mirror of
				https://github.com/python/cpython.git
				synced 2025-10-30 21:21:22 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1198 lines
		
	
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1198 lines
		
	
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* -*- Mode: C; c-file-style: "python" -*- */
 | |
| 
 | |
| #include <Python.h>
 | |
| #include <locale.h>
 | |
| 
 | |
| /* Case-insensitive string match used for nan and inf detection; t should be
 | |
|    lower-case.  Returns 1 for a successful match, 0 otherwise. */
 | |
| 
 | |
| static int
 | |
| case_insensitive_match(const char *s, const char *t)
 | |
| {
 | |
| 	while(*t && Py_TOLOWER(*s) == *t) {
 | |
| 		s++;
 | |
| 		t++;
 | |
| 	}
 | |
| 	return *t ? 0 : 1;
 | |
| }
 | |
| 
 | |
| /* _Py_parse_inf_or_nan: Attempt to parse a string of the form "nan", "inf" or
 | |
|    "infinity", with an optional leading sign of "+" or "-".  On success,
 | |
|    return the NaN or Infinity as a double and set *endptr to point just beyond
 | |
|    the successfully parsed portion of the string.  On failure, return -1.0 and
 | |
|    set *endptr to point to the start of the string. */
 | |
| 
 | |
| double
 | |
| _Py_parse_inf_or_nan(const char *p, char **endptr)
 | |
| {
 | |
| 	double retval;
 | |
| 	const char *s;
 | |
| 	int negate = 0;
 | |
| 
 | |
| 	s = p;
 | |
| 	if (*s == '-') {
 | |
| 		negate = 1;
 | |
| 		s++;
 | |
| 	}
 | |
| 	else if (*s == '+') {
 | |
| 		s++;
 | |
| 	}
 | |
| 	if (case_insensitive_match(s, "inf")) {
 | |
| 		s += 3;
 | |
| 		if (case_insensitive_match(s, "inity"))
 | |
| 			s += 5;
 | |
| 		retval = negate ? -Py_HUGE_VAL : Py_HUGE_VAL;
 | |
| 	}
 | |
| #ifdef Py_NAN
 | |
| 	else if (case_insensitive_match(s, "nan")) {
 | |
| 		s += 3;
 | |
| 		retval = negate ? -Py_NAN : Py_NAN;
 | |
| 	}
 | |
| #endif
 | |
| 	else {
 | |
| 		s = p;
 | |
| 		retval = -1.0;
 | |
| 	}
 | |
| 	*endptr = (char *)s;
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * _PyOS_ascii_strtod:
 | |
|  * @nptr:    the string to convert to a numeric value.
 | |
|  * @endptr:  if non-%NULL, it returns the character after
 | |
|  *           the last character used in the conversion.
 | |
|  * 
 | |
|  * Converts a string to a #gdouble value.
 | |
|  * This function behaves like the standard strtod() function
 | |
|  * does in the C locale. It does this without actually
 | |
|  * changing the current locale, since that would not be
 | |
|  * thread-safe.
 | |
|  *
 | |
|  * This function is typically used when reading configuration
 | |
|  * files or other non-user input that should be locale independent.
 | |
|  * To handle input from the user you should normally use the
 | |
|  * locale-sensitive system strtod() function.
 | |
|  *
 | |
|  * If the correct value would cause overflow, plus or minus %HUGE_VAL
 | |
|  * is returned (according to the sign of the value), and %ERANGE is
 | |
|  * stored in %errno. If the correct value would cause underflow,
 | |
|  * zero is returned and %ERANGE is stored in %errno.
 | |
|  * If memory allocation fails, %ENOMEM is stored in %errno.
 | |
|  * 
 | |
|  * This function resets %errno before calling strtod() so that
 | |
|  * you can reliably detect overflow and underflow.
 | |
|  *
 | |
|  * Return value: the #gdouble value.
 | |
|  **/
 | |
| 
 | |
| #ifndef PY_NO_SHORT_FLOAT_REPR
 | |
| 
 | |
| static double
 | |
| _PyOS_ascii_strtod(const char *nptr, char **endptr)
 | |
| {
 | |
| 	double result;
 | |
| 	_Py_SET_53BIT_PRECISION_HEADER;
 | |
| 
 | |
| 	assert(nptr != NULL);
 | |
| 	/* Set errno to zero, so that we can distinguish zero results
 | |
| 	   and underflows */
 | |
| 	errno = 0;
 | |
| 
 | |
| 	_Py_SET_53BIT_PRECISION_START;
 | |
| 	result = _Py_dg_strtod(nptr, endptr);
 | |
| 	_Py_SET_53BIT_PRECISION_END;
 | |
| 
 | |
| 	if (*endptr == nptr)
 | |
| 		/* string might represent an inf or nan */
 | |
| 		result = _Py_parse_inf_or_nan(nptr, endptr);
 | |
| 
 | |
| 	return result;
 | |
| 
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| /*
 | |
|    Use system strtod;  since strtod is locale aware, we may
 | |
|    have to first fix the decimal separator.
 | |
| 
 | |
|    Note that unlike _Py_dg_strtod, the system strtod may not always give
 | |
|    correctly rounded results.
 | |
| */
 | |
| 
 | |
| static double
 | |
| _PyOS_ascii_strtod(const char *nptr, char **endptr)
 | |
| {
 | |
| 	char *fail_pos;
 | |
| 	double val = -1.0;
 | |
| 	struct lconv *locale_data;
 | |
| 	const char *decimal_point;
 | |
| 	size_t decimal_point_len;
 | |
| 	const char *p, *decimal_point_pos;
 | |
| 	const char *end = NULL; /* Silence gcc */
 | |
| 	const char *digits_pos = NULL;
 | |
| 	int negate = 0;
 | |
| 
 | |
| 	assert(nptr != NULL);
 | |
| 
 | |
| 	fail_pos = NULL;
 | |
| 
 | |
| 	locale_data = localeconv();
 | |
| 	decimal_point = locale_data->decimal_point;
 | |
| 	decimal_point_len = strlen(decimal_point);
 | |
| 
 | |
| 	assert(decimal_point_len != 0);
 | |
| 
 | |
| 	decimal_point_pos = NULL;
 | |
| 
 | |
| 	/* Parse infinities and nans */
 | |
| 	val = _Py_parse_inf_or_nan(nptr, endptr);
 | |
| 	if (*endptr != nptr)
 | |
| 		return val;
 | |
| 
 | |
| 	/* Set errno to zero, so that we can distinguish zero results
 | |
| 	   and underflows */
 | |
| 	errno = 0;
 | |
| 
 | |
| 	/* We process the optional sign manually, then pass the remainder to
 | |
| 	   the system strtod.  This ensures that the result of an underflow
 | |
| 	   has the correct sign. (bug #1725)  */
 | |
| 	p = nptr;
 | |
| 	/* Process leading sign, if present */
 | |
| 	if (*p == '-') {
 | |
| 		negate = 1;
 | |
| 		p++;
 | |
| 	}
 | |
| 	else if (*p == '+') {
 | |
| 		p++;
 | |
| 	}
 | |
| 
 | |
| 	/* Some platform strtods accept hex floats; Python shouldn't (at the
 | |
| 	   moment), so we check explicitly for strings starting with '0x'. */
 | |
| 	if (*p == '0' && (*(p+1) == 'x' || *(p+1) == 'X'))
 | |
| 		goto invalid_string;
 | |
| 
 | |
| 	/* Check that what's left begins with a digit or decimal point */
 | |
| 	if (!Py_ISDIGIT(*p) && *p != '.')
