mirror of
				https://github.com/python/cpython.git
				synced 2025-10-31 05:31:20 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			652 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			652 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /***********************************************************
 | |
| Copyright 1991-1995 by Stichting Mathematisch Centrum, Amsterdam,
 | |
| The Netherlands.
 | |
| 
 | |
|                         All Rights Reserved
 | |
| 
 | |
| Permission to use, copy, modify, and distribute this software and its
 | |
| documentation for any purpose and without fee is hereby granted,
 | |
| provided that the above copyright notice appear in all copies and that
 | |
| both that copyright notice and this permission notice appear in
 | |
| supporting documentation, and that the names of Stichting Mathematisch
 | |
| Centrum or CWI or Corporation for National Research Initiatives or
 | |
| CNRI not be used in advertising or publicity pertaining to
 | |
| distribution of the software without specific, written prior
 | |
| permission.
 | |
| 
 | |
| While CWI is the initial source for this software, a modified version
 | |
| is made available by the Corporation for National Research Initiatives
 | |
| (CNRI) at the Internet address ftp://ftp.python.org.
 | |
| 
 | |
| STICHTING MATHEMATISCH CENTRUM AND CNRI DISCLAIM ALL WARRANTIES WITH
 | |
| REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF
 | |
| MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH
 | |
| CENTRUM OR CNRI BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
 | |
| DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
 | |
| PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
 | |
| TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
 | |
| PERFORMANCE OF THIS SOFTWARE.
 | |
| 
 | |
| ******************************************************************/
 | |
| 
 | |
| /* Complex object implementation */
 | |
| 
 | |
| /* Borrows heavily from floatobject.c */
 | |
| 
 | |
| /* Submitted by Jim Hugunin */
 | |
| 
 | |
| #ifndef WITHOUT_COMPLEX
 | |
| 
 | |
| #include "Python.h"
 | |
| #include "mymath.h"
 | |
| 
 | |
| #ifdef HAVE_LIMITS_H
 | |
| #include <limits.h>
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* elementary operations on complex numbers */
 | |
| 
 | |
| static Py_complex c_1 = {1., 0.};
 | |
| 
 | |
| Py_complex c_sum(a,b)
 | |
| 	Py_complex a,b;
 | |
| {
 | |
| 	Py_complex r;
 | |
| 	r.real = a.real + b.real;
 | |
| 	r.imag = a.imag + b.imag;
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| Py_complex c_diff(a,b)
 | |
| 	Py_complex a,b;
 | |
| {
 | |
| 	Py_complex r;
 | |
| 	r.real = a.real - b.real;
 | |
| 	r.imag = a.imag - b.imag;
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| Py_complex c_neg(a)
 | |
| 	Py_complex a;
 | |
| {
 | |
| 	Py_complex r;
 | |
| 	r.real = -a.real;
 | |
| 	r.imag = -a.imag;
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| Py_complex c_prod(a,b)
 | |
| 	Py_complex a,b;
 | |
| {
 | |
| 	Py_complex r;
 | |
| 	r.real = a.real*b.real - a.imag*b.imag;
 | |
| 	r.imag = a.real*b.imag + a.imag*b.real;
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| Py_complex c_quot(a,b)
 | |
| 	Py_complex a,b;
 | |
| {
 | |
| 	Py_complex r;
 | |
| 	double d = b.real*b.real + b.imag*b.imag;
 | |
| 	if (d == 0.)
 | |
| 		errno = EDOM;
 | |
| 	r.real = (a.real*b.real + a.imag*b.imag)/d;
 | |
| 	r.imag = (a.imag*b.real - a.real*b.imag)/d;
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| Py_complex c_pow(a,b)
 | |
| 	Py_complex a,b;
 | |
| {
 | |
| 	Py_complex r;
 | |
| 	double vabs,len,at,phase;
 | |
| 	if (b.real == 0. && b.imag == 0.) {
 | |
| 		r.real = 1.;
 | |
| 		r.imag = 0.;
 | |
| 	}
 | |
| 	else if (a.real == 0. && a.imag == 0.) {
 | |
| 		if (b.imag != 0. || b.real < 0.)
