mirror of
				https://github.com/python/cpython.git
				synced 2025-10-31 13:41:24 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1643 lines
		
	
	
	
		
			52 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			1643 lines
		
	
	
	
		
			52 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # TODO:
 | |
| # - Generic[T, T] is invalid
 | |
| # - Look for TODO below
 | |
| 
 | |
| # TODO nits:
 | |
| # Get rid of asserts that are the caller's fault.
 | |
| # Docstrings (e.g. ABCs).
 | |
| 
 | |
| import abc
 | |
| from abc import abstractmethod, abstractproperty
 | |
| import collections
 | |
| import functools
 | |
| import re as stdlib_re  # Avoid confusion with the re we export.
 | |
| import sys
 | |
| import types
 | |
| try:
 | |
|     import collections.abc as collections_abc
 | |
| except ImportError:
 | |
|     import collections as collections_abc  # Fallback for PY3.2.
 | |
| 
 | |
| 
 | |
| # Please keep __all__ alphabetized within each category.
 | |
| __all__ = [
 | |
|     # Super-special typing primitives.
 | |
|     'Any',
 | |
|     'Callable',
 | |
|     'Generic',
 | |
|     'Optional',
 | |
|     'TypeVar',
 | |
|     'Union',
 | |
|     'Tuple',
 | |
| 
 | |
|     # ABCs (from collections.abc).
 | |
|     'AbstractSet',  # collections.abc.Set.
 | |
|     'ByteString',
 | |
|     'Container',
 | |
|     'Hashable',
 | |
|     'ItemsView',
 | |
|     'Iterable',
 | |
|     'Iterator',
 | |
|     'KeysView',
 | |
|     'Mapping',
 | |
|     'MappingView',
 | |
|     'MutableMapping',
 | |
|     'MutableSequence',
 | |
|     'MutableSet',
 | |
|     'Sequence',
 | |
|     'Sized',
 | |
|     'ValuesView',
 | |
| 
 | |
|     # Structural checks, a.k.a. protocols.
 | |
|     'Reversible',
 | |
|     'SupportsAbs',
 | |
|     'SupportsFloat',
 | |
|     'SupportsInt',
 | |
|     'SupportsRound',
 | |
| 
 | |
|     # Concrete collection types.
 | |
|     'Dict',
 | |
|     'List',
 | |
|     'Set',
 | |
|     'NamedTuple',  # Not really a type.
 | |
|     'Generator',
 | |
| 
 | |
|     # One-off things.
 | |
|     'AnyStr',
 | |
|     'cast',
 | |
|     'get_type_hints',
 | |
|     'no_type_check',
 | |
|     'no_type_check_decorator',
 | |
|     'overload',
 | |
| 
 | |
|     # Submodules.
 | |
|     'io',
 | |
|     're',
 | |
| ]
 | |
| 
 | |
| 
 | |
| def _qualname(x):
 | |
|     if sys.version_info[:2] >= (3, 3):
 | |
|         return x.__qualname__
 | |
|     else:
 | |
|         # Fall back to just name.
 | |
|         return x.__name__
 | |
| 
 | |
| 
 | |
| class TypingMeta(type):
 | |
|     """Metaclass for every type defined below.
 | |
| 
 | |
|     This overrides __new__() to require an extra keyword parameter
 | |
|     '_root', which serves as a guard against naive subclassing of the
 | |
|     typing classes.  Any legitimate class defined using a metaclass
 | |
|     derived from TypingMeta (including internal subclasses created by
 | |
|     e.g.  Union[X, Y]) must pass _root=True.
 | |
| 
 | |
|     This also defines a dummy constructor (all the work is done in
 | |
|     __new__) and a nicer repr().
 | |
|     """
 | |
| 
 | |
|     _is_protocol = False
 | |
| 
 | |
|     def __new__(cls, name, bases, namespace, *, _root=False):
 | |
|         if not _root:
 | |
|             raise TypeError("Cannot subclass %s" %
 | |
|                             (', '.join(map(_type_repr, bases)) or '()'))
 | |
|         return super().__new__(cls, name, bases, namespace)
 | |
| 
 | |
|     def __init__(self, *args, **kwds):
 | |
|         pass
 | |
| 
 | |
|     def _eval_type(self, globalns, localns):
 | |
|         """Override this in subclasses to interpret forward references.
 | |
| 
 | |
|         For example, Union['C'] is internally stored as
 | |
|         Union[_ForwardRef('C')], which should evaluate to _Union[C],
 | |
|         where C is an object found in globalns or localns (searching
 | |
|         localns first, of course).
 | |
|         """
 | |
|         return self
 | |
| 
 | |
|     def _has_type_var(self):
 | |
|         return False
 | |
| 
 | |
|     def __repr__(self):
 | |
|         return '%s.%s' % (self.__module__, _qualname(self))
 | |
| 
 | |
| 
 | |
| class Final:
 | |
|     """Mix-in class to prevent instantiation."""
 | |
| 
 | |
|     __slots__ = ()
 | |
| 
 | |
|     def __new__(self, *args, **kwds):
 | |
|         raise TypeError("Cannot instantiate %r" % self.__class__)
 | |
| 
 | |
| 
 | |
| class _ForwardRef(TypingMeta):
 | |
|     """Wrapper to hold a forward reference."""
 | |
| 
 | |
|     def __new__(cls, arg):
 | |
|         if not isinstance(arg, str):
 | |
|             raise TypeError('ForwardRef must be a string -- got %r' % (arg,))
 | |
|         try:
 | |
|             code = compile(arg, '<string>', 'eval')
 | |
|         except SyntaxError:
 | |
|             raise SyntaxError('ForwardRef must be an expression -- got %r' %
 | |
|                               (arg,))
 | |
|         self = super().__new__(cls, arg, (), {}, _root=True)
 | |
|         self.__forward_arg__ = arg
 | |
|         self.__forward_code__ = code
 | |
|         self.__forward_evaluated__ = False
 | |
|         self.__forward_value__ = None
 | |
|         typing_globals = globals()
 | |
|         frame = sys._getframe(1)
 | |
|         while frame is not None and frame.f_globals is typing_globals:
 | |
|             frame = frame.f_back
 | |
|         assert frame is not None
 | |
|         self.__forward_frame__ = frame
 | |
|         return self
 | |
| 
 | |
|     def _eval_type(self, globalns, localns):
 | |
|         if not isinstance(localns, dict):
 | |
|             raise TypeError('ForwardRef localns must be a dict -- got %r' %
 | |
|                             (localns,))
 | |
|         if not isinstance(globalns, dict):
 | |
|             raise TypeError('ForwardRef globalns must be a dict -- got %r' %
 | |
|                             (globalns,))
 | |
|         if not self.__forward_evaluated__:
 | |
|             if globalns is None and localns is None:
 | |
|                 globalns = localns = {}
 | |
|             elif globalns is None:
 | |
|                 globalns = localns
 | |
|             elif localns is None:
 | |
|                 localns = globalns
 | |
|             self.__forward_value__ = _type_check(
 | |
|                 eval(self.__forward_code__, globalns, localns),
 | |
|                 "Forward references must evaluate to types.")
 | |
|             self.__forward_evaluated__ = True
 | |
|         return self.__forward_value__
 | |
| 
 | |
|     def __instancecheck__(self, obj):
 | |
|         raise TypeError("Forward references cannot be used with isinstance().")
 | |
| 
 | |
|     def __subclasscheck__(self, cls):
 | |
|         if not self.__forward_evaluated__:
 | |
|             globalns = self.__forward_frame__.f_globals
 | |
|             localns = self.__forward_frame__.f_locals
 | |
|             try:
 | |
|                 self._eval_type(globalns, localns)
 | |
|             except NameError:
 | |
|                 return False  # Too early.
 | |
|         return issubclass(cls, self.__forward_value__)
 | |
| 
 | |
|     def __repr__(self):
 | |
|         return '_ForwardRef(%r)' % (self.__forward_arg__,)
 | |
| 
 | |
| 
 | |
| class _TypeAlias:
 | |
|     """Internal helper class for defining generic variants of concrete types.
 | |
| 
 | |
|     Note that this is not a type; let's call it a pseudo-type.  It can
 | |
|     be used in instance and subclass checks, e.g. isinstance(m, Match)
 | |
|     or issubclass(type(m), Match).  However, it cannot be itself the
 | |
|     target of an issubclass() call; e.g. issubclass(Match, C) (for
 | |
|     some arbitrary class C) raises TypeError rather than returning
 | |
|     False.
 | |
|     """
 | |
| 
 | |
|     __slots__ = ('name', 'type_var', 'impl_type', 'type_checker')
 | |
| 
 | |
|     def __new__(cls, *args, **kwds):
 | |
|         """Constructor.
