mirror of
				https://github.com/python/cpython.git
				synced 2025-11-03 15:11:34 +00:00 
			
		
		
		
	The staticforward define was needed to support certain broken C compilers (notably SCO ODT 3.0, perhaps early AIX as well) botched the static keyword when it was used with a forward declaration of a static initialized structure. Standard C allows the forward declaration with static, and we've decided to stop catering to broken C compilers. (In fact, we expect that the compilers are all fixed eight years later.) I'm leaving staticforward and statichere defined in object.h as static. This is only for backwards compatibility with C extensions that might still use it. XXX I haven't updated the documentation.
		
			
				
	
	
		
			2127 lines
		
	
	
	
		
			52 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2127 lines
		
	
	
	
		
			52 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* List object implementation */
 | 
						|
 | 
						|
#include "Python.h"
 | 
						|
 | 
						|
#ifdef STDC_HEADERS
 | 
						|
#include <stddef.h>
 | 
						|
#else
 | 
						|
#include <sys/types.h>		/* For size_t */
 | 
						|
#endif
 | 
						|
 | 
						|
static int
 | 
						|
roundupsize(int n)
 | 
						|
{
 | 
						|
	unsigned int nbits = 0;
 | 
						|
	unsigned int n2 = (unsigned int)n >> 5;
 | 
						|
 | 
						|
	/* Round up: 
 | 
						|
	 * If n <       256, to a multiple of        8.
 | 
						|
	 * If n <      2048, to a multiple of       64.
 | 
						|
	 * If n <     16384, to a multiple of      512.
 | 
						|
	 * If n <    131072, to a multiple of     4096.
 | 
						|
	 * If n <   1048576, to a multiple of    32768.
 | 
						|
	 * If n <   8388608, to a multiple of   262144.
 | 
						|
	 * If n <  67108864, to a multiple of  2097152.
 | 
						|
	 * If n < 536870912, to a multiple of 16777216.
 | 
						|
	 * ...
 | 
						|
	 * If n < 2**(5+3*i), to a multiple of 2**(3*i).
 | 
						|
	 *
 | 
						|
	 * This over-allocates proportional to the list size, making room
 | 
						|
	 * for additional growth.  The over-allocation is mild, but is
 | 
						|
	 * enough to give linear-time amortized behavior over a long
 | 
						|
	 * sequence of appends() in the presence of a poorly-performing
 | 
						|
	 * system realloc() (which is a reality, e.g., across all flavors
 | 
						|
	 * of Windows, with Win9x behavior being particularly bad -- and
 | 
						|
	 * we've still got address space fragmentation problems on Win9x
 | 
						|
	 * even with this scheme, although it requires much longer lists to
 | 
						|
	 * provoke them than it used to).
 | 
						|
	 */
 | 
						|
	do {
 | 
						|
		n2 >>= 3;
 | 
						|
		nbits += 3;
 | 
						|
	} while (n2);
 | 
						|
	return ((n >> nbits) + 1) << nbits;
 | 
						|
 }
 | 
						|
 | 
						|
#define NRESIZE(var, type, nitems)				\
 | 
						|
do {								\
 | 
						|
	size_t _new_size = roundupsize(nitems);			\
 | 
						|
	if (_new_size <= ((~(size_t)0) / sizeof(type)))		\
 | 
						|
		PyMem_RESIZE(var, type, _new_size);		\
 | 
						|
	else							\
 | 
						|
		var = NULL;					\
 | 
						|
} while (0)
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyList_New(int size)
 | 
						|
{
 | 
						|
	PyListObject *op;
 | 
						|
	size_t nbytes;
 | 
						|
	if (size < 0) {
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	nbytes = size * sizeof(PyObject *);
 | 
						|
	/* Check for overflow */
 | 
						|
	if (nbytes / sizeof(PyObject *) != (size_t)size) {
 | 
						|
		return PyErr_NoMemory();
 | 
						|
	}
 | 
						|
	op = PyObject_GC_New(PyListObject, &PyList_Type);
 | 
						|
	if (op == NULL) {
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	if (size <= 0) {
 | 
						|
		op->ob_item = NULL;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		op->ob_item = (PyObject **) PyMem_MALLOC(nbytes);
 | 
						|
		if (op->ob_item == NULL) {
 | 
						|
			return PyErr_NoMemory();
 | 
						|
		}
 | 
						|
		memset(op->ob_item, 0, sizeof(*op->ob_item) * size);
 | 
						|
	}
 | 
						|
	op->ob_size = size;
 | 
						|
	_PyObject_GC_TRACK(op);
 | 
						|
	return (PyObject *) op;
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
PyList_Size(PyObject *op)
 | 
						|
{
 | 
						|
	if (!PyList_Check(op)) {
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	else
 | 
						|
		return ((PyListObject *)op) -> ob_size;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *indexerr;
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyList_GetItem(PyObject *op, int i)
 | 
						|
{
 | 
						|
	if (!PyList_Check(op)) {
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	if (i < 0 || i >= ((PyListObject *)op) -> ob_size) {
 | 
						|
		if (indexerr == NULL)
 | 
						|
			indexerr = PyString_FromString(
 | 
						|
				"list index out of range");
 | 
						|
		PyErr_SetObject(PyExc_IndexError, indexerr);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	return ((PyListObject *)op) -> ob_item[i];
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
PyList_SetItem(register PyObject *op, register int i,
 | 
						|
               register PyObject *newitem)
 | 
						|
{
 | 
						|
	register PyObject *olditem;
 | 
						|
	register PyObject **p;
 | 
						|
	if (!PyList_Check(op)) {
 | 
						|
		Py_XDECREF(newitem);
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	if (i < 0 || i >= ((PyListObject *)op) -> ob_size) {
 | 
						|
		Py_XDECREF(newitem);
 | 
						|
		PyErr_SetString(PyExc_IndexError,
 | 
						|
				"list assignment index out of range");
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	p = ((PyListObject *)op) -> ob_item + i;
 | 
						|
	olditem = *p;
 | 
						|
	*p = newitem;
 | 
						|
	Py_XDECREF(olditem);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
ins1(PyListObject *self, int where, PyObject *v)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	PyObject **items;
 | 
						|
	if (v == NULL) {
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	if (self->ob_size == INT_MAX) {
 | 
						|
		PyErr_SetString(PyExc_OverflowError,
 | 
						|
			"cannot add more objects to list");
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	items = self->ob_item;
 | 
						|
	NRESIZE(items, PyObject *, self->ob_size+1);
 | 
						|
	if (items == NULL) {
 | 
						|
		PyErr_NoMemory();
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	if (where < 0)
 | 
						|
		where = 0;
 | 
						|
	if (where > self->ob_size)
 | 
						|
		where = self->ob_size;
 | 
						|
	for (i = self->ob_size; --i >= where; )
 | 
						|
		items[i+1] = items[i];
 | 
						|
	Py_INCREF(v);
 | 
						|
	items[where] = v;
 | 
						|
	self->ob_item = items;
 | 
						|
	self->ob_size++;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
PyList_Insert(PyObject *op, int where, PyObject *newitem)
 | 
						|
{
 | 
						|
	if (!PyList_Check(op)) {
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	return ins1((PyListObject *)op, where, newitem);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
PyList_Append(PyObject *op, PyObject *newitem)
 | 
						|
{
 | 
						|
	if (!PyList_Check(op)) {
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	return ins1((PyListObject *)op,
 | 
						|
		(int) ((PyListObject *)op)->ob_size, newitem);
 | 
						|
}
 | 
						|
 | 
						|
/* Methods */
 | 
						|
 | 
						|
static void
 | 
						|
list_dealloc(PyListObject *op)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	PyObject_GC_UnTrack(op);
 | 
						|
	Py_TRASHCAN_SAFE_BEGIN(op)
 | 
						|
	if (op->ob_item != NULL) {
 | 
						|
		/* Do it backwards, for Christian Tismer.
 | 
						|
		   There's a simple test case where somehow this reduces
 | 
						|
		   thrashing when a *very* large list is created and
 | 
						|
		   immediately deleted. */
 | 
						|
		i = op->ob_size;
 | 
						|
		while (--i >= 0) {
 | 
						|
			Py_XDECREF(op->ob_item[i]);
 | 
						|
		}
 | 
						|
		PyMem_FREE(op->ob_item);
 | 
						|
	}
 | 
						|
	op->ob_type->tp_free((PyObject *)op);
 | 
						|
	Py_TRASHCAN_SAFE_END(op)
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
list_print(PyListObject *op, FILE *fp, int flags)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	i = Py_ReprEnter((PyObject*)op);
 | 
						|
	if (i != 0) {
 | 
						|
		if (i < 0)
 | 
						|
			return i;
 | 
						|
		fprintf(fp, "[...]");
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	fprintf(fp, "[");
 | 
						|
	for (i = 0; i < op->ob_size; i++) {
 | 
						|
		if (i > 0)
 | 
						|
			fprintf(fp, ", ");
 | 
						|
		if (PyObject_Print(op->ob_item[i], fp, 0) != 0) {
 | 
						|
			Py_ReprLeave((PyObject *)op);
 | 
						|
			return -1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	fprintf(fp, "]");
 | 
						|
	Py_ReprLeave((PyObject *)op);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_repr(PyListObject *v)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	PyObject *s, *temp;
 | 
						|
	PyObject *pieces = NULL, *result = NULL;
 | 
						|
 | 
						|
	i = Py_ReprEnter((PyObject*)v);
 | 
						|
	if (i != 0) {
 | 
						|
		return i > 0 ? PyString_FromString("[...]") : NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	if (v->ob_size == 0) {
 | 
						|
		result = PyString_FromString("[]");
 | 
						|
		goto Done;
 | 
						|
	}
 | 
						|
 | 
						|
	pieces = PyList_New(0);
 | 
						|
	if (pieces == NULL)
 | 
						|
		goto Done;
 | 
						|
 | 
						|
	/* Do repr() on each element.  Note that this may mutate the list,
 | 
						|
	   so must refetch the list size on each iteration. */
 | 
						|
	for (i = 0; i < v->ob_size; ++i) {
 | 
						|
		int status;
 | 
						|
		s = PyObject_Repr(v->ob_item[i]);
 | 
						|
		if (s == NULL)
 | 
						|
			goto Done;
 | 
						|
		status = PyList_Append(pieces, s);
 | 
						|
		Py_DECREF(s);  /* append created a new ref */
 | 
						|
		if (status < 0)
 | 
						|
			goto Done;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Add "[]" decorations to the first and last items. */
 | 
						|
	assert(PyList_GET_SIZE(pieces) > 0);
 | 
						|
	s = PyString_FromString("[");
 | 
						|
	if (s == NULL)
 | 
						|
		goto Done;
 | 
						|
	temp = PyList_GET_ITEM(pieces, 0);
 | 
						|
	PyString_ConcatAndDel(&s, temp);
 | 
						|
	PyList_SET_ITEM(pieces, 0, s);
 | 
						|
	if (s == NULL)
 | 
						|
		goto Done;
 | 
						|
 | 
						|
	s = PyString_FromString("]");
 | 
						|
	if (s == NULL)
 | 
						|
		goto Done;
 | 
						|
	temp = PyList_GET_ITEM(pieces, PyList_GET_SIZE(pieces) - 1);
 | 
						|
	PyString_ConcatAndDel(&temp, s);
 | 
						|
	PyList_SET_ITEM(pieces, PyList_GET_SIZE(pieces) - 1, temp);
 | 
						|
	if (temp == NULL)
 | 
						|
		goto Done;
 | 
						|
 | 
						|
	/* Paste them all together with ", " between. */
 | 
						|
	s = PyString_FromString(", ");
 | 
						|
	if (s == NULL)
 | 
						|
		goto Done;
 | 
						|
	result = _PyString_Join(s, pieces);
 | 
						|
	Py_DECREF(s);	
 | 
						|
 | 
						|
