cpython/Lib/rational.py
Christian Heimes af98da18c0 Merged revisions 60284-60349 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk

........
  r60286 | christian.heimes | 2008-01-25 15:54:23 +0100 (Fri, 25 Jan 2008) | 1 line

  setup.py doesn't pick up changes to a header file
........
  r60287 | christian.heimes | 2008-01-25 16:52:11 +0100 (Fri, 25 Jan 2008) | 2 lines

  Added the Python core headers Include/*.h and pyconfig.h as dependencies for the extensions in Modules/
  It forces a rebuild of all extensions when a header files has been modified
........
  r60291 | raymond.hettinger | 2008-01-25 20:24:46 +0100 (Fri, 25 Jan 2008) | 4 lines

  Changes 54857 and 54840 broke code and were reverted in Py2.5 just before
  it was released, but that reversion never made it to the Py2.6 head.
........
  r60296 | guido.van.rossum | 2008-01-25 20:50:26 +0100 (Fri, 25 Jan 2008) | 2 lines

  Rewrite the list_inline_repeat overflow check slightly differently.
........
  r60301 | thomas.wouters | 2008-01-25 22:09:34 +0100 (Fri, 25 Jan 2008) | 4 lines


  Use the right (portable) definition of the max of a Py_ssize_t.
........
  r60303 | thomas.wouters | 2008-01-26 02:47:05 +0100 (Sat, 26 Jan 2008) | 5 lines


  Make 'testall' work again when building in a separate directory.
  test_distutils still fails when doing that.
........
  r60305 | neal.norwitz | 2008-01-26 06:54:48 +0100 (Sat, 26 Jan 2008) | 3 lines

  Prevent this test from failing if there are transient network problems
  by retrying the host for up to 3 times.
........
  r60306 | neal.norwitz | 2008-01-26 08:26:12 +0100 (Sat, 26 Jan 2008) | 12 lines

  Use a condition variable (threading.Event) rather than sleeps and checking a
  global to determine when the server is ready to be used.  This slows the test
  down, but should make it correct.  There was a race condition before where the
  server could have assigned a port, yet it wasn't ready to serve requests.  If
  the client sent a request before the server was completely ready, it would get
  an exception.  There was machinery to try to handle this condition.  All of
  that should be unnecessary and removed if this change works.  A NOTE was
  added as a comment about what needs to be fixed.

  The buildbots will tell us if there are more errors or
  if this test is now stable.
........
  r60307 | neal.norwitz | 2008-01-26 08:38:03 +0100 (Sat, 26 Jan 2008) | 3 lines

  Fix exception in tearDown on ppc buildbot.  If there's no directory,
  that shouldn't cause the test to fail.  Just like it setUp.
........
  r60308 | raymond.hettinger | 2008-01-26 09:19:06 +0100 (Sat, 26 Jan 2008) | 3 lines

  Make PySet_Add() work with frozensets.  Works like PyTuple_SetItem() to build-up values in a brand new frozenset.
........
  r60309 | neal.norwitz | 2008-01-26 09:26:00 +0100 (Sat, 26 Jan 2008) | 1 line

  The OS X buildbot had errors with the unavailable exceptions disabled.  Restore it.
........
  r60310 | raymond.hettinger | 2008-01-26 09:37:28 +0100 (Sat, 26 Jan 2008) | 4 lines

  Let marshal build-up sets and frozensets one element at a time.
  Saves the unnecessary creation of a tuple as intermediate container.
........
  r60311 | raymond.hettinger | 2008-01-26 09:41:13 +0100 (Sat, 26 Jan 2008) | 1 line

  Update test code for change to PySet_Add().
........
  r60312 | raymond.hettinger | 2008-01-26 10:31:11 +0100 (Sat, 26 Jan 2008) | 1 line

  Revert PySet_Add() changes.
........
  r60314 | georg.brandl | 2008-01-26 10:43:35 +0100 (Sat, 26 Jan 2008) | 2 lines