 | |
| 
 | |
|         This only exists to give a better error message in case
 | |
|         someone tries to subclass a type alias (not a good idea).
 | |
|         """
 | |
|         if (len(args) == 3 and
 | |
|             isinstance(args[0], str) and
 | |
|             isinstance(args[1], tuple)):
 | |
|             # Close enough.
 | |
|             raise TypeError("A type alias cannot be subclassed")
 | |
|         return object.__new__(cls)
 | |
| 
 | |
|     def __init__(self, name, type_var, impl_type, type_checker):
 | |
|         """Initializer.
 | |
| 
 | |
|         Args:
 | |
|             name: The name, e.g. 'Pattern'.
 | |
|             type_var: The type parameter, e.g. AnyStr, or the
 | |
|                 specific type, e.g. str.
 | |
|             impl_type: The implementation type.
 | |
|             type_checker: Function that takes an impl_type instance.
 | |
|                 and returns a value that should be a type_var instance.
 | |
|         """
 | |
|         assert isinstance(name, str), repr(name)
 | |
|         assert isinstance(type_var, type), repr(type_var)
 | |
|         assert isinstance(impl_type, type), repr(impl_type)
 | |
|         assert not isinstance(impl_type, TypingMeta), repr(impl_type)
 | |
|         self.name = name
 | |
|         self.type_var = type_var
 | |
|         self.impl_type = impl_type
 | |
|         self.type_checker = type_checker
 | |
| 
 | |
|     def __repr__(self):
 | |
|         return "%s[%s]" % (self.name, _type_repr(self.type_var))
 | |
| 
 | |
|     def __getitem__(self, parameter):
 | |
|         assert isinstance(parameter, type), repr(parameter)
 | |
|         if not isinstance(self.type_var, TypeVar):
 | |
|             raise TypeError("%s cannot be further parameterized." % self)
 | |
|         if self.type_var.__constraints__:
 | |
|             if not issubclass(parameter, Union[self.type_var.__constraints__]):
 | |
|                 raise TypeError("%s is not a valid substitution for %s." %
 | |
|                                 (parameter, self.type_var))
 | |
|         return self.__class__(self.name, parameter,
 | |
|                               self.impl_type, self.type_checker)
 | |
| 
 | |
|     def __instancecheck__(self, obj):
 | |
|         raise TypeError("Type aliases cannot be used with isinstance().")
 | |
| 
 | |
|     def __subclasscheck__(self, cls):
 | |
|         if cls is Any:
 | |
|             return True
 | |
|         if isinstance(cls, _TypeAlias):
 | |
|             # Covariance.  For now, we compare by name.
 | |
|             return (cls.name == self.name and
 | |
|                     issubclass(cls.type_var, self.type_var))
 | |
|         else:
 | |
|             # Note that this is too lenient, because the
 | |
|             # implementation type doesn't carry information about
 | |
|             # whether it is about bytes or str (for example).
 | |
|             return issubclass(cls, self.impl_type)
 | |
| 
 | |
| 
 | |
| def _has_type_var(t):
 | |
|     return t is not None and isinstance(t, TypingMeta) and t._has_type_var()
 | |
| 
 | |
| 
 | |
| def _eval_type(t, globalns, localns):
 | |
|     if isinstance(t, TypingMeta):
 | |
|         return t._eval_type(globalns, localns)
 | |
|     else:
 | |
|         return t
 | |
| 
 | |
| 
 | |
| def _type_check(arg, msg):
 | |
|     """Check that the argument is a type, and return it.
 | |
| 
 | |
|     As a special case, accept None and return type(None) instead.
 | |
|     Also, _TypeAlias instances (e.g. Match, Pattern) are acceptable.
 | |
| 
 | |
|     The msg argument is a human-readable error message, e.g.
 | |
| 
 | |
|         "Union[arg, ...]: arg should be a type."
 | |
| 
 | |
|     We append the repr() of the actual value (truncated to 100 chars).
 | |
|     """
 | |
|     if arg is None:
 | |
|         return type(None)
 | |
|     if isinstance(arg, str):
 | |
|         arg = _ForwardRef(arg)
 | |
|     if not isinstance(arg, (type, _TypeAlias)):
 | |
|         raise TypeError(msg + " Got %.100r." % (arg,))
 | |
|     return arg
 | |
| 
 | |
| 
 | |
| def _type_repr(obj):
 | |
|     """Return the repr() of an object, special-casing types.
 | |
| 
 | |
|     If obj is a type, we return a shorter version than the default
 | |
|     type.__repr__, based on the module and qualified name, which is
 | |
|     typically enough to uniquely identify a type.  For everything
 | |
|     else, we fall back on repr(obj).
 | |
|     """
 | |
|     if isinstance(obj, type) and not isinstance(obj, TypingMeta):
 | |
|         if obj.__module__ == 'builtins':
 | |
|             return _qualname(obj)
 | |
|         else:
 | |
|             return '%s.%s' % (obj.__module__, _qualname(obj))
 | |
|     else:
 | |
|         return repr(obj)
 | |
| 
 | |
| 
 | |
| class AnyMeta(TypingMeta):
 | |
|     """Metaclass for Any."""
 | |
| 
 | |
|     def __new__(cls, name, bases, namespace, _root=False):
 | |
|         self = super().__new__(cls, name, bases, namespace, _root=_root)
 | |
|         return self
 | |
| 
 | |
|     def __instancecheck__(self, obj):
 | |
|         raise TypeError("Any cannot be used with isinstance().")
 | |
| 
 | |
|     def __subclasscheck__(self, cls):
 | |
|         if not isinstance(cls, type):
 | |
|             return super().__subclasscheck__(cls)  # To TypeError.
 | |
|         return True
 | |
| 
 | |
| 
 | |
| class Any(Final, metaclass=AnyMeta, _root=True):
 | |
|     """Special type indicating an unconstrained type.
 | |
| 
 | |
|     - Any object is an instance of Any.
 | |
|     - Any class is a subclass of Any.
 | |
|     - As a special case, Any and object are subclasses of each other.
 | |
|     """
 | |
| 
 | |
|     __slots__ = ()
 | |
| 
 | |
| 
 | |
| class TypeVar(TypingMeta, metaclass=TypingMeta, _root=True):
 | |
|     """Type variable.
 | |
| 
 | |
|     Usage::
 | |
| 
 | |
|       T = TypeVar('T')  # Can be anything
 | |
|       A = TypeVar('A', str, bytes)  # Must be str or bytes
 | |
| 
 | |
|     Type variables exist primarily for the benefit of static type
 | |
|     checkers.  They serve as the parameters for generic types as well
 | |
|     as for generic function definitions.  See class Generic for more
 | |
|     information on generic types.  Generic functions work as follows:
 | |
| 
 | |
|       def repeat(x: T, n: int) -> Sequence[T]:
 | |
|           '''Return a list containing n references to x.'''
 | |
|           return [x]*n
 | |
| 
 | |
|       def longest(x: A, y: A) -> A:
 | |
|           '''Return the longest of two strings.'''
 | |
|           return x if len(x) >= len(y) else y
 | |
| 
 | |
|     The latter example's signature is essentially the overloading
 | |
|     of (str, str) -> str and (bytes, bytes) -> bytes.  Also note
 | |
|     that if the arguments are instances of some subclass of str,
 | |
|     the return type is still plain str.
 | |
| 
 | |
|     At runtime, isinstance(x, T) will raise TypeError.  However,
 | |
|     issubclass(C, T) is true for any class C, and issubclass(str, A)
 | |
|     and issubclass(bytes, A) are true, and issubclass(int, A) is
 | |
|     false.
 | |
| 
 | |
|     Type variables may be marked covariant or contravariant by passing
 | |
|     covariant=True or contravariant=True.  See PEP 484 for more
 | |
|     details.  By default type variables are invariant.
 | |
| 
 | |
|     Type variables can be introspected. e.g.:
 | |
| 
 | |
|       T.__name__ == 'T'
 | |
|       T.__constraints__ == ()
 | |
|       T.__covariant__ == False
 | |
|       T.__contravariant__ = False
 | |
|       A.__constraints__ == (str, bytes)
 | |
|     """
 | |
| 
 | |
|     def __new__(cls, name, *constraints, bound=None,
 | |
|                 covariant=False, contravariant=False):
 | |
|         self = super().__new__(cls, name, (Final,), {}, _root=True)
 | |
|         if covariant and contravariant:
 | |
|             raise ValueError("Bivariant type variables are not supported.")
 | |
|         self.__covariant__ = bool(covariant)
 | |
|         self.__contravariant__ = bool(contravariant)
 | |
|         if constraints and bound is not None:
 | |
|             raise TypeError("Constraints cannot be combined with bound=...")