Done:
 | 
						|
	Py_XDECREF(pieces);
 | 
						|
	Py_ReprLeave((PyObject *)v);
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
list_length(PyListObject *a)
 | 
						|
{
 | 
						|
	return a->ob_size;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
static int
 | 
						|
list_contains(PyListObject *a, PyObject *el)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < a->ob_size; ++i) {
 | 
						|
		int cmp = PyObject_RichCompareBool(el, PyList_GET_ITEM(a, i),
 | 
						|
						   Py_EQ);
 | 
						|
		if (cmp > 0)
 | 
						|
			return 1;
 | 
						|
		else if (cmp < 0)
 | 
						|
			return -1;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_item(PyListObject *a, int i)
 | 
						|
{
 | 
						|
	if (i < 0 || i >= a->ob_size) {
 | 
						|
		if (indexerr == NULL)
 | 
						|
			indexerr = PyString_FromString(
 | 
						|
				"list index out of range");
 | 
						|
		PyErr_SetObject(PyExc_IndexError, indexerr);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	Py_INCREF(a->ob_item[i]);
 | 
						|
	return a->ob_item[i];
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_slice(PyListObject *a, int ilow, int ihigh)
 | 
						|
{
 | 
						|
	PyListObject *np;
 | 
						|
	int i;
 | 
						|
	if (ilow < 0)
 | 
						|
		ilow = 0;
 | 
						|
	else if (ilow > a->ob_size)
 | 
						|
		ilow = a->ob_size;
 | 
						|
	if (ihigh < ilow)
 | 
						|
		ihigh = ilow;
 | 
						|
	else if (ihigh > a->ob_size)
 | 
						|
		ihigh = a->ob_size;
 | 
						|
	np = (PyListObject *) PyList_New(ihigh - ilow);
 | 
						|
	if (np == NULL)
 | 
						|
		return NULL;
 | 
						|
	for (i = ilow; i < ihigh; i++) {
 | 
						|
		PyObject *v = a->ob_item[i];
 | 
						|
		Py_INCREF(v);
 | 
						|
		np->ob_item[i - ilow] = v;
 | 
						|
	}
 | 
						|
	return (PyObject *)np;
 | 
						|
}
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyList_GetSlice(PyObject *a, int ilow, int ihigh)
 | 
						|
{
 | 
						|
	if (!PyList_Check(a)) {
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	return list_slice((PyListObject *)a, ilow, ihigh);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_concat(PyListObject *a, PyObject *bb)
 | 
						|
{
 | 
						|
	int size;
 | 
						|
	int i;
 | 
						|
	PyListObject *np;
 | 
						|
	if (!PyList_Check(bb)) {
 | 
						|
		PyErr_Format(PyExc_TypeError,
 | 
						|
			  "can only concatenate list (not \"%.200s\") to list",
 | 
						|
			  bb->ob_type->tp_name);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
#define b ((PyListObject *)bb)
 | 
						|
	size = a->ob_size + b->ob_size;
 | 
						|
	np = (PyListObject *) PyList_New(size);
 | 
						|
	if (np == NULL) {
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	for (i = 0; i < a->ob_size; i++) {
 | 
						|
		PyObject *v = a->ob_item[i];
 | 
						|
		Py_INCREF(v);
 | 
						|
		np->ob_item[i] = v;
 | 
						|
	}
 | 
						|
	for (i = 0; i < b->ob_size; i++) {
 | 
						|
		PyObject *v = b->ob_item[i];
 | 
						|
		Py_INCREF(v);
 | 
						|
		np->ob_item[i + a->ob_size] = v;
 | 
						|
	}
 | 
						|
	return (PyObject *)np;
 | 
						|
#undef b
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_repeat(PyListObject *a, int n)
 | 
						|
{
 | 
						|
	int i, j;
 | 
						|
	int size;
 | 
						|
	PyListObject *np;
 | 
						|
	PyObject **p;
 | 
						|
	if (n < 0)
 | 
						|
		n = 0;
 | 
						|
	size = a->ob_size * n;
 | 
						|
	np = (PyListObject *) PyList_New(size);
 | 
						|
	if (np == NULL)
 | 
						|
		return NULL;
 | 
						|
	p = np->ob_item;
 | 
						|
	for (i = 0; i < n; i++) {
 | 
						|
		for (j = 0; j < a->ob_size; j++) {
 | 
						|
			*p = a->ob_item[j];
 | 
						|
			Py_INCREF(*p);
 | 
						|
			p++;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return (PyObject *) np;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
list_ass_slice(PyListObject *a, int ilow, int ihigh, PyObject *v)
 | 
						|
{
 | 
						|
	/* Because [X]DECREF can recursively invoke list operations on
 | 
						|
	   this list, we must postpone all [X]DECREF activity until
 | 
						|
	   after the list is back in its canonical shape.  Therefore
 | 
						|
	   we must allocate an additional array, 'recycle', into which
 | 
						|
	   we temporarily copy the items that are deleted from the
 | 
						|
	   list. :-( */
 | 
						|
	PyObject **recycle, **p;
 | 
						|
	PyObject **item;
 | 
						|
	int n; /* Size of replacement list */
 | 
						|
	int d; /* Change in size */
 | 
						|
	int k; /* Loop index */
 | 
						|
#define b ((PyListObject *)v)
 | 
						|
	if (v == NULL)
 | 
						|
		n = 0;
 | 
						|
	else if (PyList_Check(v)) {
 | 
						|
		n = b->ob_size;
 | 
						|
		if (a == b) {
 | 
						|
			/* Special case "a[i:j] = a" -- copy b first */
 | 
						|
			int ret;
 | 
						|
			v = list_slice(b, 0, n);
 | 
						|
			ret = list_ass_slice(a, ilow, ihigh, v);
 | 
						|
			Py_DECREF(v);
 | 
						|
			return ret;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		PyErr_Format(PyExc_TypeError,
 | 
						|
			     "must assign list (not \"%.200s\") to slice",
 | 
						|
			     v->ob_type->tp_name);
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	if (ilow < 0)
 | 
						|
		ilow = 0;
 | 
						|
	else if (ilow > a->ob_size)
 | 
						|
		ilow = a->ob_size;
 | 
						|
	if (ihigh < ilow)
 | 
						|
		ihigh = ilow;
 | 
						|
	else if (ihigh > a->ob_size)
 | 
						|
		ihigh = a->ob_size;
 | 
						|
	item = a->ob_item;
 | 
						|
	d = n - (ihigh-ilow);
 | 
						|
	if (ihigh > ilow)
 | 
						|
		p = recycle = PyMem_NEW(PyObject *, (ihigh-ilow));
 | 
						|
	else
 | 
						|
		p = recycle = NULL;
 | 
						|
	if (d <= 0) { /* Delete -d items; recycle ihigh-ilow items */
 | 
						|
		for (k = ilow; k < ihigh; k++)
 | 
						|
			*p++ = item[k];
 | 
						|
		if (d < 0) {
 | 
						|
			for (/*k = ihigh*/; k < a->ob_size; k++)
 | 
						|
				item[k+d] = item[k];
 | 
						|
			a->ob_size += d;
 | 
						|
			NRESIZE(item, PyObject *, a->ob_size); /* Can't fail */
 | 
						|
			a->ob_item = item;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else { /* Insert d items; recycle ihigh-ilow items */
 | 
						|
		NRESIZE(item, PyObject *, a->ob_size + d);
 | 
						|
		if (item == NULL) {
 | 
						|
			if (recycle != NULL)
 | 
						|
				PyMem_DEL(recycle);
 | 
						|
			PyErr_NoMemory();
 | 
						|
			return -1;
 | 
						|
		}
 | 
						|
		for (k = a->ob_size; --k >= ihigh; )
 | 
						|
			item[k+d] = item[k];
 | 
						|
		for (/*k = ihigh-1*/; k >= ilow; --k)
 | 
						|
			*p++ = item[k];
 | 
						|
		a->ob_item = item;
 | 
						|
		a->ob_size += d;
 | 
						|
	}
 | 
						|
	for (k = 0; k < n; k++, ilow++) {
 | 
						|
		PyObject *w = b->ob_item[k];
 | 
						|
		Py_XINCREF(w);
 | 
						|
		item[ilow] = w;
 | 
						|
	}
 | 
						|
	if (recycle) {
 | 
						|
		while (--p >= recycle)
 | 
						|
			Py_XDECREF(*p);
 | 
						|
		PyMem_DEL(recycle);
 | 
						|
	}
 | 
						|
	if (a->ob_size == 0 && a->ob_item != NULL) {
 | 
						|
		PyMem_FREE(a->ob_item);
 | 
						|
		a->ob_item = NULL;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
#undef b
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
PyList_SetSlice(PyObject *a, int ilow, int ihigh, PyObject *v)
 | 
						|
{
 | 
						|
	if (!PyList_Check(a)) {
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	return list_ass_slice((PyListObject *)a, ilow, ihigh, v);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_inplace_repeat(PyListObject *self, int n)
 | 
						|
{
 | 
						|
	PyObject **items;
 | 
						|
	int size, i, j;
 | 
						|
 | 
						|
 | 
						|
	size = PyList_GET_SIZE(self);
 | 
						|
	if (size == 0) {
 | 
						|
		Py_INCREF(self);
 | 
						|
		return (PyObject *)self;
 | 
						|
	}
 | 
						|
 | 
						|
	items = self->ob_item;
 | 
						|
 | 
						|
	if (n < 1) {
 | 
						|
		self->ob_item = NULL;
 | 
						|
		self->ob_size = 0;
 | 
						|
		for (i = 0; i < size; i++)
 | 
						|
			Py_XDECREF(items[i]);
 | 
						|
		PyMem_DEL(items);
 | 
						|
		Py_INCREF(self);
 | 
						|
		return (PyObject *)self;
 | 
						|
	}
 | 
						|
 | 
						|
	NRESIZE(items, PyObject*, size*n);
 | 
						|
	if (items == NULL) {
 | 
						|
		PyErr_NoMemory();
 | 
						|
		goto finally;
 | 
						|
	}
 | 
						|
	self->ob_item = items;
 | 
						|
	for (i = 1; i < n; i++) { /* Start counting at 1, not 0 */
 | 
						|
		for (j = 0; j < size; j++) {
 | 
						|
			PyObject *o = PyList_GET_ITEM(self, j);
 | 
						|
			Py_INCREF(o);
 | 
						|
			PyList_SET_ITEM(self, self->ob_size++, o);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	Py_INCREF(self);
 | 
						|
	return (PyObject *)self;
 | 
						|
  finally:
 | 
						|
  	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
list_ass_item(PyListObject *a, int i, PyObject *v)
 | 
						|
{
 | 
						|
	PyObject *old_value;
 | 
						|
	if (i < 0 || i >= a->ob_size) {
 | 
						|
		PyErr_SetString(PyExc_IndexError,
 | 
						|
				"list assignment index out of range");
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	if (v == NULL)
 | 
						|
		return list_ass_slice(a, i, i+1, v);
 | 
						|
	Py_INCREF(v);
 | 
						|
	old_value = a->ob_item[i];
 | 
						|
	a->ob_item[i] = v;
 | 
						|
	Py_DECREF(old_value); 
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
ins(PyListObject *self, int where, PyObject *v)
 | 
						|
{
 | 
						|
	if (ins1(self, where, v) != 0)
 | 
						|
		return NULL;
 | 
						|
	Py_INCREF(Py_None);
 | 
						|
	return Py_None;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
listinsert(PyListObject *self, PyObject *args)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	PyObject *v;
 | 
						|
	if (!PyArg_ParseTuple(args, "iO:insert", &i, &v))
 | 
						|
		return NULL;
 | 
						|
	return ins(self, i, v);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
listappend(PyListObject *self, PyObject *v)
 | 
						|
{
 | 
						|
	return ins(self, (int) self->ob_size, v);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
listextend_internal(PyListObject *self, PyObject *b)
 | 
						|
{
 | 
						|
	PyObject **items;
 | 
						|
	int selflen = PyList_GET_SIZE(self);
 | 
						|
	int blen;
 | 
						|
	register int i;
 | 
						|
 | 
						|
	if (PyObject_Size(b) == 0) {
 | 
						|
		/* short circuit when b is empty */
 | 
						|
		Py_DECREF(b);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	if (self == (PyListObject*)b) {
 | 
						|
		/* as in list_ass_slice() we must special case the
 | 
						|
		 * situation: a.extend(a)
 | 
						|
		 *
 | 
						|
		 * XXX: I think this way ought to be faster than using
 | 
						|
		 * list_slice() the way list_ass_slice() does.
 | 
						|
		 */
 | 
						|
		Py_DECREF(b);
 | 
						|
		b = PyList_New(selflen);
 | 
						|
		if (!b)
 | 
						|
			return -1;
 | 
						|
		for (i = 0; i < selflen; i++) {
 | 
						|
			PyObject *o = PyList_GET_ITEM(self, i);
 | 
						|
			Py_INCREF(o);
