mirror of
				https://github.com/python/cpython.git
				synced 2025-10-26 11:14:33 +00:00 
			
		
		
		
	 b2e2025941
			
		
	
	
		b2e2025941
		
	
	
	
	
		
			
			* Simplify the C code. * Simplify tests and make them more strict and robust. * Add references in the documentation.
		
			
				
	
	
		
			1367 lines
		
	
	
	
		
			53 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			1367 lines
		
	
	
	
		
			53 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import unittest
 | |
| from test import support
 | |
| 
 | |
| import sys
 | |
| 
 | |
| import random
 | |
| import math
 | |
| import array
 | |
| 
 | |
| # SHIFT should match the value in longintrepr.h for best testing.
 | |
| SHIFT = sys.int_info.bits_per_digit
 | |
| BASE = 2 ** SHIFT
 | |
| MASK = BASE - 1
 | |
| KARATSUBA_CUTOFF = 70   # from longobject.c
 | |
| 
 | |
| # Max number of base BASE digits to use in test cases.  Doubling
 | |
| # this will more than double the runtime.
 | |
| MAXDIGITS = 15
 | |
| 
 | |
| # build some special values
 | |
| special = [0, 1, 2, BASE, BASE >> 1, 0x5555555555555555, 0xaaaaaaaaaaaaaaaa]
 | |
| #  some solid strings of one bits
 | |
| p2 = 4  # 0 and 1 already added
 | |
| for i in range(2*SHIFT):
 | |
|     special.append(p2 - 1)
 | |
|     p2 = p2 << 1
 | |
| del p2
 | |
| # add complements & negations
 | |
| special += [~x for x in special] + [-x for x in special]
 | |
| 
 | |
| DBL_MAX = sys.float_info.max
 | |
| DBL_MAX_EXP = sys.float_info.max_exp
 | |
| DBL_MIN_EXP = sys.float_info.min_exp
 | |
| DBL_MANT_DIG = sys.float_info.mant_dig
 | |
| DBL_MIN_OVERFLOW = 2**DBL_MAX_EXP - 2**(DBL_MAX_EXP - DBL_MANT_DIG - 1)
 | |
| 
 | |
| 
 | |
| # Pure Python version of correctly-rounded integer-to-float conversion.
 | |
| def int_to_float(n):
 | |
|     """
 | |
|     Correctly-rounded integer-to-float conversion.
 | |
| 
 | |
|     """
 | |
|     # Constants, depending only on the floating-point format in use.
 | |
|     # We use an extra 2 bits of precision for rounding purposes.
 | |
|     PRECISION = sys.float_info.mant_dig + 2
 | |
|     SHIFT_MAX = sys.float_info.max_exp - PRECISION
 | |
|     Q_MAX = 1 << PRECISION
 | |
|     ROUND_HALF_TO_EVEN_CORRECTION = [0, -1, -2, 1, 0, -1, 2, 1]
 | |
| 
 | |
|     # Reduce to the case where n is positive.
 | |
|     if n == 0:
 | |
|         return 0.0
 | |
|     elif n < 0:
 | |
|         return -int_to_float(-n)
 | |
| 
 | |
|     # Convert n to a 'floating-point' number q * 2**shift, where q is an
 | |
|     # integer with 'PRECISION' significant bits.  When shifting n to create q,
 | |
|     # the least significant bit of q is treated as 'sticky'.  That is, the
 | |
|     # least significant bit of q is set if either the corresponding bit of n
 | |
|     # was already set, or any one of the bits of n lost in the shift was set.
 | |
|     shift = n.bit_length() - PRECISION
 | |
|     q = n << -shift if shift < 0 else (n >> shift) | bool(n & ~(-1 << shift))
 | |
| 
 | |
|     # Round half to even (actually rounds to the nearest multiple of 4,
 | |
|     # rounding ties to a multiple of 8).
 | |
|     q += ROUND_HALF_TO_EVEN_CORRECTION[q & 7]
 | |
| 
 | |
|     # Detect overflow.
 | |
|     if shift + (q == Q_MAX) > SHIFT_MAX:
 | |
|         raise OverflowError("integer too large to convert to float")
 | |
| 
 | |
|     # Checks: q is exactly representable, and q**2**shift doesn't overflow.
 | |
|     assert q % 4 == 0 and q // 4 <= 2**(sys.float_info.mant_dig)
 | |
|     assert q * 2**shift <= sys.float_info.max
 | |
| 
 | |
|     # Some circularity here, since float(q) is doing an int-to-float
 | |
|     # conversion.  But here q is of bounded size, and is exactly representable
 | |
|     # as a float.  In a low-level C-like language, this operation would be a
 | |
|     # simple cast (e.g., from unsigned long long to double).
 | |
|     return math.ldexp(float(q), shift)
 | |
| 
 | |
| 
 | |
| # pure Python version of correctly-rounded true division
 | |
| def truediv(a, b):
 | |
|     """Correctly-rounded true division for integers."""
 | |
|     negative = a^b < 0
 | |
|     a, b = abs(a), abs(b)
 | |
| 
 | |
|     # exceptions:  division by zero, overflow
 | |
|     if not b:
 | |
|         raise ZeroDivisionError("division by zero")
 | |
|     if a >= DBL_MIN_OVERFLOW * b:
 | |
|         raise OverflowError("int/int too large to represent as a float")
 | |
| 
 | |
|    # find integer d satisfying 2**(d - 1) <= a/b < 2**d
 | |
|     d = a.bit_length() - b.bit_length()
 | |
|     if d >= 0 and a >= 2**d * b or d < 0 and a * 2**-d >= b:
 | |
|         d += 1
 | |
| 
 | |
|     # compute 2**-exp * a / b for suitable exp
 | |
|     exp = max(d, DBL_MIN_EXP) - DBL_MANT_DIG
 | |
|     a, b = a << max(-exp, 0), b << max(exp, 0)
 | |
|     q, r = divmod(a, b)
 | |
| 
 | |
|     # round-half-to-even: fractional part is r/b, which is > 0.5 iff
 | |
|     # 2*r > b, and == 0.5 iff 2*r == b.
 | |
|     if 2*r > b or 2*r == b and q % 2 == 1:
 | |
|         q += 1
 | |
| 
 | |
|     result = math.ldexp(q, exp)
 | |
|     return -result if negative else result
 | |
| 
 | |
| 
 | |
| class LongTest(unittest.TestCase):
 | |
| 
 | |
|     # Get quasi-random long consisting of ndigits digits (in base BASE).
 | |
|     # quasi == the most-significant digit will not be 0, and the number
 | |
|     # is constructed to contain long strings of 0 and 1 bits.  These are
 | |
|     # more likely than random bits to provoke digit-boundary errors.
 | |
|     # The sign of the number is also random.
 | |
| 
 | |
|     def getran(self, ndigits):
 | |
|         self.assertGreater(ndigits, 0)
 | |
|         nbits_hi = ndigits * SHIFT
 | |
|         nbits_lo = nbits_hi - SHIFT + 1
 | |
|         answer = 0
 | |
|         nbits = 0
 | |
|         r = int(random.random() * (SHIFT * 2)) | 1  # force 1 bits to start
 | |
|         while nbits < nbits_lo:
 | |
|             bits = (r >> 1) + 1
 | |
|             bits = min(bits, nbits_hi - nbits)
 | |
|             self.assertTrue(1 <= bits <= SHIFT)
 | |
|             nbits = nbits + bits
 | |
|             answer = answer << bits
 | |
|             if r & 1:
 | |
|                 answer = answer | ((1 << bits) - 1)
 | |
|             r = int(random.random() * (SHIFT * 2))
 | |
|         self.assertTrue(nbits_lo <= nbits <= nbits_hi)
 | |
|         if random.random() < 0.5:
 | |
|             answer = -answer
 | |
|         return answer
 | |
| 
 | |
|     # Get random long consisting of ndigits random digits (relative to base
 | |
|     # BASE).  The sign bit is also random.
 | |
| 
 | |
|     def getran2(ndigits):
 | |
|         answer = 0
 | |
|         for i in range(ndigits):
 | |
|             answer = (answer << SHIFT) | random.randint(0, MASK)
 | |
|         if random.random() < 0.5:
 | |
|             answer = -answer
 | |
|         return answer
 | |
| 
 | |
|     def check_division(self, x, y):
 | |
|         eq = self.assertEqual
 | |
|         with self.subTest(x=x, y=y):
 | |
|             q, r = divmod(x, y)
 | |
|             q2, r2 = x//y, x%y
 | |
|             pab, pba = x*y, y*x
 | |
|             eq(pab, pba, "multiplication does not commute")
 | |
|             eq(q, q2, "divmod returns different quotient than /")
 | |
|             eq(r, r2, "divmod returns different mod than %")
 | |
|             eq(x, q*y + r, "x != q*y + r after divmod")
 | |
|             if y > 0:
 | |
|                 self.assertTrue(0 <= r < y, "bad mod from divmod")
 | |
|             else:
 | |
|                 self.assertTrue(y < r <= 0, "bad mod from divmod")
 | |
| 
 | |
|     def test_division(self):
 | |
|         digits = list(range(1, MAXDIGITS+1)) + list(range(KARATSUBA_CUTOFF,
 | |
|                                                       KARATSUBA_CUTOFF + 14))
 | |
|         digits.append(KARATSUBA_CUTOFF * 3)
 | |
|         for lenx in digits:
 | |
|             x = self.getran(lenx)
 | |
|             for leny in digits:
 | |
|                 y = self.getran(leny) or 1
 | |
|                 self.check_division(x, y)
 | |
| 
 | |