 | |
| 		goto invalid_string;
 | |
| 
 | |
| 	digits_pos = p;
 | |
| 	if (decimal_point[0] != '.' ||
 | |
| 	    decimal_point[1] != 0)
 | |
| 	{
 | |
| 		/* Look for a '.' in the input; if present, it'll need to be
 | |
| 		   swapped for the current locale's decimal point before we
 | |
| 		   call strtod.  On the other hand, if we find the current
 | |
| 		   locale's decimal point then the input is invalid. */
 | |
| 		while (Py_ISDIGIT(*p))
 | |
| 			p++;
 | |
| 
 | |
| 		if (*p == '.')
 | |
| 		{
 | |
| 			decimal_point_pos = p++;
 | |
| 
 | |
| 			/* locate end of number */
 | |
| 			while (Py_ISDIGIT(*p))
 | |
| 				p++;
 | |
| 
 | |
| 			if (*p == 'e' || *p == 'E')
 | |
| 				p++;
 | |
| 			if (*p == '+' || *p == '-')
 | |
| 				p++;
 | |
| 			while (Py_ISDIGIT(*p))
 | |
| 				p++;
 | |
| 			end = p;
 | |
| 		}
 | |
| 		else if (strncmp(p, decimal_point, decimal_point_len) == 0)
 | |
| 			/* Python bug #1417699 */
 | |
| 			goto invalid_string;
 | |
| 		/* For the other cases, we need not convert the decimal
 | |
| 		   point */
 | |
| 	}
 | |
| 
 | |
| 	if (decimal_point_pos) {
 | |
| 		char *copy, *c;
 | |
| 		/* Create a copy of the input, with the '.' converted to the
 | |
| 		   locale-specific decimal point */
 | |
| 		copy = (char *)PyMem_MALLOC(end - digits_pos +
 | |
| 					    1 + decimal_point_len);
 | |
| 		if (copy == NULL) {
 | |
| 			*endptr = (char *)nptr;
 | |
| 			errno = ENOMEM;
 | |
| 			return val;
 | |
| 		}
 | |
| 
 | |
| 		c = copy;
 | |
| 		memcpy(c, digits_pos, decimal_point_pos - digits_pos);
 | |
| 		c += decimal_point_pos - digits_pos;
 | |
| 		memcpy(c, decimal_point, decimal_point_len);
 | |
| 		c += decimal_point_len;
 | |
| 		memcpy(c, decimal_point_pos + 1,
 | |
| 		       end - (decimal_point_pos + 1));
 | |
| 		c += end - (decimal_point_pos + 1);
 | |
| 		*c = 0;
 | |
| 
 | |
| 		val = strtod(copy, &fail_pos);
 | |
| 
 | |
| 		if (fail_pos)
 | |
| 		{
 | |
| 			if (fail_pos > decimal_point_pos)
 | |
| 				fail_pos = (char *)digits_pos +
 | |
| 					(fail_pos - copy) -
 | |
| 					(decimal_point_len - 1);
 | |
| 			else
 | |
| 				fail_pos = (char *)digits_pos +
 | |
| 					(fail_pos - copy);
 | |
| 		}
 | |
| 
 | |
| 		PyMem_FREE(copy);
 | |
| 
 | |
| 	}
 | |
| 	else {
 | |
| 		val = strtod(digits_pos, &fail_pos);
 | |
| 	}
 | |
| 
 | |
| 	if (fail_pos == digits_pos)
 | |
| 		goto invalid_string;
 | |
| 
 | |
| 	if (negate && fail_pos != nptr)
 | |
| 		val = -val;
 | |
| 	*endptr = fail_pos;
 | |
| 
 | |
| 	return val;
 | |
| 
 | |
|   invalid_string:
 | |
| 	*endptr = (char*)nptr;
 | |
| 	errno = EINVAL;
 | |
| 	return -1.0;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* PyOS_string_to_double converts a null-terminated byte string s (interpreted
 | |
|    as a string of ASCII characters) to a float.  The string should not have
 | |
|    leading or trailing whitespace.  The conversion is independent of the
 | |
|    current locale.
 | |
| 
 | |
|    If endptr is NULL, try to convert the whole string.  Raise ValueError and
 | |
|    return -1.0 if the string is not a valid representation of a floating-point
 | |
|    number.
 | |
| 
 | |
|    If endptr is non-NULL, try to convert as much of the string as possible.
 | |
|    If no initial segment of the string is the valid representation of a
 | |
|    floating-point number then *endptr is set to point to the beginning of the
 | |
|    string, -1.0 is returned and again ValueError is raised.
 | |
| 
 | |
|    On overflow (e.g., when trying to convert '1e500' on an IEEE 754 machine),
 | |
|    if overflow_exception is NULL then +-Py_HUGE_VAL is returned, and no Python
 | |
|    exception is raised.  Otherwise, overflow_exception should point to a
 | |
|    a Python exception, this exception will be raised, -1.0 will be returned,
 | |
|    and *endptr will point just past the end of the converted value.
 | |
| 
 | |
|    If any other failure occurs (for example lack of memory), -1.0 is returned
 | |
|    and the appropriate Python exception will have been set.