 | |
|         if constraints and len(constraints) == 1:
 | |
|             raise TypeError("A single constraint is not allowed")
 | |
|         msg = "TypeVar(name, constraint, ...): constraints must be types."
 | |
|         self.__constraints__ = tuple(_type_check(t, msg) for t in constraints)
 | |
|         if bound:
 | |
|             self.__bound__ = _type_check(bound, "Bound must be a type.")
 | |
|         else:
 | |
|             self.__bound__ = None
 | |
|         return self
 | |
| 
 | |
|     def _has_type_var(self):
 | |
|         return True
 | |
| 
 | |
|     def __repr__(self):
 | |
|         if self.__covariant__:
 | |
|             prefix = '+'
 | |
|         elif self.__contravariant__:
 | |
|             prefix = '-'
 | |
|         else:
 | |
|             prefix = '~'
 | |
|         return prefix + self.__name__
 | |
| 
 | |
|     def __instancecheck__(self, instance):
 | |
|         raise TypeError("Type variables cannot be used with isinstance().")
 | |
| 
 | |
|     def __subclasscheck__(self, cls):
 | |
|         # TODO: Make this raise TypeError too?
 | |
|         if cls is self:
 | |
|             return True
 | |
|         if cls is Any:
 | |
|             return True
 | |
|         if self.__bound__ is not None:
 | |
|             return issubclass(cls, self.__bound__)
 | |
|         if self.__constraints__:
 | |
|             return any(issubclass(cls, c) for c in self.__constraints__)
 | |
|         return True
 | |
| 
 | |
| 
 | |
| # Some unconstrained type variables.  These are used by the container types.
 | |
| T = TypeVar('T')  # Any type.
 | |
| KT = TypeVar('KT')  # Key type.
 | |
| VT = TypeVar('VT')  # Value type.
 | |
| T_co = TypeVar('T_co', covariant=True)  # Any type covariant containers.
 | |
| V_co = TypeVar('V_co', covariant=True)  # Any type covariant containers.
 | |
| VT_co = TypeVar('VT_co', covariant=True)  # Value type covariant containers.
 | |
| T_contra = TypeVar('T_contra', contravariant=True)  # Ditto contravariant.
 | |
| 
 | |
| # A useful type variable with constraints.  This represents string types.
 | |
| # TODO: What about bytearray, memoryview?
 | |
| AnyStr = TypeVar('AnyStr', bytes, str)
 | |
| 
 | |
| 
 | |
| class UnionMeta(TypingMeta):
 | |
|     """Metaclass for Union."""
 | |
| 
 | |
|     def __new__(cls, name, bases, namespace, parameters=None, _root=False):
 | |
|         if parameters is None:
 | |
|             return super().__new__(cls, name, bases, namespace, _root=_root)
 | |
|         if not isinstance(parameters, tuple):
 | |
|             raise TypeError("Expected parameters=<tuple>")
 | |
|         # Flatten out Union[Union[...], ...] and type-check non-Union args.
 | |
|         params = []
 | |
|         msg = "Union[arg, ...]: each arg must be a type."
 | |
|         for p in parameters:
 | |
|             if isinstance(p, UnionMeta):
 | |
|                 params.extend(p.__union_params__)
 | |
|             else:
 | |
|                 params.append(_type_check(p, msg))
 | |
|         # Weed out strict duplicates, preserving the first of each occurrence.
 | |
|         all_params = set(params)
 | |
|         if len(all_params) < len(params):
 | |
|             new_params = []
 | |
|             for t in params:
 | |
|                 if t in all_params:
 | |
|                     new_params.append(t)
 | |
|                     all_params.remove(t)
 | |
|             params = new_params
 | |
|             assert not all_params, all_params
 | |
|         # Weed out subclasses.
 | |
|         # E.g. Union[int, Employee, Manager] == Union[int, Employee].
 | |
|         # If Any or object is present it will be the sole survivor.
 | |
|         # If both Any and object are present, Any wins.
 | |
|         # Never discard type variables, except against Any.
 | |
|         # (In particular, Union[str, AnyStr] != AnyStr.)
 | |
|         all_params = set(params)
 | |
|         for t1 in params:
 | |
|             if t1 is Any:
 | |
|                 return Any
 | |
|             if isinstance(t1, TypeVar):
 | |
|                 continue
 | |
|             if any(issubclass(t1, t2)
 | |
|                    for t2 in all_params - {t1} if not isinstance(t2, TypeVar)):
 | |
|                 all_params.remove(t1)
 | |
|         # It's not a union if there's only one type left.
 | |
|         if len(all_params) == 1:
 | |
|             return all_params.pop()
 | |
|         # Create a new class with these params.
 | |
|         self = super().__new__(cls, name, bases, {}, _root=True)
 | |
|         self.__union_params__ = tuple(t for t in params if t in all_params)
 | |
|         self.__union_set_params__ = frozenset(self.__union_params__)
 | |
|         return self
 | |
| 
 | |
|     def _eval_type(self, globalns, localns):
 | |
|         p = tuple(_eval_type(t, globalns, localns)
 | |
|                   for t in self.__union_params__)
 | |
|         if p == self.__union_params__:
 | |
|             return self
 | |
|         else:
 | |
|             return self.__class__(self.__name__, self.__bases__, {},
 | |
|                                   p, _root=True)
 | |
| 
 | |
|     def _has_type_var(self):
 | |
|         if self.__union_params__:
 | |
|             for t in self.__union_params__:
 | |
|                 if _has_type_var(t):
 | |
|                     return True
 | |
|         return False
 | |
| 
 | |
|     def __repr__(self):
 | |
|         r = super().__repr__()
 | |
|         if self.__union_params__:
 | |
|             r += '[%s]' % (', '.join(_type_repr(t)
 | |
|                                      for t in self.__union_params__))
 | |
|         return r
 | |
| 
 | |
|     def __getitem__(self, parameters):
 | |
|         if self.__union_params__ is not None:
 | |
|             raise TypeError(
 | |
|                 "Cannot subscript an existing Union. Use Union[u, t] instead.")
 | |
|         if parameters == ():
 | |
|             raise TypeError("Cannot take a Union of no types.")
 | |
|         if not isinstance(parameters, tuple):
 | |
|             parameters = (parameters,)
 | |
|         return self.__class__(self.__name__, self.__bases__,
 | |
|                               dict(self.__dict__), parameters, _root=True)
 | |
| 
 | |
|     def __eq__(self, other):
 | |
|         if not isinstance(other, UnionMeta):
 | |
|             return NotImplemented
 | |
|         return self.__union_set_params__ == other.__union_set_params__
 | |
| 
 | |
|     def __hash__(self):
 | |
|         return hash(self.__union_set_params__)
 | |
| 
 | |
|     def __instancecheck__(self, obj):
 | |
|         raise TypeError("Unions cannot be used with isinstance().")
 | |
| 
 | |
|     def __subclasscheck__(self, cls):
 | |
|         if cls is Any:
 | |
|             return True
 | |
|         if self.__union_params__ is None:
 | |
|             return isinstance(cls, UnionMeta)
 | |
|         elif isinstance(cls, UnionMeta):
 | |
|             if cls.__union_params__ is None:
 | |
|                 return False
 | |
|             return all(issubclass(c, self) for c in (cls.__union_params__))
 | |
|         elif isinstance(cls, TypeVar):
 | |
|             if cls in self.__union_params__:
 | |
|                 return True
 | |
|             if cls.__constraints__:
 | |
|                 return issubclass(Union[cls.__constraints__], self)
 | |
|             return False
 | |
|         else:
 | |
|             return any(issubclass(cls, t) for t in self.__union_params__)
 | |
| 
 | |
| 
 | |
| class Union(Final, metaclass=UnionMeta, _root=True):
 | |
|     """Union type; Union[X, Y] means either X or Y.
 | |
| 
 | |
|     To define a union, use e.g. Union[int, str].  Details:
 | |
| 
 | |
|     - The arguments must be types and there must be at least one.
 | |
| 
 | |
|     - None as an argument is a special case and is replaced by
 | |
|       type(None).