 | 
						|
			PyList_SET_ITEM(b, i, o);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	blen = PyObject_Size(b);
 | 
						|
 | 
						|
	/* resize a using idiom */
 | 
						|
	items = self->ob_item;
 | 
						|
	NRESIZE(items, PyObject*, selflen + blen);
 | 
						|
	if (items == NULL) {
 | 
						|
		PyErr_NoMemory();
 | 
						|
		Py_DECREF(b);
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
 | 
						|
	self->ob_item = items;
 | 
						|
 | 
						|
	/* populate the end of self with b's items */
 | 
						|
	for (i = 0; i < blen; i++) {
 | 
						|
		PyObject *o = PySequence_Fast_GET_ITEM(b, i);
 | 
						|
		Py_INCREF(o);
 | 
						|
		PyList_SET_ITEM(self, self->ob_size++, o);
 | 
						|
	}
 | 
						|
	Py_DECREF(b);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_inplace_concat(PyListObject *self, PyObject *other)
 | 
						|
{
 | 
						|
	other = PySequence_Fast(other, "argument to += must be iterable");
 | 
						|
	if (!other)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	if (listextend_internal(self, other) < 0)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	Py_INCREF(self);
 | 
						|
	return (PyObject *)self;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
listextend(PyListObject *self, PyObject *b)
 | 
						|
{
 | 
						|
 | 
						|
	b = PySequence_Fast(b, "list.extend() argument must be iterable");
 | 
						|
	if (!b)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	if (listextend_internal(self, b) < 0)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	Py_INCREF(Py_None);
 | 
						|
	return Py_None;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
listpop(PyListObject *self, PyObject *args)
 | 
						|
{
 | 
						|
	int i = -1;
 | 
						|
	PyObject *v;
 | 
						|
	if (!PyArg_ParseTuple(args, "|i:pop", &i))
 | 
						|
		return NULL;
 | 
						|
	if (self->ob_size == 0) {
 | 
						|
		/* Special-case most common failure cause */
 | 
						|
		PyErr_SetString(PyExc_IndexError, "pop from empty list");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	if (i < 0)
 | 
						|
		i += self->ob_size;
 | 
						|
	if (i < 0 || i >= self->ob_size) {
 | 
						|
		PyErr_SetString(PyExc_IndexError, "pop index out of range");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	v = self->ob_item[i];
 | 
						|
	Py_INCREF(v);
 | 
						|
	if (list_ass_slice(self, i, i+1, (PyObject *)NULL) != 0) {
 | 
						|
		Py_DECREF(v);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	return v;
 | 
						|
}
 | 
						|
 | 
						|
/* New quicksort implementation for arrays of object pointers.
 | 
						|
   Thanks to discussions with Tim Peters. */
 | 
						|
 | 
						|
/* CMPERROR is returned by our comparison function when an error
 | 
						|
   occurred.  This is the largest negative integer (0x80000000 on a
 | 
						|
   32-bit system). */
 | 
						|
#define CMPERROR ( (int) ((unsigned int)1 << (8*sizeof(int) - 1)) )
 | 
						|
 | 
						|
/* Comparison function.  Takes care of calling a user-supplied
 | 
						|
   comparison function (any callable Python object).  Calls the
 | 
						|
   standard comparison function, PyObject_Compare(), if the user-
 | 
						|
   supplied function is NULL. */
 | 
						|
 | 
						|
static int
 | 
						|
docompare(PyObject *x, PyObject *y, PyObject *compare)
 | 
						|
{
 | 
						|
	PyObject *res;
 | 
						|
	PyObject *args;
 | 
						|
	int i;
 | 
						|
 | 
						|
	if (compare == NULL) {
 | 
						|
		/* NOTE: we rely on the fact here that the sorting algorithm
 | 
						|
		   only ever checks whether k<0, i.e., whether x<y.  So we
 | 
						|
		   invoke the rich comparison function with Py_LT ('<'), and
 | 
						|
		   return -1 when it returns true and 0 when it returns
 | 
						|
		   false. */
 | 
						|
		i = PyObject_RichCompareBool(x, y, Py_LT);
 | 
						|
		if (i < 0)
 | 
						|
			return CMPERROR;
 | 
						|
		else
 | 
						|
			return -i;
 | 
						|
	}
 | 
						|
 | 
						|
	args = PyTuple_New(2);
 | 
						|
	if (args == NULL)
 | 
						|
		return CMPERROR;
 | 
						|
	Py_INCREF(x);
 | 
						|
	Py_INCREF(y);
 | 
						|
	PyTuple_SET_ITEM(args, 0, x);
 | 
						|
	PyTuple_SET_ITEM(args, 1, y);
 | 
						|
	res = PyObject_Call(compare, args, NULL);
 | 
						|
	Py_DECREF(args);
 | 
						|
	if (res == NULL)
 | 
						|
		return CMPERROR;
 | 
						|
	if (!PyInt_Check(res)) {
 | 
						|
		Py_DECREF(res);
 | 
						|
		PyErr_SetString(PyExc_TypeError,
 | 
						|
				"comparison function must return int");
 | 
						|
		return CMPERROR;
 | 
						|
	}
 | 
						|
	i = PyInt_AsLong(res);
 | 
						|
	Py_DECREF(res);
 | 
						|
	if (i < 0)
 | 
						|
		return -1;
 | 
						|
	if (i > 0)
 | 
						|
		return 1;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* MINSIZE is the smallest array that will get a full-blown samplesort
 | 
						|
   treatment; smaller arrays are sorted using binary insertion.  It must
 | 
						|
   be at least 7 for the samplesort implementation to work.  Binary
 | 
						|
   insertion does fewer compares, but can suffer O(N**2) data movement.
 | 
						|
   The more expensive compares, the larger MINSIZE should be. */
 | 
						|
#define MINSIZE 100
 | 
						|
 | 
						|
/* MINPARTITIONSIZE is the smallest array slice samplesort will bother to
 | 
						|
   partition; smaller slices are passed to binarysort.  It must be at
 | 
						|
   least 2, and no larger than MINSIZE.  Setting it higher reduces the #
 | 
						|
   of compares slowly, but increases the amount of data movement quickly.
 | 
						|
   The value here was chosen assuming a compare costs ~25x more than
 | 
						|
   swapping a pair of memory-resident pointers -- but under that assumption,
 | 
						|
   changing the value by a few dozen more or less has aggregate effect
 | 
						|
   under 1%.  So the value is crucial, but not touchy <wink>. */
 | 
						|
#define MINPARTITIONSIZE 40
 | 
						|
 | 
						|
/* MAXMERGE is the largest number of elements we'll always merge into
 | 
						|
   a known-to-be sorted chunk via binary insertion, regardless of the
 | 
						|
   size of that chunk.  Given a chunk of N sorted elements, and a group
 | 
						|
   of K unknowns, the largest K for which it's better to do insertion
 | 
						|
   (than a full-blown sort) is a complicated function of N and K mostly
 | 
						|
   involving the expected number of compares and data moves under each
 | 
						|
   approach, and the relative cost of those operations on a specific
 | 
						|
   architecure.  The fixed value here is conservative, and should be a
 | 
						|
   clear win regardless of architecture or N. */
 | 
						|
#define MAXMERGE 15
 | 
						|
 | 
						|
/* STACKSIZE is the size of our work stack.  A rough estimate is that
 | 
						|
   this allows us to sort arrays of size N where
 | 
						|
   N / ln(N) = MINPARTITIONSIZE * 2**STACKSIZE, so 60 is more than enough
 | 
						|
   for arrays of size 2**64.  Because we push the biggest partition
 | 
						|
   first, the worst case occurs when all subarrays are always partitioned
 | 
						|
   exactly in two. */
 | 
						|
#define STACKSIZE 60
 | 
						|
 | 
						|
 | 
						|
#define SETK(X,Y) if ((k = docompare(X,Y,compare))==CMPERROR) goto fail
 | 
						|
 | 
						|
/* binarysort is the best method for sorting small arrays: it does
 | 
						|
   few compares, but can do data movement quadratic in the number of
 | 
						|
   elements.
 | 
						|
   [lo, hi) is a contiguous slice of a list, and is sorted via
 | 
						|
   binary insertion.
 | 
						|
   On entry, must have lo <= start <= hi, and that [lo, start) is already
 | 
						|
   sorted (pass start == lo if you don't know!).
 | 
						|
   If docompare complains (returns CMPERROR) return -1, else 0.
 | 
						|
   Even in case of error, the output slice will be some permutation of
 | 
						|
   the input (nothing is lost or duplicated).
 | 
						|
*/
 | 
						|
 | 
						|
static int
 | 
						|
binarysort(PyObject **lo, PyObject **hi, PyObject **start, PyObject *compare)
 | 
						|
     /* compare -- comparison function object, or NULL for default */
 | 
						|
{
 | 
						|
	/* assert lo <= start <= hi
 | 
						|
	   assert [lo, start) is sorted */
 | 
						|
	register int k;
 | 
						|
	register PyObject **l, **p, **r;
 | 
						|
	register PyObject *pivot;
 | 
						|
 | 
						|
	if (lo == start)
 | 
						|
		++start;
 | 
						|
	for (; start < hi; ++start) {
 | 
						|
		/* set l to where *start belongs */
 | 
						|
		l = lo;
 | 
						|
		r = start;
 | 
						|
		pivot = *r;
 | 
						|
		do {
 | 
						|
			p = l + ((r - l) >> 1);
 | 
						|
			SETK(pivot, *p);
 | 
						|
			if (k < 0)
 | 
						|
				r = p;
 | 
						|
			else
 | 
						|
				l = p + 1;
 | 
						|
		} while (l < r);
 | 
						|
		/* Pivot should go at l -- slide over to make room.
 | 
						|
		   Caution: using memmove is much slower under MSVC 5;
 | 
						|
		   we're not usually moving many slots. */
 | 
						|
		for (p = start; p > l; --p)
 | 
						|
			*p = *(p-1);
 | 
						|
		*l = pivot;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
 | 
						|
 fail:
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
 | 
						|
/* samplesortslice is the sorting workhorse.
 | 
						|
   [lo, hi) is a contiguous slice of a list, to be sorted in place.
 | 
						|
   On entry, must have lo <= hi,
 | 
						|
   If docompare complains (returns CMPERROR) return -1, else 0.
 | 
						|
   Even in case of error, the output slice will be some permutation of
 | 
						|
   the input (nothing is lost or duplicated).
 | 
						|
 | 
						|
   samplesort is basically quicksort on steroids:  a power of 2 close
 | 
						|
   to n/ln(n) is computed, and that many elements (less 1) are picked at
 | 
						|
   random from the array and sorted.  These 2**k - 1 elements are then
 | 
						|
   used as preselected pivots for an equal number of quicksort
 | 
						|
   partitioning steps, partitioning the slice into 2**k chunks each of
 | 
						|
   size about ln(n).  These small final chunks are then usually handled
 | 
						|
   by binarysort.  Note that when k=1, this is roughly the same as an
 | 
						|
   ordinary quicksort using a random pivot, and when k=2 this is roughly
 | 
						|
   a median-of-3 quicksort.  From that view, using k ~= lg(n/ln(n)) makes
 | 
						|
   this a "median of n/ln(n)" quicksort.  You can also view it as a kind
 | 
						|
   of bucket sort, where 2**k-1 bucket boundaries are picked dynamically.
 | 
						|
 | 
						|
   The large number of samples makes a quadratic-time case almost
 | 
						|
   impossible, and asymptotically drives the average-case number of
 | 
						|
   compares from quicksort's 2 N ln N (or 12/7 N ln N for the median-of-
 | 
						|
   3 variant) down to N lg N.
 | 
						|
 | 
						|
   We also play lots of low-level tricks to cut the number of compares.
 | 
						|
   