|         # specific numbers chosen to exercise corner cases of the
 | |
|         # current long division implementation
 | |
| 
 | |
|         # 30-bit cases involving a quotient digit estimate of BASE+1
 | |
|         self.check_division(1231948412290879395966702881,
 | |
|                             1147341367131428698)
 | |
|         self.check_division(815427756481275430342312021515587883,
 | |
|                        707270836069027745)
 | |
|         self.check_division(627976073697012820849443363563599041,
 | |
|                        643588798496057020)
 | |
|         self.check_division(1115141373653752303710932756325578065,
 | |
|                        1038556335171453937726882627)
 | |
|         # 30-bit cases that require the post-subtraction correction step
 | |
|         self.check_division(922498905405436751940989320930368494,
 | |
|                        949985870686786135626943396)
 | |
|         self.check_division(768235853328091167204009652174031844,
 | |
|                        1091555541180371554426545266)
 | |
| 
 | |
|         # 15-bit cases involving a quotient digit estimate of BASE+1
 | |
|         self.check_division(20172188947443, 615611397)
 | |
|         self.check_division(1020908530270155025, 950795710)
 | |
|         self.check_division(128589565723112408, 736393718)
 | |
|         self.check_division(609919780285761575, 18613274546784)
 | |
|         # 15-bit cases that require the post-subtraction correction step
 | |
|         self.check_division(710031681576388032, 26769404391308)
 | |
|         self.check_division(1933622614268221, 30212853348836)
 | |
| 
 | |
| 
 | |
| 
 | |
|     def test_karatsuba(self):
 | |
|         digits = list(range(1, 5)) + list(range(KARATSUBA_CUTOFF,
 | |
|                                                 KARATSUBA_CUTOFF + 10))
 | |
|         digits.extend([KARATSUBA_CUTOFF * 10, KARATSUBA_CUTOFF * 100])
 | |
| 
 | |
|         bits = [digit * SHIFT for digit in digits]
 | |
| 
 | |
|         # Test products of long strings of 1 bits -- (2**x-1)*(2**y-1) ==
 | |
|         # 2**(x+y) - 2**x - 2**y + 1, so the proper result is easy to check.
 | |
|         for abits in bits:
 | |
|             a = (1 << abits) - 1
 | |
|             for bbits in bits:
 | |
|                 if bbits < abits:
 | |
|                     continue
 | |
|                 with self.subTest(abits=abits, bbits=bbits):
 | |
|                     b = (1 << bbits) - 1
 | |
|                     x = a * b
 | |
|                     y = ((1 << (abits + bbits)) -
 | |
|                          (1 << abits) -
 | |
|                          (1 << bbits) +
 | |
|                          1)
 | |
|                     self.assertEqual(x, y)
 | |
| 
 | |
|     def check_bitop_identities_1(self, x):
 | |
|         eq = self.assertEqual
 | |
|         with self.subTest(x=x):
 | |
|             eq(x & 0, 0)
 | |
|             eq(x | 0, x)
 | |
|             eq(x ^ 0, x)
 | |
|             eq(x & -1, x)
 | |
|             eq(x | -1, -1)
 | |
|             eq(x ^ -1, ~x)
 | |
|             eq(x, ~~x)
 | |
|             eq(x & x, x)
 | |
|             eq(x | x, x)
 | |
|             eq(x ^ x, 0)
 | |
|             eq(x & ~x, 0)
 | |
|             eq(x | ~x, -1)
 | |
|             eq(x ^ ~x, -1)
 | |
|             eq(-x, 1 + ~x)
 | |
|             eq(-x, ~(x-1))
 | |
|         for n in range(2*SHIFT):
 | |
|             p2 = 2 ** n
 | |
|             with self.subTest(x=x, n=n, p2=p2):
 | |
|                 eq(x << n >> n, x)
 | |
|                 eq(x // p2, x >> n)
 | |
|                 eq(x * p2, x << n)
 | |
|                 eq(x & -p2, x >> n << n)
 | |
|                 eq(x & -p2, x & ~(p2 - 1))
 | |
| 
 | |
|     def check_bitop_identities_2(self, x, y):
 | |
|         eq = self.assertEqual
 | |
|         with self.subTest(x=x, y=y):
 | |
|             eq(x & y, y & x)
 | |
|             eq(x | y, y | x)
 | |
|             eq(x ^ y, y ^ x)
 | |
|             eq(x ^ y ^ x, y)
 | |
|             eq(x & y, ~(~x | ~y))
 | |
|             eq(x | y, ~(~x & ~y))
 | |
|             eq(x ^ y, (x | y) & ~(x & y))
 | |
|             eq(x ^ y, (x & ~y) | (~x & y))
 | |
|             eq(x ^ y, (x | y) & (~x | ~y))
 | |
| 
 | |
|     def check_bitop_identities_3(self, x, y, z):
 | |
|         eq = self.assertEqual
 | |
|         with self.subTest(x=x, y=y, z=z):
 | |
|             eq((x & y) & z, x & (y & z))
 | |
|             eq((x | y) | z, x | (y | z))
 | |
|             eq((x ^ y) ^ z, x ^ (y ^ z))
 | |
|             eq(x & (y | z), (x & y) | (x & z))
 | |
|             eq(x | (y & z), (x | y) & (x | z))
 | |
| 
 | |
|     def test_bitop_identities(self):
 | |
|         for x in special:
 | |
|             self.check_bitop_identities_1(x)
 | |
|         digits = range(1, MAXDIGITS+1)
 | |
|         for lenx in digits:
 | |
|             x = self.getran(lenx)
 | |
|             self.check_bitop_identities_1(x)
 | |
|             for leny in digits:
 | |
|                 y = self.getran(leny)
 | |
|                 self.check_bitop_identities_2(x, y)
 | |
|                 self.check_bitop_identities_3(x, y, self.getran((lenx + leny)//2))
 | |
| 
 | |
|     def slow_format(self, x, base):
 | |
|         digits = []
 | |
|         sign = 0
 | |
|         if x < 0:
 | |
|             sign, x = 1, -x
 | |
|         while x:
 | |
|             x, r = divmod(x, base)
 | |
|             digits.append(int(r))
 | |
|         digits.reverse()
 | |
|         digits = digits or [0]
 | |
|         return '-'[:sign] + \
 | |
|                {2: '0b', 8: '0o', 10: '', 16: '0x'}[base] + \
 | |
|                "".join("0123456789abcdef"[i] for i in digits)
 | |
| 
 | |
|     def check_format_1(self, x):
 | |
|         for base, mapper in (2, bin), (8, oct), (10, str), (10, repr), (16, hex):
 | |
|             got = mapper(x)
 | |
|             with self.subTest(x=x, mapper=mapper.__name__):
 | |
|                 expected = self.slow_format(x, base)
 | |
|                 self.assertEqual(got, expected)
 | |
|             with self.subTest(got=got):
 | |
|                 self.assertEqual(int(got, 0), x)
 | |
| 
 | |
|     def test_format(self):
 | |
|         for x in special:
 | |
|             self.check_format_1(x)
 | |
|         for i in range(10):
 | |
|             for lenx in range(1, MAXDIGITS+1):
 | |
|                 x = self.getran(lenx)
 | |
|                 self.check_format_1(x)
 | |
| 
 | |
|     def test_long(self):
 | |
|         # Check conversions from string
 | |
|         LL = [
 | |
|                 ('1' + '0'*20, 10**20),
 | |
|                 ('1' + '0'*100, 10**100)
 | |
|         ]
 | |
|         for s, v in LL:
 | |
|             for sign in "", "+", "-":
 | |
|                 for prefix in "", " ", "\t", "  \t\t  ":
 | |
|                     ss = prefix + sign + s
 | |
|                     vv = v
 | |
|                     if sign == "-" and v is not ValueError:
 | |
|                         vv = -v
 | |
|                     try:
 | |
|                         self.assertEqual(int(ss), vv)
 | |
|                     except ValueError:
 | |
|                         pass
 | |
| 
 | |
|         # trailing L should no longer be accepted...
 | |
|         self.assertRaises(ValueError, int, '123L')
 | |
|         self.assertRaises(ValueError, int, '123l')
 | |
|         self.assertRaises(ValueError, int, '0L')
 | |
|         self.assertRaises(ValueError, int, '-37L')
 | |
|         self.assertRaises(ValueError, int, '0x32L', 16)
 | |
|         self.assertRaises(ValueError, int, '1L', 21)
 | |
|         # ... but it's just a normal digit if base >= 22
 | |
|         self.assertEqual(int('1L', 22), 43)
 | |
| 
 | |
|         # tests with base 0
 | |
|         self.assertEqual(int('000', 0), 0)
 | |
|         self.assertEqual(int('0o123', 0), 83)
 | |
|         self.assertEqual(int('0x123', 0), 291)
 | |
|         self.assertEqual(int('0b100', 0), 4)
 | |
|         self.assertEqual(int(' 0O123   ', 0), 83)
 | |
|         self.assertEqual(int(' 0X123  ', 0), 291)