 | |
| */
 | |
| 
 | |
| double
 | |
| PyOS_string_to_double(const char *s,
 | |
| 		      char **endptr,
 | |
| 		      PyObject *overflow_exception)
 | |
| {
 | |
| 	double x, result=-1.0;
 | |
| 	char *fail_pos;
 | |
| 
 | |
| 	errno = 0;
 | |
| 	PyFPE_START_PROTECT("PyOS_string_to_double", return -1.0)
 | |
| 	x = _PyOS_ascii_strtod(s, &fail_pos);
 | |
| 	PyFPE_END_PROTECT(x)
 | |
| 
 | |
| 	if (errno == ENOMEM) {
 | |
| 		PyErr_NoMemory();
 | |
| 		fail_pos = (char *)s;
 | |
| 	}
 | |
| 	else if (!endptr && (fail_pos == s || *fail_pos != '\0'))
 | |
| 		PyErr_Format(PyExc_ValueError,
 | |
| 			      "could not convert string to float: "
 | |
| 			      "%.200s", s);
 | |
| 	else if (fail_pos == s)
 | |
| 		PyErr_Format(PyExc_ValueError,
 | |
| 			      "could not convert string to float: "
 | |
| 			      "%.200s", s);
 | |
| 	else if (errno == ERANGE && fabs(x) >= 1.0 && overflow_exception)
 | |
| 		PyErr_Format(overflow_exception,
 | |
| 			      "value too large to convert to float: "
 | |
| 			      "%.200s", s);
 | |
| 	else
 | |
| 		result = x;
 | |
| 
 | |
| 	if (endptr != NULL)
 | |
| 		*endptr = fail_pos;
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| #ifdef PY_NO_SHORT_FLOAT_REPR
 | |
| 
 | |
| /* Given a string that may have a decimal point in the current
 | |
|    locale, change it back to a dot.  Since the string cannot get
 | |
|    longer, no need for a maximum buffer size parameter. */
 | |
| Py_LOCAL_INLINE(void)
 | |
| change_decimal_from_locale_to_dot(char* buffer)
 | |
| {
 | |
| 	struct lconv *locale_data = localeconv();
 | |
| 	const char *decimal_point = locale_data->decimal_point;
 | |
| 
 | |
| 	if (decimal_point[0] != '.' || decimal_point[1] != 0) {
 | |
| 		size_t decimal_point_len = strlen(decimal_point);
 | |
| 
 | |
| 		if (*buffer == '+' || *buffer == '-')
 | |
| 			buffer++;
 | |
| 		while (Py_ISDIGIT(*buffer))
 | |
| 			buffer++;
 | |
| 		if (strncmp(buffer, decimal_point, decimal_point_len) == 0) {
 | |
| 			*buffer = '.';
 | |
| 			buffer++;
 | |
| 			if (decimal_point_len > 1) {
 | |
| 				/* buffer needs to get smaller */
 | |
| 				size_t rest_len = strlen(buffer +
 | |
| 						     (decimal_point_len - 1));
 | |
| 				memmove(buffer,
 | |
| 					buffer + (decimal_point_len - 1),
 | |
| 					rest_len);
 | |
| 				buffer[rest_len] = 0;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /* From the C99 standard, section 7.19.6:
 | |
| The exponent always contains at least two digits, and only as many more digits
 | |
| as necessary to represent the exponent.
 | |
| */
 | |
| #define MIN_EXPONENT_DIGITS 2
 | |
| 
 | |
| /* Ensure that any exponent, if present, is at least MIN_EXPONENT_DIGITS
 | |
|    in length. */
 | |
| Py_LOCAL_INLINE(void)
 | |
| ensure_minimum_exponent_length(char* buffer, size_t buf_size)
 | |
| {
 | |
| 	char *p = strpbrk(buffer, "eE");
 | |
| 	if (p && (*(p + 1) == '-' || *(p + 1) == '+')) {
 | |
| 		char *start = p + 2;
 | |
| 		int exponent_digit_cnt = 0;
 | |
| 		int leading_zero_cnt = 0;
 | |
| 		int in_leading_zeros = 1;
 | |
| 		int significant_digit_cnt;
 | |
| 
 | |
| 		/* Skip over the exponent and the sign. */
 | |
| 		p += 2;
 | |
| 
 | |
| 		/* Find the end of the exponent, keeping track of leading
 | |
| 		   zeros. */
 | |
| 		while (*p && Py_ISDIGIT(*p)) {
 | |
| 			if (in_leading_zeros && *p == '0')
 | |
| 				++leading_zero_cnt;
 | |
| 			if (*p != '0')
 | |
| 				in_leading_zeros = 0;
 | |
| 			++p;
 | |
| 			++exponent_digit_cnt;
 | |
| 		}
 | |
| 
 | |
| 		significant_digit_cnt = exponent_digit_cnt - leading_zero_cnt;
 | |
| 		if (exponent_digit_cnt == MIN_EXPONENT_DIGITS) {
 | |
| 			/* If there are 2 exactly digits, we're done,
 | |
| 			   regardless of what they contain */
 | |
| 		}
 | |
| 		else if (exponent_digit_cnt > MIN_EXPONENT_DIGITS) {
 | |
| 			int extra_zeros_cnt;
 | |
| 
 | |
| 			/* There are more than 2 digits in the exponent.  See
 | |
| 			   if we can delete some of the leading zeros */
 | |
| 			if (significant_digit_cnt < MIN_EXPONENT_DIGITS)
 | |
| 				significant_digit_cnt = MIN_EXPONENT_DIGITS;
 | |
| 			extra_zeros_cnt = exponent_digit_cnt -
 | |
| 				significant_digit_cnt;
 | |
| 
 | |
| 			/* Delete extra_zeros_cnt worth of characters from the
 | |
| 			   front of the exponent */
 | |
| 			assert(extra_zeros_cnt >= 0);
 | |
| 
 | |
| 			/* Add one to significant_digit_cnt to copy the
 | |
| 			   trailing 0 byte, thus setting the length */
 | |
| 			memmove(start,
 | |
| 				start + extra_zeros_cnt,
 | |
| 				significant_digit_cnt + 1);
 | |
| 		}
 | |
| 		else {
 | |
| 			/* If there are fewer than 2 digits, add zeros
 | |
| 			   until there are 2, if there's enough room */
 | |
| 			int zeros = MIN_EXPONENT_DIGITS - exponent_digit_cnt;
 | |
| 			if (start + zeros + exponent_digit_cnt + 1
 | |
| 			      < buffer + buf_size) {
 | |
| 				memmove(start + zeros, start,
 | |
| 					exponent_digit_cnt + 1);
 | |
| 				memset(start, '0', zeros);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Remove trailing zeros after the decimal point from a numeric string; also
 | |
|    remove the decimal point if all digits following it are zero.  The numeric
 | |
|    string must end in '\0', and should not have any leading or trailing
 | |
|    whitespace.  Assumes that the decimal point is '.'. */
 | |
| Py_LOCAL_INLINE(void)
 | |
| remove_trailing_zeros(char *buffer)
 | |
| {
 | |
| 	char *old_fraction_end, *new_fraction_end, *end, *p;
 | |
| 
 | |
| 	p = buffer;
 | |
| 	if (*p == '-' || *p == '+')
 | |
| 		/* Skip leading sign, if present */
 | |
| 		++p;
 | |
| 	while (Py_ISDIGIT(*p))
 | |
| 		++p;
 | |
| 
 | |
| 	/* if there's no decimal point there's nothing to do */
 | |
| 	if (*p++ != '.')
