mirror of
				https://github.com/python/cpython.git
				synced 2025-10-25 02:43:41 +00:00 
			
		
		
		
	 7a3b03509e
			
		
	
	
		7a3b03509e
		
			
		
	
	
	
	
		
			
			This PR removes `_Py_dg_stdnan` and `_Py_dg_infinity` in favour of using the standard `NAN` and `INFINITY` macros provided by C99. This change has the side-effect of fixing a bug on MIPS where the hard-coded value used by `_Py_dg_stdnan` gave a signalling NaN rather than a quiet NaN. --------- Co-authored-by: Mark Dickinson <dickinsm@gmail.com>
		
			
				
	
	
		
			1285 lines
		
	
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1285 lines
		
	
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* -*- Mode: C; c-file-style: "python" -*- */
 | |
| 
 | |
| #include <Python.h>
 | |
| #include "pycore_dtoa.h"          // _Py_dg_strtod()
 | |
| #include "pycore_pymath.h"        // _PY_SHORT_FLOAT_REPR
 | |
| #include <locale.h>
 | |
| 
 | |
| /* Case-insensitive string match used for nan and inf detection; t should be
 | |
|    lower-case.  Returns 1 for a successful match, 0 otherwise. */
 | |
| 
 | |
| static int
 | |
| case_insensitive_match(const char *s, const char *t)
 | |
| {
 | |
|     while(*t && Py_TOLOWER(*s) == *t) {
 | |
|         s++;
 | |
|         t++;
 | |
|     }
 | |
|     return *t ? 0 : 1;
 | |
| }
 | |
| 
 | |
| /* _Py_parse_inf_or_nan: Attempt to parse a string of the form "nan", "inf" or
 | |
|    "infinity", with an optional leading sign of "+" or "-".  On success,
 | |
|    return the NaN or Infinity as a double and set *endptr to point just beyond
 | |
|    the successfully parsed portion of the string.  On failure, return -1.0 and
 | |
|    set *endptr to point to the start of the string. */
 | |
| double
 | |
| _Py_parse_inf_or_nan(const char *p, char **endptr)
 | |
| {
 | |
|     double retval;
 | |
|     const char *s;
 | |
|     int negate = 0;
 | |
| 
 | |
|     s = p;
 | |
|     if (*s == '-') {
 | |
|         negate = 1;
 | |
|         s++;
 | |
|     }
 | |
|     else if (*s == '+') {
 | |
|         s++;
 | |
|     }
 | |
|     if (case_insensitive_match(s, "inf")) {
 | |
|         s += 3;
 | |
|         if (case_insensitive_match(s, "inity"))
 | |
|             s += 5;
 | |
|         retval = negate ? -Py_HUGE_VAL : Py_HUGE_VAL;
 | |
|     }
 | |
|     else if (case_insensitive_match(s, "nan")) {
 | |
|         s += 3;
 | |
|         retval = negate ? -fabs(Py_NAN) : fabs(Py_NAN);
 | |
|     }
 | |
|     else {
 | |
|         s = p;
 | |
|         retval = -1.0;
 | |
|     }
 | |
|     *endptr = (char *)s;
 | |
|     return retval;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * _PyOS_ascii_strtod:
 | |
|  * @nptr:    the string to convert to a numeric value.
 | |
|  * @endptr:  if non-%NULL, it returns the character after
 | |
|  *           the last character used in the conversion.
 | |
|  *
 | |
|  * Converts a string to a #gdouble value.
 | |
|  * This function behaves like the standard strtod() function
 | |
|  * does in the C locale. It does this without actually
 | |
|  * changing the current locale, since that would not be
 | |
|  * thread-safe.
 | |
|  *
 | |
|  * This function is typically used when reading configuration
 | |
|  * files or other non-user input that should be locale independent.
 | |
|  * To handle input from the user you should normally use the
 | |
|  * locale-sensitive system strtod() function.
 | |
|  *
 | |
|  * If the correct value would cause overflow, plus or minus %HUGE_VAL
 | |
|  * is returned (according to the sign of the value), and %ERANGE is
 | |
|  * stored in %errno. If the correct value would cause underflow,
 | |
|  * zero is returned and %ERANGE is stored in %errno.
 | |
|  * If memory allocation fails, %ENOMEM is stored in %errno.
 | |
|  *
 | |
|  * This function resets %errno before calling strtod() so that
 | |
|  * you can reliably detect overflow and underflow.
 | |
|  *
 | |
|  * Return value: the #gdouble value.
 | |
|  **/
 | |
| 
 | |
| #if _PY_SHORT_FLOAT_REPR == 1
 | |
| 
 | |
| static double
 | |
| _PyOS_ascii_strtod(const char *nptr, char **endptr)
 | |
| {
 | |
|     double result;
 | |
|     _Py_SET_53BIT_PRECISION_HEADER;
 | |
| 
 | |
|     assert(nptr != NULL);
 | |
|     /* Set errno to zero, so that we can distinguish zero results
 | |
|        and underflows */
 | |
|     errno = 0;
 | |
| 
 | |
|     _Py_SET_53BIT_PRECISION_START;
 | |
|     result = _Py_dg_strtod(nptr, endptr);
 | |
|     _Py_SET_53BIT_PRECISION_END;
 | |
| 
 | |
|     if (*endptr == nptr)
 | |
|         /* string might represent an inf or nan */
 | |
|         result = _Py_parse_inf_or_nan(nptr, endptr);
 | |
| 
 | |
|     return result;
 | |
| 
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| /*
 | |
|    Use system strtod;  since strtod is locale aware, we may
 | |
|    have to first fix the decimal separator.
 | |
| 
 | |
|    Note that unlike _Py_dg_strtod, the system strtod may not always give
 | |
|    correctly rounded results.
 | |
| */
 | |
| 
 | |
| static double
 | |
| _PyOS_ascii_strtod(const char *nptr, char **endptr)
 | |
| {
 | |
|     char *fail_pos;
 | |
|     double val;
 | |
|     struct lconv *locale_data;
 | |
|     const char *decimal_point;
 | |
|     size_t decimal_point_len;
 | |
|     const char *p, *decimal_point_pos;
 | |
|     const char *end = NULL; /* Silence gcc */
 | |
|     const char *digits_pos = NULL;
 | |
|     int negate = 0;
 | |
| 
 | |
|     assert(nptr != NULL);
 | |
| 
 | |
|     fail_pos = NULL;
 | |
| 
 | |
|     locale_data = localeconv();
 | |
|     decimal_point = locale_data->decimal_point;
 | |
|     decimal_point_len = strlen(decimal_point);
 | |
| 
 | |
|     assert(decimal_point_len != 0);
 | |
| 
 | |
|     decimal_point_pos = NULL;
 | |
| 
 | |
|     /* Parse infinities and nans */
 | |
|     val = _Py_parse_inf_or_nan(nptr, endptr);
 | |
|     if (*endptr != nptr)
 | |
|         return val;
 | |
| 
 | |
|     /* Set errno to zero, so that we can distinguish zero results
 | |
|        and underflows */
 | |
|     errno = 0;
 | |
| 
 | |
|     /* We process the optional sign manually, then pass the remainder to
 | |
|        the system strtod.  This ensures that the result of an underflow
 | |
|        has the correct sign. (bug #1725)  */
 | |
|     p = nptr;
 | |
|     /* Process leading sign, if present */
 | |
|     if (*p == '-') {
 | |
|         negate = 1;
 | |
|         p++;
 | |
|     }
 | |
|     else if (*p == '+') {
 | |
|         p++;
 | |
|     }
 | |
| 
 | |
|     /* Some platform strtods accept hex floats; Python shouldn't (at the
 | |
|        moment), so we check explicitly for strings starting with '0x'. */
 | |
|     if (*p == '0' && (*(p+1) == 'x' || *(p+1) == 'X'))
 | |
|         goto invalid_string;
 | |
| 
 | |
|     /* Check that what's left begins with a digit or decimal point */
 | |
|     if (!Py_ISDIGIT(*p) && *p != '.')