 | |
|         self.assertEqual(int(' 0B100 ', 0), 4)
 | |
|         self.assertEqual(int('0', 0), 0)
 | |
|         self.assertEqual(int('+0', 0), 0)
 | |
|         self.assertEqual(int('-0', 0), 0)
 | |
|         self.assertEqual(int('00', 0), 0)
 | |
|         self.assertRaises(ValueError, int, '08', 0)
 | |
|         self.assertRaises(ValueError, int, '-012395', 0)
 | |
| 
 | |
|         # invalid bases
 | |
|         invalid_bases = [-909,
 | |
|                           2**31-1, 2**31, -2**31, -2**31-1,
 | |
|                           2**63-1, 2**63, -2**63, -2**63-1,
 | |
|                           2**100, -2**100,
 | |
|                           ]
 | |
|         for base in invalid_bases:
 | |
|             self.assertRaises(ValueError, int, '42', base)
 | |
| 
 | |
|         # Invalid unicode string
 | |
|         # See bpo-34087
 | |
|         self.assertRaises(ValueError, int, '\u3053\u3093\u306b\u3061\u306f')
 | |
| 
 | |
| 
 | |
|     def test_conversion(self):
 | |
| 
 | |
|         class JustLong:
 | |
|             # test that __long__ no longer used in 3.x
 | |
|             def __long__(self):
 | |
|                 return 42
 | |
|         self.assertRaises(TypeError, int, JustLong())
 | |
| 
 | |
|         class LongTrunc:
 | |
|             # __long__ should be ignored in 3.x
 | |
|             def __long__(self):
 | |
|                 return 42
 | |
|             def __trunc__(self):
 | |
|                 return 1729
 | |
|         self.assertEqual(int(LongTrunc()), 1729)
 | |
| 
 | |
|     def check_float_conversion(self, n):
 | |
|         # Check that int -> float conversion behaviour matches
 | |
|         # that of the pure Python version above.
 | |
|         try:
 | |
|             actual = float(n)
 | |
|         except OverflowError:
 | |
|             actual = 'overflow'
 | |
| 
 | |
|         try:
 | |
|             expected = int_to_float(n)
 | |
|         except OverflowError:
 | |
|             expected = 'overflow'
 | |
| 
 | |
|         msg = ("Error in conversion of integer {} to float.  "
 | |
|                "Got {}, expected {}.".format(n, actual, expected))
 | |
|         self.assertEqual(actual, expected, msg)
 | |
| 
 | |
|     @support.requires_IEEE_754
 | |
|     def test_float_conversion(self):
 | |
| 
 | |
|         exact_values = [0, 1, 2,
 | |
|                          2**53-3,
 | |
|                          2**53-2,
 | |
|                          2**53-1,
 | |
|                          2**53,
 | |
|                          2**53+2,
 | |
|                          2**54-4,
 | |
|                          2**54-2,
 | |
|                          2**54,
 | |
|                          2**54+4]
 | |
|         for x in exact_values:
 | |
|             self.assertEqual(float(x), x)
 | |
|             self.assertEqual(float(-x), -x)
 | |
| 
 | |
|         # test round-half-even
 | |
|         for x, y in [(1, 0), (2, 2), (3, 4), (4, 4), (5, 4), (6, 6), (7, 8)]:
 | |
|             for p in range(15):
 | |
|                 self.assertEqual(int(float(2**p*(2**53+x))), 2**p*(2**53+y))
 | |
| 
 | |
|         for x, y in [(0, 0), (1, 0), (2, 0), (3, 4), (4, 4), (5, 4), (6, 8),
 | |
|                      (7, 8), (8, 8), (9, 8), (10, 8), (11, 12), (12, 12),
 | |
|                      (13, 12), (14, 16), (15, 16)]:
 | |
|             for p in range(15):
 | |
|                 self.assertEqual(int(float(2**p*(2**54+x))), 2**p*(2**54+y))
 | |
| 
 | |
|         # behaviour near extremes of floating-point range
 | |
|         int_dbl_max = int(DBL_MAX)
 | |
|         top_power = 2**DBL_MAX_EXP
 | |
|         halfway = (int_dbl_max + top_power)//2
 | |
|         self.assertEqual(float(int_dbl_max), DBL_MAX)
 | |
|         self.assertEqual(float(int_dbl_max+1), DBL_MAX)
 | |
|         self.assertEqual(float(halfway-1), DBL_MAX)
 | |
|         self.assertRaises(OverflowError, float, halfway)
 | |
|         self.assertEqual(float(1-halfway), -DBL_MAX)
 | |
|         self.assertRaises(OverflowError, float, -halfway)
 | |
|         self.assertRaises(OverflowError, float, top_power-1)
 | |
|         self.assertRaises(OverflowError, float, top_power)
 | |
|         self.assertRaises(OverflowError, float, top_power+1)
 | |
|         self.assertRaises(OverflowError, float, 2*top_power-1)
 | |
|         self.assertRaises(OverflowError, float, 2*top_power)
 | |
|         self.assertRaises(OverflowError, float, top_power*top_power)
 | |
| 
 | |
|         for p in range(100):
 | |
|             x = 2**p * (2**53 + 1) + 1
 | |
|             y = 2**p * (2**53 + 2)
 | |
|             self.assertEqual(int(float(x)), y)
 | |
| 
 | |
|             x = 2**p * (2**53 + 1)
 | |
|             y = 2**p * 2**53
 | |
|             self.assertEqual(int(float(x)), y)
 | |
| 
 | |
|         # Compare builtin float conversion with pure Python int_to_float
 | |
|         # function above.
 | |
|         test_values = [
 | |
|             int_dbl_max-1, int_dbl_max, int_dbl_max+1,
 | |
|             halfway-1, halfway, halfway + 1,
 | |
|             top_power-1, top_power, top_power+1,
 | |
|             2*top_power-1, 2*top_power, top_power*top_power,
 | |
|         ]
 | |
|         test_values.extend(exact_values)
 | |
|         for p in range(-4, 8):
 | |
|             for x in range(-128, 128):
 | |
|                 test_values.append(2**(p+53) + x)
 | |
|         for value in test_values:
 | |
|             self.check_float_conversion(value)
 | |
|             self.check_float_conversion(-value)
 | |
| 
 | |
|     def test_float_overflow(self):
 | |
|         for x in -2.0, -1.0, 0.0, 1.0, 2.0:
 | |
|             self.assertEqual(float(int(x)), x)
 | |
| 
 | |
|         shuge = '12345' * 120
 | |
|         huge = 1 << 30000
 | |
|         mhuge = -huge
 | |
|         namespace = {'huge': huge, 'mhuge': mhuge, 'shuge': shuge, 'math': math}
 | |
|         for test in ["float(huge)", "float(mhuge)",
 | |
|                      "complex(huge)", "complex(mhuge)",
 | |
|                      "complex(huge, 1)", "complex(mhuge, 1)",
 | |
|                      "complex(1, huge)", "complex(1, mhuge)",
 | |
|                      "1. + huge", "huge + 1.", "1. + mhuge", "mhuge + 1.",
 | |
|                      "1. - huge", "huge - 1.", "1. - mhuge", "mhuge - 1.",
 | |
|                      "1. * huge", "huge * 1.", "1. * mhuge", "mhuge * 1.",
 | |
|                      "1. // huge", "huge // 1.", "1. // mhuge", "mhuge // 1.",
 | |
|                      "1. / huge", "huge / 1.", "1. / mhuge", "mhuge / 1.",
 | |
|                      "1. ** huge", "huge ** 1.", "1. ** mhuge", "mhuge ** 1.",
 | |
|                      "math.sin(huge)", "math.sin(mhuge)",
 | |
|                      "math.sqrt(huge)", "math.sqrt(mhuge)", # should do better
 | |
|                      # math.floor() of an int returns an int now
 | |
|                      ##"math.floor(huge)", "math.floor(mhuge)",
 | |
|                      ]:
 | |
| 
 | |
|             self.assertRaises(OverflowError, eval, test, namespace)
 | |
| 
 | |
|         # XXX Perhaps float(shuge) can raise OverflowError on some box?
 | |
|         # The comparison should not.
 | |
|         self.assertNotEqual(float(shuge), int(shuge),
 | |
|             "float(shuge) should not equal int(shuge)")
 | |
| 
 | |
|     def test_logs(self):
 | |
|         LOG10E = math.log10(math.e)
 | |
| 
 | |
|         for exp in list(range(10)) + [100, 1000, 10000]:
 | |
|             value = 10 ** exp
 | |
|             log10 = math.log10(value)
 | |
|             self.assertAlmostEqual(log10, exp)
 | |
| 
 | |
|             # log10(value) == exp, so log(value) == log10(value)/log10(e) ==
 | |
|             # exp/LOG10E
 | |
|             expected = exp / LOG10E
 | |
|             log = math.log(value)
 | |
|             self.assertAlmostEqual(log, expected)
 | |
| 
 | |
|         for bad in -(1 << 10000), -2, 0:
 | |
|             self.assertRaises(ValueError, math.log, bad)
 | |
|             self.assertRaises(ValueError, math.log10, bad)
 | |
| 
 | |
