mirror of
				https://github.com/python/cpython.git
				synced 2025-10-26 11:14:33 +00:00 
			
		
		
		
	 6f9525dd3f
			
		
	
	
		6f9525dd3f
		
			
		
	
	
	
	
		
			
			Fix a bug that can cause a crash when sub-interpreters use "basic" single-phase extension modules. Shared objects could refer to PyGC_Head nodes that had been freed as part of interpreter shutdown.
		
			
				
	
	
		
			2252 lines
		
	
	
	
		
			72 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2252 lines
		
	
	
	
		
			72 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| //  This implements the reference cycle garbage collector.
 | |
| //  The Python module interface to the collector is in gcmodule.c.
 | |
| //  See https://devguide.python.org/internals/garbage-collector/
 | |
| 
 | |
| #include "Python.h"
 | |
| #include "pycore_ceval.h"         // _Py_set_eval_breaker_bit()
 | |
| #include "pycore_context.h"
 | |
| #include "pycore_dict.h"          // _PyDict_MaybeUntrack()
 | |
| #include "pycore_initconfig.h"
 | |
| #include "pycore_interp.h"        // PyInterpreterState.gc
 | |
| #include "pycore_object.h"
 | |
| #include "pycore_object_alloc.h"  // _PyObject_MallocWithType()
 | |
| #include "pycore_pyerrors.h"
 | |
| #include "pycore_pystate.h"       // _PyThreadState_GET()
 | |
| #include "pycore_weakref.h"       // _PyWeakref_ClearRef()
 | |
| #include "pydtrace.h"
 | |
| 
 | |
| #ifndef Py_GIL_DISABLED
 | |
| 
 | |
| typedef struct _gc_runtime_state GCState;
 | |
| 
 | |
| #ifdef Py_DEBUG
 | |
| #  define GC_DEBUG
 | |
| #endif
 | |
| 
 | |
| #define GC_NEXT _PyGCHead_NEXT
 | |
| #define GC_PREV _PyGCHead_PREV
 | |
| 
 | |
| // update_refs() set this bit for all objects in current generation.
 | |
| // subtract_refs() and move_unreachable() uses this to distinguish
 | |
| // visited object is in GCing or not.
 | |
| //
 | |
| // move_unreachable() removes this flag from reachable objects.
 | |
| // Only unreachable objects have this flag.
 | |
| //
 | |
| // No objects in interpreter have this flag after GC ends.
 | |
| #define PREV_MASK_COLLECTING   _PyGC_PREV_MASK_COLLECTING
 | |
| 
 | |
| // Lowest bit of _gc_next is used for UNREACHABLE flag.
 | |
| //
 | |
| // This flag represents the object is in unreachable list in move_unreachable()
 | |
| //
 | |
| // Although this flag is used only in move_unreachable(), move_unreachable()
 | |
| // doesn't clear this flag to skip unnecessary iteration.
 | |
| // move_legacy_finalizers() removes this flag instead.
 | |
| // Between them, unreachable list is not normal list and we can not use
 | |
| // most gc_list_* functions for it.
 | |
| #define NEXT_MASK_UNREACHABLE  2
 | |
| 
 | |
| #define AS_GC(op) _Py_AS_GC(op)
 | |
| #define FROM_GC(gc) _Py_FROM_GC(gc)
 | |
| 
 | |
| // Automatically choose the generation that needs collecting.
 | |
| #define GENERATION_AUTO (-1)
 | |
| 
 | |
| static inline int
 | |
| gc_is_collecting(PyGC_Head *g)
 | |
| {
 | |
|     return (g->_gc_prev & PREV_MASK_COLLECTING) != 0;
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| gc_clear_collecting(PyGC_Head *g)
 | |
| {
 | |
|     g->_gc_prev &= ~PREV_MASK_COLLECTING;
 | |
| }
 | |
| 
 | |
| static inline Py_ssize_t
 | |
| gc_get_refs(PyGC_Head *g)
 | |
| {
 | |
|     return (Py_ssize_t)(g->_gc_prev >> _PyGC_PREV_SHIFT);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| gc_set_refs(PyGC_Head *g, Py_ssize_t refs)
 | |
| {
 | |
|     g->_gc_prev = (g->_gc_prev & ~_PyGC_PREV_MASK)
 | |
|         | ((uintptr_t)(refs) << _PyGC_PREV_SHIFT);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| gc_reset_refs(PyGC_Head *g, Py_ssize_t refs)
 | |
| {
 | |
|     g->_gc_prev = (g->_gc_prev & _PyGC_PREV_MASK_FINALIZED)
 | |
|         | PREV_MASK_COLLECTING
 | |
|         | ((uintptr_t)(refs) << _PyGC_PREV_SHIFT);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| gc_decref(PyGC_Head *g)
 | |
| {
 | |
|     _PyObject_ASSERT_WITH_MSG(FROM_GC(g),
 | |
|                               gc_get_refs(g) > 0,
 | |
|                               "refcount is too small");
 | |
|     g->_gc_prev -= 1 << _PyGC_PREV_SHIFT;
 | |
| }
 | |
| 
 | |
| static inline int
 | |
| gc_old_space(PyGC_Head *g)
 | |
| {
 | |
|     return g->_gc_next & _PyGC_NEXT_MASK_OLD_SPACE_1;
 | |
| }
 | |
| 
 | |
| static inline int
 | |
| flip_old_space(int space)
 | |
| {
 | |
|     assert(space == 0 || space == 1);
 | |
|     return space ^ _PyGC_NEXT_MASK_OLD_SPACE_1;
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| gc_flip_old_space(PyGC_Head *g)