 | |
| 
 | |
|     - Unions of unions are flattened, e.g.::
 | |
| 
 | |
|         Union[Union[int, str], float] == Union[int, str, float]
 | |
| 
 | |
|     - Unions of a single argument vanish, e.g.::
 | |
| 
 | |
|         Union[int] == int  # The constructor actually returns int
 | |
| 
 | |
|     - Redundant arguments are skipped, e.g.::
 | |
| 
 | |
|         Union[int, str, int] == Union[int, str]
 | |
| 
 | |
|     - When comparing unions, the argument order is ignored, e.g.::
 | |
| 
 | |
|         Union[int, str] == Union[str, int]
 | |
| 
 | |
|     - When two arguments have a subclass relationship, the least
 | |
|       derived argument is kept, e.g.::
 | |
| 
 | |
|         class Employee: pass
 | |
|         class Manager(Employee): pass
 | |
|         Union[int, Employee, Manager] == Union[int, Employee]
 | |
|         Union[Manager, int, Employee] == Union[int, Employee]
 | |
|         Union[Employee, Manager] == Employee
 | |
| 
 | |
|     - Corollary: if Any is present it is the sole survivor, e.g.::
 | |
| 
 | |
|         Union[int, Any] == Any
 | |
| 
 | |
|     - Similar for object::
 | |
| 
 | |
|         Union[int, object] == object
 | |
| 
 | |
|     - To cut a tie: Union[object, Any] == Union[Any, object] == Any.
 | |
| 
 | |
|     - You cannot subclass or instantiate a union.
 | |
| 
 | |
|     - You cannot write Union[X][Y] (what would it mean?).
 | |
| 
 | |
|     - You can use Optional[X] as a shorthand for Union[X, None].
 | |
|     """
 | |
| 
 | |
|     # Unsubscripted Union type has params set to None.
 | |
|     __union_params__ = None
 | |
|     __union_set_params__ = None
 | |
| 
 | |
| 
 | |
| class OptionalMeta(TypingMeta):
 | |
|     """Metaclass for Optional."""
 | |
| 
 | |
|     def __new__(cls, name, bases, namespace, _root=False):
 | |
|         return super().__new__(cls, name, bases, namespace, _root=_root)
 | |
| 
 | |
|     def __getitem__(self, arg):
 | |
|         arg = _type_check(arg, "Optional[t] requires a single type.")
 | |
|         return Union[arg, type(None)]
 | |
| 
 | |
| 
 | |
| class Optional(Final, metaclass=OptionalMeta, _root=True):
 | |
|     """Optional type.
 | |
| 
 | |
|     Optional[X] is equivalent to Union[X, type(None)].
 | |
|     """
 | |
| 
 | |
|     __slots__ = ()
 | |
| 
 | |
| 
 | |
| class TupleMeta(TypingMeta):
 | |
|     """Metaclass for Tuple."""
 | |
| 
 | |
|     def __new__(cls, name, bases, namespace, parameters=None,
 | |
|                 use_ellipsis=False, _root=False):
 | |
|         self = super().__new__(cls, name, bases, namespace, _root=_root)
 | |
|         self.__tuple_params__ = parameters
 | |
|         self.__tuple_use_ellipsis__ = use_ellipsis
 | |
|         return self
 | |
| 
 | |
|     def _has_type_var(self):
 | |
|         if self.__tuple_params__:
 | |
|             for t in self.__tuple_params__:
 | |
|                 if _has_type_var(t):
 | |
|                     return True
 | |
|         return False
 | |
| 
 | |
|     def _eval_type(self, globalns, localns):
 | |
|         tp = self.__tuple_params__
 | |
|         if tp is None:
 | |
|             return self
 | |
|         p = tuple(_eval_type(t, globalns, localns) for t in tp)
 | |
|         if p == self.__tuple_params__:
 | |
|             return self
 | |
|         else:
 | |
|             return self.__class__(self.__name__, self.__bases__, {},
 | |
|                                   p, _root=True)
 | |
| 
 | |
|     def __repr__(self):
 | |
|         r = super().__repr__()
 | |
|         if self.__tuple_params__ is not None:
 | |
|             params = [_type_repr(p) for p in self.__tuple_params__]
 | |
|             if self.__tuple_use_ellipsis__:
 | |
|                 params.append('...')
 | |
|             r += '[%s]' % (
 | |
|                 ', '.join(params))
 | |
|         return r
 | |
| 
 | |
|     def __getitem__(self, parameters):
 | |
|         if self.__tuple_params__ is not None:
 | |
|             raise TypeError("Cannot re-parameterize %r" % (self,))
 | |
|         if not isinstance(parameters, tuple):
 | |
|             parameters = (parameters,)
 | |
|         if len(parameters) == 2 and parameters[1] == Ellipsis:
 | |
|             parameters = parameters[:1]
 | |
|             use_ellipsis = True
 | |
|             msg = "Tuple[t, ...]: t must be a type."
 | |
|         else:
 | |
|             use_ellipsis = False
 | |
|             msg = "Tuple[t0, t1, ...]: each t must be a type."
 | |
|         parameters = tuple(_type_check(p, msg) for p in parameters)
 | |
|         return self.__class__(self.__name__, self.__bases__,
 | |
|                               dict(self.__dict__), parameters,
 | |
|                               use_ellipsis=use_ellipsis, _root=True)
 | |
| 
 | |
|     def __eq__(self, other):
 | |
|         if not isinstance(other, TupleMeta):
 | |
|             return NotImplemented
 | |
|         return self.__tuple_params__ == other.__tuple_params__
 | |
| 
 | |
|     def __hash__(self):
 | |
|         return hash(self.__tuple_params__)
 | |
| 
 | |
|     def __instancecheck__(self, obj):
 | |
|         raise TypeError("Tuples cannot be used with isinstance().")
 | |
| 
 | |
|     def __subclasscheck__(self, cls):
 | |
|         if cls is Any:
 | |
|             return True
 | |
|         if not isinstance(cls, type):
 | |
|             return super().__subclasscheck__(cls)  # To TypeError.
 | |
|         if issubclass(cls, tuple):
 | |
|             return True  # Special case.
 | |
|         if not isinstance(cls, TupleMeta):
 | |
|             return super().__subclasscheck__(cls)  # False.
 | |
|         if self.__tuple_params__ is None:
 | |
|             return True
 | |
|         if cls.__tuple_params__ is None:
 | |
|             return False  # ???
 | |
|         if cls.__tuple_use_ellipsis__ != self.__tuple_use_ellipsis__:
 | |
|             return False
 | |
|         # Covariance.
 | |
|         return (len(self.__tuple_params__) == len(cls.__tuple_params__) and
 | |
|                 all(issubclass(x, p)
 | |
|                     for x, p in zip(cls.__tuple_params__,
 | |
|                                     self.__tuple_params__)))
 | |
| 
 | |
| 
 | |
| class Tuple(Final, metaclass=TupleMeta, _root=True):
 | |
|     """Tuple type; Tuple[X, Y] is the cross-product type of X and Y.
 | |
| 
 | |
|     Example: Tuple[T1, T2] is a tuple of two elements corresponding
 | |
|     to type variables T1 and T2.  Tuple[int, float, str] is a tuple
 | |
|     of an int, a float and a string.
 | |
| 
 | |
|     To specify a variable-length tuple of homogeneous type, use Sequence[T].
 | |
|     """
 | |
| 
 | |
|     __slots__ = ()
 | |
| 
 | |
| 
 | |
| class CallableMeta(TypingMeta):
 | |
|     """Metaclass for Callable."""
 | |
| 
 | |
|     def __new__(cls, name, bases, namespace, _root=False,
 | |
|                 args=None, result=None):
 | |
|         if args is None and result is None:
 | |
|             pass  # Must be 'class Callable'.
 | |
|         else:
 | |
|             if args is not Ellipsis:
 | |
|                 if not isinstance(args, list):
 | |
|                     raise TypeError("Callable[args, result]: "
 | |
|                                     "args must be a list."
 | |
|                                     " Got %.100r." % (args,))
 | |
|                 msg = "Callable[[arg, ...], result]: each arg must be a type."
 | |
|                 args = tuple(_type_check(arg, msg) for arg in args)
 | |
|             msg = "Callable[args, result]: result must be a type."
 | |
|             result = _type_check(result, msg)
 | |
|         self = super().__new__(cls, name, bases, namespace, _root=_root)
 | |
|         self.__args__ = args
 | |
|         self.__result__ = result
 | |
|         return self
 | |
| 
 | |
|     def _has_type_var(self):
 | |
|         if self.__args__:
 | |
|             for t in self.__args__:
 | |
|                 if _has_type_var(t):
 | |
|                     return True
 | |
|         return _has_type_var(self.__result__)
 | |
| 
 | |
|     def _eval_type(self, globalns, localns):
 | |
|         if self.__args__ is None and self.__result__ is None:
 | |
|             return self
 | |
|         if self.__args__ is Ellipsis:
 | |
|             args = self.__args__
 | |
|         else:
 | |
|             args = [_eval_type(t, globalns, localns) for t in self.__args__]
 | |
|         result = _eval_type(self.__result__, globalns, localns)
 | |
|         if args == self.__args__ and result == self.__result__:
 | |
|             return self
 | |
|         else:
 | |
|             return self.__class__(self.__name__, self.__bases__, {},
 | |
|                                   args=args, result=result, _root=True)
 | |
| 
 | |
|     def __repr__(self):
 | |
|         r = super().__repr__()
 | |
|         if self.__args__ is not None or self.__result__ is not None:
 | |
|             if self.__args__ is Ellipsis:
 | |
|                 args_r = '...'