  #1934: fix os.path.isabs docs.
........
  r60316 | georg.brandl | 2008-01-26 12:00:18 +0100 (Sat, 26 Jan 2008) | 2 lines

  Add missing things in re docstring.
........
  r60317 | georg.brandl | 2008-01-26 12:02:22 +0100 (Sat, 26 Jan 2008) | 2 lines

  Slashes allowed on Windows.
........
  r60319 | georg.brandl | 2008-01-26 14:41:21 +0100 (Sat, 26 Jan 2008) | 2 lines

  Fix markup again.
........
  r60320 | andrew.kuchling | 2008-01-26 14:50:51 +0100 (Sat, 26 Jan 2008) | 1 line

  Add some items
........
  r60321 | georg.brandl | 2008-01-26 15:02:38 +0100 (Sat, 26 Jan 2008) | 2 lines

  Clarify "b" mode under Unix.
........
  r60322 | georg.brandl | 2008-01-26 15:03:47 +0100 (Sat, 26 Jan 2008) | 3 lines

  #1940: make it possible to use curses.filter() before curses.initscr()
  as the documentation says.
........
  r60324 | georg.brandl | 2008-01-26 15:14:20 +0100 (Sat, 26 Jan 2008) | 3 lines

  #1473257: add generator.gi_code attribute that refers to
  the original code object backing the generator. Patch by Collin Winter.
........
  r60325 | georg.brandl | 2008-01-26 15:19:22 +0100 (Sat, 26 Jan 2008) | 2 lines

  Move C API entries to the corresponding section.
........
  r60326 | christian.heimes | 2008-01-26 17:43:35 +0100 (Sat, 26 Jan 2008) | 1 line

  Unit test fix from Giampaolo Rodola, #1938
........
  r60327 | gregory.p.smith | 2008-01-26 19:51:05 +0100 (Sat, 26 Jan 2008) | 2 lines

  Update docs for new callpack params added in r60188
........
  r60329 | neal.norwitz | 2008-01-26 21:24:36 +0100 (Sat, 26 Jan 2008) | 3 lines

  Cleanup the code a bit.  test_rfind is failing on PPC and PPC64 buildbots,
  this might fix the problem.
........
  r60330 | neal.norwitz | 2008-01-26 22:02:45 +0100 (Sat, 26 Jan 2008) | 1 line

  Always try to remove the test file even if close raises an exception
........
  r60331 | neal.norwitz | 2008-01-26 22:21:59 +0100 (Sat, 26 Jan 2008) | 3 lines

  Reduce the race condition by signalling when the server is ready
  and not trying to connect before.
........
  r60334 | neal.norwitz | 2008-01-27 00:13:46 +0100 (Sun, 27 Jan 2008) | 5 lines

  On some systems (e.g., Ubuntu on hppa) the flush()
  doesn't cause the exception, but the close() does.

  Will backport.
........
  r60335 | neal.norwitz | 2008-01-27 00:14:17 +0100 (Sun, 27 Jan 2008) | 2 lines

  Consistently use tempfile.tempdir for the db_home directory.
........
  r60338 | neal.norwitz | 2008-01-27 02:44:05 +0100 (Sun, 27 Jan 2008) | 4 lines

  Eliminate the sleeps that assume the server will start in .5 seconds.
  This should make the test less flaky.  It also speeds up the test
  by about 75% on my box (20+ seconds -> ~4 seconds).
........
  r60342 | neal.norwitz | 2008-01-27 06:02:34 +0100 (Sun, 27 Jan 2008) | 6 lines

  Try to prevent this test from being flaky.  We might need a sleep in here
  which isn't as bad as it sounds.  The close() *should* raise an exception,
  so if it didn't we should give more time to sync and really raise it.