 | |
|         goto invalid_string;
 | |
| 
 | |
|     digits_pos = p;
 | |
|     if (decimal_point[0] != '.' ||
 | |
|         decimal_point[1] != 0)
 | |
|     {
 | |
|         /* Look for a '.' in the input; if present, it'll need to be
 | |
|            swapped for the current locale's decimal point before we
 | |
|            call strtod.  On the other hand, if we find the current
 | |
|            locale's decimal point then the input is invalid. */
 | |
|         while (Py_ISDIGIT(*p))
 | |
|             p++;
 | |
| 
 | |
|         if (*p == '.')
 | |
|         {
 | |
|             decimal_point_pos = p++;
 | |
| 
 | |
|             /* locate end of number */
 | |
|             while (Py_ISDIGIT(*p))
 | |
|                 p++;
 | |
| 
 | |
|             if (*p == 'e' || *p == 'E')
 | |
|                 p++;
 | |
|             if (*p == '+' || *p == '-')
 | |
|                 p++;
 | |
|             while (Py_ISDIGIT(*p))
 | |
|                 p++;
 | |
|             end = p;
 | |
|         }
 | |
|         else if (strncmp(p, decimal_point, decimal_point_len) == 0)
 | |
|             /* Python bug #1417699 */
 | |
|             goto invalid_string;
 | |
|         /* For the other cases, we need not convert the decimal
 | |
|            point */
 | |
|     }
 | |
| 
 | |
|     if (decimal_point_pos) {
 | |
|         char *copy, *c;
 | |
|         /* Create a copy of the input, with the '.' converted to the
 | |
|            locale-specific decimal point */
 | |
|         copy = (char *)PyMem_Malloc(end - digits_pos +
 | |
|                                     1 + decimal_point_len);
 | |
|         if (copy == NULL) {
 | |
|             *endptr = (char *)nptr;
 | |
|             errno = ENOMEM;
 | |
|             return val;
 | |
|         }
 | |
| 
 | |
|         c = copy;
 | |
|         memcpy(c, digits_pos, decimal_point_pos - digits_pos);
 | |
|         c += decimal_point_pos - digits_pos;
 | |
|         memcpy(c, decimal_point, decimal_point_len);
 | |
|         c += decimal_point_len;
 | |
|         memcpy(c, decimal_point_pos + 1,
 | |
|                end - (decimal_point_pos + 1));
 | |
|         c += end - (decimal_point_pos + 1);
 | |
|         *c = 0;
 | |
| 
 | |
|         val = strtod(copy, &fail_pos);
 | |
| 
 | |
|         if (fail_pos)
 | |
|         {
 | |
|             if (fail_pos > decimal_point_pos)
 | |
|                 fail_pos = (char *)digits_pos +
 | |
|                     (fail_pos - copy) -
 | |
|                     (decimal_point_len - 1);
 | |
|             else
 | |
|                 fail_pos = (char *)digits_pos +
 | |
|                     (fail_pos - copy);
 | |
|         }
 | |
| 
 | |
|         PyMem_Free(copy);
 | |
| 
 | |
|     }
 | |
|     else {
 | |
|         val = strtod(digits_pos, &fail_pos);
 | |
|     }
 | |
| 
 | |
|     if (fail_pos == digits_pos)
 | |
|         goto invalid_string;
 | |
| 
 | |
|     if (negate && fail_pos != nptr)
 | |
|         val = -val;
 | |
|     *endptr = fail_pos;
 | |
| 
 | |
|     return val;
 | |
| 
 | |
|   invalid_string:
 | |
|     *endptr = (char*)nptr;
 | |
|     errno = EINVAL;
 | |
|     return -1.0;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* PyOS_string_to_double converts a null-terminated byte string s (interpreted
 | |
|    as a string of ASCII characters) to a float.  The string should not have
 | |
|    leading or trailing whitespace.  The conversion is independent of the
 | |
|    current locale.
 | |
| 
 | |
|    If endptr is NULL, try to convert the whole string.  Raise ValueError and
 | |
|    return -1.0 if the string is not a valid representation of a floating-point
 | |
|    number.
 | |
| 
 | |
|    If endptr is non-NULL, try to convert as much of the string as possible.
 | |
|    If no initial segment of the string is the valid representation of a
 | |
|    floating-point number then *endptr is set to point to the beginning of the
 | |
|    string, -1.0 is returned and again ValueError is raised.
 | |
| 
 | |
|    On overflow (e.g., when trying to convert '1e500' on an IEEE 754 machine),
 | |
|    if overflow_exception is NULL then +-Py_HUGE_VAL is returned, and no Python
 | |
|    exception is raised.  Otherwise, overflow_exception should point to
 | |
|    a Python exception, this exception will be raised, -1.0 will be returned,
 | |
|    and *endptr will point just past the end of the converted value.
 | |
| 
 | |
|    If any other failure occurs (for example lack of memory), -1.0 is returned
 | |
|    and the appropriate Python exception will have been set.
 | |
| */
 | |
| 
 | |
| double
 | |
| PyOS_string_to_double(const char *s,
 | |
|                       char **endptr,
 | |
|                       PyObject *overflow_exception)
 | |
| {
 | |
|     double x, result=-1.0;
 | |
|     char *fail_pos;
 | |
| 
 | |
|     errno = 0;
 | |
|     x = _PyOS_ascii_strtod(s, &fail_pos);
 | |
| 
 | |
|     if (errno == ENOMEM) {
 | |
|         PyErr_NoMemory();
 | |
|         fail_pos = (char *)s;
 | |
|     }
 | |
|     else if (!endptr && (fail_pos == s || *fail_pos != '\0'))
 | |
|         PyErr_Format(PyExc_ValueError,
 | |
|                       "could not convert string to float: "
 | |
|                       "'%.200s'", s);
 | |
|     else if (fail_pos == s)
 | |
|         PyErr_Format(PyExc_ValueError,
 | |
|                       "could not convert string to float: "
 | |
|                       "'%.200s'", s);
 | |
|     else if (errno == ERANGE && fabs(x) >= 1.0 && overflow_exception)
 | |
|         PyErr_Format(overflow_exception,
 | |
|                       "value too large to convert to float: "
 | |
|                       "'%.200s'", s);
 | |
|     else
 | |
|         result = x;
 | |
| 
 | |
|     if (endptr != NULL)
 | |
|         *endptr = fail_pos;
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /* Remove underscores that follow the underscore placement rule from
 | |
|    the string and then call the `innerfunc` function on the result.