 | |
| 		return;
 | |
| 
 | |
| 	/* scan any digits after the point */
 | |
| 	while (Py_ISDIGIT(*p))
 | |
| 		++p;
 | |
| 	old_fraction_end = p;
 | |
| 
 | |
| 	/* scan up to ending '\0' */
 | |
| 	while (*p != '\0')
 | |
| 		p++;
 | |
| 	/* +1 to make sure that we move the null byte as well */
 | |
| 	end = p+1;
 | |
| 
 | |
| 	/* scan back from fraction_end, looking for removable zeros */
 | |
| 	p = old_fraction_end;
 | |
| 	while (*(p-1) == '0')
 | |
| 		--p;
 | |
| 	/* and remove point if we've got that far */
 | |
| 	if (*(p-1) == '.')
 | |
| 		--p;
 | |
| 	new_fraction_end = p;
 | |
| 
 | |
| 	memmove(new_fraction_end, old_fraction_end, end-old_fraction_end);
 | |
| }
 | |
| 
 | |
| /* Ensure that buffer has a decimal point in it.  The decimal point will not
 | |
|    be in the current locale, it will always be '.'. Don't add a decimal point
 | |
|    if an exponent is present.  Also, convert to exponential notation where
 | |
|    adding a '.0' would produce too many significant digits (see issue 5864).
 | |
| 
 | |
|    Returns a pointer to the fixed buffer, or NULL on failure.
 | |
| */
 | |
| Py_LOCAL_INLINE(char *)
 | |
| ensure_decimal_point(char* buffer, size_t buf_size, int precision)
 | |
| {
 | |
| 	int digit_count, insert_count = 0, convert_to_exp = 0;
 | |
| 	char *chars_to_insert, *digits_start;
 | |
| 
 | |
| 	/* search for the first non-digit character */
 | |
| 	char *p = buffer;
 | |
| 	if (*p == '-' || *p == '+')
 | |
| 		/* Skip leading sign, if present.  I think this could only
 | |
| 		   ever be '-', but it can't hurt to check for both. */
 | |
| 		++p;
 | |
| 	digits_start = p;
 | |
| 	while (*p && Py_ISDIGIT(*p))
 | |
| 		++p;
 | |
| 	digit_count = Py_SAFE_DOWNCAST(p - digits_start, Py_ssize_t, int);
 | |
| 
 | |
| 	if (*p == '.') {
 | |
| 		if (Py_ISDIGIT(*(p+1))) {
 | |
| 			/* Nothing to do, we already have a decimal
 | |
| 			   point and a digit after it */
 | |
| 		}
 | |
| 		else {
 | |
| 			/* We have a decimal point, but no following
 | |
| 			   digit.  Insert a zero after the decimal. */
 | |
| 			/* can't ever get here via PyOS_double_to_string */
 | |
| 			assert(precision == -1);
 | |
| 			++p;
 | |
| 			chars_to_insert = "0";
 | |
| 			insert_count = 1;
 | |
| 		}
 | |
| 	}
 | |
| 	else if (!(*p == 'e' || *p == 'E')) {
 | |
| 		/* Don't add ".0" if we have an exponent. */
 | |
| 		if (digit_count == precision) {
 | |
| 			/* issue 5864: don't add a trailing .0 in the case
 | |
| 			   where the '%g'-formatted result already has as many
 | |
| 			   significant digits as were requested.  Switch to
 | |
| 			   exponential notation instead. */
 | |
| 			convert_to_exp = 1;
 | |
| 			/* no exponent, no point, and we shouldn't land here
 | |
| 			   for infs and nans, so we must be at the end of the
 | |
| 			   string. */
 | |
| 			assert(*p == '\0');
 | |
| 		}
 | |
| 		else {
 | |
| 			assert(precision == -1 || digit_count < precision);
 | |
| 			chars_to_insert = ".0";
 | |
| 			insert_count = 2;
 | |
| 		}
 | |
| 	}
 | |
| 	if (insert_count) {
 | |
| 		size_t buf_len = strlen(buffer);
 | |
| 		if (buf_len + insert_count + 1 >= buf_size) {
 | |
| 			/* If there is not enough room in the buffer
 | |
| 			   for the additional text, just skip it.  It's
 | |
| 			   not worth generating an error over. */
 | |
| 		}
 | |
| 		else {
 | |
| 			memmove(p + insert_count, p,
 | |
| 				buffer + strlen(buffer) - p + 1);
 | |
| 			memcpy(p, chars_to_insert, insert_count);
 | |
| 		}
 | |
| 	}
 | |
| 	if (convert_to_exp) {
 | |
| 		int written;
 | |
| 		size_t buf_avail;
 | |
| 		p = digits_start;
 | |
| 		/* insert decimal point */
 | |
| 		assert(digit_count >= 1);
 | |
| 		memmove(p+2, p+1, digit_count); /* safe, but overwrites nul */
 | |
| 		p[1] = '.';
 | |
| 		p += digit_count+1;
 | |
| 		assert(p <= buf_size+buffer);
 | |
| 		buf_avail = buf_size+buffer-p;
 | |
| 		if (buf_avail == 0)
 | |
| 			return NULL;
 | |
| 		/* Add exponent.  It's okay to use lower case 'e': we only
 | |
| 		   arrive here as a result of using the empty format code or
 | |
| 		   repr/str builtins and those never want an upper case 'E' */
 | |
| 		written = PyOS_snprintf(p, buf_avail, "e%+.02d", digit_count-1);
 | |
| 		if (!(0 <= written &&
 | |
| 		      written < Py_SAFE_DOWNCAST(buf_avail, size_t, int)))
 | |
| 			/* output truncated, or something else bad happened */
 | |
| 			return NULL;
 | |
| 		remove_trailing_zeros(buffer);
 | |
| 	}
 | |
| 	return buffer;
 | |
| }
 | |
| 
 | |
| /* see FORMATBUFLEN in unicodeobject.c */
 | |
| #define FLOAT_FORMATBUFLEN 120
 | |
| 
 | |
| /**
 | |
|  * _PyOS_ascii_formatd:
 | |
|  * @buffer: A buffer to place the resulting string in
 | |
|  * @buf_size: The length of the buffer.
 | |
|  * @format: The printf()-style format to use for the
 | |
|  *          code to use for converting. 
 | |
|  * @d: The #gdouble to convert
 | |
|  * @precision: The precision to use when formatting.
 | |
|  *
 | |
|  * Converts a #gdouble to a string, using the '.' as
 | |
|  * decimal point. To format the number you pass in
 | |
|  * a printf()-style format string. Allowed conversion
 | |
|  * specifiers are 'e', 'E', 'f', 'F', 'g', 'G', and 'Z'.
 | |
|  * 
 | |
|  * 'Z' is the same as 'g', except it always has a decimal and
 | |
|  *     at least one digit after the decimal.