  Will backport.
........
  r60344 | jeffrey.yasskin | 2008-01-27 06:40:35 +0100 (Sun, 27 Jan 2008) | 3 lines

  Make rational.gcd() public and allow Rational to take decimal strings, per
  Raymond's advice.
........
  r60345 | neal.norwitz | 2008-01-27 08:36:03 +0100 (Sun, 27 Jan 2008) | 3 lines

  Mostly reformat.  Also set an error and return NULL if neither MS_WINDOWS
  nor UNIX is defined.  This may have caused problems on cygwin.
........
  r60346 | neal.norwitz | 2008-01-27 08:37:38 +0100 (Sun, 27 Jan 2008) | 3 lines

  Use int for the sign rather than a char.  char can be signed or unsigned.
  It's system dependent.  This might fix the problem with test_rfind failing.
........
  r60347 | neal.norwitz | 2008-01-27 08:41:33 +0100 (Sun, 27 Jan 2008) | 1 line

  Add stdarg include for va_list to get this to compile on cygwin
........
  r60348 | raymond.hettinger | 2008-01-27 11:13:57 +0100 (Sun, 27 Jan 2008) | 1 line

  Docstring nit
........
  r60349 | raymond.hettinger | 2008-01-27 11:47:55 +0100 (Sun, 27 Jan 2008) | 1 line

  Removed an unnecessary and confusing paragraph from the namedtuple docs.
........
2008-01-27 15:18:18 +00:00