 | |
| 			errno = ERANGE;
 | |
| 		r.real = 0.;
 | |
| 		r.imag = 0.;
 | |
| 	}
 | |
| 	else {
 | |
| 		vabs = hypot(a.real,a.imag);
 | |
| 		len = pow(vabs,b.real);
 | |
| 		at = atan2(a.imag, a.real);
 | |
| 		phase = at*b.real;
 | |
| 		if (b.imag != 0.0) {
 | |
| 			len /= exp(at*b.imag);
 | |
| 			phase += b.imag*log(vabs);
 | |
| 		}
 | |
| 		r.real = len*cos(phase);
 | |
| 		r.imag = len*sin(phase);
 | |
| 	}
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static Py_complex c_powu(x, n)
 | |
| 	Py_complex x;
 | |
| 	long n;
 | |
| {
 | |
| 	Py_complex r, p;
 | |
| 	long mask = 1;
 | |
| 	r = c_1;
 | |
| 	p = x;
 | |
| 	while (mask > 0 && n >= mask) {
 | |
| 		if (n & mask)
 | |
| 			r = c_prod(r,p);
 | |
| 		mask <<= 1;
 | |
| 		p = c_prod(p,p);
 | |
| 	}
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static Py_complex c_powi(x, n)
 | |
| 	Py_complex x;
 | |
| 	long n;
 | |
| {
 | |
| 	Py_complex cn;
 | |
| 
 | |
| 	if (n > 100 || n < -100) {
 | |
| 		cn.real = (double) n;
 | |
| 		cn.imag = 0.;
 | |
| 		return c_pow(x,cn);
 | |
| 	}
 | |
| 	else if (n > 0)
 | |
| 		return c_powu(x,n);
 | |
| 	else
 | |
| 		return c_quot(c_1,c_powu(x,-n));
 | |
| 
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| PyComplex_FromCComplex(cval)
 | |
| 	Py_complex cval;
 | |
| {
 | |
| 	register PyComplexObject *op =
 | |
| 		(PyComplexObject *) malloc(sizeof(PyComplexObject));
 | |
| 	if (op == NULL)
 | |
| 		return PyErr_NoMemory();
 | |
| 	op->ob_type = &PyComplex_Type;
 | |
| 	op->cval = cval;
 | |
| 	_Py_NewReference(op);
 | |
| 	return (PyObject *) op;
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| PyComplex_FromDoubles(real, imag)
 | |
| 	double real, imag;
 | |
| {
 | |
| 	Py_complex c;
 | |
| 	c.real = real;
 | |
| 	c.imag = imag;
 | |
| 	return PyComplex_FromCComplex(c);
 | |
| }
 | |
| 
 | |
| double
 | |
| PyComplex_RealAsDouble(op)
 | |
| 	PyObject *op;
 | |
| {
 | |
| 	if (PyComplex_Check(op)) {
 | |
| 		return ((PyComplexObject *)op)->cval.real;
 | |
| 	} else {
 | |
| 		return PyFloat_AsDouble(op);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| double
 | |
| PyComplex_ImagAsDouble(op)
 | |
| 	PyObject *op;
 | |
| {
 | |
| 	if (PyComplex_Check(op)) {
 | |
| 		return ((PyComplexObject *)op)->cval.imag;
 | |
| 	} else {
 | |
| 		return 0.0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| Py_complex
 | |
| PyComplex_AsCComplex(op)
 | |
| 	PyObject *op;
 | |
| {
 | |
| 	Py_complex cv;
 | |
| 	if (PyComplex_Check(op)) {
 | |
| 		return ((PyComplexObject *)op)->cval;
 | |
| 	} else {
 | |
| 		cv.real = PyFloat_AsDouble(op);
 | |
| 		cv.imag = 0.;
 | |
| 		return cv;
 | |
| 	}   
 | |
| }
 | |
| 
 | |
| static void
 | |
| complex_dealloc(op)
 | |
| 	PyObject *op;
 | |
| {
 | |
| 	PyMem_DEL(op);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void
 | |
| complex_buf_repr(buf, v)
 | |
| 	char *buf;
 | |
| 	PyComplexObject *v;
 | |
| {
 | |
| 	if (v->cval.real == 0.)