 | 
						|
   Very obscure:  To avoid using extra memory, the PPs are stored in the
 | 
						|
   array and shuffled around as partitioning proceeds.  At the start of a
 | 
						|
   partitioning step, we'll have 2**m-1 (for some m) PPs in sorted order,
 | 
						|
   adjacent (either on the left or the right!) to a chunk of X elements
 | 
						|
   that are to be partitioned: P X or X P.  In either case we need to
 | 
						|
   shuffle things *in place* so that the 2**(m-1) smaller PPs are on the
 | 
						|
   left, followed by the PP to be used for this step (that's the middle
 | 
						|
   of the PPs), followed by X, followed by the 2**(m-1) larger PPs:
 | 
						|
       P X or X P -> Psmall pivot X Plarge
 | 
						|
   and the order of the PPs must not be altered.  It can take a while
 | 
						|
   to realize this isn't trivial!  It can take even longer <wink> to
 | 
						|
   understand why the simple code below works, using only 2**(m-1) swaps.
 | 
						|
   The key is that the order of the X elements isn't necessarily
 | 
						|
   preserved:  X can end up as some cyclic permutation of its original
 | 
						|
   order.  That's OK, because X is unsorted anyway.  If the order of X
 | 
						|
   had to be preserved too, the simplest method I know of using O(1)
 | 
						|
   scratch storage requires len(X) + 2**(m-1) swaps, spread over 2 passes.
 | 
						|
   Since len(X) is typically several times larger than 2**(m-1), that
 | 
						|
   would slow things down.
 | 
						|
*/
 | 
						|
 | 
						|
struct SamplesortStackNode {
 | 
						|
	/* Represents a slice of the array, from (& including) lo up
 | 
						|
	   to (but excluding) hi.  "extra" additional & adjacent elements
 | 
						|
	   are pre-selected pivots (PPs), spanning [lo-extra, lo) if
 | 
						|
	   extra > 0, or [hi, hi-extra) if extra < 0.  The PPs are
 | 
						|
	   already sorted, but nothing is known about the other elements
 | 
						|
	   in [lo, hi). |extra| is always one less than a power of 2.
 | 
						|
	   When extra is 0, we're out of PPs, and the slice must be
 | 
						|
	   sorted by some other means. */
 | 
						|
	PyObject **lo;
 | 
						|
	PyObject **hi;
 | 
						|
	int extra;
 | 
						|
};
 | 
						|
 | 
						|
/* The number of PPs we want is 2**k - 1, where 2**k is as close to
 | 
						|
   N / ln(N) as possible.  So k ~= lg(N / ln(N)).  Calling libm routines
 | 
						|
   is undesirable, so cutoff values are canned in the "cutoff" table
 | 
						|
   below:  cutoff[i] is the smallest N such that k == CUTOFFBASE + i. */
 | 
						|
#define CUTOFFBASE 4
 | 
						|
static long cutoff[] = {
 | 
						|
	43,        /* smallest N such that k == 4 */
 | 
						|
	106,       /* etc */
 | 
						|
	250,
 | 
						|
	576,
 | 
						|
	1298,
 | 
						|
	2885,
 | 
						|
	6339,
 | 
						|
	13805,
 | 
						|
	29843,
 | 
						|
	64116,
 | 
						|
	137030,
 | 
						|
	291554,
 | 
						|
	617916,
 | 
						|
	1305130,
 | 
						|
	2748295,
 | 
						|
	5771662,
 | 
						|
	12091672,
 | 
						|
	25276798,
 | 
						|
	52734615,
 | 
						|
	109820537,
 | 
						|
	228324027,
 | 
						|
	473977813,
 | 
						|
	982548444,   /* smallest N such that k == 26 */
 | 
						|
	2034159050   /* largest N that fits in signed 32-bit; k == 27 */
 | 
						|
};
 | 
						|
 | 
						|
static int
 | 
						|
samplesortslice(PyObject **lo, PyObject **hi, PyObject *compare)
 | 
						|
     /* compare -- comparison function object, or NULL for default */
 | 
						|
{
 | 
						|
	register PyObject **l, **r;
 | 
						|
	register PyObject *tmp, *pivot;
 | 
						|
	register int k;
 | 
						|
	int n, extra, top, extraOnRight;
 | 
						|
	struct SamplesortStackNode stack[STACKSIZE];
 | 
						|
 | 
						|
	/* assert lo <= hi */
 | 
						|
	n = hi - lo;
 | 
						|
 | 
						|
	/* ----------------------------------------------------------
 | 
						|
	 * Special cases
 | 
						|
	 * --------------------------------------------------------*/
 | 
						|
	if (n < 2)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* Set r to the largest value such that [lo,r) is sorted.
 | 
						|
	   This catches the already-sorted case, the all-the-same
 | 
						|
	   case, and the appended-a-few-elements-to-a-sorted-list case.
 | 
						|
	   If the array is unsorted, we're very likely to get out of
 | 
						|
	   the loop fast, so the test is cheap if it doesn't pay off.
 | 
						|
	*/
 | 
						|
	/* assert lo < hi */
 | 
						|
	for (r = lo+1; r < hi; ++r) {
 | 
						|
		SETK(*r, *(r-1));
 | 
						|
		if (k < 0)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	/* [lo,r) is sorted, [r,hi) unknown.  Get out cheap if there are
 | 
						|
	   few unknowns, or few elements in total. */
 | 
						|
	if (hi - r <= MAXMERGE || n < MINSIZE)
 | 
						|
		return binarysort(lo, hi, r, compare);
 | 
						|
 | 
						|
	/* Check for the array already being reverse-sorted.  Typical
 | 
						|
	   benchmark-driven silliness <wink>. */
 | 
						|
	/* assert lo < hi */
 | 
						|
	for (r = lo+1; r < hi; ++r) {
 | 
						|
		SETK(*(r-1), *r);
 | 
						|
		if (k < 0)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	if (hi - r <= MAXMERGE) {
 | 
						|
		/* Reverse the reversed prefix, then insert the tail */
 | 
						|
		PyObject **originalr = r;
 | 
						|
		l = lo;
 | 
						|
		do {
 | 
						|
			--r;
 | 
						|
			tmp = *l; *l = *r; *r = tmp;
 | 
						|
			++l;
 | 
						|
		} while (l < r);
 | 
						|
		return binarysort(lo, hi, originalr, compare);
 | 
						|
	}
 | 
						|
 | 
						|
	/* ----------------------------------------------------------
 | 
						|
	 * Normal case setup: a large array without obvious pattern.
 | 
						|
	 * --------------------------------------------------------*/
 | 
						|
 | 
						|
	/* extra := a power of 2 ~= n/ln(n), less 1.
 | 
						|
	   First find the smallest extra s.t. n < cutoff[extra] */
 | 
						|
	for (extra = 0;
 | 
						|
	     extra < sizeof(cutoff) / sizeof(cutoff[0]);
 | 
						|
	     ++extra) {
 | 
						|
		if (n < cutoff[extra])
 | 
						|
			break;
 | 
						|
		/* note that if we fall out of the loop, the value of
 | 
						|
		   extra still makes *sense*, but may be smaller than
 | 
						|
		   we would like (but the array has more than ~= 2**31
 | 
						|
		   elements in this case!) */ 
 | 
						|
	}
 | 
						|
	/* Now k == extra - 1 + CUTOFFBASE.  The smallest value k can
 | 
						|
	   have is CUTOFFBASE-1, so
 | 
						|
	   assert MINSIZE >= 2**(CUTOFFBASE-1) - 1 */
 | 
						|
	extra = (1 << (extra - 1 + CUTOFFBASE)) - 1;
 | 
						|
	/* assert extra > 0 and n >= extra */
 | 
						|
 | 
						|
	/* Swap that many values to the start of the array.  The
 | 
						|
	   selection of elements is pseudo-random, but the same on
 | 
						|
	   every run (this is intentional! timing algorithm changes is
 | 
						|
	   a pain if timing varies across runs).  */
 | 
						|
	{
 | 
						|
		unsigned int seed = n / extra;  /* arbitrary */
 | 
						|
		unsigned int i;
 | 
						|
		for (i = 0; i < (unsigned)extra; ++i) {
 | 
						|
			/* j := random int in [i, n) */
 | 
						|
			unsigned int j;
 | 
						|
			seed = seed * 69069 + 7;
 | 
						|
			j = i + seed % (n - i);
 | 
						|
			tmp = lo[i]; lo[i] = lo[j]; lo[j] = tmp;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Recursively sort the preselected pivots. */
 | 
						|
	if (samplesortslice(lo, lo + extra, compare) < 0)
 | 
						|
		goto fail;
 | 
						|
 | 
						|
	top = 0;          /* index of available stack slot */
 | 
						|
	lo += extra;      /* point to first unknown */
 | 
						|
	extraOnRight = 0; /* the PPs are at the left end */
 | 
						|
 | 
						|
	/* ----------------------------------------------------------
 | 
						|
	 * Partition [lo, hi), and repeat until out of work.
 | 
						|
	 * --------------------------------------------------------*/
 | 
						|
	for (;;) {
 | 
						|
		/* assert lo <= hi, so n >= 0 */
 | 
						|
		n = hi - lo;
 | 
						|
 | 
						|
		/* We may not want, or may not be able, to partition:
 | 
						|
		   If n is small, it's quicker to insert.
 | 
						|
		   If extra is 0, we're out of pivots, and *must* use
 | 
						|
		   another method.
 | 
						|
		*/
 | 
						|
		if (n < MINPARTITIONSIZE || extra == 0) {
 | 
						|
			if (n >= MINSIZE) {
 | 
						|
				/* assert extra == 0
 | 
						|
				   This is rare, since the average size
 | 
						|
				   of a final block is only about
 | 
						|
				   ln(original n). */
 | 
						|
				if (samplesortslice(lo, hi, compare) < 0)
 | 
						|
					goto fail;
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				/* Binary insertion should be quicker,
 | 
						|
				   and we can take advantage of the PPs
 | 
						|
				   already being sorted. */
 | 
						|
				if (extraOnRight && extra) {
 | 
						|
					/* swap the PPs to the left end */
 | 
						|
					k = extra;
 | 
						|
					do {
 | 
						|
						tmp = *lo;
 | 
						|
						*lo = *hi;
 | 
						|
						*hi = tmp;
 | 
						|
						++lo; ++hi;
 | 
						|
					} while (--k);
 | 
						|
				}
 | 
						|
				if (binarysort(lo - extra, hi, lo,
 | 
						|
					       compare) < 0)
 | 
						|
					goto fail;
 | 
						|
			}
 | 
						|
 | 
						|
			/* Find another slice to work on. */
 | 
						|
			if (--top < 0)
 | 
						|
				break;   /* no more -- done! */
 | 
						|
			lo = stack[top].lo;
 | 
						|
			hi = stack[top].hi;
 | 
						|
			extra = stack[top].extra;
 | 
						|
			extraOnRight = 0;
 | 
						|
			if (extra < 0) {
 | 
						|
				extraOnRight = 1;
 | 
						|
				extra = -extra;
 | 
						|
			}
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Pretend the PPs are indexed 0, 1, ..., extra-1.
 | 
						|
		   Then our preselected pivot is at (extra-1)/2, and we
 | 
						|
		   want to move the PPs before that to the left end of
 | 
						|
		   the slice, and the PPs after that to the right end.
 | 
						|
		   The following section changes extra, lo, hi, and the
 | 
						|
		   slice such that:
 | 
						|
		   [lo-extra, lo) contains the smaller PPs.
 | 
						|
		   *lo == our PP.
 | 
						|
		   (lo, hi) contains the unknown elements.
 | 
						|
		   [hi, hi+extra) contains the larger PPs.
 | 
						|
		*/
 | 
						|
		k = extra >>= 1;  /* num PPs to move */ 
 | 
						|
		if (extraOnRight) {
 | 
						|
			/* Swap the smaller PPs to the left end.
 | 
						|
			   Note that this loop actually moves k+1 items:
 | 
						|
			   the last is our PP */
 | 
						|
			do {
 | 
						|
				tmp = *lo; *lo = *hi; *hi = tmp;
 | 
						|
				++lo; ++hi;
 | 
						|
			} while (k--);
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			/* Swap the larger PPs to the right end. */
 | 
						|
			while (k--) {
 | 
						|
				--lo; --hi;
 | 
						|
				tmp = *lo; *lo = *hi; *hi = tmp;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		--lo;   /* *lo is now our PP */
 | 
						|
		pivot = *lo;
 | 
						|
 | 
						|
		/* Now an almost-ordinary quicksort partition step.
 | 
						|
		   Note that most of the time is spent here!
 | 
						|
		   Only odd thing is that we partition into < and >=,
 | 
						|
		   instead of the usual <= and >=.  This helps when
 | 
						|
		   there are lots of duplicates of different values,
 | 
						|
		   because it eventually tends to make subfiles
 | 
						|
		   "pure" (all duplicates), and we special-case for
 | 
						|
		   duplicates later. */
 | 
						|
		l = lo + 1;
 | 
						|
		r = hi - 1;
 | 
						|
		/* assert lo < l < r < hi (small n weeded out above) */
 | 
						|
 | 
						|
		do {
 | 
						|
			/* slide l right, looking for key >= pivot */
 | 
						|
			do {
 | 
						|
				SETK(*l, pivot);
 | 
						|
				if (k < 0)
 | 
						|
					++l;
 | 
						|
				else
 | 
						|
					break;
 | 
						|
			} while (l < r);
 | 
						|
 | 
						|
			/* slide r left, looking for key < pivot */
 | 
						|
			while (l < r) {
 | 
						|
				register PyObject *rval = *r--;
 | 
						|
				SETK(rval, pivot);
 | 
						|
				if (k < 0) {
 | 
						|
					/* swap and advance */
 | 
						|
					r[1] = *l;
 | 
						|
					*l++ = rval;
 | 
						|
					break;
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
		} while (l < r);
 | 
						|
 | 
						|
		/* assert lo < r <= l < hi
 | 
						|
		   assert r == l or r+1 == l
 | 
						|
		   everything to the left of l is < pivot, and
 | 
						|
		   everything to the right of r is >= pivot */
 | 
						|
 | 
						|
		if (l == r) {
 | 
						|
			SETK(*r, pivot);
 | 
						|
			if (k < 0)
 | 
						|
				++l;
 | 
						|
			else
 | 
						|
				--r;
 | 
						|
		}
 | 
						|
		/* assert lo <= r and r+1 == l and l <= hi
 | 
						|
		   assert r == lo or a[r] < pivot
 | 
						|
		   assert a[lo] is pivot
 | 
						|
		   assert l == hi or a[l] >= pivot
 | 
						|
		   Swap the pivot into "the middle", so we can henceforth
 | 
						|
		   ignore it.
 | 
						|
		*/
 | 
						|
		*lo = *r;
 | 
						|
		*r = pivot;
 | 
						|
 | 
						|
		/* The following is true now, & will be preserved:
 | 
						|
		   All in [lo,r) are < pivot
 | 
						|
		   All in [r,l) == pivot (& so can be ignored)
 | 
						|
		   All in [l,hi) are >= pivot */
 | 
						|
 | 
						|
		/* Check for duplicates of the pivot.  One compare is
 | 
						|
		   wasted if there are no duplicates, but can win big
 | 
						|
		   when there are.
 | 
						|
		   Tricky: we're sticking to "<" compares, so deduce
 | 
						|
		   equality indirectly.  We know pivot <= *l, so they're
 | 
						|
		   equal iff not pivot < *l.
 | 
						|
		*/
 | 
						|
		while (l < hi) {
 | 
						|
			/* pivot <= *l known */
 | 
						|
			SETK(pivot, *l);
 | 
						|
			if (k < 0)
 | 
						|
				break;
 | 
						|
			else
 | 
						|
				/* <= and not < implies == */
 | 
						|
				++l;
 | 
						|
		}
 | 
						|
 | 
						|
		/* assert lo <= r < l <= hi
 | 
						|
		   Partitions are [lo, r) and [l, hi) */
 | 
						|
 | 
						|
		/* push fattest first; remember we still have extra PPs
 | 
						|
		   to the left of the left chunk and to the right of
 | 
						|
		   the right chunk! */
 | 
						|
		/* assert top < STACKSIZE */
 | 
						|
		if (r - lo <= hi - l) {
 | 
						|
			/* second is bigger */
 | 
						|
			stack[top].lo = l;
 | 
						|
			stack[top].hi = hi;
 | 
						|
			stack[top].extra = -extra;
 | 
						|
			hi = r;
 | 
						|
			extraOnRight = 0;
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			/* first is bigger */
 | 
						|
			stack[top].lo = lo;
 | 
						|
			stack[top].hi = r;
 | 
						|
			stack[top].extra = extra;
 | 
						|
			lo = l;
 | 
						|
			extraOnRight = 1;
 | 
						|
		}
 | 
						|
		++top;
 | 
						|
 | 
						|
	}   /* end of partitioning loop */
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
 fail:
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
 | 
						|
#undef SETK
 | 
						|
 | 
						|
static PyTypeObject immutable_list_type;
 | 
						|
 | 
						|
static PyObject *
 | 
						|
listsort(PyListObject *self, PyObject *args)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
	PyObject *compare = NULL;
 | 
						|
	PyTypeObject *savetype;
 | 
						|
 | 
						|
	if (args != NULL) {
 | 
						|
		if (!PyArg_ParseTuple(args, "|O:sort", &compare))
 | 
						|
			return NULL;
 | 
						|
	}
 | 
						|
	savetype = self->ob_type;
 | 
						|
	self->ob_type = &immutable_list_type;
 | 
						|
	err = samplesortslice(self->ob_item,
 | 
						|
			      self->ob_item + self->ob_size,
 | 
						|
			      compare);
 | 
						|
	self->ob_type = savetype;
 | 
						|
	if (err < 0)
 | 
						|
		return NULL;
 | 
						|
	Py_INCREF(Py_None);
 | 
						|
	return Py_None;
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
PyList_Sort(PyObject *v)
 | 
						|
{
 | 
						|
	if (v == NULL || !PyList_Check(v)) {
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	v = listsort((PyListObject *)v, (PyObject *)NULL);
 | 
						|
	if (v == NULL)
 | 
						|
		return -1;
 | 
						|
	Py_DECREF(v);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
_listreverse(PyListObject *self)
 | 
						|
{
 | 
						|
	register PyObject **p, **q;
 | 
						|
	register PyObject *tmp;
 | 
						|
	