 | |
|             else:
 | |
|                 args_r = '[%s]' % ', '.join(_type_repr(t)
 | |
|                                             for t in self.__args__)
 | |
|             r += '[%s, %s]' % (args_r, _type_repr(self.__result__))
 | |
|         return r
 | |
| 
 | |
|     def __getitem__(self, parameters):
 | |
|         if self.__args__ is not None or self.__result__ is not None:
 | |
|             raise TypeError("This Callable type is already parameterized.")
 | |
|         if not isinstance(parameters, tuple) or len(parameters) != 2:
 | |
|             raise TypeError(
 | |
|                 "Callable must be used as Callable[[arg, ...], result].")
 | |
|         args, result = parameters
 | |
|         return self.__class__(self.__name__, self.__bases__,
 | |
|                               dict(self.__dict__), _root=True,
 | |
|                               args=args, result=result)
 | |
| 
 | |
|     def __eq__(self, other):
 | |
|         if not isinstance(other, CallableMeta):
 | |
|             return NotImplemented
 | |
|         return (self.__args__ == other.__args__ and
 | |
|                 self.__result__ == other.__result__)
 | |
| 
 | |
|     def __hash__(self):
 | |
|         return hash(self.__args__) ^ hash(self.__result__)
 | |
| 
 | |
|     def __instancecheck__(self, obj):
 | |
|         # For unparametrized Callable we allow this, because
 | |
|         # typing.Callable should be equivalent to
 | |
|         # collections.abc.Callable.
 | |
|         if self.__args__ is None and self.__result__ is None:
 | |
|             return isinstance(obj, collections_abc.Callable)
 | |
|         else:
 | |
|             raise TypeError("Callable[] cannot be used with isinstance().")
 | |
| 
 | |
|     def __subclasscheck__(self, cls):
 | |
|         if cls is Any:
 | |
|             return True
 | |
|         if not isinstance(cls, CallableMeta):
 | |
|             return super().__subclasscheck__(cls)
 | |
|         if self.__args__ is None and self.__result__ is None:
 | |
|             return True
 | |
|         # We're not doing covariance or contravariance -- this is *invariance*.
 | |
|         return self == cls
 | |
| 
 | |
| 
 | |
| class Callable(Final, metaclass=CallableMeta, _root=True):
 | |
|     """Callable type; Callable[[int], str] is a function of (int) -> str.
 | |
| 
 | |
|     The subscription syntax must always be used with exactly two
 | |
|     values: the argument list and the return type.  The argument list
 | |
|     must be a list of types; the return type must be a single type.
 | |
| 
 | |
|     There is no syntax to indicate optional or keyword arguments,
 | |
|     such function types are rarely used as callback types.
 | |
|     """
 | |
| 
 | |
|     __slots__ = ()
 | |
| 
 | |
| 
 | |
| def _gorg(a):
 | |
|     """Return the farthest origin of a generic class."""
 | |
|     assert isinstance(a, GenericMeta)
 | |
|     while a.__origin__ is not None:
 | |
|         a = a.__origin__
 | |
|     return a
 | |
| 
 | |
| 
 | |
| def _geqv(a, b):
 | |
|     """Return whether two generic classes are equivalent.
 | |
| 
 | |
|     The intention is to consider generic class X and any of its
 | |
|     parameterized forms (X[T], X[int], etc.)  as equivalent.
 | |
| 
 | |
|     However, X is not equivalent to a subclass of X.
 | |
| 
 | |
|     The relation is reflexive, symmetric and transitive.
 | |
|     """
 | |
|     assert isinstance(a, GenericMeta) and isinstance(b, GenericMeta)
 | |
|     # Reduce each to its origin.
 | |
|     return _gorg(a) is _gorg(b)
 | |
| 
 | |
| 
 | |
| class GenericMeta(TypingMeta, abc.ABCMeta):
 | |
|     """Metaclass for generic types."""
 | |
| 
 | |
|     # TODO: Constrain more how Generic is used; only a few
 | |
|     # standard patterns should be allowed.
 | |
| 
 | |
|     # TODO: Use a more precise rule than matching __name__ to decide
 | |
|     # whether two classes are the same.  Also, save the formal
 | |
|     # parameters.  (These things are related!  A solution lies in
 | |
|     # using origin.)
 | |
| 
 | |
|     __extra__ = None
 | |
| 
 | |
|     def __new__(cls, name, bases, namespace,
 | |
|                 parameters=None, origin=None, extra=None):
 | |
|         if parameters is None:
 | |
|             # Extract parameters from direct base classes.  Only
 | |
|             # direct bases are considered and only those that are
 | |
|             # themselves generic, and parameterized with type
 | |
|             # variables.  Don't use bases like Any, Union, Tuple,
 | |
|             # Callable or type variables.
 | |
|             params = None
 | |
|             for base in bases:
 | |
|                 if isinstance(base, TypingMeta):
 | |
|                     if not isinstance(base, GenericMeta):
 | |
|                         raise TypeError(
 | |
|                             "You cannot inherit from magic class %s" %
 | |
|                             repr(base))
 | |
|                     if base.__parameters__ is None:
 | |
|                         continue  # The base is unparameterized.
 | |
|                     for bp in base.__parameters__:
 | |
|                         if _has_type_var(bp) and not isinstance(bp, TypeVar):
 | |
|                             raise TypeError(
 | |
|                                 "Cannot inherit from a generic class "
 | |
|                                 "parameterized with "
 | |
|                                 "non-type-variable %s" % bp)
 | |
|                         if params is None:
 | |
|                             params = []
 | |
|                         if bp not in params:
 | |
|                             params.append(bp)
 | |
|             if params is not None:
 | |
|                 parameters = tuple(params)
 | |
|         self = super().__new__(cls, name, bases, namespace, _root=True)
 | |
|         self.__parameters__ = parameters
 | |
|         if extra is not None:
 | |
|             self.__extra__ = extra
 | |
|         # Else __extra__ is inherited, eventually from the
 | |
|         # (meta-)class default above.
 | |
|         self.__origin__ = origin
 | |
|         return self
 | |
| 
 | |
|     def _has_type_var(self):
 | |
|         if self.__parameters__:
 | |
|             for t in self.__parameters__:
 | |
|                 if _has_type_var(t):
 | |
|                     return True
 | |
|         return False
 | |
| 
 | |
|     def __repr__(self):
 | |
|         r = super().__repr__()
 | |
|         if self.__parameters__ is not None:
 | |
|             r += '[%s]' % (
 | |
|                 ', '.join(_type_repr(p) for p in self.__parameters__))
 | |
|         return r
 | |
| 
 | |
|     def __eq__(self, other):
 | |
|         if not isinstance(other, GenericMeta):
 | |
|             return NotImplemented
 | |
|         return (_geqv(self, other) and
 | |
|                 self.__parameters__ == other.__parameters__)
 | |
| 
 | |
|     def __hash__(self):
 | |
|         return hash((self.__name__, self.__parameters__))
 | |
| 
 | |
|     def __getitem__(self, params):
 | |
|         if not isinstance(params, tuple):
 | |
|             params = (params,)
 | |
|         if not params:
 | |
|             raise TypeError("Cannot have empty parameter list")
 | |
|         msg = "Parameters to generic types must be types."
 | |
|         params = tuple(_type_check(p, msg) for p in params)
 | |
|         if self.__parameters__ is None:
 | |
|             for p in params:
 | |
|                 if not isinstance(p, TypeVar):
 | |
|                     raise TypeError("Initial parameters must be "
 | |
|                                     "type variables; got %s" % p)
 | |
|             if len(set(params)) != len(params):
 | |
|                 raise TypeError("All type variables in Generic[...] must be distinct.")
 | |
|         else:
 | |
|             if len(params) != len(self.__parameters__):
 | |
|                 raise TypeError("Cannot change parameter count from %d to %d" %
 | |
|                                 (len(self.__parameters__), len(params)))
 | |
|             for new, old in zip(params, self.__parameters__):
 | |
|                 if isinstance(old, TypeVar):
 | |
|                     if not old.__constraints__:
 | |
|                         # Substituting for an unconstrained TypeVar is OK.
 | |
|                         continue
 | |
|                     if issubclass(new, Union[old.__constraints__]):
 | |
|                         # Specializing a constrained type variable is OK.