514 lines
16 KiB
Python
Executable file

# Originally contributed by Sjoerd Mullender.
# Significantly modified by Jeffrey Yasskin <jyasskin at gmail.com>.
"""Rational, infinite-precision, real numbers."""
import math
import numbers
import operator
import re
__all__ = ["Rational"]
RationalAbc = numbers.Rational
def gcd(a, b):
"""Calculate the Greatest Common Divisor of a and b.
Unless b==0, the result will have the same sign as b (so that when
b is divided by it, the result comes out positive).
"""
while b:
a, b = b, a%b
return a
def _binary_float_to_ratio(x):
"""x -> (top, bot), a pair of ints s.t. x = top/bot.
The conversion is done exactly, without rounding.
bot > 0 guaranteed.
Some form of binary fp is assumed.
Pass NaNs or infinities at your own risk.
>>> _binary_float_to_ratio(10.0)
(10, 1)
>>> _binary_float_to_ratio(0.0)
(0, 1)
>>> _binary_float_to_ratio(-.25)
(-1, 4)
"""
# XXX Move this to floatobject.c with a name like
# float.as_integer_ratio()
if x == 0:
return 0, 1
f, e = math.frexp(x)
signbit = 1
if f < 0:
f = -f
signbit = -1
assert 0.5 <= f < 1.0
# x = signbit * f * 2**e exactly
# Suck up CHUNK bits at a time; 28 is enough so that we suck
# up all bits in 2 iterations for all known binary double-
# precision formats, and small enough to fit in an int.
CHUNK = 28
top = 0
# invariant: x = signbit * (top + f) * 2**e exactly
while f:
f = math.ldexp(f, CHUNK)
digit = trunc(f)
assert digit >> CHUNK == 0
top = (top << CHUNK) | digit
f = f - digit
assert 0.0 <= f < 1.0
e = e - CHUNK
assert top
# Add in the sign bit.
top = signbit * top
# now x = top * 2**e exactly; fold in 2**e
if e>0:
return (top * 2**e, 1)
else:
return (top, 2 ** -e)
_RATIONAL_FORMAT = re.compile(
r'^\s*(?P<sign>[-+]?)(?P<num>\d+)'
r'(?:/(?P<denom>\d+)|\.(?P<decimal>\d+))?\s*$')
class Rational(RationalAbc):
"""This class implements rational numbers.
Rational(8, 6) will produce a rational number equivalent to
4/3. Both arguments must be Integral. The numerator defaults to 0
and the denominator defaults to 1 so that Rational(3) == 3 and
Rational() == 0.
Rationals can also be constructed from strings of the form
'[-+]?[0-9]+((/|.)[0-9]+)?', optionally surrounded by spaces.
"""
__slots__ = ('numerator', 'denominator')
# We're immutable, so use __new__ not __init__
def __new__(cls, numerator=0, denominator=1):
"""Constructs a Rational.
Takes a string like '3/2' or '1.5', another Rational, or a
numerator/denominator pair.
"""
self = super(Rational, cls).__new__(cls)
if denominator == 1:
if isinstance(numerator, str):
# Handle construction from strings.
input = numerator
m = _RATIONAL_FORMAT.match(input)
if m is None:
raise ValueError('Invalid literal for Rational: ' + input)
numerator = m.group('num')
decimal = m.group('decimal')
if decimal:
# The literal is a decimal number.
numerator = int(numerator + decimal)
denominator = 10**len(decimal)
else:
# The literal is an integer or fraction.
numerator = int(numerator)
# Default denominator to 1.
denominator = int(m.group('denom') or 1)
if m.group('sign') == '-':
numerator = -numerator
elif (not isinstance(numerator, numbers.Integral) and
isinstance(numerator, RationalAbc)):
# Handle copies from other rationals.
other_rational = numerator
numerator = other_rational.numerator
denominator = other_rational.denominator
if (not isinstance(numerator, numbers.Integral) or
not isinstance(denominator, numbers.Integral)):
raise TypeError("Rational(%(numerator)s, %(denominator)s):"
" Both arguments must be integral." % locals())
if denominator == 0:
raise ZeroDivisionError('Rational(%s, 0)' % numerator)
g = gcd(numerator, denominator)
self.numerator = int(numerator // g)
self.denominator = int(denominator // g)
return self
@classmethod
def from_float(cls, f):
"""Converts a finite float to a rational number, exactly.
Beware that Rational.from_float(0.3) != Rational(3, 10).
"""
if not isinstance(f, float):
raise TypeError("%s.from_float() only takes floats, not %r (%s)" %
(cls.__name__, f, type(f).__name__))
if math.isnan(f) or math.isinf(f):
raise TypeError("Cannot convert %r to %s." % (f, cls.__name__))
return cls(*_binary_float_to_ratio(f))
@classmethod
def from_decimal(cls, dec):
"""Converts a finite Decimal instance to a rational number, exactly."""
from decimal import Decimal
if not isinstance(dec, Decimal):