 | |
|    It should return a new object or NULL on exception.
 | |
| 
 | |
|    `what` is used for the error message emitted when underscores are detected
 | |
|    that don't follow the rule. `arg` is an opaque pointer passed to the inner
 | |
|    function.
 | |
| 
 | |
|    This is used to implement underscore-agnostic conversion for floats
 | |
|    and complex numbers.
 | |
| */
 | |
| PyObject *
 | |
| _Py_string_to_number_with_underscores(
 | |
|     const char *s, Py_ssize_t orig_len, const char *what, PyObject *obj, void *arg,
 | |
|     PyObject *(*innerfunc)(const char *, Py_ssize_t, void *))
 | |
| {
 | |
|     char prev;
 | |
|     const char *p, *last;
 | |
|     char *dup, *end;
 | |
|     PyObject *result;
 | |
| 
 | |
|     assert(s[orig_len] == '\0');
 | |
| 
 | |
|     if (strchr(s, '_') == NULL) {
 | |
|         return innerfunc(s, orig_len, arg);
 | |
|     }
 | |
| 
 | |
|     dup = PyMem_Malloc(orig_len + 1);
 | |
|     if (dup == NULL) {
 | |
|         return PyErr_NoMemory();
 | |
|     }
 | |
|     end = dup;
 | |
|     prev = '\0';
 | |
|     last = s + orig_len;
 | |
|     for (p = s; *p; p++) {
 | |
|         if (*p == '_') {
 | |
|             /* Underscores are only allowed after digits. */
 | |
|             if (!(prev >= '0' && prev <= '9')) {
 | |
|                 goto error;
 | |
|             }
 | |
|         }
 | |
|         else {
 | |
|             *end++ = *p;
 | |
|             /* Underscores are only allowed before digits. */
 | |
|             if (prev == '_' && !(*p >= '0' && *p <= '9')) {
 | |
|                 goto error;
 | |
|             }
 | |
|         }
 | |
|         prev = *p;
 | |
|     }
 | |
|     /* Underscores are not allowed at the end. */
 | |
|     if (prev == '_') {
 | |
|         goto error;
 | |
|     }
 | |
|     /* No embedded NULs allowed. */
 | |
|     if (p != last) {
 | |
|         goto error;
 | |
|     }
 | |
|     *end = '\0';
 | |
|     result = innerfunc(dup, end - dup, arg);
 | |
|     PyMem_Free(dup);
 | |
|     return result;
 | |
| 
 | |
|   error:
 | |
|     PyMem_Free(dup);
 | |
|     PyErr_Format(PyExc_ValueError,
 | |
|                  "could not convert string to %s: "
 | |
|                  "%R", what, obj);
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| #if _PY_SHORT_FLOAT_REPR == 0
 | |
| 
 | |
| /* Given a string that may have a decimal point in the current
 | |
|    locale, change it back to a dot.  Since the string cannot get
 | |
|    longer, no need for a maximum buffer size parameter. */
 | |
| Py_LOCAL_INLINE(void)
 | |
| change_decimal_from_locale_to_dot(char* buffer)
 | |
| {
 | |
|     struct lconv *locale_data = localeconv();
 | |
|     const char *decimal_point = locale_data->decimal_point;
 | |
| 
 | |
|     if (decimal_point[0] != '.' || decimal_point[1] != 0) {
 | |
|         size_t decimal_point_len = strlen(decimal_point);
 | |
| 
 | |
|         if (*buffer == '+' || *buffer == '-')
 | |
|             buffer++;
 | |
|         while (Py_ISDIGIT(*buffer))
 | |
|             buffer++;
 | |
|         if (strncmp(buffer, decimal_point, decimal_point_len) == 0) {
 | |
|             *buffer = '.';
 | |
|             buffer++;
 | |
|             if (decimal_point_len > 1) {
 | |
|                 /* buffer needs to get smaller */
 | |
|                 size_t rest_len = strlen(buffer +
 | |
|                                      (decimal_point_len - 1));
 | |
|                 memmove(buffer,
 | |
|                     buffer + (decimal_point_len - 1),
 | |
|                     rest_len);
 | |
|                 buffer[rest_len] = 0;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* From the C99 standard, section 7.19.6:
 | |
| The exponent always contains at least two digits, and only as many more digits
 | |
| as necessary to represent the exponent.
 | |
| */
 | |
| #define MIN_EXPONENT_DIGITS 2
 | |
| 
 | |
| /* Ensure that any exponent, if present, is at least MIN_EXPONENT_DIGITS
 | |
|    in length. */
 | |
| Py_LOCAL_INLINE(void)
 | |
| ensure_minimum_exponent_length(char* buffer, size_t buf_size)
 | |
| {
 | |
|     char *p = strpbrk(buffer, "eE");
 | |
|     if (p && (*(p + 1) == '-' || *(p + 1) == '+')) {
 | |
|         char *start = p + 2;
 | |
|         int exponent_digit_cnt = 0;
 | |
|         int leading_zero_cnt = 0;
 | |
|         int in_leading_zeros = 1;
 | |
|         int significant_digit_cnt;
 | |
| 
 | |
|         /* Skip over the exponent and the sign. */
 | |
|         p += 2;
 | |
| 
 | |
|         /* Find the end of the exponent, keeping track of leading
 | |
|            zeros. */
 | |
|         while (*p && Py_ISDIGIT(*p)) {
 | |
|             if (in_leading_zeros && *p == '0')
 | |
|                 ++leading_zero_cnt;
 | |
|             if (*p != '0')
 | |
|                 in_leading_zeros = 0;
 | |
|             ++p;
 | |
|             ++exponent_digit_cnt;
 | |
|         }
 | |
| 
 | |
|         significant_digit_cnt = exponent_digit_cnt - leading_zero_cnt;
 | |
|         if (exponent_digit_cnt == MIN_EXPONENT_DIGITS) {
 | |
|             /* If there are 2 exactly digits, we're done,
 | |
|                regardless of what they contain */
 | |
|         }
 | |
|         else if (exponent_digit_cnt > MIN_EXPONENT_DIGITS) {
 | |
|             int extra_zeros_cnt;
 | |
| 
 | |
|             /* There are more than 2 digits in the exponent.  See
 | |
|                if we can delete some of the leading zeros */
 | |
|             if (significant_digit_cnt < MIN_EXPONENT_DIGITS)
 | |
|                 significant_digit_cnt = MIN_EXPONENT_DIGITS;
 | |
|             extra_zeros_cnt = exponent_digit_cnt -
 | |
|                 significant_digit_cnt;
 | |
| 
 | |
|             /* Delete extra_zeros_cnt worth of characters from the
 | |
|                front of the exponent */
 | |
|             assert(extra_zeros_cnt >= 0);
 | |
| 
 | |
|             /* Add one to significant_digit_cnt to copy the
 | |
|                trailing 0 byte, thus setting the length */
 | |
|             memmove(start,
 | |
|                 start + extra_zeros_cnt,
 | |
|                 significant_digit_cnt + 1);
 | |
|         }
 | |
|         else {
 | |
|             /* If there are fewer than 2 digits, add zeros
 | |
|                until there are 2, if there's enough room */
 | |
|             int zeros = MIN_EXPONENT_DIGITS - exponent_digit_cnt;
 | |
|             if (start + zeros + exponent_digit_cnt + 1
 | |
|                   < buffer + buf_size) {
 | |
|                 memmove(start + zeros, start,
 | |
|                     exponent_digit_cnt + 1);
 | |
|                 memset(start, '0', zeros);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Remove trailing zeros after the decimal point from a numeric string; also
 | |
|    remove the decimal point if all digits following it are zero.  The numeric
 | |
|    string must end in '\0', and should not have any leading or trailing
 | |
|    whitespace.  Assumes that the decimal point is '.'. */
 | |
| Py_LOCAL_INLINE(void)
 | |
| remove_trailing_zeros(char *buffer)
 | |
| {
 | |
|     char *old_fraction_end, *new_fraction_end, *end, *p;
 | |
| 
 | |
|     p = buffer;
 | |
|     if (*p == '-' || *p == '+')
 | |
|         /* Skip leading sign, if present */
 | |
|         ++p;
 | |
|     while (Py_ISDIGIT(*p))
 | |
|         ++p;
 | |
| 
 | |
|     /* if there's no decimal point there's nothing to do */
 | |
|     if (*p++ != '.')