|     def test_mixed_compares(self):
 | |
|         eq = self.assertEqual
 | |
| 
 | |
|         # We're mostly concerned with that mixing floats and ints does the
 | |
|         # right stuff, even when ints are too large to fit in a float.
 | |
|         # The safest way to check the results is to use an entirely different
 | |
|         # method, which we do here via a skeletal rational class (which
 | |
|         # represents all Python ints and floats exactly).
 | |
|         class Rat:
 | |
|             def __init__(self, value):
 | |
|                 if isinstance(value, int):
 | |
|                     self.n = value
 | |
|                     self.d = 1
 | |
|                 elif isinstance(value, float):
 | |
|                     # Convert to exact rational equivalent.
 | |
|                     f, e = math.frexp(abs(value))
 | |
|                     assert f == 0 or 0.5 <= f < 1.0
 | |
|                     # |value| = f * 2**e exactly
 | |
| 
 | |
|                     # Suck up CHUNK bits at a time; 28 is enough so that we suck
 | |
|                     # up all bits in 2 iterations for all known binary double-
 | |
|                     # precision formats, and small enough to fit in an int.
 | |
|                     CHUNK = 28
 | |
|                     top = 0
 | |
|                     # invariant: |value| = (top + f) * 2**e exactly
 | |
|                     while f:
 | |
|                         f = math.ldexp(f, CHUNK)
 | |
|                         digit = int(f)
 | |
|                         assert digit >> CHUNK == 0
 | |
|                         top = (top << CHUNK) | digit
 | |
|                         f -= digit
 | |
|                         assert 0.0 <= f < 1.0
 | |
|                         e -= CHUNK
 | |
| 
 | |
|                     # Now |value| = top * 2**e exactly.
 | |
|                     if e >= 0:
 | |
|                         n = top << e
 | |
|                         d = 1
 | |
|                     else:
 | |
|                         n = top
 | |
|                         d = 1 << -e
 | |
|                     if value < 0:
 | |
|                         n = -n
 | |
|                     self.n = n
 | |
|                     self.d = d
 | |
|                     assert float(n) / float(d) == value
 | |
|                 else:
 | |
|                     raise TypeError("can't deal with %r" % value)
 | |
| 
 | |
|             def _cmp__(self, other):
 | |
|                 if not isinstance(other, Rat):
 | |
|                     other = Rat(other)
 | |
|                 x, y = self.n * other.d, self.d * other.n
 | |
|                 return (x > y) - (x < y)
 | |
|             def __eq__(self, other):
 | |
|                 return self._cmp__(other) == 0
 | |
|             def __ge__(self, other):
 | |
|                 return self._cmp__(other) >= 0
 | |
|             def __gt__(self, other):
 | |
|                 return self._cmp__(other) > 0
 | |
|             def __le__(self, other):
 | |
|                 return self._cmp__(other) <= 0
 | |
|             def __lt__(self, other):
 | |
|                 return self._cmp__(other) < 0
 | |
| 
 | |
|         cases = [0, 0.001, 0.99, 1.0, 1.5, 1e20, 1e200]
 | |
|         # 2**48 is an important boundary in the internals.  2**53 is an
 | |
|         # important boundary for IEEE double precision.
 | |
|         for t in 2.0**48, 2.0**50, 2.0**53:
 | |
|             cases.extend([t - 1.0, t - 0.3, t, t + 0.3, t + 1.0,
 | |
|                           int(t-1), int(t), int(t+1)])
 | |
|         cases.extend([0, 1, 2, sys.maxsize, float(sys.maxsize)])
 | |
|         # 1 << 20000 should exceed all double formats.  int(1e200) is to
 | |
|         # check that we get equality with 1e200 above.
 | |
|         t = int(1e200)
 | |
|         cases.extend([0, 1, 2, 1 << 20000, t-1, t, t+1])
 | |
|         cases.extend([-x for x in cases])
 | |
|         for x in cases:
 | |
|             Rx = Rat(x)
 | |
|             for y in cases:
 | |
|                 Ry = Rat(y)
 | |
|                 Rcmp = (Rx > Ry) - (Rx < Ry)
 | |
|                 with self.subTest(x=x, y=y, Rcmp=Rcmp):
 | |
|                     xycmp = (x > y) - (x < y)
 | |
|                     eq(Rcmp, xycmp)
 | |
|                     eq(x == y, Rcmp == 0)
 | |
|                     eq(x != y, Rcmp != 0)
 | |
|                     eq(x < y, Rcmp < 0)
 | |
|                     eq(x <= y, Rcmp <= 0)
 | |
|                     eq(x > y, Rcmp > 0)
 | |
|                     eq(x >= y, Rcmp >= 0)
 | |
| 
 | |
|     def test__format__(self):
 | |
|         self.assertEqual(format(123456789, 'd'), '123456789')
 | |
|         self.assertEqual(format(123456789, 'd'), '123456789')
 | |
|         self.assertEqual(format(123456789, ','), '123,456,789')
 | |
|         self.assertEqual(format(123456789, '_'), '123_456_789')
 | |
| 
 | |
|         # sign and aligning are interdependent
 | |
|         self.assertEqual(format(1, "-"), '1')
 | |
|         self.assertEqual(format(-1, "-"), '-1')
 | |
|         self.assertEqual(format(1, "-3"), '  1')
 | |
|         self.assertEqual(format(-1, "-3"), ' -1')
 | |
|         self.assertEqual(format(1, "+3"), ' +1')
 | |
|         self.assertEqual(format(-1, "+3"), ' -1')
 | |
|         self.assertEqual(format(1, " 3"), '  1')
 | |
|         self.assertEqual(format(-1, " 3"), ' -1')
 | |
|         self.assertEqual(format(1, " "), ' 1')
 | |
|         self.assertEqual(format(-1, " "), '-1')
 | |
| 
 | |
|         # hex
 | |
|         self.assertEqual(format(3, "x"), "3")
 | |
|         self.assertEqual(format(3, "X"), "3")
 | |
|         self.assertEqual(format(1234, "x"), "4d2")
 | |
|         self.assertEqual(format(-1234, "x"), "-4d2")
 | |
|         self.assertEqual(format(1234, "8x"), "     4d2")
 | |
|         self.assertEqual(format(-1234, "8x"), "    -4d2")
 | |
|         self.assertEqual(format(1234, "x"), "4d2")
 | |
|         self.assertEqual(format(-1234, "x"), "-4d2")
 | |
|         self.assertEqual(format(-3, "x"), "-3")
 | |
|         self.assertEqual(format(-3, "X"), "-3")
 | |
|         self.assertEqual(format(int('be', 16), "x"), "be")
 | |
|         self.assertEqual(format(int('be', 16), "X"), "BE")
 | |
|         self.assertEqual(format(-int('be', 16), "x"), "-be")
 | |
|         self.assertEqual(format(-int('be', 16), "X"), "-BE")
 | |
|         self.assertRaises(ValueError, format, 1234567890, ',x')
 | |
|         self.assertEqual(format(1234567890, '_x'), '4996_02d2')
 | |
|         self.assertEqual(format(1234567890, '_X'), '4996_02D2')
 | |
| 
 | |
|         # octal
 | |
|         self.assertEqual(format(3, "o"), "3")
 | |
|         self.assertEqual(format(-3, "o"), "-3")
 | |
|         self.assertEqual(format(1234, "o"), "2322")
 | |
|         self.assertEqual(format(-1234, "o"), "-2322")
 | |
|         self.assertEqual(format(1234, "-o"), "2322")
 | |
|         self.assertEqual(format(-1234, "-o"), "-2322")
 | |
|         self.assertEqual(format(1234, " o"), " 2322")
 | |
|         self.assertEqual(format(-1234, " o"), "-2322")
 | |
|         self.assertEqual(format(1234, "+o"), "+2322")
 | |
|         self.assertEqual(format(-1234, "+o"), "-2322")
 | |
|         self.assertRaises(ValueError, format, 1234567890, ',o')
 | |
|         self.assertEqual(format(1234567890, '_o'), '111_4540_1322')
 | |
| 
 | |
|         # binary
 | |
|         self.assertEqual(format(3, "b"), "11")
 | |
|         self.assertEqual(format(-3, "b"), "-11")
 | |
|         self.assertEqual(format(1234, "b"), "10011010010")
 | |
|         self.assertEqual(format(-1234, "b"), "-10011010010")
 | |
|         self.assertEqual(format(1234, "-b"), "10011010010")
 | |
|         self.assertEqual(format(-1234, "-b"), "-10011010010")
 | |
|         self.assertEqual(format(1234, " b"), " 10011010010")
 | |
|         self.assertEqual(format(-1234, " b"), "-10011010010")
 | |
|         self.assertEqual(format(1234, "+b"), "+10011010010")
 | |
|         self.assertEqual(format(-1234, "+b"), "-10011010010")
 | |
|         self.assertRaises(ValueError, format, 1234567890, ',b')