 | |
|  *
 | |
|  * Return value: The pointer to the buffer with the converted string.
 | |
|  * On failure returns NULL but does not set any Python exception.
 | |
|  **/
 | |
| static char *
 | |
| _PyOS_ascii_formatd(char       *buffer, 
 | |
| 		   size_t      buf_size, 
 | |
| 		   const char *format, 
 | |
| 		   double      d, 
 | |
| 		   int         precision)
 | |
| {
 | |
| 	char format_char;
 | |
| 	size_t format_len = strlen(format);
 | |
| 
 | |
| 	/* Issue 2264: code 'Z' requires copying the format.  'Z' is 'g', but
 | |
| 	   also with at least one character past the decimal. */
 | |
| 	char tmp_format[FLOAT_FORMATBUFLEN];
 | |
| 
 | |
| 	/* The last character in the format string must be the format char */
 | |
| 	format_char = format[format_len - 1];
 | |
| 
 | |
| 	if (format[0] != '%')
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* I'm not sure why this test is here.  It's ensuring that the format
 | |
| 	   string after the first character doesn't have a single quote, a
 | |
| 	   lowercase l, or a percent. This is the reverse of the commented-out
 | |
| 	   test about 10 lines ago. */
 | |
| 	if (strpbrk(format + 1, "'l%"))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* Also curious about this function is that it accepts format strings
 | |
| 	   like "%xg", which are invalid for floats.  In general, the
 | |
| 	   interface to this function is not very good, but changing it is
 | |
| 	   difficult because it's a public API. */
 | |
| 
 | |
| 	if (!(format_char == 'e' || format_char == 'E' || 
 | |
| 	      format_char == 'f' || format_char == 'F' || 
 | |
| 	      format_char == 'g' || format_char == 'G' ||
 | |
| 	      format_char == 'Z'))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* Map 'Z' format_char to 'g', by copying the format string and
 | |
| 	   replacing the final char with a 'g' */
 | |
| 	if (format_char == 'Z') {
 | |
| 		if (format_len + 1 >= sizeof(tmp_format)) {
 | |
| 			/* The format won't fit in our copy.  Error out.  In
 | |
| 			   practice, this will never happen and will be
 | |
| 			   detected by returning NULL */
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		strcpy(tmp_format, format);
 | |
| 		tmp_format[format_len - 1] = 'g';
 | |
| 		format = tmp_format;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	/* Have PyOS_snprintf do the hard work */
 | |
| 	PyOS_snprintf(buffer, buf_size, format, d);
 | |
| 
 | |
| 	/* Do various fixups on the return string */
 | |
| 
 | |
| 	/* Get the current locale, and find the decimal point string.
 | |
| 	   Convert that string back to a dot. */
 | |
| 	change_decimal_from_locale_to_dot(buffer);
 | |
| 
 | |
| 	/* If an exponent exists, ensure that the exponent is at least
 | |
| 	   MIN_EXPONENT_DIGITS digits, providing the buffer is large enough
 | |
| 	   for the extra zeros.  Also, if there are more than
 | |
| 	   MIN_EXPONENT_DIGITS, remove as many zeros as possible until we get
 | |
| 	   back to MIN_EXPONENT_DIGITS */
 | |
| 	ensure_minimum_exponent_length(buffer, buf_size);
 | |
| 
 | |
| 	/* If format_char is 'Z', make sure we have at least one character
 | |
| 	   after the decimal point (and make sure we have a decimal point);
 | |
| 	   also switch to exponential notation in some edge cases where the
 | |
| 	   extra character would produce more significant digits that we
 | |
| 	   really want. */
 | |
| 	if (format_char == 'Z')
 | |
| 		buffer = ensure_decimal_point(buffer, buf_size, precision);
 | |
| 
 | |
| 	return buffer;
 | |
| }
 | |
| 
 | |
| /* The fallback code to use if _Py_dg_dtoa is not available. */
 | |
| 
 | |
| PyAPI_FUNC(char *) PyOS_double_to_string(double val,
 | |
|                                          char format_code,
 | |
|                                          int precision,
 | |
|                                          int flags,
 | |
|                                          int *type)
 | |
| {
 | |
| 	char format[32];
 | |
| 	Py_ssize_t bufsize;
 | |
| 	char *buf;
 | |
| 	int t, exp;
 | |
| 	int upper = 0;
 | |
| 
 | |
| 	/* Validate format_code, and map upper and lower case */
 | |
| 	switch (format_code) {
 | |
| 	case 'e':          /* exponent */
 | |
| 	case 'f':          /* fixed */
 | |
| 	case 'g':          /* general */
 | |
| 		break;
 | |
| 	case 'E':
 | |
| 		upper = 1;
 | |
| 		format_code = 'e';
 | |
| 		break;
 | |
| 	case 'F':
 | |
| 		upper = 1;
 | |
| 		format_code = 'f';
 | |
| 		break;
 | |
| 	case 'G':
 | |
| 		upper = 1;
 | |
| 		format_code = 'g';
 | |
| 		break;
 | |
| 	case 'r':          /* repr format */
 | |
| 		/* Supplied precision is unused, must be 0. */
 | |
| 		if (precision != 0) {
 | |
| 			PyErr_BadInternalCall();
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		/* The repr() precision (17 significant decimal digits) is the
 | |
| 		   minimal number that is guaranteed to have enough precision
 | |
| 		   so that if the number is read back in the exact same binary
 | |
| 		   value is recreated.  This is true for IEEE floating point
 | |
| 		   by design, and also happens to work for all other modern
 | |
| 		   hardware. */
 | |
| 		precision = 17;
 | |
| 		format_code = 'g';
 | |
| 		break;
 | |
| 	default:
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* Here's a quick-and-dirty calculation to figure out how big a buffer
 | |
| 	   we need.  In general, for a finite float we need:
 | |
| 
 | |
| 	     1 byte for each digit of the decimal significand, and
 | |
| 
 | |
| 	     1 for a possible sign
 | |
| 	     1 for a possible decimal point
 | |
| 	     2 for a possible [eE][+-]
 | |
| 	     1 for each digit of the exponent;  if we allow 19 digits
 | |
| 	       total then we're safe up to exponents of 2**63.
 | |
| 	     1 for the trailing nul byte
 | |
| 
 | |
| 	   This gives a total of 24 + the number of digits in the significand,
 | |
| 	   and the number of digits in the significand is:
 | |
| 
 | |
| 	     for 'g' format: at most precision, except possibly
 | |
| 	       when precision == 0, when it's 1.