 | |
|                         continue
 | |
|                 if not issubclass(new, old):
 | |
|                     raise TypeError(
 | |
|                         "Cannot substitute %s for %s in %s" %
 | |
|                         (_type_repr(new), _type_repr(old), self))
 | |
| 
 | |
|         return self.__class__(self.__name__, self.__bases__,
 | |
|                               dict(self.__dict__),
 | |
|                               parameters=params,
 | |
|                               origin=self,
 | |
|                               extra=self.__extra__)
 | |
| 
 | |
|     def __subclasscheck__(self, cls):
 | |
|         if cls is Any:
 | |
|             return True
 | |
|         if isinstance(cls, GenericMeta):
 | |
|             # For a class C(Generic[T]) where T is co-variant,
 | |
|             # C[X] is a subclass of C[Y] iff X is a subclass of Y.
 | |
|             origin = self.__origin__
 | |
|             if origin is not None and origin is cls.__origin__:
 | |
|                 assert len(self.__parameters__) == len(origin.__parameters__)
 | |
|                 assert len(cls.__parameters__) == len(origin.__parameters__)
 | |
|                 for p_self, p_cls, p_origin in zip(self.__parameters__,
 | |
|                                                    cls.__parameters__,
 | |
|                                                    origin.__parameters__):
 | |
|                     if isinstance(p_origin, TypeVar):
 | |
|                         if p_origin.__covariant__:
 | |
|                             # Covariant -- p_cls must be a subclass of p_self.
 | |
|                             if not issubclass(p_cls, p_self):
 | |
|                                 break
 | |
|                         elif p_origin.__contravariant__:
 | |
|                             # Contravariant.  I think it's the opposite. :-)
 | |
|                             if not issubclass(p_self, p_cls):
 | |
|                                 break
 | |
|                         else:
 | |
|                             # Invariant -- p_cls and p_self must equal.
 | |
|                             if p_self != p_cls:
 | |
|                                 break
 | |
|                     else:
 | |
|                         # If the origin's parameter is not a typevar,
 | |
|                         # insist on invariance.
 | |
|                         if p_self != p_cls:
 | |
|                             break
 | |
|                 else:
 | |
|                     return True
 | |
|                 # If we break out of the loop, the superclass gets a chance.
 | |
|         if super().__subclasscheck__(cls):
 | |
|             return True
 | |
|         if self.__extra__ is None or isinstance(cls, GenericMeta):
 | |
|             return False
 | |
|         return issubclass(cls, self.__extra__)
 | |
| 
 | |
| 
 | |
| class Generic(metaclass=GenericMeta):
 | |
|     """Abstract base class for generic types.
 | |
| 
 | |
|     A generic type is typically declared by inheriting from an
 | |
|     instantiation of this class with one or more type variables.
 | |
|     For example, a generic mapping type might be defined as::
 | |
| 
 | |
|       class Mapping(Generic[KT, VT]):
 | |
|           def __getitem__(self, key: KT) -> VT:
 | |
|               ...
 | |
|           # Etc.
 | |
| 
 | |
|     This class can then be used as follows::
 | |
| 
 | |
|       def lookup_name(mapping: Mapping, key: KT, default: VT) -> VT:
 | |
|           try:
 | |
|               return mapping[key]
 | |
|           except KeyError:
 | |
|               return default
 | |
| 
 | |
|     For clarity the type variables may be redefined, e.g.::
 | |
| 
 | |
|       X = TypeVar('X')
 | |
|       Y = TypeVar('Y')
 | |
|       def lookup_name(mapping: Mapping[X, Y], key: X, default: Y) -> Y:
 | |
|           # Same body as above.
 | |
|     """
 | |
| 
 | |
|     __slots__ = ()
 | |
| 
 | |
|     def __new__(cls, *args, **kwds):
 | |
|         next_in_mro = object
 | |
|         # Look for the last occurrence of Generic or Generic[...].
 | |
|         for i, c in enumerate(cls.__mro__[:-1]):
 | |
|             if isinstance(c, GenericMeta) and _gorg(c) is Generic:
 | |
|                 next_in_mro = cls.__mro__[i+1]
 | |
|         return next_in_mro.__new__(_gorg(cls))
 | |
| 
 | |
| 
 | |
| def cast(typ, val):
 | |
|     """Cast a value to a type.
 | |
| 
 | |
|     This returns the value unchanged.  To the type checker this
 | |
|     signals that the return value has the designated type, but at
 | |
|     runtime we intentionally don't check anything (we want this
 | |
|     to be as fast as possible).
 | |
|     """
 | |
|     return val
 | |
| 
 | |
| 
 | |
| def _get_defaults(func):
 | |
|     """Internal helper to extract the default arguments, by name."""
 | |
|     code = func.__code__
 | |
|     pos_count = code.co_argcount
 | |
|     kw_count = code.co_kwonlyargcount
 | |
|     arg_names = code.co_varnames
 | |
|     kwarg_names = arg_names[pos_count:pos_count + kw_count]
 | |
|     arg_names = arg_names[:pos_count]
 | |
|     defaults = func.__defaults__ or ()
 | |
|     kwdefaults = func.__kwdefaults__
 | |
|     res = dict(kwdefaults) if kwdefaults else {}
 | |
|     pos_offset = pos_count - len(defaults)
 | |
|     for name, value in zip(arg_names[pos_offset:], defaults):
 | |
|         assert name not in res
 | |
|         res[name] = value
 | |
|     return res
 | |
| 
 | |
| 
 | |
| def get_type_hints(obj, globalns=None, localns=None):
 | |
|     """Return type hints for a function or method object.
 | |
| 
 | |
|     This is often the same as obj.__annotations__, but it handles
 | |
|     forward references encoded as string literals, and if necessary
 | |
|     adds Optional[t] if a default value equal to None is set.
 | |
| 
 | |
|     BEWARE -- the behavior of globalns and localns is counterintuitive
 | |
|     (unless you are familiar with how eval() and exec() work).  The
 | |
|     search order is locals first, then globals.
 | |
| 
 | |
|     - If no dict arguments are passed, an attempt is made to use the
 | |
|       globals from obj, and these are also used as the locals.  If the
 | |
|       object does not appear to have globals, an exception is raised.
 | |
| 
 | |
|     - If one dict argument is passed, it is used for both globals and
 | |
|       locals.
 | |
| 
 | |
|     - If two dict arguments are passed, they specify globals and
 | |
|       locals, respectively.
 | |
|     """
 | |
|     if getattr(obj, '__no_type_check__', None):
 | |
|         return {}
 | |
|     if globalns is None:
 | |
|         globalns = getattr(obj, '__globals__', {})
 | |
|         if localns is None:
 | |
|             localns = globalns
 | |
|     elif localns is None:
 | |
|         localns = globalns
 | |
|     defaults = _get_defaults(obj)
 | |
|     hints = dict(obj.__annotations__)
 | |
|     for name, value in hints.items():
 | |
|         if isinstance(value, str):
 | |
|             value = _ForwardRef(value)
 | |
|         value = _eval_type(value, globalns, localns)
 | |
|         if name in defaults and defaults[name] is None:
 | |
|             value = Optional[value]
 | |
|         hints[name] = value
 | |
|     return hints
 | |
| 
 | |
| 
 | |
| # TODO: Also support this as a class decorator.
 | |
| def no_type_check(arg):
 | |
|     """Decorator to indicate that annotations are not type hints.
 | |
| 
 | |
|     The argument must be a class or function; if it is a class, it
 | |
|     applies recursively to all methods defined in that class (but not
 | |
|     to methods defined in its superclasses or subclasses).
 | |
| 
 | |
|     This mutates the function(s) in place.
 | |
|     """
 | |
|     if isinstance(arg, type):
 | |
|         for obj in arg.__dict__.values():
 | |
|             if isinstance(obj, types.FunctionType):
 | |
|                 obj.__no_type_check__ = True
 | |
|     else:
 | |
|         arg.__no_type_check__ = True
 | |
|     return arg
 | |
| 
 | |
| 
 | |
| def no_type_check_decorator(decorator):
 | |
|     """Decorator to give another decorator the @no_type_check effect.
 | |
| 
 | |
|     This wraps the decorator with something that wraps the decorated
 | |
|     function in @no_type_check.
 | |
|     """
 | |
| 
 | |
|     @functools.wraps(decorator)
 | |
|     def wrapped_decorator(*args, **kwds):
 | |
|         func = decorator(*args, **kwds)
 | |
|         func = no_type_check(func)
 | |
|         return func
 | |
| 
 | |
|     return wrapped_decorator
 | |
| 
 | |
| 
 | |
| def overload(func):
 | |
|     raise RuntimeError("Overloading is only supported in library stubs")
 | |
| 
 | |
| 
 | |
| class _ProtocolMeta(GenericMeta):
 | |
|     """Internal metaclass for _Protocol.
 | |
| 
 | |
|     This exists so _Protocol classes can be generic without deriving
 | |
|     from Generic.