 | |
|         self.assertEqual(format(12345, '_b'), '11_0000_0011_1001')
 | |
| 
 | |
|         # make sure these are errors
 | |
|         self.assertRaises(ValueError, format, 3, "1.3")  # precision disallowed
 | |
|         self.assertRaises(ValueError, format, 3, "_c")   # underscore,
 | |
|         self.assertRaises(ValueError, format, 3, ",c")   # comma, and
 | |
|         self.assertRaises(ValueError, format, 3, "+c")   # sign not allowed
 | |
|                                                          # with 'c'
 | |
| 
 | |
|         self.assertRaisesRegex(ValueError, 'Cannot specify both', format, 3, '_,')
 | |
|         self.assertRaisesRegex(ValueError, 'Cannot specify both', format, 3, ',_')
 | |
|         self.assertRaisesRegex(ValueError, 'Cannot specify both', format, 3, '_,d')
 | |
|         self.assertRaisesRegex(ValueError, 'Cannot specify both', format, 3, ',_d')
 | |
| 
 | |
|         self.assertRaisesRegex(ValueError, "Cannot specify ',' with 's'", format, 3, ',s')
 | |
|         self.assertRaisesRegex(ValueError, "Cannot specify '_' with 's'", format, 3, '_s')
 | |
| 
 | |
|         # ensure that only int and float type specifiers work
 | |
|         for format_spec in ([chr(x) for x in range(ord('a'), ord('z')+1)] +
 | |
|                             [chr(x) for x in range(ord('A'), ord('Z')+1)]):
 | |
|             if not format_spec in 'bcdoxXeEfFgGn%':
 | |
|                 self.assertRaises(ValueError, format, 0, format_spec)
 | |
|                 self.assertRaises(ValueError, format, 1, format_spec)
 | |
|                 self.assertRaises(ValueError, format, -1, format_spec)
 | |
|                 self.assertRaises(ValueError, format, 2**100, format_spec)
 | |
|                 self.assertRaises(ValueError, format, -(2**100), format_spec)
 | |
| 
 | |
|         # ensure that float type specifiers work; format converts
 | |
|         #  the int to a float
 | |
|         for format_spec in 'eEfFgG%':
 | |
|             for value in [0, 1, -1, 100, -100, 1234567890, -1234567890]:
 | |
|                 self.assertEqual(format(value, format_spec),
 | |
|                                  format(float(value), format_spec))
 | |
| 
 | |
|     def test_nan_inf(self):
 | |
|         self.assertRaises(OverflowError, int, float('inf'))
 | |
|         self.assertRaises(OverflowError, int, float('-inf'))
 | |
|         self.assertRaises(ValueError, int, float('nan'))
 | |
| 
 | |
|     def test_mod_division(self):
 | |
|         with self.assertRaises(ZeroDivisionError):
 | |
|             _ = 1 % 0
 | |
| 
 | |
|         self.assertEqual(13 % 10, 3)
 | |
|         self.assertEqual(-13 % 10, 7)
 | |
|         self.assertEqual(13 % -10, -7)
 | |
|         self.assertEqual(-13 % -10, -3)
 | |
| 
 | |
|         self.assertEqual(12 % 4, 0)
 | |
|         self.assertEqual(-12 % 4, 0)
 | |
|         self.assertEqual(12 % -4, 0)
 | |
|         self.assertEqual(-12 % -4, 0)
 | |
| 
 | |
|     def test_true_division(self):
 | |
|         huge = 1 << 40000
 | |
|         mhuge = -huge
 | |
|         self.assertEqual(huge / huge, 1.0)
 | |
|         self.assertEqual(mhuge / mhuge, 1.0)
 | |
|         self.assertEqual(huge / mhuge, -1.0)
 | |
|         self.assertEqual(mhuge / huge, -1.0)
 | |
|         self.assertEqual(1 / huge, 0.0)
 | |
|         self.assertEqual(1 / huge, 0.0)
 | |
|         self.assertEqual(1 / mhuge, 0.0)
 | |
|         self.assertEqual(1 / mhuge, 0.0)
 | |
|         self.assertEqual((666 * huge + (huge >> 1)) / huge, 666.5)
 | |
|         self.assertEqual((666 * mhuge + (mhuge >> 1)) / mhuge, 666.5)
 | |
|         self.assertEqual((666 * huge + (huge >> 1)) / mhuge, -666.5)
 | |
|         self.assertEqual((666 * mhuge + (mhuge >> 1)) / huge, -666.5)
 | |
|         self.assertEqual(huge / (huge << 1), 0.5)
 | |
|         self.assertEqual((1000000 * huge) / huge, 1000000)
 | |
| 
 | |
|         namespace = {'huge': huge, 'mhuge': mhuge}
 | |
| 
 | |
|         for overflow in ["float(huge)", "float(mhuge)",
 | |
|                          "huge / 1", "huge / 2", "huge / -1", "huge / -2",
 | |
|                          "mhuge / 100", "mhuge / 200"]:
 | |
|             self.assertRaises(OverflowError, eval, overflow, namespace)
 | |
| 
 | |
|         for underflow in ["1 / huge", "2 / huge", "-1 / huge", "-2 / huge",
 | |
|                          "100 / mhuge", "200 / mhuge"]:
 | |
|             result = eval(underflow, namespace)
 | |
|             self.assertEqual(result, 0.0,
 | |
|                              "expected underflow to 0 from %r" % underflow)
 | |
| 
 | |
|         for zero in ["huge / 0", "mhuge / 0"]:
 | |
|             self.assertRaises(ZeroDivisionError, eval, zero, namespace)
 | |
| 
 | |
|     def test_floordiv(self):
 | |
|         with self.assertRaises(ZeroDivisionError):
 | |
|             _ = 1 // 0
 | |
| 
 | |
|         self.assertEqual(2 // 3, 0)
 | |
|         self.assertEqual(2 // -3, -1)
 | |
|         self.assertEqual(-2 // 3, -1)
 | |
|         self.assertEqual(-2 // -3, 0)
 | |
| 
 | |
|         self.assertEqual(-11 // -3, 3)
 | |
|         self.assertEqual(-11 // 3, -4)
 | |
|         self.assertEqual(11 // -3, -4)
 | |
|         self.assertEqual(11 // 3, 3)
 | |
| 
 | |
|         self.assertEqual(-12 // -3, 4)
 | |
|         self.assertEqual(-12 // 3, -4)
 | |
|         self.assertEqual(12 // -3, -4)
 | |
|         self.assertEqual(12 // 3, 4)
 | |
| 
 | |
|     def check_truediv(self, a, b, skip_small=True):
 | |
|         """Verify that the result of a/b is correctly rounded, by
 | |
|         comparing it with a pure Python implementation of correctly
 | |
|         rounded division.  b should be nonzero."""
 | |
| 
 | |
|         # skip check for small a and b: in this case, the current
 | |
|         # implementation converts the arguments to float directly and
 | |
|         # then applies a float division.  This can give doubly-rounded
 | |
|         # results on x87-using machines (particularly 32-bit Linux).
 | |
|         if skip_small and max(abs(a), abs(b)) < 2**DBL_MANT_DIG:
 | |
|             return
 | |
| 
 | |
|         try:
 | |
|             # use repr so that we can distinguish between -0.0 and 0.0
 | |
|             expected = repr(truediv(a, b))
 | |
|         except OverflowError:
 | |
|             expected = 'overflow'
 | |
|         except ZeroDivisionError:
 | |
|             expected = 'zerodivision'
 | |
| 
 | |
|         try:
 | |
|             got = repr(a / b)
 | |
|         except OverflowError:
 | |
|             got = 'overflow'
 | |
|         except ZeroDivisionError:
 | |
|             got = 'zerodivision'
 | |
| 
 | |
|         self.assertEqual(expected, got, "Incorrectly rounded division {}/{}: "
 | |
|                          "expected {}, got {}".format(a, b, expected, got))
 | |
| 
 | |
|     @support.requires_IEEE_754
 | |
|     def test_correctly_rounded_true_division(self):
 | |
|         # more stringent tests than those above, checking that the
 | |
|         # result of true division of ints is always correctly rounded.
 | |
|         # This test should probably be considered CPython-specific.
 | |
| 
 | |
|         # Exercise all the code paths not involving Gb-sized ints.
 | |
|         # ... divisions involving zero
 | |
|         self.check_truediv(123, 0)
 | |
|         self.check_truediv(-456, 0)
 | |
|         self.check_truediv(0, 3)
 | |
|         self.check_truediv(0, -3)
 | |
|         self.check_truediv(0, 0)
 | |
|         # ... overflow or underflow by large margin
 | |
|         self.check_truediv(671 * 12345 * 2**DBL_MAX_EXP, 12345)
 | |
|         self.check_truediv(12345, 345678 * 2**(DBL_MANT_DIG - DBL_MIN_EXP))
 | |
|         # ... a much larger or smaller than b
 | |
|         self.check_truediv(12345*2**100, 98765)
 | |
|         self.check_truediv(12345*2**30, 98765*7**81)
 | |
|         # ... a / b near a boundary: one of 1, 2**DBL_MANT_DIG, 2**DBL_MIN_EXP,
 | |
|         #                 2**DBL_MAX_EXP, 2**(DBL_MIN_EXP-DBL_MANT_DIG)
 | |