 | |
| 	     for 'e' format: precision+1
 | |
| 	     for 'f' format: precision digits after the point, at least 1
 | |
| 	       before.  To figure out how many digits appear before the point
 | |
| 	       we have to examine the size of the number.  If fabs(val) < 1.0
 | |
| 	       then there will be only one digit before the point.  If
 | |
| 	       fabs(val) >= 1.0, then there are at most
 | |
| 
 | |
| 	         1+floor(log10(ceiling(fabs(val))))
 | |
| 
 | |
| 	       digits before the point (where the 'ceiling' allows for the
 | |
| 	       possibility that the rounding rounds the integer part of val
 | |
| 	       up).  A safe upper bound for the above quantity is
 | |
| 	       1+floor(exp/3), where exp is the unique integer such that 0.5
 | |
| 	       <= fabs(val)/2**exp < 1.0.  This exp can be obtained from
 | |
| 	       frexp.
 | |
| 
 | |
| 	   So we allow room for precision+1 digits for all formats, plus an
 | |
| 	   extra floor(exp/3) digits for 'f' format.
 | |
| 
 | |
| 	*/
 | |
| 
 | |
| 	if (Py_IS_NAN(val) || Py_IS_INFINITY(val))
 | |
| 		/* 3 for 'inf'/'nan', 1 for sign, 1 for '\0' */
 | |
| 		bufsize = 5;
 | |
| 	else {
 | |
| 		bufsize = 25 + precision;
 | |
| 		if (format_code == 'f' && fabs(val) >= 1.0) {
 | |
| 			frexp(val, &exp);
 | |
| 			bufsize += exp/3;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	buf = PyMem_Malloc(bufsize);
 | |
| 	if (buf == NULL) {
 | |
| 		PyErr_NoMemory();
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* Handle nan and inf. */
 | |
| 	if (Py_IS_NAN(val)) {
 | |
| 		strcpy(buf, "nan");
 | |
| 		t = Py_DTST_NAN;
 | |
| 	} else if (Py_IS_INFINITY(val)) {
 | |
| 		if (copysign(1., val) == 1.)
 | |
| 			strcpy(buf, "inf");
 | |
| 		else
 | |
| 			strcpy(buf, "-inf");
 | |
| 		t = Py_DTST_INFINITE;
 | |
| 	} else {
 | |
| 		t = Py_DTST_FINITE;
 | |
| 		if (flags & Py_DTSF_ADD_DOT_0)
 | |
| 			format_code = 'Z';
 | |
| 
 | |
| 		PyOS_snprintf(format, sizeof(format), "%%%s.%i%c",
 | |
| 			      (flags & Py_DTSF_ALT ? "#" : ""), precision,
 | |
| 			      format_code);
 | |
| 		_PyOS_ascii_formatd(buf, bufsize, format, val, precision);
 | |
| 	}
 | |
| 
 | |
| 	/* Add sign when requested.  It's convenient (esp. when formatting
 | |
| 	 complex numbers) to include a sign even for inf and nan. */
 | |
| 	if (flags & Py_DTSF_SIGN && buf[0] != '-') {
 | |
| 		size_t len = strlen(buf);
 | |
| 		/* the bufsize calculations above should ensure that we've got
 | |
| 		   space to add a sign */
 | |
| 		assert((size_t)bufsize >= len+2);
 | |
| 		memmove(buf+1, buf, len+1);
 | |
| 		buf[0] = '+';
 | |
| 	}
 | |
| 	if (upper) {
 | |
| 		/* Convert to upper case. */
 | |
| 		char *p1;
 | |
| 		for (p1 = buf; *p1; p1++)
 | |
| 			*p1 = Py_TOUPPER(*p1);
 | |
| 	}
 | |
| 
 | |
| 	if (type)
 | |
| 		*type = t;
 | |
| 	return buf;
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| /* _Py_dg_dtoa is available. */
 | |
| 
 | |
| /* I'm using a lookup table here so that I don't have to invent a non-locale
 | |
|    specific way to convert to uppercase */
 | |
| #define OFS_INF 0
 | |
| #define OFS_NAN 1
 | |
| #define OFS_E 2
 | |
| 
 | |
| /* The lengths of these are known to the code below, so don't change them */
 | |
| static char *lc_float_strings[] = {
 | |
| 	"inf",
 | |
| 	"nan",
 | |
| 	"e",
 | |
| };
 | |
| static char *uc_float_strings[] = {
 | |
| 	"INF",
 | |
| 	"NAN",
 | |
| 	"E",
 | |
| };
 | |
| 
 | |
| 
 | |
| /* Convert a double d to a string, and return a PyMem_Malloc'd block of
 | |
|    memory contain the resulting string.
 | |
| 
 | |
|    Arguments:
 | |
|      d is the double to be converted
 | |
|      format_code is one of 'e', 'f', 'g', 'r'.  'e', 'f' and 'g'
 | |
|        correspond to '%e', '%f' and '%g';  'r' corresponds to repr.
 | |
|      mode is one of '0', '2' or '3', and is completely determined by
 | |
|        format_code: 'e' and 'g' use mode 2; 'f' mode 3, 'r' mode 0.
 | |
|      precision is the desired precision
 | |
|      always_add_sign is nonzero if a '+' sign should be included for positive
 | |
|        numbers
 | |
|      add_dot_0_if_integer is nonzero if integers in non-exponential form
 | |
|        should have ".0" added.  Only applies to format codes 'r' and 'g'.
 | |
|      use_alt_formatting is nonzero if alternative formatting should be
 | |
|        used.  Only applies to format codes 'e', 'f' and 'g'.  For code 'g',
 | |
|        at most one of use_alt_formatting and add_dot_0_if_integer should
 | |
|        be nonzero.
 | |
|      type, if non-NULL, will be set to one of these constants to identify
 | |
|        the type of the 'd' argument:
 | |
|          Py_DTST_FINITE
 | |
|          Py_DTST_INFINITE
 | |
|          Py_DTST_NAN
 | |
| 
 | |
|    Returns a PyMem_Malloc'd block of memory containing the resulting string,
 | |
|     or NULL on error. If NULL is returned, the Python error has been set.
 | |
|  */
 | |
| 
 | |
| static char *
 | |
| format_float_short(double d, char format_code,
 | |
| 		   int mode, Py_ssize_t precision,
 | |
| 		   int always_add_sign, int add_dot_0_if_integer,
 | |
| 		   int use_alt_formatting, char **float_strings, int *type)
 | |
| {
 | |
| 	char *buf = NULL;
 | |
| 	char *p = NULL;
 | |
| 	Py_ssize_t bufsize = 0;
 | |
| 	char *digits, *digits_end;
 | |
| 	int decpt_as_int, sign, exp_len, exp = 0, use_exp = 0;
 | |
| 	Py_ssize_t decpt, digits_len, vdigits_start, vdigits_end;
 | |
| 	_Py_SET_53BIT_PRECISION_HEADER;
 | |
| 
 | |
| 	/* _Py_dg_dtoa returns a digit string (no decimal point or exponent).