 | |
| 		sprintf(buf, "%.12gj", v->cval.imag);
 | |
| 	else
 | |
| 		sprintf(buf, "(%.12g%+.12gj)", v->cval.real, v->cval.imag);
 | |
| }
 | |
| 
 | |
| static int
 | |
| complex_print(v, fp, flags)
 | |
| 	PyComplexObject *v;
 | |
| 	FILE *fp;
 | |
| 	int flags; /* Not used but required by interface */
 | |
| {
 | |
| 	char buf[100];
 | |
| 	complex_buf_repr(buf, v);
 | |
| 	fputs(buf, fp);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_repr(v)
 | |
| 	PyComplexObject *v;
 | |
| {
 | |
| 	char buf[100];
 | |
| 	complex_buf_repr(buf, v);
 | |
| 	return PyString_FromString(buf);
 | |
| }
 | |
| 
 | |
| static int
 | |
| complex_compare(v, w)
 | |
| 	PyComplexObject *v, *w;
 | |
| {
 | |
| /* Note: "greater" and "smaller" have no meaning for complex numbers,
 | |
|    but Python requires that they be defined nevertheless. */
 | |
| 	Py_complex i, j;
 | |
| 	i = v->cval;
 | |
| 	j = w->cval;
 | |
| 	if (i.real == j.real && i.imag == j.imag)
 | |
| 	   return 0;
 | |
| 	else if (i.real != j.real)
 | |
| 	   return (i.real < j.real) ? -1 : 1;
 | |
| 	else
 | |
| 	   return (i.imag < j.imag) ? -1 : 1;
 | |
| }
 | |
| 
 | |
| static long
 | |
| complex_hash(v)
 | |
| 	PyComplexObject *v;
 | |
| {
 | |
| 	double intpart, fractpart;
 | |
| 	int expo;
 | |
| 	long hipart, x;
 | |
| 	/* This is designed so that Python numbers with the same
 | |
| 	   value hash to the same value, otherwise comparisons
 | |
| 	   of mapping keys will turn out weird */
 | |
| 
 | |
| #ifdef MPW /* MPW C modf expects pointer to extended as second argument */
 | |
| {
 | |
| 	extended e;
 | |
| 	fractpart = modf(v->cval.real, &e);
 | |
| 	intpart = e;
 | |
| }
 | |
| #else
 | |
| 	fractpart = modf(v->cval.real, &intpart);
 | |
| #endif
 | |
| 
 | |
| 	if (fractpart == 0.0 && v->cval.imag == 0.0) {
 | |
| 		if (intpart > 0x7fffffffL || -intpart > 0x7fffffffL) {
 | |
| 			/* Convert to long int and use its hash... */
 | |
| 			PyObject *w = PyLong_FromDouble(v->cval.real);
 | |
| 			if (w == NULL)
 | |
| 				return -1;
 | |
| 			x = PyObject_Hash(w);
 | |
| 			Py_DECREF(w);
 | |
| 			return x;
 | |
| 		}
 | |
| 		x = (long)intpart;
 | |
| 	}
 | |
| 	else {
 | |
| 		fractpart = frexp(fractpart, &expo);
 | |
| 		fractpart = fractpart * 2147483648.0; /* 2**31 */
 | |
| 		hipart = (long)fractpart; /* Take the top 32 bits */
 | |
| 		fractpart = (fractpart - (double)hipart) * 2147483648.0;
 | |
| 						/* Get the next 32 bits */
 | |
| 		x = hipart + (long)fractpart + (long)intpart + (expo << 15);
 | |
| 						/* Combine everything */
 | |
| 
 | |
| 		if (v->cval.imag != 0.0) { /* Hash the imaginary part */
 | |
| 			/* XXX Note that this hashes complex(x, y)
 | |
| 			   to the same value as complex(y, x).