 | |
|         return;
 | |
| 
 | |
|     /* scan any digits after the point */
 | |
|     while (Py_ISDIGIT(*p))
 | |
|         ++p;
 | |
|     old_fraction_end = p;
 | |
| 
 | |
|     /* scan up to ending '\0' */
 | |
|     while (*p != '\0')
 | |
|         p++;
 | |
|     /* +1 to make sure that we move the null byte as well */
 | |
|     end = p+1;
 | |
| 
 | |
|     /* scan back from fraction_end, looking for removable zeros */
 | |
|     p = old_fraction_end;
 | |
|     while (*(p-1) == '0')
 | |
|         --p;
 | |
|     /* and remove point if we've got that far */
 | |
|     if (*(p-1) == '.')
 | |
|         --p;
 | |
|     new_fraction_end = p;
 | |
| 
 | |
|     memmove(new_fraction_end, old_fraction_end, end-old_fraction_end);
 | |
| }
 | |
| 
 | |
| /* Ensure that buffer has a decimal point in it.  The decimal point will not
 | |
|    be in the current locale, it will always be '.'. Don't add a decimal point
 | |
|    if an exponent is present.  Also, convert to exponential notation where
 | |
|    adding a '.0' would produce too many significant digits (see issue 5864).
 | |
| 
 | |
|    Returns a pointer to the fixed buffer, or NULL on failure.
 | |
| */
 | |
| Py_LOCAL_INLINE(char *)
 | |
| ensure_decimal_point(char* buffer, size_t buf_size, int precision)
 | |
| {
 | |
|     int digit_count, insert_count = 0, convert_to_exp = 0;
 | |
|     const char *chars_to_insert;
 | |
|     char *digits_start;
 | |
| 
 | |
|     /* search for the first non-digit character */
 | |
|     char *p = buffer;
 | |
|     if (*p == '-' || *p == '+')
 | |
|         /* Skip leading sign, if present.  I think this could only
 | |
|            ever be '-', but it can't hurt to check for both. */
 | |
|         ++p;
 | |
|     digits_start = p;
 | |
|     while (*p && Py_ISDIGIT(*p))
 | |
|         ++p;
 | |
|     digit_count = Py_SAFE_DOWNCAST(p - digits_start, Py_ssize_t, int);
 | |
| 
 | |
|     if (*p == '.') {
 | |
|         if (Py_ISDIGIT(*(p+1))) {
 | |
|             /* Nothing to do, we already have a decimal
 | |
|                point and a digit after it */
 | |
|         }
 | |
|         else {
 | |
|             /* We have a decimal point, but no following
 | |
|                digit.  Insert a zero after the decimal. */
 | |
|             /* can't ever get here via PyOS_double_to_string */
 | |
|             assert(precision == -1);
 | |
|             ++p;
 | |
|             chars_to_insert = "0";
 | |
|             insert_count = 1;
 | |
|         }
 | |
|     }
 | |
|     else if (!(*p == 'e' || *p == 'E')) {
 | |
|         /* Don't add ".0" if we have an exponent. */
 | |
|         if (digit_count == precision) {
 | |
|             /* issue 5864: don't add a trailing .0 in the case
 | |
|                where the '%g'-formatted result already has as many
 | |
|                significant digits as were requested.  Switch to
 | |
|                exponential notation instead. */
 | |
|             convert_to_exp = 1;
 | |
|             /* no exponent, no point, and we shouldn't land here
 | |
|                for infs and nans, so we must be at the end of the
 | |
|                string. */
 | |
|             assert(*p == '\0');
 | |
|         }
 | |
|         else {
 | |
|             assert(precision == -1 || digit_count < precision);
 | |
|             chars_to_insert = ".0";
 | |
|             insert_count = 2;
 | |
|         }
 | |
|     }
 | |
|     if (insert_count) {
 | |
|         size_t buf_len = strlen(buffer);
 | |
|         if (buf_len + insert_count + 1 >= buf_size) {
 | |
|             /* If there is not enough room in the buffer
 | |
|                for the additional text, just skip it.  It's
 | |
|                not worth generating an error over. */
 | |
|         }
 | |
|         else {
 | |
|             memmove(p + insert_count, p,
 | |
|                 buffer + strlen(buffer) - p + 1);
 | |
|             memcpy(p, chars_to_insert, insert_count);
 | |
|         }
 | |
|     }
 | |
|     if (convert_to_exp) {
 | |
|         int written;
 | |
|         size_t buf_avail;
 | |
|         p = digits_start;
 | |
|         /* insert decimal point */
 | |
|         assert(digit_count >= 1);
 | |
|         memmove(p+2, p+1, digit_count); /* safe, but overwrites nul */
 | |
|         p[1] = '.';
 | |
|         p += digit_count+1;
 | |
|         assert(p <= buf_size+buffer);
 | |
|         buf_avail = buf_size+buffer-p;
 | |
|         if (buf_avail == 0)
 | |
|             return NULL;
 | |
|         /* Add exponent.  It's okay to use lower case 'e': we only
 | |
|            arrive here as a result of using the empty format code or
 | |
|            repr/str builtins and those never want an upper case 'E' */
 | |
|         written = PyOS_snprintf(p, buf_avail, "e%+.02d", digit_count-1);
 | |
|         if (!(0 <= written &&
 | |
|               written < Py_SAFE_DOWNCAST(buf_avail, size_t, int)))
 | |
|             /* output truncated, or something else bad happened */
 | |
|             return NULL;
 | |
|         remove_trailing_zeros(buffer);
 | |
|     }
 | |
|     return buffer;
 | |
| }
 | |
| 
 | |
| /* see FORMATBUFLEN in unicodeobject.c */
 | |
| #define FLOAT_FORMATBUFLEN 120
 | |
| 
 | |
| /**
 | |
|  * _PyOS_ascii_formatd:
 | |
|  * @buffer: A buffer to place the resulting string in
 | |
|  * @buf_size: The length of the buffer.