 | |
|     """
 | |
| 
 | |
|     def __instancecheck__(self, obj):
 | |
|         raise TypeError("Protocols cannot be used with isinstance().")
 | |
| 
 | |
|     def __subclasscheck__(self, cls):
 | |
|         if not self._is_protocol:
 | |
|             # No structural checks since this isn't a protocol.
 | |
|             return NotImplemented
 | |
| 
 | |
|         if self is _Protocol:
 | |
|             # Every class is a subclass of the empty protocol.
 | |
|             return True
 | |
| 
 | |
|         # Find all attributes defined in the protocol.
 | |
|         attrs = self._get_protocol_attrs()
 | |
| 
 | |
|         for attr in attrs:
 | |
|             if not any(attr in d.__dict__ for d in cls.__mro__):
 | |
|                 return False
 | |
|         return True
 | |
| 
 | |
|     def _get_protocol_attrs(self):
 | |
|         # Get all Protocol base classes.
 | |
|         protocol_bases = []
 | |
|         for c in self.__mro__:
 | |
|             if getattr(c, '_is_protocol', False) and c.__name__ != '_Protocol':
 | |
|                 protocol_bases.append(c)
 | |
| 
 | |
|         # Get attributes included in protocol.
 | |
|         attrs = set()
 | |
|         for base in protocol_bases:
 | |
|             for attr in base.__dict__.keys():
 | |
|                 # Include attributes not defined in any non-protocol bases.
 | |
|                 for c in self.__mro__:
 | |
|                     if (c is not base and attr in c.__dict__ and
 | |
|                             not getattr(c, '_is_protocol', False)):
 | |
|                         break
 | |
|                 else:
 | |
|                     if (not attr.startswith('_abc_') and
 | |
|                         attr != '__abstractmethods__' and
 | |
|                         attr != '_is_protocol' and
 | |
|                         attr != '__dict__' and
 | |
|                         attr != '__slots__' and
 | |
|                         attr != '_get_protocol_attrs' and
 | |
|                         attr != '__parameters__' and
 | |
|                         attr != '__origin__' and
 | |
|                         attr != '__module__'):
 | |
|                         attrs.add(attr)
 | |
| 
 | |
|         return attrs
 | |
| 
 | |
| 
 | |
| class _Protocol(metaclass=_ProtocolMeta):
 | |
|     """Internal base class for protocol classes.
 | |
| 
 | |
|     This implements a simple-minded structural isinstance check
 | |
|     (similar but more general than the one-offs in collections.abc
 | |
|     such as Hashable).
 | |
|     """
 | |
| 
 | |
|     __slots__ = ()
 | |
| 
 | |
|     _is_protocol = True
 | |
| 
 | |
| 
 | |
| # Various ABCs mimicking those in collections.abc.
 | |
| # A few are simply re-exported for completeness.
 | |
| 
 | |
| Hashable = collections_abc.Hashable  # Not generic.
 | |
| 
 | |
| 
 | |
| class Iterable(Generic[T_co], extra=collections_abc.Iterable):
 | |
|     __slots__ = ()
 | |
| 
 | |
| 
 | |
| class Iterator(Iterable[T_co], extra=collections_abc.Iterator):
 | |
|     __slots__ = ()
 | |
| 
 | |
| 
 | |
| class SupportsInt(_Protocol):
 | |
|     __slots__ = ()
 | |
| 
 | |
|     @abstractmethod
 | |
|     def __int__(self) -> int:
 | |
|         pass
 | |
| 
 | |
| 
 | |
| class SupportsFloat(_Protocol):
 | |
|     __slots__ = ()
 | |
| 
 | |
|     @abstractmethod
 | |
|     def __float__(self) -> float:
 | |
|         pass
 | |
| 
 | |
| 
 | |
| class SupportsComplex(_Protocol):
 | |
|     __slots__ = ()
 | |
| 
 | |
|     @abstractmethod
 | |
|     def __complex__(self) -> complex:
 | |
|         pass
 | |
| 
 | |
| 
 | |
| class SupportsBytes(_Protocol):
 | |
|     __slots__ = ()
 | |
| 
 | |
|     @abstractmethod
 | |
|     def __bytes__(self) -> bytes:
 | |
|         pass
 | |
| 
 | |
| 
 | |
| class SupportsAbs(_Protocol[T_co]):
 | |
|     __slots__ = ()
 | |
| 
 | |
|     @abstractmethod
 | |
|     def __abs__(self) -> T_co:
 | |
|         pass
 | |
| 
 | |
| 
 | |
| class SupportsRound(_Protocol[T_co]):
 | |
|     __slots__ = ()
 | |
| 
 | |
|     @abstractmethod
 | |
|     def __round__(self, ndigits: int = 0) -> T_co:
 | |
|         pass
 | |
| 
 | |
| 
 | |
| class Reversible(_Protocol[T_co]):
 | |
|     __slots__ = ()
 | |
| 
 | |
|     @abstractmethod
 | |
|     def __reversed__(self) -> 'Iterator[T_co]':
 | |
|         pass
 | |
| 
 | |
| 
 | |
| Sized = collections_abc.Sized  # Not generic.
 | |
| 
 | |
| 
 | |
| class Container(Generic[T_co], extra=collections_abc.Container):
 | |
|     __slots__ = ()
 | |
| 
 | |
| 
 | |
| # Callable was defined earlier.
 | |
| 
 | |
| 
 | |
| class AbstractSet(Sized, Iterable[T_co], Container[T_co],
 | |
|                   extra=collections_abc.Set):
 | |
|     pass
 | |
| 
 | |
| 
 | |
| class MutableSet(AbstractSet[T], extra=collections_abc.MutableSet):
 | |
|     pass
 | |
| 
 | |
| 
 | |
| # NOTE: Only the value type is covariant.
 | |
| class Mapping(Sized, Iterable[KT], Container[KT], Generic[VT_co],
 | |
|               extra=collections_abc.Mapping):
 | |
|     pass
 | |
| 
 | |
| 
 | |
| class MutableMapping(Mapping[KT, VT], extra=collections_abc.MutableMapping):
 | |
|     pass
 | |
| 
 | |
| 
 | |
| class Sequence(Sized, Iterable[T_co], Container[T_co],
 | |
|                extra=collections_abc.Sequence):
 | |
|     pass
 | |
| 
 | |
| 
 | |
| class MutableSequence(Sequence[T], extra=collections_abc.MutableSequence):
 | |
|     pass
 | |
| 
 | |
| 
 | |
| class ByteString(Sequence[int], extra=collections_abc.ByteString):
 | |
|     pass
 | |
| 
 | |
| 
 | |
| ByteString.register(type(memoryview(b'')))
 | |
| 
 | |
| 
 | |
| class List(list, MutableSequence[T]):
 | |
| 
 | |
|     def __new__(cls, *args, **kwds):
 | |
|         if _geqv(cls, List):
 | |
|             raise TypeError("Type List cannot be instantiated; "
 | |
|                             "use list() instead")
 | |
|         return list.__new__(cls, *args, **kwds)
 | |
| 
 | |
| 
 | |
| class Set(set, MutableSet[T]):
 | |
| 
 | |
|     def __new__(cls, *args, **kwds):
 | |
|         if _geqv(cls, Set):
 | |
|             raise TypeError("Type Set cannot be instantiated; "
 | |
|                             "use set() instead")
 | |
|         return set.__new__(cls, *args, **kwds)
 | |
| 
 | |
| 
 | |
| class _FrozenSetMeta(GenericMeta):
 | |
|     """This metaclass ensures set is not a subclass of FrozenSet.
 | |
| 
 | |
|     Without this metaclass, set would be considered a subclass of
 | |
|     FrozenSet, because FrozenSet.__extra__ is collections.abc.Set, and
 | |
|     set is a subclass of that.
 | |
|     """
 | |
| 
 | |
|     def __subclasscheck__(self, cls):
 | |
|         if issubclass(cls, Set):
 | |
|             return False
 | |
|         return super().__subclasscheck__(cls)
 | |
| 
 | |
| 
 | |
| class FrozenSet(frozenset, AbstractSet[T_co], metaclass=_FrozenSetMeta):
 | |
|     __slots__ = ()
 | |
| 
 | |
|     def __new__(cls, *args, **kwds):
 | |
|         if _geqv(cls, FrozenSet):
 | |
|             raise TypeError("Type FrozenSet cannot be instantiated; "
 | |
|                             "use frozenset() instead")
 | |
|         return frozenset.__new__(cls, *args, **kwds)
 | |
| 
 | |
| 
 | |
| class MappingView(Sized, Iterable[T_co], extra=collections_abc.MappingView):
 | |
|     pass
 | |
| 
 | |
| 
 | |
| class KeysView(MappingView[KT], AbstractSet[KT],
 | |
|                extra=collections_abc.KeysView):
 | |
|     pass
 | |
| 
 | |
| 
 | |
| # TODO: Enable Set[Tuple[KT, VT_co]] instead of Generic[KT, VT_co].