|         bases = (0, DBL_MANT_DIG, DBL_MIN_EXP,
 | |
|                  DBL_MAX_EXP, DBL_MIN_EXP - DBL_MANT_DIG)
 | |
|         for base in bases:
 | |
|             for exp in range(base - 15, base + 15):
 | |
|                 self.check_truediv(75312*2**max(exp, 0), 69187*2**max(-exp, 0))
 | |
|                 self.check_truediv(69187*2**max(exp, 0), 75312*2**max(-exp, 0))
 | |
| 
 | |
|         # overflow corner case
 | |
|         for m in [1, 2, 7, 17, 12345, 7**100,
 | |
|                   -1, -2, -5, -23, -67891, -41**50]:
 | |
|             for n in range(-10, 10):
 | |
|                 self.check_truediv(m*DBL_MIN_OVERFLOW + n, m)
 | |
|                 self.check_truediv(m*DBL_MIN_OVERFLOW + n, -m)
 | |
| 
 | |
|         # check detection of inexactness in shifting stage
 | |
|         for n in range(250):
 | |
|             # (2**DBL_MANT_DIG+1)/(2**DBL_MANT_DIG) lies halfway
 | |
|             # between two representable floats, and would usually be
 | |
|             # rounded down under round-half-to-even.  The tiniest of
 | |
|             # additions to the numerator should cause it to be rounded
 | |
|             # up instead.
 | |
|             self.check_truediv((2**DBL_MANT_DIG + 1)*12345*2**200 + 2**n,
 | |
|                            2**DBL_MANT_DIG*12345)
 | |
| 
 | |
|         # 1/2731 is one of the smallest division cases that's subject
 | |
|         # to double rounding on IEEE 754 machines working internally with
 | |
|         # 64-bit precision.  On such machines, the next check would fail,
 | |
|         # were it not explicitly skipped in check_truediv.
 | |
|         self.check_truediv(1, 2731)
 | |
| 
 | |
|         # a particularly bad case for the old algorithm:  gives an
 | |
|         # error of close to 3.5 ulps.
 | |
|         self.check_truediv(295147931372582273023, 295147932265116303360)
 | |
|         for i in range(1000):
 | |
|             self.check_truediv(10**(i+1), 10**i)
 | |
|             self.check_truediv(10**i, 10**(i+1))
 | |
| 
 | |
|         # test round-half-to-even behaviour, normal result
 | |
|         for m in [1, 2, 4, 7, 8, 16, 17, 32, 12345, 7**100,
 | |
|                   -1, -2, -5, -23, -67891, -41**50]:
 | |
|             for n in range(-10, 10):
 | |
|                 self.check_truediv(2**DBL_MANT_DIG*m + n, m)
 | |
| 
 | |
|         # test round-half-to-even, subnormal result
 | |
|         for n in range(-20, 20):
 | |
|             self.check_truediv(n, 2**1076)
 | |
| 
 | |
|         # largeish random divisions: a/b where |a| <= |b| <=
 | |
|         # 2*|a|; |ans| is between 0.5 and 1.0, so error should
 | |
|         # always be bounded by 2**-54 with equality possible only
 | |
|         # if the least significant bit of q=ans*2**53 is zero.
 | |
|         for M in [10**10, 10**100, 10**1000]:
 | |
|             for i in range(1000):
 | |
|                 a = random.randrange(1, M)
 | |
|                 b = random.randrange(a, 2*a+1)
 | |
|                 self.check_truediv(a, b)
 | |
|                 self.check_truediv(-a, b)
 | |
|                 self.check_truediv(a, -b)
 | |
|                 self.check_truediv(-a, -b)
 | |
| 
 | |
|         # and some (genuinely) random tests
 | |
|         for _ in range(10000):
 | |
|             a_bits = random.randrange(1000)
 | |
|             b_bits = random.randrange(1, 1000)
 | |
|             x = random.randrange(2**a_bits)
 | |
|             y = random.randrange(1, 2**b_bits)
 | |
|             self.check_truediv(x, y)
 | |
|             self.check_truediv(x, -y)
 | |
|             self.check_truediv(-x, y)
 | |
|             self.check_truediv(-x, -y)
 | |
| 
 | |
|     def test_negative_shift_count(self):
 | |
|         with self.assertRaises(ValueError):
 | |
|             42 << -3
 | |
|         with self.assertRaises(ValueError):
 | |
|             42 << -(1 << 1000)
 | |
|         with self.assertRaises(ValueError):
 | |
|             42 >> -3
 | |
|         with self.assertRaises(ValueError):
 | |
|             42 >> -(1 << 1000)
 | |
| 
 | |
|     def test_lshift_of_zero(self):
 | |
|         self.assertEqual(0 << 0, 0)
 | |
|         self.assertEqual(0 << 10, 0)
 | |
|         with self.assertRaises(ValueError):
 | |
|             0 << -1
 | |
|         self.assertEqual(0 << (1 << 1000), 0)
 | |
|         with self.assertRaises(ValueError):
 | |
|             0 << -(1 << 1000)
 | |
| 
 | |
|     @support.cpython_only
 | |
|     def test_huge_lshift_of_zero(self):
 | |
|         # Shouldn't try to allocate memory for a huge shift. See issue #27870.
 | |
|         # Other implementations may have a different boundary for overflow,
 | |
|         # or not raise at all.
 | |
|         self.assertEqual(0 << sys.maxsize, 0)
 | |
|         self.assertEqual(0 << (sys.maxsize + 1), 0)
 | |
| 
 | |
|     @support.cpython_only
 | |
|     @support.bigmemtest(sys.maxsize + 1000, memuse=2/15 * 2, dry_run=False)
 | |
|     def test_huge_lshift(self, size):
 | |
|         self.assertEqual(1 << (sys.maxsize + 1000), 1 << 1000 << sys.maxsize)
 | |
| 
 | |
|     def test_huge_rshift(self):
 | |
|         self.assertEqual(42 >> (1 << 1000), 0)
 | |
|         self.assertEqual((-42) >> (1 << 1000), -1)
 | |
| 
 | |
|     @support.cpython_only
 | |
|     @support.bigmemtest(sys.maxsize + 500, memuse=2/15, dry_run=False)
 | |
|     def test_huge_rshift_of_huge(self, size):
 | |
|         huge = ((1 << 500) + 11) << sys.maxsize
 | |
|         self.assertEqual(huge >> (sys.maxsize + 1), (1 << 499) + 5)
 | |
|         self.assertEqual(huge >> (sys.maxsize + 1000), 0)
 | |
| 
 | |
|     def test_small_ints(self):
 | |
|         for i in range(-5, 257):
 | |
|             self.assertIs(i, i + 0)
 | |
|             self.assertIs(i, i * 1)
 | |
|             self.assertIs(i, i - 0)
 | |
|             self.assertIs(i, i // 1)
 | |
|             self.assertIs(i, i & -1)
 | |
|             self.assertIs(i, i | 0)
 | |
|             self.assertIs(i, i ^ 0)
 | |
|             self.assertIs(i, ~~i)
 | |
|             self.assertIs(i, i**1)
 | |
|             self.assertIs(i, int(str(i)))
 | |
|             self.assertIs(i, i<<2>>2, str(i))
 | |
|         # corner cases
 | |
|         i = 1 << 70
 | |
|         self.assertIs(i - i, 0)
 | |
|         self.assertIs(0 * i, 0)
 | |
| 
 | |
|     def test_bit_length(self):
 | |
|         tiny = 1e-10
 | |
|         for x in range(-65000, 65000):
 | |
|             k = x.bit_length()
 | |
|             # Check equivalence with Python version
 | |
|             self.assertEqual(k, len(bin(x).lstrip('-0b')))
 | |
|             # Behaviour as specified in the docs
 | |
|             if x != 0:
 | |
|                 self.assertTrue(2**(k-1) <= abs(x) < 2**k)
 | |
|             else:
 | |
|                 self.assertEqual(k, 0)
 | |
|             # Alternative definition: x.bit_length() == 1 + floor(log_2(x))
 | |
|             if x != 0:
 | |
|                 # When x is an exact power of 2, numeric errors can
 | |
|                 # cause floor(log(x)/log(2)) to be one too small; for
 | |
|                 # small x this can be fixed by adding a small quantity
 | |
|                 # to the quotient before taking the floor.
 | |
|                 self.assertEqual(k, 1 + math.floor(
 | |
|                         math.log(abs(x))/math.log(2) + tiny))
 | |
| 
 | |
|         self.assertEqual((0).bit_length(), 0)
 | |
|         self.assertEqual((1).bit_length(), 1)
 | |
|         self.assertEqual((-1).bit_length(), 1)
 | |
|         self.assertEqual((2).bit_length(), 2)
 | |
|         self.assertEqual((-2).bit_length(), 2)
 | |
|         for i in [2, 3, 15, 16, 17, 31, 32, 33, 63, 64, 234]:
 | |
|             a = 2**i
 | |
|             self.assertEqual((a-1).bit_length(), i)
 | |
|             self.assertEqual((1-a).bit_length(), i)
 | |
|             self.assertEqual((a).bit_length(), i+1)
 | |
|             self.assertEqual((-a).bit_length(), i+1)
 | |
|             self.assertEqual((a+1).bit_length(), i+1)
 | |
|             self.assertEqual((-a-1).bit_length(), i+1)