 | |
|  * @format: The printf()-style format to use for the
 | |
|  *          code to use for converting.
 | |
|  * @d: The #gdouble to convert
 | |
|  * @precision: The precision to use when formatting.
 | |
|  *
 | |
|  * Converts a #gdouble to a string, using the '.' as
 | |
|  * decimal point. To format the number you pass in
 | |
|  * a printf()-style format string. Allowed conversion
 | |
|  * specifiers are 'e', 'E', 'f', 'F', 'g', 'G', and 'Z'.
 | |
|  *
 | |
|  * 'Z' is the same as 'g', except it always has a decimal and
 | |
|  *     at least one digit after the decimal.
 | |
|  *
 | |
|  * Return value: The pointer to the buffer with the converted string.
 | |
|  * On failure returns NULL but does not set any Python exception.
 | |
|  **/
 | |
| static char *
 | |
| _PyOS_ascii_formatd(char       *buffer,
 | |
|                    size_t      buf_size,
 | |
|                    const char *format,
 | |
|                    double      d,
 | |
|                    int         precision)
 | |
| {
 | |
|     char format_char;
 | |
|     size_t format_len = strlen(format);
 | |
| 
 | |
|     /* Issue 2264: code 'Z' requires copying the format.  'Z' is 'g', but
 | |
|        also with at least one character past the decimal. */
 | |
|     char tmp_format[FLOAT_FORMATBUFLEN];
 | |
| 
 | |
|     /* The last character in the format string must be the format char */
 | |
|     format_char = format[format_len - 1];
 | |
| 
 | |
|     if (format[0] != '%')
 | |
|         return NULL;
 | |
| 
 | |
|     /* I'm not sure why this test is here.  It's ensuring that the format
 | |
|        string after the first character doesn't have a single quote, a
 | |
|        lowercase l, or a percent. This is the reverse of the commented-out
 | |
|        test about 10 lines ago. */
 | |
|     if (strpbrk(format + 1, "'l%"))
 | |
|         return NULL;
 | |
| 
 | |
|     /* Also curious about this function is that it accepts format strings
 | |
|        like "%xg", which are invalid for floats.  In general, the
 | |
|        interface to this function is not very good, but changing it is
 | |
|        difficult because it's a public API. */
 | |
| 
 | |
|     if (!(format_char == 'e' || format_char == 'E' ||
 | |
|           format_char == 'f' || format_char == 'F' ||
 | |
|           format_char == 'g' || format_char == 'G' ||
 | |
|           format_char == 'Z'))
 | |
|         return NULL;
 | |
| 
 | |
|     /* Map 'Z' format_char to 'g', by copying the format string and
 | |
|        replacing the final char with a 'g' */
 | |
|     if (format_char == 'Z') {
 | |
|         if (format_len + 1 >= sizeof(tmp_format)) {
 | |
|             /* The format won't fit in our copy.  Error out.  In
 | |
|                practice, this will never happen and will be
 | |
|                detected by returning NULL */
 | |
|             return NULL;
 | |
|         }
 | |
|         strcpy(tmp_format, format);
 | |
|         tmp_format[format_len - 1] = 'g';
 | |
|         format = tmp_format;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /* Have PyOS_snprintf do the hard work */
 | |
|     PyOS_snprintf(buffer, buf_size, format, d);
 | |
| 
 | |
|     /* Do various fixups on the return string */
 | |
| 
 | |
|     /* Get the current locale, and find the decimal point string.
 | |
|        Convert that string back to a dot. */
 | |
|     change_decimal_from_locale_to_dot(buffer);
 | |
| 
 | |
|     /* If an exponent exists, ensure that the exponent is at least
 | |
|        MIN_EXPONENT_DIGITS digits, providing the buffer is large enough
 | |
|        for the extra zeros.  Also, if there are more than
 | |
|        MIN_EXPONENT_DIGITS, remove as many zeros as possible until we get
 | |
|        back to MIN_EXPONENT_DIGITS */
 | |
|     ensure_minimum_exponent_length(buffer, buf_size);
 | |
| 
 | |
|     /* If format_char is 'Z', make sure we have at least one character
 | |
|        after the decimal point (and make sure we have a decimal point);
 | |
|        also switch to exponential notation in some edge cases where the
 | |
|        extra character would produce more significant digits that we
 | |
|        really want. */
 | |
|     if (format_char == 'Z')
 | |
|         buffer = ensure_decimal_point(buffer, buf_size, precision);
 | |
| 
 | |
|     return buffer;
 | |
| }
 | |
| 
 | |
| /* The fallback code to use if _Py_dg_dtoa is not available. */
 | |
| 
 | |
| char * PyOS_double_to_string(double val,
 | |
|                                          char format_code,
 | |
|                                          int precision,
 | |
|                                          int flags,
 | |
|                                          int *type)
 | |
| {
 | |
|     char format[32];
 | |
|     Py_ssize_t bufsize;
 | |
|     char *buf;
 | |
|     int t, exp;
 | |
|     int upper = 0;
 | |
| 
 | |
|     /* Validate format_code, and map upper and lower case */
 | |
|     switch (format_code) {
 | |
|     case 'e':          /* exponent */
 | |
|     case 'f':          /* fixed */
 | |
|     case 'g':          /* general */
 | |
|         break;
 | |
|     case 'E':
 | |
|         upper = 1;
 | |
|         format_code = 'e';
 | |
|         break;
 | |
|     case 'F':
 | |
|         upper = 1;
 | |
|         format_code = 'f';
 | |
|         break;
 | |
|     case 'G':
 | |
|         upper = 1;
 | |
|         format_code = 'g';
 | |
|         break;
 | |
|     case 'r':          /* repr format */
 | |
|         /* Supplied precision is unused, must be 0. */
 | |
|         if (precision != 0) {
 | |
|             PyErr_BadInternalCall();
 | |
|             return NULL;
 | |
|         }
 | |
|         /* The repr() precision (17 significant decimal digits) is the
 | |
|            minimal number that is guaranteed to have enough precision
 | |
|            so that if the number is read back in the exact same binary
 | |
|            value is recreated.  This is true for IEEE floating point
 | |
|            by design, and also happens to work for all other modern
 | |
|            hardware. */
 | |
|         precision = 17;
 | |
|         format_code = 'g';
 | |
|         break;
 | |
|     default:
 | |
|         PyErr_BadInternalCall();
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     /* Here's a quick-and-dirty calculation to figure out how big a buffer
 | |
|        we need.  In general, for a finite float we need:
 | |
| 
 | |
|          1 byte for each digit of the decimal significand, and
 | |
| 
 | |
|          1 for a possible sign
 | |
|          1 for a possible decimal point
 | |
|          2 for a possible [eE][+-]
 | |
|          1 for each digit of the exponent;  if we allow 19 digits
 | |
|            total then we're safe up to exponents of 2**63.