 | |
| 			   Still better than it used to be :-) */
 | |
| #ifdef MPW
 | |
| 			{
 | |
| 				extended e;
 | |
| 				fractpart = modf(v->cval.imag, &e);
 | |
| 				intpart = e;
 | |
| 			}
 | |
| #else
 | |
| 			fractpart = modf(v->cval.imag, &intpart);
 | |
| #endif
 | |
| 			fractpart = frexp(fractpart, &expo);
 | |
| 			fractpart = fractpart * 2147483648.0; /* 2**31 */
 | |
| 			hipart = (long)fractpart; /* Take the top 32 bits */
 | |
| 			fractpart =
 | |
| 				(fractpart - (double)hipart) * 2147483648.0;
 | |
| 						/* Get the next 32 bits */
 | |
| 			x ^= hipart + (long)fractpart +
 | |
| 				(long)intpart + (expo << 15);
 | |
| 						/* Combine everything */
 | |
| 		}
 | |
| 	}
 | |
| 	if (x == -1)
 | |
| 		x = -2;
 | |
| 	return x;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_add(v, w)
 | |
| 	PyComplexObject *v;
 | |
| 	PyComplexObject *w;
 | |
| {
 | |
| 	Py_complex result;
 | |
| 	PyFPE_START_PROTECT("complex_add", return 0)
 | |
| 	result = c_sum(v->cval,w->cval);
 | |
| 	PyFPE_END_PROTECT(result)
 | |
| 	return PyComplex_FromCComplex(result);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_sub(v, w)
 | |
| 	PyComplexObject *v;
 | |
| 	PyComplexObject *w;
 | |
| {
 | |
| 	Py_complex result;
 | |
| 	PyFPE_START_PROTECT("complex_sub", return 0)
 | |
| 	result = c_diff(v->cval,w->cval);
 | |
| 	PyFPE_END_PROTECT(result)
 | |
| 	return PyComplex_FromCComplex(result);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_mul(v, w)
 | |
| 	PyComplexObject *v;
 | |
| 	PyComplexObject *w;
 | |
| {
 | |
| 	Py_complex result;
 | |
| 	PyFPE_START_PROTECT("complex_mul", return 0)
 | |
| 	result = c_prod(v->cval,w->cval);
 | |
| 	PyFPE_END_PROTECT(result)
 | |
| 	return PyComplex_FromCComplex(result);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_div(v, w)
 | |
| 	PyComplexObject *v;
 | |
| 	PyComplexObject *w;
 | |
| {
 | |
| 	Py_complex quot;
 | |
| 	PyFPE_START_PROTECT("complex_div", return 0)
 | |
| 	errno = 0;
 | |
| 	quot = c_quot(v->cval,w->cval);
 | |
| 	PyFPE_END_PROTECT(quot)
 | |
| 	if (errno == EDOM) {
 | |
| 		PyErr_SetString(PyExc_ZeroDivisionError, "complex division");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return PyComplex_FromCComplex(quot);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_remainder(v, w)
 | |
| 	PyComplexObject *v;
 | |
| 	PyComplexObject *w;
 | |
| {
 | |
|         Py_complex div, mod;
 | |
| 	errno = 0;
 | |
| 	div = c_quot(v->cval,w->cval); /* The raw divisor value. */
 | |
| 	if (errno == EDOM) {
 | |
| 		PyErr_SetString(PyExc_ZeroDivisionError, "complex remainder");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	div.real = floor(div.real); /* Use the floor of the real part. */
 | |
| 	div.imag = 0.0;
 | |
| 	mod = c_diff(v->cval, c_prod(w->cval, div));
 | |
| 
 | |
| 	return PyComplex_FromCComplex(mod);
 | |
| }
 | |
| 
 | |
| 
 | |
| static PyObject *
 | |
| complex_divmod(v, w)
 | |
| 	PyComplexObject *v;
 | |
| 	PyComplexObject *w;
 | |
| {
 | |
|         Py_complex div, mod;
 | |
| 	PyObject *d, *m, *z;
 | |
| 	errno = 0;
 | |
| 	div = c_quot(v->cval,w->cval); /* The raw divisor value. */
 | |
| 	if (errno == EDOM) {