 | |
| 	   Must be matched by a call to _Py_dg_freedtoa. */
 | |
| 	_Py_SET_53BIT_PRECISION_START;
 | |
| 	digits = _Py_dg_dtoa(d, mode, precision, &decpt_as_int, &sign,
 | |
| 			     &digits_end);
 | |
| 	_Py_SET_53BIT_PRECISION_END;
 | |
| 
 | |
| 	decpt = (Py_ssize_t)decpt_as_int;
 | |
| 	if (digits == NULL) {
 | |
| 		/* The only failure mode is no memory. */
 | |
| 		PyErr_NoMemory();
 | |
| 		goto exit;
 | |
| 	}
 | |
| 	assert(digits_end != NULL && digits_end >= digits);
 | |
| 	digits_len = digits_end - digits;
 | |
| 
 | |
| 	if (digits_len && !Py_ISDIGIT(digits[0])) {
 | |
| 		/* Infinities and nans here; adapt Gay's output,
 | |
| 		   so convert Infinity to inf and NaN to nan, and
 | |
| 		   ignore sign of nan. Then return. */
 | |
| 
 | |
| 		/* ignore the actual sign of a nan */
 | |
| 		if (digits[0] == 'n' || digits[0] == 'N')
 | |
| 			sign = 0;
 | |
| 
 | |
| 		/* We only need 5 bytes to hold the result "+inf\0" . */
 | |
| 		bufsize = 5; /* Used later in an assert. */
 | |
| 		buf = (char *)PyMem_Malloc(bufsize);
 | |
| 		if (buf == NULL) {
 | |
| 			PyErr_NoMemory();
 | |
| 			goto exit;
 | |
| 		}
 | |
| 		p = buf;
 | |
| 
 | |
| 		if (sign == 1) {
 | |
| 			*p++ = '-';
 | |
| 		}
 | |
| 		else if (always_add_sign) {
 | |
| 			*p++ = '+';
 | |
| 		}
 | |
| 		if (digits[0] == 'i' || digits[0] == 'I') {
 | |
| 			strncpy(p, float_strings[OFS_INF], 3);
 | |
| 			p += 3;
 | |
| 
 | |
| 			if (type)
 | |
| 				*type = Py_DTST_INFINITE;
 | |
| 		}
 | |
| 		else if (digits[0] == 'n' || digits[0] == 'N') {
 | |
| 			strncpy(p, float_strings[OFS_NAN], 3);
 | |
| 			p += 3;
 | |
| 
 | |
| 			if (type)
 | |
| 				*type = Py_DTST_NAN;
 | |
| 		}
 | |
| 		else {
 | |
| 			/* shouldn't get here: Gay's code should always return
 | |
| 			   something starting with a digit, an 'I',  or 'N' */
 | |
| 			strncpy(p, "ERR", 3);
 | |
| 			p += 3;
 | |
| 			assert(0);
 | |
| 		}
 | |
| 		goto exit;
 | |
| 	}
 | |
| 
 | |
| 	/* The result must be finite (not inf or nan). */
 | |
| 	if (type)
 | |
| 		*type = Py_DTST_FINITE;
 | |
| 
 | |
| 
 | |
| 	/* We got digits back, format them.  We may need to pad 'digits'
 | |
| 	   either on the left or right (or both) with extra zeros, so in
 | |
| 	   general the resulting string has the form
 | |
| 
 | |
| 	     [<sign>]<zeros><digits><zeros>[<exponent>]
 | |
| 
 | |
| 	   where either of the <zeros> pieces could be empty, and there's a
 | |
| 	   decimal point that could appear either in <digits> or in the
 | |
| 	   leading or trailing <zeros>.
 | |
| 
 | |
| 	   Imagine an infinite 'virtual' string vdigits, consisting of the
 | |
| 	   string 'digits' (starting at index 0) padded on both the left and
 | |
| 	   right with infinite strings of zeros.  We want to output a slice
 | |
| 
 | |
| 	     vdigits[vdigits_start : vdigits_end]
 | |
| 
 | |
| 	   of this virtual string.  Thus if vdigits_start < 0 then we'll end
 | |
| 	   up producing some leading zeros; if vdigits_end > digits_len there
 | |
| 	   will be trailing zeros in the output.  The next section of code
 | |
| 	   determines whether to use an exponent or not, figures out the
 | |
| 	   position 'decpt' of the decimal point, and computes 'vdigits_start'
 | |
| 	   and 'vdigits_end'. */
 | |
| 	vdigits_end = digits_len;
 | |
| 	switch (format_code) {
 | |
| 	case 'e':
 | |
| 		use_exp = 1;
 | |
| 		vdigits_end = precision;
 | |
| 		break;
 | |
| 	case 'f':
 | |
| 		vdigits_end = decpt + precision;
 | |
| 		break;
 | |
| 	case 'g':
 | |
| 		if (decpt <= -4 || decpt >
 | |
| 		    (add_dot_0_if_integer ? precision-1 : precision))
 | |
| 			use_exp = 1;
 | |
| 		if (use_alt_formatting)
 | |
| 			vdigits_end = precision;
 | |
| 		break;
 | |
| 	case 'r':
 | |
| 		/* convert to exponential format at 1e16.  We used to convert
 | |
| 		   at 1e17, but that gives odd-looking results for some values
 | |
| 		   when a 16-digit 'shortest' repr is padded with bogus zeros.