 | |
|          1 for the trailing nul byte
 | |
| 
 | |
|        This gives a total of 24 + the number of digits in the significand,
 | |
|        and the number of digits in the significand is:
 | |
| 
 | |
|          for 'g' format: at most precision, except possibly
 | |
|            when precision == 0, when it's 1.
 | |
|          for 'e' format: precision+1
 | |
|          for 'f' format: precision digits after the point, at least 1
 | |
|            before.  To figure out how many digits appear before the point
 | |
|            we have to examine the size of the number.  If fabs(val) < 1.0
 | |
|            then there will be only one digit before the point.  If
 | |
|            fabs(val) >= 1.0, then there are at most
 | |
| 
 | |
|          1+floor(log10(ceiling(fabs(val))))
 | |
| 
 | |
|            digits before the point (where the 'ceiling' allows for the
 | |
|            possibility that the rounding rounds the integer part of val
 | |
|            up).  A safe upper bound for the above quantity is
 | |
|            1+floor(exp/3), where exp is the unique integer such that 0.5
 | |
|            <= fabs(val)/2**exp < 1.0.  This exp can be obtained from
 | |
|            frexp.
 | |
| 
 | |
|        So we allow room for precision+1 digits for all formats, plus an
 | |
|        extra floor(exp/3) digits for 'f' format.
 | |
| 
 | |
|     */
 | |
| 
 | |
|     if (Py_IS_NAN(val) || Py_IS_INFINITY(val))
 | |
|         /* 3 for 'inf'/'nan', 1 for sign, 1 for '\0' */
 | |
|         bufsize = 5;
 | |
|     else {
 | |
|         bufsize = 25 + precision;
 | |
|         if (format_code == 'f' && fabs(val) >= 1.0) {
 | |
|             frexp(val, &exp);
 | |
|             bufsize += exp/3;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     buf = PyMem_Malloc(bufsize);
 | |
|     if (buf == NULL) {
 | |
|         PyErr_NoMemory();
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     /* Handle nan and inf. */
 | |
|     if (Py_IS_NAN(val)) {
 | |
|         strcpy(buf, "nan");
 | |
|         t = Py_DTST_NAN;
 | |
|     } else if (Py_IS_INFINITY(val)) {
 | |
|         if (copysign(1., val) == 1.)
 | |
|             strcpy(buf, "inf");
 | |
|         else
 | |
|             strcpy(buf, "-inf");
 | |
|         t = Py_DTST_INFINITE;
 | |
|     } else {
 | |
|         t = Py_DTST_FINITE;
 | |
|         if (flags & Py_DTSF_ADD_DOT_0)
 | |
|             format_code = 'Z';
 | |
| 
 | |
|         PyOS_snprintf(format, sizeof(format), "%%%s.%i%c",
 | |
|                       (flags & Py_DTSF_ALT ? "#" : ""), precision,
 | |
|                       format_code);
 | |
|         _PyOS_ascii_formatd(buf, bufsize, format, val, precision);
 | |
| 
 | |
|         if (flags & Py_DTSF_NO_NEG_0 && buf[0] == '-') {
 | |
|             char *buf2 = buf + 1;
 | |
|             while (*buf2 == '0' || *buf2 == '.') {
 | |
|                 ++buf2;
 | |
|             }
 | |
|             if (*buf2 == 0 || *buf2 == 'e') {
 | |
|                 size_t len = buf2 - buf + strlen(buf2);
 | |
|                 assert(buf[len] == 0);
 | |
|                 memmove(buf, buf+1, len);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Add sign when requested.  It's convenient (esp. when formatting
 | |
|      complex numbers) to include a sign even for inf and nan. */
 | |
|     if (flags & Py_DTSF_SIGN && buf[0] != '-') {
 | |
|         size_t len = strlen(buf);
 | |
|         /* the bufsize calculations above should ensure that we've got
 | |
|            space to add a sign */
 | |
|         assert((size_t)bufsize >= len+2);
 | |
|         memmove(buf+1, buf, len+1);
 | |
|         buf[0] = '+';
 | |
|     }
 | |
|     if (upper) {
 | |
|         /* Convert to upper case. */
 | |
|         char *p1;
 | |
|         for (p1 = buf; *p1; p1++)
 | |
|             *p1 = Py_TOUPPER(*p1);
 | |
|     }
 | |
| 
 | |
|     if (type)
 | |
|         *type = t;
 | |
|     return buf;
 | |
| }
 | |
| 
 | |
| #else  // _PY_SHORT_FLOAT_REPR == 1
 | |
| 
 | |
| /* _Py_dg_dtoa is available. */
 | |
| 
 | |
| /* I'm using a lookup table here so that I don't have to invent a non-locale
 | |
|    specific way to convert to uppercase */
 | |
| #define OFS_INF 0
 | |
| #define OFS_NAN 1
 | |
| #define OFS_E 2
 | |
| 
 | |
| /* The lengths of these are known to the code below, so don't change them */
 | |
| static const char * const lc_float_strings[] = {
 | |
|     "inf",
 | |
|     "nan",
 | |
|     "e",
 | |
| };
 | |
| static const char * const uc_float_strings[] = {
 | |
|     "INF",
 | |
|     "NAN",
 | |
|     "E",
 | |
| };
 | |
| 
 | |
| 
 | |
| /* Convert a double d to a string, and return a PyMem_Malloc'd block of
 | |
|    memory contain the resulting string.
 | |
| 
 | |
|    Arguments:
 | |
|      d is the double to be converted
 | |
|      format_code is one of 'e', 'f', 'g', 'r'.  'e', 'f' and 'g'
 | |
|        correspond to '%e', '%f' and '%g';  'r' corresponds to repr.
 | |
|      mode is one of '0', '2' or '3', and is completely determined by
 | |
|        format_code: 'e' and 'g' use mode 2; 'f' mode 3, 'r' mode 0.
 | |
|      precision is the desired precision
 | |
|      always_add_sign is nonzero if a '+' sign should be included for positive
 | |
|        numbers
 | |
|      add_dot_0_if_integer is nonzero if integers in non-exponential form
 | |
|        should have ".0" added.  Only applies to format codes 'r' and 'g'.
 | |
|      use_alt_formatting is nonzero if alternative formatting should be
 | |
|        used.  Only applies to format codes 'e', 'f' and 'g'.  For code 'g',
 | |
|        at most one of use_alt_formatting and add_dot_0_if_integer should
 | |
|        be nonzero.
 | |
|      type, if non-NULL, will be set to one of these constants to identify
 | |
|        the type of the 'd' argument:
 | |
|      Py_DTST_FINITE
 | |
|      Py_DTST_INFINITE
 | |
|      Py_DTST_NAN
 | |
| 
 | |
|    Returns a PyMem_Malloc'd block of memory containing the resulting string,
 | |
|     or NULL on error. If NULL is returned, the Python error has been set.