 | |
| 
 | |
|     def test_round(self):
 | |
|         # check round-half-even algorithm. For round to nearest ten;
 | |
|         # rounding map is invariant under adding multiples of 20
 | |
|         test_dict = {0:0, 1:0, 2:0, 3:0, 4:0, 5:0,
 | |
|                      6:10, 7:10, 8:10, 9:10, 10:10, 11:10, 12:10, 13:10, 14:10,
 | |
|                      15:20, 16:20, 17:20, 18:20, 19:20}
 | |
|         for offset in range(-520, 520, 20):
 | |
|             for k, v in test_dict.items():
 | |
|                 got = round(k+offset, -1)
 | |
|                 expected = v+offset
 | |
|                 self.assertEqual(got, expected)
 | |
|                 self.assertIs(type(got), int)
 | |
| 
 | |
|         # larger second argument
 | |
|         self.assertEqual(round(-150, -2), -200)
 | |
|         self.assertEqual(round(-149, -2), -100)
 | |
|         self.assertEqual(round(-51, -2), -100)
 | |
|         self.assertEqual(round(-50, -2), 0)
 | |
|         self.assertEqual(round(-49, -2), 0)
 | |
|         self.assertEqual(round(-1, -2), 0)
 | |
|         self.assertEqual(round(0, -2), 0)
 | |
|         self.assertEqual(round(1, -2), 0)
 | |
|         self.assertEqual(round(49, -2), 0)
 | |
|         self.assertEqual(round(50, -2), 0)
 | |
|         self.assertEqual(round(51, -2), 100)
 | |
|         self.assertEqual(round(149, -2), 100)
 | |
|         self.assertEqual(round(150, -2), 200)
 | |
|         self.assertEqual(round(250, -2), 200)
 | |
|         self.assertEqual(round(251, -2), 300)
 | |
|         self.assertEqual(round(172500, -3), 172000)
 | |
|         self.assertEqual(round(173500, -3), 174000)
 | |
|         self.assertEqual(round(31415926535, -1), 31415926540)
 | |
|         self.assertEqual(round(31415926535, -2), 31415926500)
 | |
|         self.assertEqual(round(31415926535, -3), 31415927000)
 | |
|         self.assertEqual(round(31415926535, -4), 31415930000)
 | |
|         self.assertEqual(round(31415926535, -5), 31415900000)
 | |
|         self.assertEqual(round(31415926535, -6), 31416000000)
 | |
|         self.assertEqual(round(31415926535, -7), 31420000000)
 | |
|         self.assertEqual(round(31415926535, -8), 31400000000)
 | |
|         self.assertEqual(round(31415926535, -9), 31000000000)
 | |
|         self.assertEqual(round(31415926535, -10), 30000000000)
 | |
|         self.assertEqual(round(31415926535, -11), 0)
 | |
|         self.assertEqual(round(31415926535, -12), 0)
 | |
|         self.assertEqual(round(31415926535, -999), 0)
 | |
| 
 | |
|         # should get correct results even for huge inputs
 | |
|         for k in range(10, 100):
 | |
|             got = round(10**k + 324678, -3)
 | |
|             expect = 10**k + 325000
 | |
|             self.assertEqual(got, expect)
 | |
|             self.assertIs(type(got), int)
 | |
| 
 | |
|         # nonnegative second argument: round(x, n) should just return x
 | |
|         for n in range(5):
 | |
|             for i in range(100):
 | |
|                 x = random.randrange(-10000, 10000)
 | |
|                 got = round(x, n)
 | |
|                 self.assertEqual(got, x)
 | |
|                 self.assertIs(type(got), int)
 | |
|         for huge_n in 2**31-1, 2**31, 2**63-1, 2**63, 2**100, 10**100:
 | |
|             self.assertEqual(round(8979323, huge_n), 8979323)
 | |
| 
 | |
|         # omitted second argument
 | |
|         for i in range(100):
 | |
|             x = random.randrange(-10000, 10000)
 | |
|             got = round(x)
 | |
|             self.assertEqual(got, x)
 | |
|             self.assertIs(type(got), int)
 | |
| 
 | |
|         # bad second argument
 | |
|         bad_exponents = ('brian', 2.0, 0j)
 | |
|         for e in bad_exponents:
 | |
|             self.assertRaises(TypeError, round, 3, e)
 | |
| 
 | |
|     def test_to_bytes(self):
 | |
|         def check(tests, byteorder, signed=False):
 | |
|             for test, expected in tests.items():
 | |
|                 try:
 | |
|                     self.assertEqual(
 | |
|                         test.to_bytes(len(expected), byteorder, signed=signed),
 | |
|                         expected)
 | |
|                 except Exception as err:
 | |
|                     raise AssertionError(
 | |
|                         "failed to convert {0} with byteorder={1} and signed={2}"
 | |
|                         .format(test, byteorder, signed)) from err
 | |
| 
 | |
|         # Convert integers to signed big-endian byte arrays.
 | |
|         tests1 = {
 | |
|             0: b'\x00',
 | |
|             1: b'\x01',
 | |
|             -1: b'\xff',
 | |
|             -127: b'\x81',
 | |
|             -128: b'\x80',
 | |
|             -129: b'\xff\x7f',
 | |
|             127: b'\x7f',
 | |
|             129: b'\x00\x81',
 | |
|             -255: b'\xff\x01',
 | |
|             -256: b'\xff\x00',
 | |
|             255: b'\x00\xff',
 | |
|             256: b'\x01\x00',
 | |
|             32767: b'\x7f\xff',
 | |
|             -32768: b'\xff\x80\x00',
 | |
|             65535: b'\x00\xff\xff',
 | |
|             -65536: b'\xff\x00\x00',
 | |
|             -8388608: b'\x80\x00\x00'
 | |
|         }
 | |
|         check(tests1, 'big', signed=True)
 | |
| 
 | |
|         # Convert integers to signed little-endian byte arrays.
 | |
|         tests2 = {
 | |
|             0: b'\x00',
 | |
|             1: b'\x01',
 | |
|             -1: b'\xff',
 | |
|             -127: b'\x81',
 | |
|             -128: b'\x80',
 | |
|             -129: b'\x7f\xff',
 | |
|             127: b'\x7f',
 | |
|             129: b'\x81\x00',
 | |
|             -255: b'\x01\xff',
 | |
|             -256: b'\x00\xff',
 | |
|             255: b'\xff\x00',
 | |
|             256: b'\x00\x01',
 | |
|             32767: b'\xff\x7f',
 | |
|             -32768: b'\x00\x80',
 | |
|             65535: b'\xff\xff\x00',
 | |
|             -65536: b'\x00\x00\xff',
 | |
|             -8388608: b'\x00\x00\x80'
 | |
|         }
 | |
|         check(tests2, 'little', signed=True)
 | |
| 
 | |
|         # Convert integers to unsigned big-endian byte arrays.
 | |
|         tests3 = {
 | |
|             0: b'\x00',
 | |
|             1: b'\x01',
 | |
|             127: b'\x7f',
 | |
|             128: b'\x80',
 | |
|             255: b'\xff',
 | |
|             256: b'\x01\x00',
 | |
|             32767: b'\x7f\xff',
 | |
|             32768: b'\x80\x00',
 | |
|             65535: b'\xff\xff',
 | |
|             65536: b'\x01\x00\x00'
 | |
|         }
 | |
|         check(tests3, 'big', signed=False)
 | |
| 
 | |
|         # Convert integers to unsigned little-endian byte arrays.
 | |
|         tests4 = {
 | |
|             0: b'\x00',
 | |
|             1: b'\x01',
 | |
|             127: b'\x7f',
 | |
|             128: b'\x80',
 | |
|             255: b'\xff',
 | |
|             256: b'\x00\x01',
 | |
|             32767: b'\xff\x7f',
 | |
|             32768: b'\x00\x80',
 | |
|             65535: b'\xff\xff',
 | |
|             65536: b'\x00\x00\x01'
 | |
|         }
 | |
|         check(tests4, 'little', signed=False)
 | |
| 
 | |
|         self.assertRaises(OverflowError, (256).to_bytes, 1, 'big', signed=False)
 | |
|         self.assertRaises(OverflowError, (256).to_bytes, 1, 'big', signed=True)
 | |
|         self.assertRaises(OverflowError, (256).to_bytes, 1, 'little', signed=False)
 | |
|         self.assertRaises(OverflowError, (256).to_bytes, 1, 'little', signed=True)
 | |
|         self.assertRaises(OverflowError, (-1).to_bytes, 2, 'big', signed=False)
 | |
|         self.assertRaises(OverflowError, (-1).to_bytes, 2, 'little', signed=False)
 | |
|         self.assertEqual((0).to_bytes(0, 'big'), b'')
 | |
|         self.assertEqual((1).to_bytes(5, 'big'), b'\x00\x00\x00\x00\x01')
 | |
|         self.assertEqual((0).to_bytes(5, 'big'), b'\x00\x00\x00\x00\x00')
 | |
|         self.assertEqual((-1).to_bytes(5, 'big', signed=True),
 | |
|                          b'\xff\xff\xff\xff\xff')
 | |
|         self.assertRaises(OverflowError, (1).to_bytes, 0, 'big')
 | |
| 
 | |