raise TypeError(
"%s.from_decimal() only takes Decimals, not %r (%s)" %
(cls.__name__, dec, type(dec).__name__))
if not dec.is_finite():
# Catches infinities and nans.
raise TypeError("Cannot convert %s to %s." % (dec, cls.__name__))
sign, digits, exp = dec.as_tuple()
digits = int(''.join(map(str, digits)))
if sign:
digits = -digits
if exp >= 0:
return cls(digits * 10 ** exp)
else:
return cls(digits, 10 ** -exp)
@classmethod
def from_continued_fraction(cls, seq):
'Build a Rational from a continued fraction expessed as a sequence'
n, d = 1, 0
for e in reversed(seq):
n, d = d, n
n += e * d
return cls(n, d) if seq else cls(0)
def as_continued_fraction(self):
'Return continued fraction expressed as a list'
n = self.numerator
d = self.denominator
cf = []
while d:
e = int(n // d)
cf.append(e)
n -= e * d
n, d = d, n
return cf
def approximate(self, max_denominator):
'Best rational approximation with a denominator <= max_denominator'
# XXX First cut at algorithm
# Still needs rounding rules as specified at
# http://en.wikipedia.org/wiki/Continued_fraction
if self.denominator <= max_denominator:
return self
cf = self.as_continued_fraction()
result = Rational(0)
for i in range(1, len(cf)):
new = self.from_continued_fraction(cf[:i])
if new.denominator > max_denominator:
break
result = new
return result
def __repr__(self):
"""repr(self)"""
return ('Rational(%r,%r)' % (self.numerator, self.denominator))
def __str__(self):
"""str(self)"""
if self.denominator == 1:
return str(self.numerator)
else:
return '%s/%s' % (self.numerator, self.denominator)
""" XXX This section needs a lot more commentary
* Explain the typical sequence of checks, calls, and fallbacks.
* Explain the subtle reasons why this logic was needed.
* It is not clear how common cases are handled (for example, how
does the ratio of two huge integers get converted to a float
without overflowing the long-->float conversion.
"""
def _operator_fallbacks(monomorphic_operator, fallback_operator):
"""Generates forward and reverse operators given a purely-rational
operator and a function from the operator module.
Use this like:
__op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op)
"""
def forward(a, b):
if isinstance(b, RationalAbc):
# Includes ints.
return monomorphic_operator(a, b)
elif isinstance(b, float):
return fallback_operator(float(a), b)
elif isinstance(b, complex):
return fallback_operator(complex(a), b)
else:
return NotImplemented
forward.__name__ = '__' + fallback_operator.__name__ + '__'
forward.__doc__ = monomorphic_operator.__doc__
def reverse(b, a):
if isinstance(a, RationalAbc):
# Includes ints.
return monomorphic_operator(a, b)
elif isinstance(a, numbers.Real):
return fallback_operator(float(a), float(b))
elif isinstance(a, numbers.Complex):
return fallback_operator(complex(a), complex(b))
else:
return NotImplemented
reverse.__name__ = '__r' + fallback_operator.__name__ + '__'
reverse.__doc__ = monomorphic_operator.__doc__
return forward, reverse
def _add(a, b):
"""a + b"""
return Rational(a.numerator * b.denominator +
b.numerator * a.denominator,
a.denominator * b.denominator)
__add__, __radd__ = _operator_fallbacks(_add, operator.add)
def _sub(a, b):
"""a - b"""
return Rational(a.numerator * b.denominator -
b.numerator * a.denominator,
a.denominator * b.denominator)
__sub__, __rsub__ = _operator_fallbacks(_sub, operator.sub)
def _mul(a, b):
"""a * b"""
return Rational(a.numerator * b.numerator, a.denominator * b.denominator)
__mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul)
def _div(a, b):
"""a / b"""
return Rational(a.numerator * b.denominator,
a.denominator * b.numerator)
__truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv)
def __floordiv__(a, b):
"""a // b"""
return math.floor(a / b)
def __rfloordiv__(b, a):
"""a // b"""
return math.floor(a / b)
def __mod__(a, b):
"""a % b"""
div = a // b
return a - b * div
def __rmod__(b, a):
"""a % b"""
div = a // b
return a - b * div
def __pow__(a, b):
"""a ** b
If b is not an integer, the result will be a float or complex
since roots are generally irrational. If b is an integer, the
result will be rational.
"""
if isinstance(b, RationalAbc):
if b.denominator == 1:
power = b.numerator
if power >= 0:
return Rational(a.numerator ** power,
a.denominator ** power)
else:
return Rational(a.denominator ** -power,