 | |
|  */
 | |
| 
 | |
| static char *
 | |
| format_float_short(double d, char format_code,
 | |
|                    int mode, int precision,
 | |
|                    int always_add_sign, int add_dot_0_if_integer,
 | |
|                    int use_alt_formatting, int no_negative_zero,
 | |
|                    const char * const *float_strings, int *type)
 | |
| {
 | |
|     char *buf = NULL;
 | |
|     char *p = NULL;
 | |
|     Py_ssize_t bufsize = 0;
 | |
|     char *digits, *digits_end;
 | |
|     int decpt_as_int, sign, exp_len, exp = 0, use_exp = 0;
 | |
|     Py_ssize_t decpt, digits_len, vdigits_start, vdigits_end;
 | |
|     _Py_SET_53BIT_PRECISION_HEADER;
 | |
| 
 | |
|     /* _Py_dg_dtoa returns a digit string (no decimal point or exponent).
 | |
|        Must be matched by a call to _Py_dg_freedtoa. */
 | |
|     _Py_SET_53BIT_PRECISION_START;
 | |
|     digits = _Py_dg_dtoa(d, mode, precision, &decpt_as_int, &sign,
 | |
|                          &digits_end);
 | |
|     _Py_SET_53BIT_PRECISION_END;
 | |
| 
 | |
|     decpt = (Py_ssize_t)decpt_as_int;
 | |
|     if (digits == NULL) {
 | |
|         /* The only failure mode is no memory. */
 | |
|         PyErr_NoMemory();
 | |
|         goto exit;
 | |
|     }
 | |
|     assert(digits_end != NULL && digits_end >= digits);
 | |
|     digits_len = digits_end - digits;
 | |
| 
 | |
|     if (no_negative_zero && sign == 1 &&
 | |
|             (digits_len == 0 || (digits_len == 1 && digits[0] == '0'))) {
 | |
|         sign = 0;
 | |
|     }
 | |
| 
 | |
|     if (digits_len && !Py_ISDIGIT(digits[0])) {
 | |
|         /* Infinities and nans here; adapt Gay's output,
 | |
|            so convert Infinity to inf and NaN to nan, and
 | |
|            ignore sign of nan. Then return. */
 | |
| 
 | |
|         /* ignore the actual sign of a nan */
 | |
|         if (digits[0] == 'n' || digits[0] == 'N')
 | |
|             sign = 0;
 | |
| 
 | |
|         /* We only need 5 bytes to hold the result "+inf\0" . */
 | |
|         bufsize = 5; /* Used later in an assert. */
 | |
|         buf = (char *)PyMem_Malloc(bufsize);
 | |
|         if (buf == NULL) {
 | |
|             PyErr_NoMemory();
 | |
|             goto exit;
 | |
|         }
 | |
|         p = buf;
 | |
| 
 | |
|         if (sign == 1) {
 | |
|             *p++ = '-';
 | |
|         }
 | |
|         else if (always_add_sign) {
 | |
|             *p++ = '+';
 | |
|         }
 | |
|         if (digits[0] == 'i' || digits[0] == 'I') {
 | |
|             strncpy(p, float_strings[OFS_INF], 3);
 | |
|             p += 3;
 | |
| 
 | |
|             if (type)
 | |
|                 *type = Py_DTST_INFINITE;
 | |
|         }
 | |
|         else if (digits[0] == 'n' || digits[0] == 'N') {
 | |
|             strncpy(p, float_strings[OFS_NAN], 3);
 | |
|             p += 3;
 | |
| 
 | |
|             if (type)
 | |
|                 *type = Py_DTST_NAN;
 | |
|         }
 | |
|         else {
 | |
|             /* shouldn't get here: Gay's code should always return
 | |
|                something starting with a digit, an 'I',  or 'N' */
 | |
|             Py_UNREACHABLE();
 | |
|         }
 | |
|         goto exit;
 | |
|     }
 | |
| 
 | |
|     /* The result must be finite (not inf or nan). */
 | |
|     if (type)
 | |
|         *type = Py_DTST_FINITE;
 | |
| 
 | |
| 
 | |
|     /* We got digits back, format them.  We may need to pad 'digits'
 | |
|        either on the left or right (or both) with extra zeros, so in
 | |
|        general the resulting string has the form
 | |
| 
 | |
|          [<sign>]<zeros><digits><zeros>[<exponent>]
 | |
| 
 | |
|        where either of the <zeros> pieces could be empty, and there's a
 | |
|        decimal point that could appear either in <digits> or in the
 | |
|        leading or trailing <zeros>.
 | |
| 
 | |
|        Imagine an infinite 'virtual' string vdigits, consisting of the
 | |
|        string 'digits' (starting at index 0) padded on both the left and
 | |
|        right with infinite strings of zeros.  We want to output a slice
 | |
| 
 | |
|          vdigits[vdigits_start : vdigits_end]
 | |
| 
 | |
|        of this virtual string.  Thus if vdigits_start < 0 then we'll end
 | |
|        up producing some leading zeros; if vdigits_end > digits_len there
 | |
|        will be trailing zeros in the output.  The next section of code
 | |
|        determines whether to use an exponent or not, figures out the
 | |
|        position 'decpt' of the decimal point, and computes 'vdigits_start'
 | |
|        and 'vdigits_end'. */
 | |
|     vdigits_end = digits_len;
 | |
|     switch (format_code) {
 | |
|     case 'e':
 | |
|         use_exp = 1;
 | |
|         vdigits_end = precision;
 | |
|         break;
 | |
|     case 'f':
 | |
|         vdigits_end = decpt + precision;
 | |
|         break;
 | |
|     case 'g':
 | |
|         if (decpt <= -4 || decpt >
 | |
|             (add_dot_0_if_integer ? precision-1 : precision))
 | |
|             use_exp = 1;
 | |
|         if (use_alt_formatting)
 | |
|             vdigits_end = precision;
 | |
|         break;
 | |
|     case 'r':
 | |
|         /* convert to exponential format at 1e16.  We used to convert
 | |
|            at 1e17, but that gives odd-looking results for some values
 | |
|            when a 16-digit 'shortest' repr is padded with bogus zeros.