 | |
| 		   For example, repr(2e16+8) would give 20000000000000010.0;
 | |
| 		   the true value is 20000000000000008.0. */
 | |
| 		if (decpt <= -4 || decpt > 16)
 | |
| 			use_exp = 1;
 | |
| 		break;
 | |
| 	default:
 | |
| 		PyErr_BadInternalCall();
 | |
| 		goto exit;
 | |
| 	}
 | |
| 
 | |
| 	/* if using an exponent, reset decimal point position to 1 and adjust
 | |
| 	   exponent accordingly.*/
 | |
| 	if (use_exp) {
 | |
| 		exp = decpt - 1;
 | |
| 		decpt = 1;
 | |
| 	}
 | |
| 	/* ensure vdigits_start < decpt <= vdigits_end, or vdigits_start <
 | |
| 	   decpt < vdigits_end if add_dot_0_if_integer and no exponent */
 | |
| 	vdigits_start = decpt <= 0 ? decpt-1 : 0;
 | |
| 	if (!use_exp && add_dot_0_if_integer)
 | |
| 		vdigits_end = vdigits_end > decpt ? vdigits_end : decpt + 1;
 | |
| 	else
 | |
| 		vdigits_end = vdigits_end > decpt ? vdigits_end : decpt;
 | |
| 
 | |
| 	/* double check inequalities */
 | |
| 	assert(vdigits_start <= 0 &&
 | |
| 	       0 <= digits_len &&
 | |
| 	       digits_len <= vdigits_end);
 | |
| 	/* decimal point should be in (vdigits_start, vdigits_end] */
 | |
| 	assert(vdigits_start < decpt && decpt <= vdigits_end);
 | |
| 
 | |
| 	/* Compute an upper bound how much memory we need. This might be a few
 | |
| 	   chars too long, but no big deal. */
 | |
| 	bufsize =
 | |
| 		/* sign, decimal point and trailing 0 byte */
 | |
| 		3 +
 | |
| 
 | |
| 		/* total digit count (including zero padding on both sides) */
 | |
| 		(vdigits_end - vdigits_start) +
 | |
| 
 | |
| 		/* exponent "e+100", max 3 numerical digits */
 | |
| 		(use_exp ? 5 : 0);
 | |
| 
 | |
| 	/* Now allocate the memory and initialize p to point to the start of
 | |
| 	   it. */
 | |
| 	buf = (char *)PyMem_Malloc(bufsize);
 | |
| 	if (buf == NULL) {
 | |
| 		PyErr_NoMemory();
 | |
| 		goto exit;
 | |
| 	}
 | |
| 	p = buf;
 | |
| 
 | |
| 	/* Add a negative sign if negative, and a plus sign if non-negative
 | |
| 	   and always_add_sign is true. */
 | |
| 	if (sign == 1)
 | |
| 		*p++ = '-';
 | |
| 	else if (always_add_sign)
 | |
| 		*p++ = '+';
 | |
| 
 | |
| 	/* note that exactly one of the three 'if' conditions is true,
 | |
| 	   so we include exactly one decimal point */
 | |
| 	/* Zero padding on left of digit string */
 | |
| 	if (decpt <= 0) {
 | |
| 		memset(p, '0', decpt-vdigits_start);
 | |
| 		p += decpt - vdigits_start;
 | |
| 		*p++ = '.';
 | |
| 		memset(p, '0', 0-decpt);
 | |
| 		p += 0-decpt;
 | |
| 	}
 | |
| 	else {
 | |
| 		memset(p, '0', 0-vdigits_start);
 | |
| 		p += 0 - vdigits_start;
 | |
| 	}
 | |
| 
 | |
| 	/* Digits, with included decimal point */
 | |
| 	if (0 < decpt && decpt <= digits_len) {
 | |
| 		strncpy(p, digits, decpt-0);
 | |
| 		p += decpt-0;
 | |
| 		*p++ = '.';
 | |
| 		strncpy(p, digits+decpt, digits_len-decpt);
 | |
| 		p += digits_len-decpt;
 | |
| 	}
 | |
| 	else {
 | |
| 		strncpy(p, digits, digits_len);
 | |
| 		p += digits_len;
 | |
| 	}
 | |
| 
 | |
| 	/* And zeros on the right */
 | |
| 	if (digits_len < decpt) {
 | |
| 		memset(p, '0', decpt-digits_len);
 | |
| 		p += decpt-digits_len;
 | |
| 		*p++ = '.';
 | |
| 		memset(p, '0', vdigits_end-decpt);
 | |
| 		p += vdigits_end-decpt;
 | |
| 	}
 | |
| 	else {
 | |
| 		memset(p, '0', vdigits_end-digits_len);
 | |
| 		p += vdigits_end-digits_len;
 | |
| 	}
 | |
| 
 | |
| 	/* Delete a trailing decimal pt unless using alternative formatting. */
 | |
| 	if (p[-1] == '.' && !use_alt_formatting)
 | |
| 		p--;
 | |
| 
 | |
| 	/* Now that we've done zero padding, add an exponent if needed. */
 | |
| 	if (use_exp) {
 | |
| 		*p++ = float_strings[OFS_E][0];
 | |
| 		exp_len = sprintf(p, "%+.02d", exp);
 | |
| 		p += exp_len;
 | |
| 	}
 | |
|   exit:
 | |
| 	if (buf) {
 | |
| 		*p = '\0';
 | |
| 		/* It's too late if this fails, as we've already stepped on
 | |
| 		   memory that isn't ours. But it's an okay debugging test. */
 | |
| 		assert(p-buf < bufsize);
 | |
| 	}
 | |
| 	if (digits)
 | |
| 		_Py_dg_freedtoa(digits);
 | |
| 
 | |
| 	return buf;
 | |
| }
 | |
| 
 | |
| 
 | |
| PyAPI_FUNC(char *) PyOS_double_to_string(double val,
 | |
| 					 char format_code,
 | |
| 					 int precision,
 | |
| 					 int flags,
 | |
| 					 int *type)
 | |
| {
 | |
| 	char **float_strings = lc_float_strings;
 | |
| 	int mode;
 | |
| 
 | |
| 	/* Validate format_code, and map upper and lower case. Compute the
 | |
| 	   mode and make any adjustments as needed. */
 | |
| 	switch (format_code) {
 | |
| 	/* exponent */
 | |
| 	case 'E':
 | |
| 		float_strings = uc_float_strings;
 | |
| 		format_code = 'e';
 | |
| 		/* Fall through. */
 | |
| 	case 'e':
 | |
| 		mode = 2;
 | |
| 		precision++;
 | |
| 		break;
 | |
| 
 | |
| 	/* fixed */
 | |
| 	case 'F':
 | |
| 		float_strings = uc_float_strings;
 | |
| 		format_code = 'f';
 | |
| 		/* Fall through. */
 | |
| 	case 'f':
 | |
| 		mode = 3;
 | |
| 		break;
 | |
| 
 | |
| 	/* general */
 | |
| 	case 'G':
 | |
| 		float_strings = uc_float_strings;
 | |
| 		format_code = 'g';
 | |
| 		/* Fall through. */
 | |
| 	case 'g':
 | |
| 		mode = 2;
 | |
| 		/* precision 0 makes no sense for 'g' format; interpret as 1 */
 | |
| 		if (precision == 0)
 | |
| 			precision = 1;
 | |
| 		break;
 | |
| 
 | |
| 	/* repr format */
 | |
| 	case 'r':
 | |
| 		mode = 0;
 | |
| 		/* Supplied precision is unused, must be 0. */
 | |
| 		if (precision != 0) {
 | |
| 			PyErr_BadInternalCall();
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	return format_float_short(val, format_code, mode, precision,
 | |
| 				  flags & Py_DTSF_SIGN,
 | |
| 				  flags & Py_DTSF_ADD_DOT_0,
 | |
| 				  flags & Py_DTSF_ALT,
 | |
| 				  float_strings, type);
 | |
| }
 | |
| #endif /* ifdef PY_NO_SHORT_FLOAT_REPR */
 | 