a.numerator ** -power)
else:
# A fractional power will generally produce an
# irrational number.
return float(a) ** float(b)
else:
return float(a) ** b
def __rpow__(b, a):
"""a ** b"""
if b.denominator == 1 and b.numerator >= 0:
# If a is an int, keep it that way if possible.
return a ** b.numerator
if isinstance(a, RationalAbc):
return Rational(a.numerator, a.denominator) ** b
if b.denominator == 1:
return a ** b.numerator
return a ** float(b)
def __pos__(a):
"""+a: Coerces a subclass instance to Rational"""
return Rational(a.numerator, a.denominator)
def __neg__(a):
"""-a"""
return Rational(-a.numerator, a.denominator)
def __abs__(a):
"""abs(a)"""
return Rational(abs(a.numerator), a.denominator)
def __trunc__(a):
"""trunc(a)"""
if a.numerator < 0:
return -(-a.numerator // a.denominator)
else:
return a.numerator // a.denominator
__int__ = __trunc__
def __floor__(a):
"""Will be math.floor(a) in 3.0."""
return a.numerator // a.denominator
def __ceil__(a):
"""Will be math.ceil(a) in 3.0."""
# The negations cleverly convince floordiv to return the ceiling.
return -(-a.numerator // a.denominator)
def __round__(self, ndigits=None):
"""Will be round(self, ndigits) in 3.0.
Rounds half toward even.
"""
if ndigits is None:
floor, remainder = divmod(self.numerator, self.denominator)
if remainder * 2 < self.denominator:
return floor
elif remainder * 2 > self.denominator:
return floor + 1
# Deal with the half case:
elif floor % 2 == 0:
return floor
else:
return floor + 1
shift = 10**abs(ndigits)
# See _operator_fallbacks.forward to check that the results of
# these operations will always be Rational and therefore have
# round().
if ndigits > 0:
return Rational(round(self * shift), shift)
else:
return Rational(round(self / shift) * shift)
def __hash__(self):
"""hash(self)
Tricky because values that are exactly representable as a
float must have the same hash as that float.
"""
# XXX since this method is expensive, consider caching the result
if self.denominator == 1:
# Get integers right.
return hash(self.numerator)
# Expensive check, but definitely correct.
if self == float(self):
return hash(float(self))
else:
# Use tuple's hash to avoid a high collision rate on
# simple fractions.
return hash((self.numerator, self.denominator))
def __eq__(a, b):
"""a == b"""
if isinstance(b, RationalAbc):
return (a.numerator == b.numerator and
a.denominator == b.denominator)
if isinstance(b, numbers.Complex) and b.imag == 0:
b = b.real
if isinstance(b, float):
return a == a.from_float(b)
else:
# XXX: If b.__eq__ is implemented like this method, it may
# give the wrong answer after float(a) changes a's
# value. Better ways of doing this are welcome.
return float(a) == b
def _subtractAndCompareToZero(a, b, op):
"""Helper function for comparison operators.
Subtracts b from a, exactly if possible, and compares the
result with 0 using op, in such a way that the comparison
won't recurse. If the difference raises a TypeError, returns
NotImplemented instead.
"""
if isinstance(b, numbers.Complex) and b.imag == 0:
b = b.real
if isinstance(b, float):
b = a.from_float(b)
try:
# XXX: If b <: Real but not <: RationalAbc, this is likely
# to fall back to a float. If the actual values differ by
# less than MIN_FLOAT, this could falsely call them equal,
# which would make <= inconsistent with ==. Better ways of
# doing this are welcome.
diff = a - b
except TypeError:
return NotImplemented
if isinstance(diff, RationalAbc):
return op(diff.numerator, 0)
return op(diff, 0)
def __lt__(a, b):
"""a < b"""
return a._subtractAndCompareToZero(b, operator.lt)
def __gt__(a, b):
"""a > b"""
return a._subtractAndCompareToZero(b, operator.gt)
def __le__(a, b):
"""a <= b"""
return a._subtractAndCompareToZero(b, operator.le)
def __ge__(a, b):
"""a >= b"""
return a._subtractAndCompareToZero(b, operator.ge)
def __bool__(a):
"""a != 0"""
return a.numerator != 0
# support for pickling, copy, and deepcopy
def __reduce__(self):
return (self.__class__, (str(self),))
def __copy__(self):
if type(self) == Rational:
return self # I'm immutable; therefore I am my own clone
return self.__class__(self.numerator, self.denominator)
def __deepcopy__(self, memo):
if type(self) == Rational:
return self # My components are also immutable
return self.__class__(self.numerator, self.denominator)