 | 
						|
	if (self->ob_size > 1) {
 | 
						|
		for (p = self->ob_item, q = self->ob_item + self->ob_size - 1;
 | 
						|
		     p < q;
 | 
						|
		     p++, q--)
 | 
						|
		{
 | 
						|
			tmp = *p;
 | 
						|
			*p = *q;
 | 
						|
			*q = tmp;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
listreverse(PyListObject *self)
 | 
						|
{
 | 
						|
	_listreverse(self);
 | 
						|
	Py_INCREF(Py_None);
 | 
						|
	return Py_None;
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
PyList_Reverse(PyObject *v)
 | 
						|
{
 | 
						|
	if (v == NULL || !PyList_Check(v)) {
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	_listreverse((PyListObject *)v);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyList_AsTuple(PyObject *v)
 | 
						|
{
 | 
						|
	PyObject *w;
 | 
						|
	PyObject **p;
 | 
						|
	int n;
 | 
						|
	if (v == NULL || !PyList_Check(v)) {
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	n = ((PyListObject *)v)->ob_size;
 | 
						|
	w = PyTuple_New(n);
 | 
						|
	if (w == NULL)
 | 
						|
		return NULL;
 | 
						|
	p = ((PyTupleObject *)w)->ob_item;
 | 
						|
	memcpy((void *)p,
 | 
						|
	       (void *)((PyListObject *)v)->ob_item,
 | 
						|
	       n*sizeof(PyObject *));
 | 
						|
	while (--n >= 0) {
 | 
						|
		Py_INCREF(*p);
 | 
						|
		p++;
 | 
						|
	}
 | 
						|
	return w;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
listindex(PyListObject *self, PyObject *v)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < self->ob_size; i++) {
 | 
						|
		int cmp = PyObject_RichCompareBool(self->ob_item[i], v, Py_EQ);
 | 
						|
		if (cmp > 0)
 | 
						|
			return PyInt_FromLong((long)i);
 | 
						|
		else if (cmp < 0)
 | 
						|
			return NULL;
 | 
						|
	}
 | 
						|
	PyErr_SetString(PyExc_ValueError, "list.index(x): x not in list");
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
listcount(PyListObject *self, PyObject *v)
 | 
						|
{
 | 
						|
	int count = 0;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < self->ob_size; i++) {
 | 
						|
		int cmp = PyObject_RichCompareBool(self->ob_item[i], v, Py_EQ);
 | 
						|
		if (cmp > 0)
 | 
						|
			count++;
 | 
						|
		else if (cmp < 0)
 | 
						|
			return NULL;
 | 
						|
	}
 | 
						|
	return PyInt_FromLong((long)count);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
listremove(PyListObject *self, PyObject *v)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < self->ob_size; i++) {
 | 
						|
		int cmp = PyObject_RichCompareBool(self->ob_item[i], v, Py_EQ);
 | 
						|
		if (cmp > 0) {
 | 
						|
			if (list_ass_slice(self, i, i+1,
 | 
						|
					   (PyObject *)NULL) != 0)
 | 
						|
				return NULL;
 | 
						|
			Py_INCREF(Py_None);
 | 
						|
			return Py_None;
 | 
						|
		}
 | 
						|
		else if (cmp < 0)
 | 
						|
			return NULL;
 | 
						|
	}
 | 
						|
	PyErr_SetString(PyExc_ValueError, "list.remove(x): x not in list");
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
list_traverse(PyListObject *o, visitproc visit, void *arg)
 | 
						|
{
 | 
						|
	int i, err;
 | 
						|
	PyObject *x;
 | 
						|
 | 
						|
	for (i = o->ob_size; --i >= 0; ) {
 | 
						|
		x = o->ob_item[i];
 | 
						|
		if (x != NULL) {
 | 
						|
			err = visit(x, arg);
 | 
						|
			if (err)
 | 
						|
				return err;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
list_clear(PyListObject *lp)
 | 
						|
{
 | 
						|
	(void) PyList_SetSlice((PyObject *)lp, 0, lp->ob_size, 0);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_richcompare(PyObject *v, PyObject *w, int op)
 | 
						|
{
 | 
						|
	PyListObject *vl, *wl;
 | 
						|
	int i;
 | 
						|
 | 
						|
	if (!PyList_Check(v) || !PyList_Check(w)) {
 | 
						|
		Py_INCREF(Py_NotImplemented);
 | 
						|
		return Py_NotImplemented;
 | 
						|
	}
 | 
						|
 | 
						|
	vl = (PyListObject *)v;
 | 
						|
	wl = (PyListObject *)w;
 | 
						|
 | 
						|
	if (vl->ob_size != wl->ob_size && (op == Py_EQ || op == Py_NE)) {
 | 
						|
		/* Shortcut: if the lengths differ, the lists differ */
 | 
						|
		PyObject *res;
 | 
						|
		if (op == Py_EQ)
 | 
						|
			res = Py_False;
 | 
						|
		else
 | 
						|
			res = Py_True;
 | 
						|
		Py_INCREF(res);
 | 
						|
		return res;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Search for the first index where items are different */
 | 
						|
	for (i = 0; i < vl->ob_size && i < wl->ob_size; i++) {
 | 
						|
		int k = PyObject_RichCompareBool(vl->ob_item[i],
 | 
						|
						 wl->ob_item[i], Py_EQ);
 | 
						|
		if (k < 0)
 | 
						|
			return NULL;
 | 
						|
		if (!k)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	if (i >= vl->ob_size || i >= wl->ob_size) {
 | 
						|
		/* No more items to compare -- compare sizes */
 | 
						|
		int vs = vl->ob_size;
 | 
						|
		int ws = wl->ob_size;
 | 
						|
		int cmp;
 | 
						|
		PyObject *res;
 | 
						|
		switch (op) {
 | 
						|
		case Py_LT: cmp = vs <  ws; break;
 | 
						|
		case Py_LE: cmp = vs <= ws; break;
 | 
						|
		case Py_EQ: cmp = vs == ws; break;
 | 
						|
		case Py_NE: cmp = vs != ws; break;
 | 
						|
		case Py_GT: cmp = vs >  ws; break;
 | 
						|
		case Py_GE: cmp = vs >= ws; break;
 | 
						|
		default: return NULL; /* cannot happen */
 | 
						|
		}
 | 
						|
		if (cmp)
 | 
						|
			res = Py_True;
 | 
						|
		else
 | 
						|
			res = Py_False;
 | 
						|
		Py_INCREF(res);
 | 
						|
		return res;
 | 
						|
	}
 | 
						|
 | 
						|
	/* We have an item that differs -- shortcuts for EQ/NE */
 | 
						|
	if (op == Py_EQ) {
 | 
						|
		Py_INCREF(Py_False);
 | 
						|
		return Py_False;
 | 
						|
	}
 | 
						|
	if (op == Py_NE) {
 | 
						|
		Py_INCREF(Py_True);
 | 
						|
		return Py_True;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Compare the final item again using the proper operator */
 | 
						|
	return PyObject_RichCompare(vl->ob_item[i], wl->ob_item[i], op);
 | 
						|
}
 | 
						|
 | 
						|
/* Adapted from newer code by Tim */
 | 
						|
static int
 | 
						|
list_fill(PyListObject *result, PyObject *v)
 | 
						|
{
 | 
						|
	PyObject *it;      /* iter(v) */
 | 
						|
	int n;		   /* guess for result list size */
 | 
						|
	int i;
 | 
						|
 | 
						|
	n = result->ob_size;
 | 
						|
 | 
						|
	/* Special-case list(a_list), for speed. */
 | 
						|
	if (PyList_Check(v)) {
 | 
						|
		if (v == (PyObject *)result)
 | 
						|
			return 0; /* source is destination, we're done */
 | 
						|
		return list_ass_slice(result, 0, n, v);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Empty previous contents */
 | 
						|
	if (n != 0) {
 | 
						|
		if (list_ass_slice(result, 0, n, (PyObject *)NULL) != 0)
 | 
						|
			return -1;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Get iterator.  There may be some low-level efficiency to be gained
 | 
						|
	 * by caching the tp_iternext slot instead of using PyIter_Next()
 | 
						|
	 * later, but premature optimization is the root etc.
 | 
						|
	 */
 | 
						|
	it = PyObject_GetIter(v);
 | 
						|
	if (it == NULL)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	/* Guess a result list size. */
 | 
						|
	n = -1;	 /* unknown */
 | 
						|
	if (PySequence_Check(v) &&
 | 
						|
	    v->ob_type->tp_as_sequence->sq_length) {
 | 
						|
		n = PySequence_Size(v);
 | 
						|
		if (n < 0)
 | 
						|
			PyErr_Clear();
 | 
						|
	}
 | 
						|
	if (n < 0)
 | 
						|
		n = 8;	/* arbitrary */
 | 
						|
	NRESIZE(result->ob_item, PyObject*, n);
 | 
						|
	if (result->ob_item == NULL) {
 | 
						|
		PyErr_NoMemory();
 | 
						|
		goto error;
 | 
						|
	}
 | 
						|
	memset(result->ob_item, 0, sizeof(*result->ob_item) * n);
 | 
						|
	result->ob_size = n;
 | 
						|
 | 
						|
	/* Run iterator to exhaustion. */
 | 
						|
	for (i = 0; ; i++) {
 | 
						|
		PyObject *item = PyIter_Next(it);
 | 
						|
		if (item == NULL) {
 | 
						|
			if (PyErr_Occurred())
 | 
						|
				goto error;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		if (i < n)
 | 
						|
			PyList_SET_ITEM(result, i, item); /* steals ref */
 | 
						|
		else {
 | 
						|
			int status = ins1(result, result->ob_size, item);
 | 
						|
			Py_DECREF(item);  /* append creates a new ref */
 | 
						|
			if (status < 0)
 | 
						|
				goto error;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Cut back result list if initial guess was too large. */
 | 
						|
	if (i < n && result != NULL) {
 | 
						|
		if (list_ass_slice(result, i, n, (PyObject *)NULL) != 0)
 | 
						|
			goto error;
 | 
						|
	}
 | 
						|
	Py_DECREF(it);
 | 
						|
	return 0;
 | 
						|
 | 
						|
  error:
 | 
						|
	Py_DECREF(it);
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
list_init(PyListObject *self, PyObject *args, PyObject *kw)
 | 
						|
{
 | 
						|
	PyObject *arg = NULL;
 | 
						|
	static char *kwlist[] = {"sequence", 0};
 | 
						|
 | 
						|
	if (!PyArg_ParseTupleAndKeywords(args, kw, "|O:list", kwlist, &arg))
 | 
						|
		return -1;
 | 
						|
	if (arg != NULL)
 | 
						|
		return list_fill(self, arg);
 | 
						|
	if (self->ob_size > 0)
 | 
						|
		return list_ass_slice(self, 0, self->ob_size, (PyObject*)NULL);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static long
 | 
						|
list_nohash(PyObject *self)
 | 
						|
{
 | 
						|
	PyErr_SetString(PyExc_TypeError, "list objects are unhashable");
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(append_doc,
 | 
						|
"L.append(object) -- append object to end");
 | 
						|
PyDoc_STRVAR(extend_doc,
 | 
						|
"L.extend(list) -- extend list by appending list elements");
 | 
						|
PyDoc_STRVAR(insert_doc,
 | 
						|
"L.insert(index, object) -- insert object before index");
 | 
						|
PyDoc_STRVAR(pop_doc,
 | 
						|
"L.pop([index]) -> item -- remove and return item at index (default last)");
 | 
						|
PyDoc_STRVAR(remove_doc,
 | 
						|
"L.remove(value) -- remove first occurrence of value");
 | 
						|
PyDoc_STRVAR(index_doc,
 | 
						|
"L.index(value) -> integer -- return index of first occurrence of value");
 | 
						|
PyDoc_STRVAR(count_doc,
 | 
						|
"L.count(value) -> integer -- return number of occurrences of value");
 | 
						|
PyDoc_STRVAR(reverse_doc,
 | 
						|
"L.reverse() -- reverse *IN PLACE*");
 | 
						|
PyDoc_STRVAR(sort_doc,
 | 
						|
"L.sort([cmpfunc]) -- sort *IN PLACE*; if given, cmpfunc(x, y) -> -1, 0, 1");
 | 
						|
 | 
						|
static PyMethodDef list_methods[] = {
 | 
						|
	{"append",	(PyCFunction)listappend,  METH_O, append_doc},
 | 
						|
	{"insert",	(PyCFunction)listinsert,  METH_VARARGS, insert_doc},
 | 
						|
	{"extend",      (PyCFunction)listextend,  METH_O, extend_doc},
 | 
						|
	{"pop",		(PyCFunction)listpop, 	  METH_VARARGS, pop_doc},
 | 
						|
	{"remove",	(PyCFunction)listremove,  METH_O, remove_doc},
 | 
						|
	{"index",	(PyCFunction)listindex,   METH_O, index_doc},
 | 
						|
	{"count",	(PyCFunction)listcount,   METH_O, count_doc},
 | 
						|
	{"reverse",	(PyCFunction)listreverse, METH_NOARGS, reverse_doc},
 | 
						|
	{"sort",	(PyCFunction)listsort, 	  METH_VARARGS, sort_doc},
 | 
						|
	{NULL,		NULL}		/* sentinel */
 | 
						|
};
 | 
						|
 | 
						|
static PySequenceMethods list_as_sequence = {
 | 
						|
	(inquiry)list_length,			/* sq_length */
 | 
						|
	(binaryfunc)list_concat,		/* sq_concat */
 | 
						|
	(intargfunc)list_repeat,		/* sq_repeat */
 | 
						|
	(intargfunc)list_item,			/* sq_item */
 | 
						|
	(intintargfunc)list_slice,		/* sq_slice */
 | 
						|
	(intobjargproc)list_ass_item,		/* sq_ass_item */
 | 
						|
	(intintobjargproc)list_ass_slice,	/* sq_ass_slice */
 | 
						|
	(objobjproc)list_contains,		/* sq_contains */
 | 
						|
	(binaryfunc)list_inplace_concat,	/* sq_inplace_concat */
 | 
						|
	(intargfunc)list_inplace_repeat,	/* sq_inplace_repeat */
 | 
						|
};
 | 
						|
 | 
						|
PyDoc_STRVAR(list_doc,
 | 
						|
"list() -> new list\n"
 | 
						|
"list(sequence) -> new list initialized from sequence's items");
 | 
						|
 | 
						|
static PyObject *list_iter(PyObject *seq);
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_subscript(PyListObject* self, PyObject* item)
 | 
						|
{
 | 
						|
	if (PyInt_Check(item)) {
 | 
						|
		long i = PyInt_AS_LONG(item);
 | 
						|
		if (i < 0)
 | 
						|
			i += PyList_GET_SIZE(self);
 | 
						|
		return list_item(self, i);
 | 
						|
	}
 | 
						|
	else if (PyLong_Check(item)) {
 | 
						|
		long i = PyLong_AsLong(item);
 | 
						|
		if (i == -1 && PyErr_Occurred())
 | 
						|
			return NULL;
 | 
						|
		if (i < 0)
 | 
						|
			i += PyList_GET_SIZE(self);
 | 
						|
		return list_item(self, i);
 | 
						|
	}
 | 
						|
	else if (PySlice_Check(item)) {
 | 
						|
		int start, stop, step, slicelength, cur, i;
 | 
						|
		PyObject* result;
 | 
						|
		PyObject* it;
 | 
						|
 | 
						|
		if (PySlice_GetIndicesEx((PySliceObject*)item, self->ob_size,
 | 
						|
				 &start, &stop, &step, &slicelength) < 0) {
 | 
						|
			return NULL;
 | 
						|
		}
 | 
						|
 | 
						|
		if (slicelength <= 0) {
 | 
						|
			return PyList_New(0);
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			result = PyList_New(slicelength);
 | 
						|
			if (!result) return NULL;
 | 
						|
 | 
						|
			for (cur = start, i = 0; i < slicelength; 
 | 
						|
			     cur += step, i++) {
 | 
						|
				it = PyList_GET_ITEM(self, cur);
 | 
						|
				Py_INCREF(it);
 | 
						|
				PyList_SET_ITEM(result, i, it);
 | 
						|
			}
 | 
						|
			