|     def test_from_bytes(self):
 | |
|         def check(tests, byteorder, signed=False):
 | |
|             for test, expected in tests.items():
 | |
|                 try:
 | |
|                     self.assertEqual(
 | |
|                         int.from_bytes(test, byteorder, signed=signed),
 | |
|                         expected)
 | |
|                 except Exception as err:
 | |
|                     raise AssertionError(
 | |
|                         "failed to convert {0} with byteorder={1!r} and signed={2}"
 | |
|                         .format(test, byteorder, signed)) from err
 | |
| 
 | |
|         # Convert signed big-endian byte arrays to integers.
 | |
|         tests1 = {
 | |
|             b'': 0,
 | |
|             b'\x00': 0,
 | |
|             b'\x00\x00': 0,
 | |
|             b'\x01': 1,
 | |
|             b'\x00\x01': 1,
 | |
|             b'\xff': -1,
 | |
|             b'\xff\xff': -1,
 | |
|             b'\x81': -127,
 | |
|             b'\x80': -128,
 | |
|             b'\xff\x7f': -129,
 | |
|             b'\x7f': 127,
 | |
|             b'\x00\x81': 129,
 | |
|             b'\xff\x01': -255,
 | |
|             b'\xff\x00': -256,
 | |
|             b'\x00\xff': 255,
 | |
|             b'\x01\x00': 256,
 | |
|             b'\x7f\xff': 32767,
 | |
|             b'\x80\x00': -32768,
 | |
|             b'\x00\xff\xff': 65535,
 | |
|             b'\xff\x00\x00': -65536,
 | |
|             b'\x80\x00\x00': -8388608
 | |
|         }
 | |
|         check(tests1, 'big', signed=True)
 | |
| 
 | |
|         # Convert signed little-endian byte arrays to integers.
 | |
|         tests2 = {
 | |
|             b'': 0,
 | |
|             b'\x00': 0,
 | |
|             b'\x00\x00': 0,
 | |
|             b'\x01': 1,
 | |
|             b'\x00\x01': 256,
 | |
|             b'\xff': -1,
 | |
|             b'\xff\xff': -1,
 | |
|             b'\x81': -127,
 | |
|             b'\x80': -128,
 | |
|             b'\x7f\xff': -129,
 | |
|             b'\x7f': 127,
 | |
|             b'\x81\x00': 129,
 | |
|             b'\x01\xff': -255,
 | |
|             b'\x00\xff': -256,
 | |
|             b'\xff\x00': 255,
 | |
|             b'\x00\x01': 256,
 | |
|             b'\xff\x7f': 32767,
 | |
|             b'\x00\x80': -32768,
 | |
|             b'\xff\xff\x00': 65535,
 | |
|             b'\x00\x00\xff': -65536,
 | |
|             b'\x00\x00\x80': -8388608
 | |
|         }
 | |
|         check(tests2, 'little', signed=True)
 | |
| 
 | |
|         # Convert unsigned big-endian byte arrays to integers.
 | |
|         tests3 = {
 | |
|             b'': 0,
 | |
|             b'\x00': 0,
 | |
|             b'\x01': 1,
 | |
|             b'\x7f': 127,
 | |
|             b'\x80': 128,
 | |
|             b'\xff': 255,
 | |
|             b'\x01\x00': 256,
 | |
|             b'\x7f\xff': 32767,
 | |
|             b'\x80\x00': 32768,
 | |
|             b'\xff\xff': 65535,
 | |
|             b'\x01\x00\x00': 65536,
 | |
|         }
 | |
|         check(tests3, 'big', signed=False)
 | |
| 
 | |
|         # Convert integers to unsigned little-endian byte arrays.
 | |
|         tests4 = {
 | |
|             b'': 0,
 | |
|             b'\x00': 0,
 | |
|             b'\x01': 1,
 | |
|             b'\x7f': 127,
 | |
|             b'\x80': 128,
 | |
|             b'\xff': 255,
 | |
|             b'\x00\x01': 256,
 | |
|             b'\xff\x7f': 32767,
 | |
|             b'\x00\x80': 32768,
 | |
|             b'\xff\xff': 65535,
 | |
|             b'\x00\x00\x01': 65536,
 | |
|         }
 | |
|         check(tests4, 'little', signed=False)
 | |
| 
 | |
|         class myint(int):
 | |
|             pass
 | |
| 
 | |
|         self.assertIs(type(myint.from_bytes(b'\x00', 'big')), myint)
 | |
|         self.assertEqual(myint.from_bytes(b'\x01', 'big'), 1)
 | |
|         self.assertIs(
 | |
|             type(myint.from_bytes(b'\x00', 'big', signed=False)), myint)
 | |
|         self.assertEqual(myint.from_bytes(b'\x01', 'big', signed=False), 1)
 | |
|         self.assertIs(type(myint.from_bytes(b'\x00', 'little')), myint)
 | |
|         self.assertEqual(myint.from_bytes(b'\x01', 'little'), 1)
 | |
|         self.assertIs(type(myint.from_bytes(
 | |
|             b'\x00', 'little', signed=False)), myint)
 | |
|         self.assertEqual(myint.from_bytes(b'\x01', 'little', signed=False), 1)
 | |
|         self.assertEqual(
 | |
|             int.from_bytes([255, 0, 0], 'big', signed=True), -65536)
 | |
|         self.assertEqual(
 | |
|             int.from_bytes((255, 0, 0), 'big', signed=True), -65536)
 | |
|         self.assertEqual(int.from_bytes(
 | |
|             bytearray(b'\xff\x00\x00'), 'big', signed=True), -65536)
 | |
|         self.assertEqual(int.from_bytes(
 | |
|             bytearray(b'\xff\x00\x00'), 'big', signed=True), -65536)
 | |
|         self.assertEqual(int.from_bytes(
 | |
|             array.array('B', b'\xff\x00\x00'), 'big', signed=True), -65536)
 | |
|         self.assertEqual(int.from_bytes(
 | |
|             memoryview(b'\xff\x00\x00'), 'big', signed=True), -65536)
 | |
|         self.assertRaises(ValueError, int.from_bytes, [256], 'big')
 | |
|         self.assertRaises(ValueError, int.from_bytes, [0], 'big\x00')
 | |
|         self.assertRaises(ValueError, int.from_bytes, [0], 'little\x00')
 | |
|         self.assertRaises(TypeError, int.from_bytes, "", 'big')
 | |
|         self.assertRaises(TypeError, int.from_bytes, "\x00", 'big')
 | |
|         self.assertRaises(TypeError, int.from_bytes, 0, 'big')
 | |
|         self.assertRaises(TypeError, int.from_bytes, 0, 'big', True)
 | |
|         self.assertRaises(TypeError, myint.from_bytes, "", 'big')
 | |
|         self.assertRaises(TypeError, myint.from_bytes, "\x00", 'big')
 | |
|         self.assertRaises(TypeError, myint.from_bytes, 0, 'big')
 | |
|         self.assertRaises(TypeError, int.from_bytes, 0, 'big', True)
 | |
| 
 | |
|         class myint2(int):
 | |
|             def __new__(cls, value):
 | |
|                 return int.__new__(cls, value + 1)
 | |
| 
 | |
|         i = myint2.from_bytes(b'\x01', 'big')
 | |
|         self.assertIs(type(i), myint2)
 | |
|         self.assertEqual(i, 2)
 | |
| 
 | |
|         class myint3(int):
 | |
|             def __init__(self, value):
 | |
|                 self.foo = 'bar'
 | |
| 
 | |
|         i = myint3.from_bytes(b'\x01', 'big')
 | |
|         self.assertIs(type(i), myint3)
 | |
|         self.assertEqual(i, 1)
 | |
|         self.assertEqual(getattr(i, 'foo', 'none'), 'bar')
 | |
| 
 | |
|     def test_access_to_nonexistent_digit_0(self):
 | |
|         # http://bugs.python.org/issue14630: A bug in _PyLong_Copy meant that
 | |
|         # ob_digit[0] was being incorrectly accessed for instances of a
 | |
|         # subclass of int, with value 0.
 | |
|         class Integer(int):
 | |
|             def __new__(cls, value=0):
 | |
|                 self = int.__new__(cls, value)
 | |
|                 self.foo = 'foo'
 | |
|                 return self
 | |
| 
 | |
|         integers = [Integer(0) for i in range(1000)]
 | |
|         for n in map(int, integers):
 | |
|             self.assertEqual(n, 0)
 | |
| 
 | |
|     def test_shift_bool(self):
 | |
|         # Issue #21422: ensure that bool << int and bool >> int return int
 | |
|         for value in (True, False):
 | |
|             for shift in (0, 2):
 | |
|                 self.assertEqual(type(value << shift), int)
 | |
|                 self.assertEqual(type(value >> shift), int)
 | |
| 
 | |
|     def test_as_integer_ratio(self):
 | |
|         class myint(int):
 | |
|             pass
 | |
|         tests = [10, 0, -10, 1, sys.maxsize + 1, True, False, myint(42)]
 | |
|         for value in tests:
 | |
|             numerator, denominator = value.as_integer_ratio()
 | |
|             self.assertEqual((numerator, denominator), (int(value), 1))
 | |
|             self.assertEqual(type(numerator), int)
 | |
|             self.assertEqual(type(denominator), int)
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     unittest.main()
 |