.0;
 | |
|             e -= 127;
 | |
|         }
 | |
|         x = ldexp(x, e);
 | |
| 
 | |
|         if (sign)
 | |
|             x = -x;
 | |
| 
 | |
|         return x;
 | |
|     }
 | |
|     else {
 | |
|         float x;
 | |
| 
 | |
|         if ((float_format == ieee_little_endian_format && !le)
 | |
|             || (float_format == ieee_big_endian_format && le)) {
 | |
|             char buf[4];
 | |
|             char *d = &buf[3];
 | |
|             int i;
 | |
| 
 | |
|             for (i = 0; i < 4; i++) {
 | |
|                 *d-- = *p++;
 | |
|             }
 | |
|             memcpy(&x, buf, 4);
 | |
|         }
 | |
|         else {
 | |
|             memcpy(&x, p, 4);
 | |
|         }
 | |
| 
 | |
|         return x;
 | |
|     }
 | |
| }
 | |
| 
 | |
| double
 | |
| _PyFloat_Unpack8(const unsigned char *p, int le)
 | |
| {
 | |
|     if (double_format == unknown_format) {
 | |
|         unsigned char sign;
 | |
|         int e;
 | |
|         unsigned int fhi, flo;
 | |
|         double x;
 | |
|         int incr = 1;
 | |
| 
 | |
|         if (le) {
 | |
|             p += 7;
 | |
|             incr = -1;
 | |
|         }
 | |
| 
 | |
|         /* First byte */
 | |
|         sign = (*p >> 7) & 1;
 | |
|         e = (*p & 0x7F) << 4;
 | |
| 
 | |
|         p += incr;
 | |
| 
 | |
|         /* Second byte */
 | |
|         e |= (*p >> 4) & 0xF;
 | |
|         fhi = (*p & 0xF) << 24;
 | |
|         p += incr;
 | |
| 
 | |
|         if (e == 2047) {
 | |
|             PyErr_SetString(
 | |
|                 PyExc_ValueError,
 | |
|                 "can't unpack IEEE 754 special value "
 | |
|                 "on non-IEEE platform");
 | |
|             return -1.0;
 | |
|         }
 | |
| 
 | |
|         /* Third byte */
 | |
|         fhi |= *p << 16;
 | |
|         p += incr;
 | |
| 
 | |
|         /* Fourth byte */
 | |
|         fhi |= *p  << 8;
 | |
|         p += incr;
 | |
| 
 | |
|         /* Fifth byte */
 | |
|         fhi |= *p;
 | |
|         p += incr;
 | |
| 
 | |
|         /* Sixth byte */
 | |
|         flo = *p << 16;
 | |
|         p += incr;
 | |
| 
 | |
|         /* Seventh byte */
 | |
|         flo |= *p << 8;
 | |
|         p += incr;
 | |
| 
 | |
|         /* Eighth byte */
 | |
|         flo |= *p;
 | |
| 
 | |
|         x = (double)fhi + (double)flo / 16777216.0; /* 2**24 */
 | |
|         x /= 268435456.0; /* 2**28 */
 | |
| 
 | |
|         if (e == 0)
 | |
|             e = -1022;
 | |
|         else {
 | |
|             x += 1.0;
 | |
|             e -= 1023;
 | |
|         }
 | |
|         x = ldexp(x, e);
 | |
| 
 | |
|         if (sign)
 | |
|             x = -x;
 | |
| 
 | |
|         return x;
 | |
|     }
 | |
|     else {
 | |
|         double x;
 | |
| 
 | |
|         if ((double_format == ieee_little_endian_format && !le)
 | |
|             || (double_format == ieee_big_endian_format && le)) {
 | |
|             char buf[8];
 | |
|             char *d = &buf[7];
 | |
|             int i;
 | |
| 
 | |
|             for (i = 0; i < 8; i++) {
 | |
|                 *d-- = *p++;
 | |
|             }
 | |
|             memcpy(&x, buf, 8);
 | |
|         }
 | |
|         else {
 | |
|             memcpy(&x, p, 8);
 | |
|         }
 | |
| 
 | |
|         return x;
 | |
|     }
 | |
| }
 | 