 | 
						|
			return result;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		PyErr_SetString(PyExc_TypeError,
 | 
						|
				"list indices must be integers");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int 
 | 
						|
list_ass_subscript(PyListObject* self, PyObject* item, PyObject* value)
 | 
						|
{
 | 
						|
	if (PyInt_Check(item)) {
 | 
						|
		long i = PyInt_AS_LONG(item);
 | 
						|
		if (i < 0)
 | 
						|
			i += PyList_GET_SIZE(self);
 | 
						|
		return list_ass_item(self, i, value);
 | 
						|
	}
 | 
						|
	else if (PyLong_Check(item)) {
 | 
						|
		long i = PyLong_AsLong(item);
 | 
						|
		if (i == -1 && PyErr_Occurred())
 | 
						|
			return -1;
 | 
						|
		if (i < 0)
 | 
						|
			i += PyList_GET_SIZE(self);
 | 
						|
		return list_ass_item(self, i, value);
 | 
						|
	}
 | 
						|
	else if (PySlice_Check(item)) {
 | 
						|
		int start, stop, step, slicelength;
 | 
						|
 | 
						|
		if (PySlice_GetIndicesEx((PySliceObject*)item, self->ob_size,
 | 
						|
				 &start, &stop, &step, &slicelength) < 0) {
 | 
						|
			return -1;
 | 
						|
		}
 | 
						|
 | 
						|
		/* treat L[slice(a,b)] = v _exactly_ like L[a:b] = v */
 | 
						|
		if (step == 1 && ((PySliceObject*)item)->step == Py_None)
 | 
						|
			return list_ass_slice(self, start, stop, value);
 | 
						|
 | 
						|
		if (value == NULL) {
 | 
						|
			/* delete slice */
 | 
						|
			PyObject **garbage, **it;
 | 
						|
			int cur, i, j;
 | 
						|
			