 | |
|            For example, repr(2e16+8) would give 20000000000000010.0;
 | |
|            the true value is 20000000000000008.0. */
 | |
|         if (decpt <= -4 || decpt > 16)
 | |
|             use_exp = 1;
 | |
|         break;
 | |
|     default:
 | |
|         PyErr_BadInternalCall();
 | |
|         goto exit;
 | |
|     }
 | |
| 
 | |
|     /* if using an exponent, reset decimal point position to 1 and adjust
 | |
|        exponent accordingly.*/
 | |
|     if (use_exp) {
 | |
|         exp = (int)decpt - 1;
 | |
|         decpt = 1;
 | |
|     }
 | |
|     /* ensure vdigits_start < decpt <= vdigits_end, or vdigits_start <
 | |
|        decpt < vdigits_end if add_dot_0_if_integer and no exponent */
 | |
|     vdigits_start = decpt <= 0 ? decpt-1 : 0;
 | |
|     if (!use_exp && add_dot_0_if_integer)
 | |
|         vdigits_end = vdigits_end > decpt ? vdigits_end : decpt + 1;
 | |
|     else
 | |
|         vdigits_end = vdigits_end > decpt ? vdigits_end : decpt;
 | |
| 
 | |
|     /* double check inequalities */
 | |
|     assert(vdigits_start <= 0 &&
 | |
|            0 <= digits_len &&
 | |
|            digits_len <= vdigits_end);
 | |
|     /* decimal point should be in (vdigits_start, vdigits_end] */
 | |
|     assert(vdigits_start < decpt && decpt <= vdigits_end);
 | |
| 
 | |
|     /* Compute an upper bound how much memory we need. This might be a few
 | |
|        chars too long, but no big deal. */
 | |
|     bufsize =
 | |
|         /* sign, decimal point and trailing 0 byte */
 | |
|         3 +
 | |
| 
 | |
|         /* total digit count (including zero padding on both sides) */
 | |
|         (vdigits_end - vdigits_start) +
 | |
| 
 | |
|         /* exponent "e+100", max 3 numerical digits */
 | |
|         (use_exp ? 5 : 0);
 | |
| 
 | |
|     /* Now allocate the memory and initialize p to point to the start of
 | |
|        it. */
 | |
|     buf = (char *)PyMem_Malloc(bufsize);
 | |
|     if (buf == NULL) {
 | |
|         PyErr_NoMemory();
 | |
|         goto exit;
 | |
|     }
 | |
|     p = buf;
 | |
| 
 | |
|     /* Add a negative sign if negative, and a plus sign if non-negative
 | |
|        and always_add_sign is true. */
 | |
|     if (sign == 1)
 | |
|         *p++ = '-';
 | |
|     else if (always_add_sign)
 | |
|         *p++ = '+';
 | |
| 
 | |
|     /* note that exactly one of the three 'if' conditions is true,
 | |
|        so we include exactly one decimal point */
 | |
|     /* Zero padding on left of digit string */
 | |
|     if (decpt <= 0) {
 | |
|         memset(p, '0', decpt-vdigits_start);
 | |
|         p += decpt - vdigits_start;
 | |
|         *p++ = '.';
 | |
|         memset(p, '0', 0-decpt);
 | |
|         p += 0-decpt;
 | |
|     }
 | |
|     else {
 | |
|         memset(p, '0', 0-vdigits_start);
 | |
|         p += 0 - vdigits_start;
 | |
|     }
 | |
| 
 | |
|     /* Digits, with included decimal point */
 | |
|     if (0 < decpt && decpt <= digits_len) {
 | |
|         strncpy(p, digits, decpt-0);
 | |
|         p += decpt-0;
 | |
|         *p++ = '.';
 | |
|         strncpy(p, digits+decpt, digits_len-decpt);
 | |
|         p += digits_len-decpt;
 | |
|     }
 | |
|     else {
 | |
|         strncpy(p, digits, digits_len);
 | |
|         p += digits_len;
 | |
|     }
 | |
| 
 | |
|     /* And zeros on the right */
 | |
|     if (digits_len < decpt) {
 | |
|         memset(p, '0', decpt-digits_len);
 | |
|         p += decpt-digits_len;
 | |
|         *p++ = '.';
 | |
|         memset(p, '0', vdigits_end-decpt);
 | |
|         p += vdigits_end-decpt;
 | |
|     }
 | |
|     else {
 | |
|         memset(p, '0', vdigits_end-digits_len);
 | |
|         p += vdigits_end-digits_len;
 | |
|     }
 | |
| 
 | |
|     /* Delete a trailing decimal pt unless using alternative formatting. */
 | |
|     if (p[-1] == '.' && !use_alt_formatting)
 | |
|         p--;
 | |
| 
 | |
|     /* Now that we've done zero padding, add an exponent if needed. */
 | |
|     if (use_exp) {
 | |
|         *p++ = float_strings[OFS_E][0];
 | |
|         exp_len = sprintf(p, "%+.02d", exp);
 | |
|         p += exp_len;
 | |
|     }
 | |
|   exit:
 | |
|     if (buf) {
 | |
|         *p = '\0';
 | |
|         /* It's too late if this fails, as we've already stepped on
 | |
|            memory that isn't ours. But it's an okay debugging test. */
 | |
|         assert(p-buf < bufsize);
 | |
|     }
 | |
|     if (digits)
 | |
|         _Py_dg_freedtoa(digits);
 | |
| 
 | |
|     return buf;
 | |
| }
 | |
| 
 | |
| 
 | |
| char * PyOS_double_to_string(double val,
 | |
|                                          char format_code,
 | |
|                                          int precision,
 | |
|                                          int flags,
 | |
|                                          int *type)
 | |
| {
 | |
|     const char * const *float_strings = lc_float_strings;
 | |
|     int mode;
 | |
| 
 | |
|     /* Validate format_code, and map upper and lower case. Compute the
 | |
|        mode and make any adjustments as needed. */
 | |
|     switch (format_code) {
 | |
|     /* exponent */
 | |
|     case 'E':
 | |
|         float_strings = uc_float_strings;
 | |
|         format_code = 'e';
 | |
|         /* Fall through. */
 | |
|     case 'e':
 | |
|         mode = 2;
 | |
|         precision++;
 | |
|         break;
 | |
| 
 | |
|     /* fixed */
 | |
|     case 'F':
 | |
|         float_strings = uc_float_strings;
 | |
|         format_code = 'f';
 | |
|         /* Fall through. */
 | |
|     case 'f':
 | |
|         mode = 3;
 | |
|         break;
 | |
| 
 | |
|     /* general */
 | |
|     case 'G':
 | |
|         float_strings = uc_float_strings;
 | |
|         format_code = 'g';
 | |
|         /* Fall through. */
 | |
|     case 'g':
 | |
|         mode = 2;
 | |
|         /* precision 0 makes no sense for 'g' format; interpret as 1 */
 | |
|         if (precision == 0)
 | |
|             precision = 1;
 | |
|         break;
 | |
| 
 | |
|     /* repr format */
 | |
|     case 'r':
 | |
|         mode = 0;
 | |
|         /* Supplied precision is unused, must be 0. */
 | |
|         if (precision != 0) {
 | |
|             PyErr_BadInternalCall();
 | |
|             return NULL;
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     default:
 | |
|         PyErr_BadInternalCall();
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     return format_float_short(val, format_code, mode, precision,
 | |
|                               flags & Py_DTSF_SIGN,
 | |
|                               flags & Py_DTSF_ADD_DOT_0,
 | |
|                               flags & Py_DTSF_ALT,
 | |
|                               flags & Py_DTSF_NO_NEG_0,
 | |
|                               float_strings, type);
 | |
| }
 | |
| #endif  // _PY_SHORT_FLOAT_REPR == 1
 |