 | |
| class ItemsView(MappingView, Generic[KT, VT_co],
 | |
|                 extra=collections_abc.ItemsView):
 | |
|     pass
 | |
| 
 | |
| 
 | |
| class ValuesView(MappingView[VT_co], extra=collections_abc.ValuesView):
 | |
|     pass
 | |
| 
 | |
| 
 | |
| class Dict(dict, MutableMapping[KT, VT]):
 | |
| 
 | |
|     def __new__(cls, *args, **kwds):
 | |
|         if _geqv(cls, Dict):
 | |
|             raise TypeError("Type Dict cannot be instantiated; "
 | |
|                             "use dict() instead")
 | |
|         return dict.__new__(cls, *args, **kwds)
 | |
| 
 | |
| 
 | |
| # Determine what base class to use for Generator.
 | |
| if hasattr(collections_abc, 'Generator'):
 | |
|     # Sufficiently recent versions of 3.5 have a Generator ABC.
 | |
|     _G_base = collections_abc.Generator
 | |
| else:
 | |
|     # Fall back on the exact type.
 | |
|     _G_base = types.GeneratorType
 | |
| 
 | |
| 
 | |
| class Generator(Iterator[T_co], Generic[T_co, T_contra, V_co],
 | |
|                 extra=_G_base):
 | |
|     __slots__ = ()
 | |
| 
 | |
|     def __new__(cls, *args, **kwds):
 | |
|         if _geqv(cls, Generator):
 | |
|             raise TypeError("Type Generator cannot be instantiated; "
 | |
|                             "create a subclass instead")
 | |
|         return super().__new__(cls, *args, **kwds)
 | |
| 
 | |
| 
 | |
| def NamedTuple(typename, fields):
 | |
|     """Typed version of namedtuple.
 | |
| 
 | |
|     Usage::
 | |
| 
 | |
|         Employee = typing.NamedTuple('Employee', [('name', str), 'id', int)])
 | |
| 
 | |
|     This is equivalent to::
 | |
| 
 | |
|         Employee = collections.namedtuple('Employee', ['name', 'id'])
 | |
| 
 | |
|     The resulting class has one extra attribute: _field_types,
 | |
|     giving a dict mapping field names to types.  (The field names
 | |
|     are in the _fields attribute, which is part of the namedtuple
 | |
|     API.)
 | |
|     """
 | |
|     fields = [(n, t) for n, t in fields]
 | |
|     cls = collections.namedtuple(typename, [n for n, t in fields])
 | |
|     cls._field_types = dict(fields)
 | |
|     return cls
 | |
| 
 | |
| 
 | |
| class IO(Generic[AnyStr]):
 | |
|     """Generic base class for TextIO and BinaryIO.
 | |
| 
 | |
|     This is an abstract, generic version of the return of open().
 | |
| 
 | |
|     NOTE: This does not distinguish between the different possible
 | |
|     classes (text vs. binary, read vs. write vs. read/write,
 | |
|     append-only, unbuffered).  The TextIO and BinaryIO subclasses
 | |
|     below capture the distinctions between text vs. binary, which is
 | |
|     pervasive in the interface; however we currently do not offer a
 | |
|     way to track the other distinctions in the type system.
 | |
|     """
 | |
| 
 | |
|     __slots__ = ()
 | |
| 
 | |
|     @abstractproperty
 | |
|     def mode(self) -> str:
 | |
|         pass
 | |
| 
 | |
|     @abstractproperty
 | |
|     def name(self) -> str:
 | |
|         pass
 | |
| 
 | |
|     @abstractmethod
 | |
|     def close(self) -> None:
 | |
|         pass
 | |
| 
 | |
|     @abstractmethod
 | |
|     def closed(self) -> bool:
 | |
|         pass
 | |
| 
 | |
|     @abstractmethod
 | |
|     def fileno(self) -> int:
 | |
|         pass
 | |
| 
 | |
|     @abstractmethod
 | |
|     def flush(self) -> None:
 | |
|         pass
 | |
| 
 | |
|     @abstractmethod
 | |
|     def isatty(self) -> bool:
 | |
|         pass
 | |
| 
 | |
|     @abstractmethod
 | |
|     def read(self, n: int = -1) -> AnyStr:
 | |
|         pass
 | |
| 
 | |
|     @abstractmethod
 | |
|     def readable(self) -> bool:
 | |
|         pass
 | |
| 
 | |
|     @abstractmethod
 | |
|     def readline(self, limit: int = -1) -> AnyStr:
 | |
|         pass
 | |
| 
 | |
|     @abstractmethod
 | |
|     def readlines(self, hint: int = -1) -> List[AnyStr]:
 | |
|         pass
 | |
| 
 | |
|     @abstractmethod
 | |
|     def seek(self, offset: int, whence: int = 0) -> int:
 | |
|         pass
 | |
| 
 | |
|     @abstractmethod
 | |
|     def seekable(self) -> bool:
 | |
|         pass
 | |
| 
 | |
|     @abstractmethod
 | |
|     def tell(self) -> int:
 | |
|         pass
 | |
| 
 | |
|     @abstractmethod
 | |
|     def truncate(self, size: int = None) -> int:
 | |
|         pass
 | |
| 
 | |
|     @abstractmethod
 | |
|     def writable(self) -> bool:
 | |
|         pass
 | |
| 
 | |
|     @abstractmethod
 | |
|     def write(self, s: AnyStr) -> int:
 | |
|         pass
 | |
| 
 | |
|     @abstractmethod
 | |
|     def writelines(self, lines: List[AnyStr]) -> None:
 | |
|         pass
 | |
| 
 | |
|     @abstractmethod
 | |
|     def __enter__(self) -> 'IO[AnyStr]':
 | |
|         pass
 | |
| 
 | |
|     @abstractmethod
 | |
|     def __exit__(self, type, value, traceback) -> None:
 | |
|         pass
 | |
| 
 | |
| 
 | |
| class BinaryIO(IO[bytes]):
 | |
|     """Typed version of the return of open() in binary mode."""
 | |
| 
 | |
|     __slots__ = ()
 | |
| 
 | |
|     @abstractmethod
 | |
|     def write(self, s: Union[bytes, bytearray]) -> int:
 | |
|         pass
 | |
| 
 | |
|     @abstractmethod
 | |
|     def __enter__(self) -> 'BinaryIO':
 | |
|         pass
 | |
| 
 | |
| 
 | |
| class TextIO(IO[str]):
 | |
|     """Typed version of the return of open() in text mode."""
 | |
| 
 | |
|     __slots__ = ()
 | |
| 
 | |
|     @abstractproperty
 | |
|     def buffer(self) -> BinaryIO:
 | |
|         pass
 | |
| 
 | |
|     @abstractproperty
 | |
|     def encoding(self) -> str:
 | |
|         pass
 | |
| 
 | |
|     @abstractproperty
 | |
|     def errors(self) -> str:
 | |
|         pass
 | |
| 
 | |
|     @abstractproperty
 | |
|     def line_buffering(self) -> bool:
 | |
|         pass
 | |
| 
 | |
|     @abstractproperty
 | |
|     def newlines(self) -> Any:
 | |
|         pass
 | |
| 
 | |
|     @abstractmethod
 | |
|     def __enter__(self) -> 'TextIO':
 | |
|         pass
 | |
| 
 | |
| 
 | |
| class io:
 | |
|     """Wrapper namespace for IO generic classes."""
 | |
| 
 | |
|     __all__ = ['IO', 'TextIO', 'BinaryIO']
 | |
|     IO = IO
 | |
|     TextIO = TextIO
 | |
|     BinaryIO = BinaryIO
 | |
| 
 | |
| io.__name__ = __name__ + '.io'
 | |
| sys.modules[io.__name__] = io
 | |
| 
 | |
| 
 | |
| Pattern = _TypeAlias('Pattern', AnyStr, type(stdlib_re.compile('')),
 | |
|                      lambda p: p.pattern)
 | |
| Match = _TypeAlias('Match', AnyStr, type(stdlib_re.match('', '')),
 | |
|                    lambda m: m.re.pattern)
 | |
| 
 | |
| 
 | |
| class re:
 | |
|     """Wrapper namespace for re type aliases."""
 | |
| 
 | |
|     __all__ = ['Pattern', 'Match']
 | |
|     Pattern = Pattern
 | |
|     Match = Match
 | |
| 
 | |
| re.__name__ = __name__ + '.re'
 | |
| sys.modules[re.__name__] = re
 | 