 | 
						|
			if (slicelength <= 0)
 | 
						|
				return 0;
 | 
						|
 | 
						|
			if (step < 0) {
 | 
						|
				stop = start + 1;
 | 
						|
				start = stop + step*(slicelength - 1) - 1;
 | 
						|
				step = -step;
 | 
						|
			}
 | 
						|
 | 
						|
			garbage = (PyObject**)
 | 
						|
				PyMem_MALLOC(slicelength*sizeof(PyObject*));
 | 
						|
			
 | 
						|
			/* drawing pictures might help 
 | 
						|
			   understand these for loops */
 | 
						|
			for (cur = start, i = 0;
 | 
						|
			     cur < stop;
 | 
						|
			     cur += step, i++)
 | 
						|
			{
 | 
						|
				garbage[i] = PyList_GET_ITEM(self, cur);
 | 
						|
 | 
						|
				for (j = 0; j < step; j++) {
 | 
						|
					PyList_SET_ITEM(self, cur + j - i, 
 | 
						|
						PyList_GET_ITEM(self,
 | 
						|
								cur + j + 1));
 | 
						|
				}
 | 
						|
			}
 | 
						|
			for (cur = start + slicelength*step + 1;
 | 
						|
			     cur < self->ob_size; cur++) {
 | 
						|
				PyList_SET_ITEM(self, cur - slicelength,
 | 
						|
						PyList_GET_ITEM(self, cur));
 | 
						|
			}
 | 
						|
			self->ob_size -= slicelength;
 | 
						|
			it = self->ob_item;
 | 
						|
			NRESIZE(it, PyObject*, self->ob_size);
 | 
						|
			self->ob_item = it;
 | 
						|
 | 
						|
			for (i = 0; i < slicelength; i++) {
 | 
						|
				Py_DECREF(garbage[i]);
 | 
						|
			}
 | 
						|
			PyMem_FREE(garbage);
 | 
						|
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			/* assign slice */
 | 
						|
			PyObject **garbage, *ins;
 | 
						|
			int cur, i;
 | 
						|
 | 
						|
			if (!PyList_Check(value)) {
 | 
						|
				PyErr_Format(PyExc_TypeError,
 | 
						|
			     "must assign list (not \"%.200s\") to slice",
 | 
						|
					     value->ob_type->tp_name);
 | 
						|
				return -1;
 | 
						|
			}
 | 
						|
 | 
						|
			if (PyList_GET_SIZE(value) != slicelength) {
 | 
						|
				PyErr_Format(PyExc_ValueError,
 | 
						|
            "attempt to assign list of size %d to extended slice of size %d",
 | 
						|
					     PyList_Size(value), slicelength);
 | 
						|
				return -1;
 | 
						|
			}
 | 
						|
 | 
						|
			if (!slicelength)
 | 
						|
				return 0;
 | 
						|
 | 
						|
			/* protect against a[::-1] = a */
 | 
						|
			if (self == (PyListObject*)value) { 
 | 
						|
				value = list_slice((PyListObject*)value, 0,
 | 
						|
						   PyList_GET_SIZE(value));
 | 
						|
			} 
 | 
						|
			else {
 | 
						|
				Py_INCREF(value);
 | 
						|
			}
 | 
						|
 | 
						|
			garbage = (PyObject**)
 | 
						|
				PyMem_MALLOC(slicelength*sizeof(PyObject*));
 | 
						|
			
 | 
						|
			for (cur = start, i = 0; i < slicelength; 
 | 
						|
			     cur += step, i++) {
 | 
						|
				garbage[i] = PyList_GET_ITEM(self, cur);
 | 
						|
				
 | 
						|
				ins = PyList_GET_ITEM(value, i);
 | 
						|
				Py_INCREF(ins);
 | 
						|
				PyList_SET_ITEM(self, cur, ins);
 | 
						|
			}
 | 
						|
 | 
						|
			for (i = 0; i < slicelength; i++) {
 | 
						|
				Py_DECREF(garbage[i]);
 | 
						|
			}
 | 
						|
			