 | |
| 		PyErr_SetString(PyExc_ZeroDivisionError, "complex divmod()");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	div.real = floor(div.real); /* Use the floor of the real part. */
 | |
| 	div.imag = 0.0;
 | |
| 	mod = c_diff(v->cval, c_prod(w->cval, div));
 | |
| 	d = PyComplex_FromCComplex(div);
 | |
| 	m = PyComplex_FromCComplex(mod);
 | |
| 	z = Py_BuildValue("(OO)", d, m);
 | |
| 	Py_XDECREF(d);
 | |
| 	Py_XDECREF(m);
 | |
| 	return z;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_pow(v, w, z)
 | |
| 	PyComplexObject *v;
 | |
| 	PyObject *w;
 | |
| 	PyComplexObject *z;
 | |
| {
 | |
| 	Py_complex p;
 | |
| 	Py_complex exponent;
 | |
| 	long int_exponent;
 | |
| 
 | |
|  	if ((PyObject *)z!=Py_None) {
 | |
| 		PyErr_SetString(PyExc_ValueError, "complex modulo");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	PyFPE_START_PROTECT("complex_pow", return 0)
 | |
| 	errno = 0;
 | |
| 	exponent = ((PyComplexObject*)w)->cval;
 | |
| 	int_exponent = (long)exponent.real;
 | |
| 	if (exponent.imag == 0. && exponent.real == int_exponent)
 | |
| 		p = c_powi(v->cval,int_exponent);
 | |
| 	else
 | |
| 		p = c_pow(v->cval,exponent);
 | |
| 
 | |
| 	PyFPE_END_PROTECT(p)
 | |
| 	if (errno == ERANGE) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 				"0.0 to a negative or complex power");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	return PyComplex_FromCComplex(p);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_neg(v)
 | |
| 	PyComplexObject *v;
 | |
| {
 | |
| 	Py_complex neg;
 | |
| 	neg.real = -v->cval.real;
 | |
| 	neg.imag = -v->cval.imag;
 | |
| 	return PyComplex_FromCComplex(neg);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_pos(v)
 | |
| 	PyComplexObject *v;
 | |
| {
 | |
| 	Py_INCREF(v);
 | |
| 	return (PyObject *)v;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_abs(v)
 | |
| 	PyComplexObject *v;
 | |
| {
 | |
| 	double result;
 | |
| 	PyFPE_START_PROTECT("complex_abs", return 0)
 | |
| 	result = hypot(v->cval.real,v->cval.imag);
 | |
| 	PyFPE_END_PROTECT(result)
 | |
| 	return PyFloat_FromDouble(result);
 | |
| }
 | |
| 
 | |
| static int
 | |
| complex_nonzero(v)
 | |
| 	PyComplexObject *v;
 | |
| {
 | |
| 	return v->cval.real != 0.0 || v->cval.imag != 0.0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| complex_coerce(pv, pw)
 | |
| 	PyObject **pv;
 | |
| 	PyObject **pw;
 | |
| {
 | |
| 	Py_complex cval;
 | |
| 	cval.imag = 0.;
 | |
| 	if (PyInt_Check(*pw)) {
 | |
| 		cval.real = (double)PyInt_AsLong(*pw);
 | |
| 		*pw = PyComplex_FromCComplex(cval);
 | |
| 		Py_INCREF(*pv);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	else if (PyLong_Check(*pw)) {
 | |
| 		cval.real = PyLong_AsDouble(*pw);
 | |
| 		*pw = PyComplex_FromCComplex(cval);
 | |
| 		Py_INCREF(*pv);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	else if (PyFloat_Check(*pw)) {
 | |
| 		cval.real = PyFloat_AsDouble(*pw);
 | |
| 		*pw = PyComplex_FromCComplex(cval);
 | |
| 		Py_INCREF(*pv);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return 1; /* Can't do it */
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_int(v)
 | |
| 	PyObject *v;
 | |
| {