 | 
						|
			PyMem_FREE(garbage);
 | 
						|
			Py_DECREF(value);
 | 
						|
			
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
	} 
 | 
						|
	else {
 | 
						|
		PyErr_SetString(PyExc_TypeError, 
 | 
						|
				"list indices must be integers");
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static PyMappingMethods list_as_mapping = {
 | 
						|
	(inquiry)list_length,
 | 
						|
	(binaryfunc)list_subscript,
 | 
						|
	(objobjargproc)list_ass_subscript
 | 
						|
};
 | 
						|
 | 
						|
PyTypeObject PyList_Type = {
 | 
						|
	PyObject_HEAD_INIT(&PyType_Type)
 | 
						|
	0,
 | 
						|
	"list",
 | 
						|
	sizeof(PyListObject),
 | 
						|
	0,
 | 
						|
	(destructor)list_dealloc,		/* tp_dealloc */
 | 
						|
	(printfunc)list_print,			/* tp_print */
 | 
						|
	0,					/* tp_getattr */
 | 
						|
	0,					/* tp_setattr */
 | 
						|
	0,					/* tp_compare */
 | 
						|
	(reprfunc)list_repr,			/* tp_repr */
 | 
						|
	0,					/* tp_as_number */
 | 
						|
	&list_as_sequence,			/* tp_as_sequence */
 | 
						|
	&list_as_mapping,			/* tp_as_mapping */
 | 
						|
	list_nohash,				/* tp_hash */
 | 
						|
	0,					/* tp_call */
 | 
						|
	0,					/* tp_str */
 | 
						|
	PyObject_GenericGetAttr,		/* tp_getattro */
 | 
						|
	0,					/* tp_setattro */
 | 
						|
	0,					/* tp_as_buffer */
 | 
						|
	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC |
 | 
						|
		Py_TPFLAGS_BASETYPE,		/* tp_flags */
 | 
						|
 	list_doc,				/* tp_doc */
 | 
						|
 	(traverseproc)list_traverse,		/* tp_traverse */
 | 
						|
 	(inquiry)list_clear,			/* tp_clear */
 | 
						|
	list_richcompare,			/* tp_richcompare */
 | 
						|
	0,					/* tp_weaklistoffset */
 | 
						|
	list_iter,				/* tp_iter */
 | 
						|
	0,					/* tp_iternext */
 | 
						|
	list_methods,				/* tp_methods */
 | 
						|
	0,					/* tp_members */
 | 
						|
	0,					/* tp_getset */
 | 
						|
	0,					/* tp_base */
 | 
						|
	0,					/* tp_dict */
 | 
						|
	0,					/* tp_descr_get */
 | 
						|
	0,					/* tp_descr_set */
 | 
						|
	0,					/* tp_dictoffset */
 | 
						|
	(initproc)list_init,			/* tp_init */
 | 
						|
	PyType_GenericAlloc,			/* tp_alloc */
 | 
						|
	PyType_GenericNew,			/* tp_new */
 | 
						|
	PyObject_GC_Del,			/* tp_free */
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/* During a sort, we really can't have anyone modifying the list; it could
 | 
						|
   cause core dumps.  Thus, we substitute a dummy type that raises an
 | 
						|
   explanatory exception when a modifying operation is used.  Caveat:
 | 
						|
   comparisons may behave differently; but I guess it's a bad idea anyway to
 | 
						|
   compare a list that's being sorted... */
 | 
						|
 | 
						|
static PyObject *
 | 
						|
immutable_list_op(void)
 | 
						|
{
 | 
						|
	PyErr_SetString(PyExc_TypeError,
 | 
						|
			"a list cannot be modified while it is being sorted");
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static PyMethodDef immutable_list_methods[] = {
 | 
						|
	{"append",	(PyCFunction)immutable_list_op, METH_VARARGS},
 | 
						|
	{"insert",	(PyCFunction)immutable_list_op, METH_VARARGS},
 | 
						|
	{"extend",      (PyCFunction)immutable_list_op,  METH_O},
 | 
						|
	{"pop",		(PyCFunction)immutable_list_op, METH_VARARGS},
 | 
						|
	{"remove",	(PyCFunction)immutable_list_op, METH_VARARGS},
 | 
						|
	{"index",	(PyCFunction)listindex,         METH_O},
 | 
						|
	{"count",	(PyCFunction)listcount,         METH_O},
 | 
						|
	{"reverse",	(PyCFunction)immutable_list_op, METH_VARARGS},
 | 
						|
	{"sort",	(PyCFunction)immutable_list_op, METH_VARARGS},
 | 
						|
	{NULL,		NULL}		/* sentinel */
 | 
						|
};
 | 
						|
 | 
						|
static int
 | 
						|
immutable_list_ass(void)
 | 
						|
{
 | 
						|
	immutable_list_op();
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
 | 
						|
static PySequenceMethods immutable_list_as_sequence = {
 | 
						|
	(inquiry)list_length,			/* sq_length */
 | 
						|
	(binaryfunc)list_concat,		/* sq_concat */
 | 
						|
	(intargfunc)list_repeat,		/* sq_repeat */
 | 
						|
	(intargfunc)list_item,			/* sq_item */
 | 
						|
	(intintargfunc)list_slice,		/* sq_slice */
 | 
						|
	(intobjargproc)immutable_list_ass,	/* sq_ass_item */
 | 
						|
	(intintobjargproc)immutable_list_ass,	/* sq_ass_slice */
 | 
						|
	(objobjproc)list_contains,		/* sq_contains */
 | 
						|
};
 | 
						|
 | 
						|
static PyTypeObject immutable_list_type = {
 | 
						|
	PyObject_HEAD_INIT(&PyType_Type)
 | 
						|
	0,
 | 
						|
	"list (immutable, during sort)",
 | 
						|
	sizeof(PyListObject),
 | 
						|
	0,
 | 
						|
	0, /* Cannot happen */			/* tp_dealloc */
 | 
						|
	(printfunc)list_print,			/* tp_print */
 | 
						|
	0,					/* tp_getattr */
 | 
						|
	0,					/* tp_setattr */
 | 
						|
	0, /* Won't be called */		/* tp_compare */
 | 
						|
	(reprfunc)list_repr,			/* tp_repr */
 | 
						|
	0,					/* tp_as_number */
 | 
						|
	&immutable_list_as_sequence,		/* tp_as_sequence */
 | 
						|
	0,					/* tp_as_mapping */
 | 
						|
	list_nohash,				/* tp_hash */
 | 
						|
	0,					/* tp_call */
 | 
						|
	0,					/* tp_str */
 | 
						|
	PyObject_GenericGetAttr,		/* tp_getattro */
 | 
						|
	0,					/* tp_setattro */
 | 
						|
	0,					/* tp_as_buffer */
 | 
						|
	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
 | 
						|
 	list_doc,				/* tp_doc */
 | 
						|
 	(traverseproc)list_traverse,		/* tp_traverse */
 | 
						|
	0,					/* tp_clear */
 | 
						|
	list_richcompare,			/* tp_richcompare */
 | 
						|
	0,					/* tp_weaklistoffset */
 | 
						|
	0,					/* tp_iter */
 | 
						|
	0,					/* tp_iternext */
 | 
						|
	immutable_list_methods,			/* tp_methods */
 | 
						|
	0,					/* tp_members */
 | 
						|
	0,					/* tp_getset */
 | 
						|
	0,					/* tp_base */
 | 
						|
	0,					/* tp_dict */
 | 
						|
	0,					/* tp_descr_get */
 | 
						|
	0,					/* tp_descr_set */
 | 
						|
	0,					/* tp_init */
 | 
						|
	/* NOTE: This is *not* the standard list_type struct! */
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/*********************** List Iterator **************************/
 | 
						|
 | 
						|
typedef struct {
 | 
						|
	PyObject_HEAD
 | 
						|
	long it_index;
 | 
						|
	PyListObject *it_seq; /* Set to NULL when iterator is exhausted */
 | 
						|
} listiterobject;
 | 
						|
 | 
						|
PyTypeObject PyListIter_Type;
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_iter(PyObject *seq)
 | 
						|
{
 | 
						|
	listiterobject *it;
 | 
						|
 | 
						|
	if (!PyList_Check(seq)) {
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	it = PyObject_GC_New(listiterobject, &PyListIter_Type);
 | 
						|
	if (it == NULL)
 | 
						|
		return NULL;
 | 
						|
	it->it_index = 0;
 | 
						|
	Py_INCREF(seq);
 | 
						|
	it->it_seq = (PyListObject *)seq;
 | 
						|
	_PyObject_GC_TRACK(it);
 | 
						|
	return (PyObject *)it;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
listiter_dealloc(listiterobject *it)
 | 
						|
{
 | 
						|
	_PyObject_GC_UNTRACK(it);
 | 
						|
	Py_XDECREF(it->it_seq);
 | 
						|
	PyObject_GC_Del(it);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
listiter_traverse(listiterobject *it, visitproc visit, void *arg)
 | 
						|
{
 | 
						|
	if (it->it_seq == NULL)
 | 
						|
		return 0;
 | 
						|
	return visit((PyObject *)it->it_seq, arg);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static PyObject *
 | 
						|
listiter_getiter(PyObject *it)
 | 
						|
{
 | 
						|
	Py_INCREF(it);
 | 
						|
	return it;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
listiter_next(listiterobject *it)
 | 
						|
{
 | 
						|
	PyListObject *seq;
 | 
						|
	PyObject *item;
 | 
						|
 | 
						|
	assert(it != NULL);
 | 
						|
	seq = it->it_seq;
 | 
						|
	if (seq == NULL)
 | 
						|
		return NULL;
 | 
						|
	assert(PyList_Check(seq));
 | 
						|
 | 
						|
	if (it->it_index < PyList_GET_SIZE(seq)) {
 | 
						|
		item = PyList_GET_ITEM(seq, it->it_index);
 | 
						|
		++it->it_index;
 | 
						|
		Py_INCREF(item);
 | 
						|
		return item;
 | 
						|
	}
 | 
						|
 | 
						|
	Py_DECREF(seq);
 | 
						|
	it->it_seq = NULL;
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
PyTypeObject PyListIter_Type = {
 | 
						|
	PyObject_HEAD_INIT(&PyType_Type)
 | 
						|
	0,					/* ob_size */
 | 
						|
	"listiterator",				/* tp_name */
 | 
						|
	sizeof(listiterobject),			/* tp_basicsize */
 | 
						|
	0,					/* tp_itemsize */
 | 
						|
	/* methods */
 | 
						|
	(destructor)listiter_dealloc,		/* tp_dealloc */
 | 
						|
	0,					/* tp_print */
 | 
						|
	0,					/* tp_getattr */
 | 
						|
	0,					/* tp_setattr */
 | 
						|
	0,					/* tp_compare */
 | 
						|
	0,					/* tp_repr */
 | 
						|
	0,					/* tp_as_number */
 | 
						|
	0,					/* tp_as_sequence */
 | 
						|
	0,					/* tp_as_mapping */
 | 
						|
	0,					/* tp_hash */
 | 
						|
	0,					/* tp_call */
 | 
						|
	0,					/* tp_str */
 | 
						|
	PyObject_GenericGetAttr,		/* tp_getattro */
 | 
						|
	0,					/* tp_setattro */
 | 
						|
	0,					/* tp_as_buffer */
 | 
						|
	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
 | 
						|
	0,					/* tp_doc */
 | 
						|
	(traverseproc)listiter_traverse,	/* tp_traverse */
 | 
						|
	0,					/* tp_clear */
 | 
						|
	0,					/* tp_richcompare */
 | 
						|
	0,					/* tp_weaklistoffset */
 | 
						|
	(getiterfunc)listiter_getiter,		/* tp_iter */
 | 
						|
	(iternextfunc)listiter_next,		/* tp_iternext */
 | 
						|
	0,					/* tp_methods */
 | 
						|
	0,					/* tp_members */
 | 
						|
	0,					/* tp_getset */
 | 
						|
	0,					/* tp_base */
 | 
						|
	0,					/* tp_dict */
 | 
						|
	0,					/* tp_descr_get */
 | 
						|
	0,					/* tp_descr_set */
 | 
						|
};
 |