 | |
| 	PyErr_SetString(PyExc_TypeError,
 | |
| 		   "can't convert complex to int; use e.g. int(abs(z))");
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_long(v)
 | |
| 	PyObject *v;
 | |
| {
 | |
| 	PyErr_SetString(PyExc_TypeError,
 | |
| 		   "can't convert complex to long; use e.g. long(abs(z))");
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_float(v)
 | |
| 	PyObject *v;
 | |
| {
 | |
| 	PyErr_SetString(PyExc_TypeError,
 | |
| 		   "can't convert complex to float; use e.g. abs(z)");
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| complex_conjugate(self, args)
 | |
| 	PyObject *self;
 | |
| 	PyObject *args;
 | |
| {
 | |
| 	Py_complex c;
 | |
| 	if (!PyArg_ParseTuple(args, ""))
 | |
| 		return NULL;
 | |
| 	c = ((PyComplexObject *)self)->cval;
 | |
| 	c.imag = -c.imag;
 | |
| 	return PyComplex_FromCComplex(c);
 | |
| }
 | |
| 
 | |
| static PyMethodDef complex_methods[] = {
 | |
| 	{"conjugate",	complex_conjugate,	1},
 | |
| 	{NULL,		NULL}		/* sentinel */
 | |
| };
 | |
| 
 | |
| 
 | |
| static PyObject *
 | |
| complex_getattr(self, name)
 | |
| 	PyComplexObject *self;
 | |
| 	char *name;
 | |
| {
 | |
| 	if (strcmp(name, "real") == 0)
 | |
| 		return (PyObject *)PyFloat_FromDouble(self->cval.real);
 | |
| 	else if (strcmp(name, "imag") == 0)
 | |
| 		return (PyObject *)PyFloat_FromDouble(self->cval.imag);
 | |
| 	else if (strcmp(name, "__members__") == 0)
 | |
| 		return Py_BuildValue("[ss]", "imag", "real");
 | |
| 	return Py_FindMethod(complex_methods, (PyObject *)self, name);
 | |
| }
 | |
| 
 | |
| static PyNumberMethods complex_as_number = {
 | |
| 	(binaryfunc)complex_add, /*nb_add*/
 | |
| 	(binaryfunc)complex_sub, /*nb_subtract*/
 | |
| 	(binaryfunc)complex_mul, /*nb_multiply*/
 | |
| 	(binaryfunc)complex_div, /*nb_divide*/
 | |
| 	(binaryfunc)complex_remainder,	/*nb_remainder*/
 | |
| 	(binaryfunc)complex_divmod,	/*nb_divmod*/
 | |
| 	(ternaryfunc)complex_pow, /*nb_power*/
 | |
| 	(unaryfunc)complex_neg, /*nb_negative*/
 | |
| 	(unaryfunc)complex_pos, /*nb_positive*/
 | |
| 	(unaryfunc)complex_abs, /*nb_absolute*/
 | |
| 	(inquiry)complex_nonzero, /*nb_nonzero*/
 | |
| 	0,		/*nb_invert*/
 | |
| 	0,		/*nb_lshift*/
 | |
| 	0,		/*nb_rshift*/
 | |
| 	0,		/*nb_and*/
 | |
| 	0,		/*nb_xor*/
 | |
| 	0,		/*nb_or*/
 | |
| 	(coercion)complex_coerce, /*nb_coerce*/
 | |
| 	(unaryfunc)complex_int, /*nb_int*/
 | |
| 	(unaryfunc)complex_long, /*nb_long*/
 | |
| 	(unaryfunc)complex_float, /*nb_float*/
 | |
| 	0,		/*nb_oct*/
 | |
| 	0,		/*nb_hex*/
 | |
| };
 | |
| 
 | |
| PyTypeObject PyComplex_Type = {
 | |
| 	PyObject_HEAD_INIT(&PyType_Type)
 | |
| 	0,
 | |
| 	"complex",
 | |
| 	sizeof(PyComplexObject),
 | |
| 	0,
 | |
| 	(destructor)complex_dealloc,	/*tp_dealloc*/
 | |
| 	(printfunc)complex_print,	/*tp_print*/
 | |
| 	(getattrfunc)complex_getattr,	/*tp_getattr*/
 | |
| 	0,				/*tp_setattr*/
 | |
| 	(cmpfunc)complex_compare,	/*tp_compare*/
 | |
| 	(reprfunc)complex_repr,		/*tp_repr*/
 | |
| 	&complex_as_number,    		/*tp_as_number*/
 | |
| 	0,				/*tp_as_sequence*/
 | |
| 	0,				/*tp_as_mapping*/
 | |
| 	(hashfunc)complex_hash, 	/*tp_hash*/
 | |
| };
 | |
| 
 | |
| #endif
 | 