 | |
| {
 | |
|     g->_gc_next ^= _PyGC_NEXT_MASK_OLD_SPACE_1;
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| gc_set_old_space(PyGC_Head *g, int space)
 | |
| {
 | |
|     assert(space == 0 || space == _PyGC_NEXT_MASK_OLD_SPACE_1);
 | |
|     g->_gc_next &= ~_PyGC_NEXT_MASK_OLD_SPACE_1;
 | |
|     g->_gc_next |= space;
 | |
| }
 | |
| 
 | |
| static PyGC_Head *
 | |
| GEN_HEAD(GCState *gcstate, int n)
 | |
| {
 | |
|     assert((gcstate->visited_space & (~1)) == 0);
 | |
|     switch(n) {
 | |
|         case 0:
 | |
|             return &gcstate->young.head;
 | |
|         case 1:
 | |
|             return &gcstate->old[gcstate->visited_space].head;
 | |
|         case 2:
 | |
|             return &gcstate->old[gcstate->visited_space^1].head;
 | |
|         default:
 | |
|             Py_UNREACHABLE();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static GCState *
 | |
| get_gc_state(void)
 | |
| {
 | |
|     PyInterpreterState *interp = _PyInterpreterState_GET();
 | |
|     return &interp->gc;
 | |
| }
 | |
| 
 | |
| 
 | |
| void
 | |
| _PyGC_InitState(GCState *gcstate)
 | |
| {
 | |
| #define INIT_HEAD(GEN) \
 | |
|     do { \
 | |
|         GEN.head._gc_next = (uintptr_t)&GEN.head; \
 | |
|         GEN.head._gc_prev = (uintptr_t)&GEN.head; \
 | |
|     } while (0)
 | |
| 
 | |
|     assert(gcstate->young.count == 0);
 | |
|     assert(gcstate->old[0].count == 0);
 | |
|     assert(gcstate->old[1].count == 0);
 | |
|     INIT_HEAD(gcstate->young);
 | |
|     INIT_HEAD(gcstate->old[0]);
 | |
|     INIT_HEAD(gcstate->old[1]);
 | |
|     INIT_HEAD(gcstate->permanent_generation);
 | |
| 
 | |
| #undef INIT_HEAD
 | |
| }
 | |
| 
 | |
| 
 | |
| PyStatus
 | |
| _PyGC_Init(PyInterpreterState *interp)
 | |
| {
 | |
|     GCState *gcstate = &interp->gc;
 | |
| 
 | |
|     gcstate->garbage = PyList_New(0);
 | |
|     if (gcstate->garbage == NULL) {
 | |
|         return _PyStatus_NO_MEMORY();
 | |
|     }
 | |
| 
 | |
|     gcstate->callbacks = PyList_New(0);
 | |
|     if (gcstate->callbacks == NULL) {
 | |
|         return _PyStatus_NO_MEMORY();
 | |
|     }
 | |
|     gcstate->heap_size = 0;
 | |
| 
 | |
|     return _PyStatus_OK();
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| _gc_prev values
 | |
| ---------------
 | |
| 
 | |
| Between collections, _gc_prev is used for doubly linked list.
 | |
| 
 | |
| Lowest two bits of _gc_prev are used for flags.
 | |
| PREV_MASK_COLLECTING is used only while collecting and cleared before GC ends
 | |
| or _PyObject_GC_UNTRACK() is called.
 | |
| 
 | |
| During a collection, _gc_prev is temporary used for gc_refs, and the gc list
 | |
| is singly linked until _gc_prev is restored.
 | |
| 
 | |
| gc_refs
 | |
|     At the start of a collection, update_refs() copies the true refcount
 | |
|     to gc_refs, for each object in the generation being collected.
 | |
|     subtract_refs() then adjusts gc_refs so that it equals the number of
 | |
|     times an object is referenced directly from outside the generation
 | |
|     being collected.
 | |
| 
 | |
| PREV_MASK_COLLECTING
 | |
|     Objects in generation being collected are marked PREV_MASK_COLLECTING in
 | |
|     update_refs().
 | |
| 
 | |
| 
 | |
| _gc_next values
 | |
| ---------------
 | |
| 
 | |
| _gc_next takes these values:
 | |
| 
 | |
| 0
 | |
|     The object is not tracked
 | |
| 
 | |
| != 0
 | |
|     Pointer to the next object in the GC list.
 | |
|     Additionally, lowest bit is used temporary for
 | |
|     NEXT_MASK_UNREACHABLE flag described below.
 | |
| 
 | |
| NEXT_MASK_UNREACHABLE
 | |
|     move_unreachable() then moves objects not reachable (whether directly or
 | |
|     indirectly) from outside the generation into an "unreachable" set and
 | |
|     set this flag.
 | |
| 
 | |
|     Objects that are found to be reachable have gc_refs set to 1.
 | |
|     When this flag is set for the reachable object, the object must be in
 | |
|     "unreachable" set.
 | |
|     The flag is unset and the object is moved back to "reachable" set.
 | |
| 
 | |
|     move_legacy_finalizers() will remove this flag from "unreachable" set.
 | |
| */
 | |
| 
 | |
| /*** list functions ***/
 | |
| 
 | |
| static inline void
 | |
| gc_list_init(PyGC_Head *list)
 | |
| {
 | |
|     // List header must not have flags.
 | |
|     // We can assign pointer by simple cast.
 | |
|     list->_gc_prev = (uintptr_t)list;
 | |
|     list->_gc_next = (uintptr_t)list;
 | |
| }
 | |
| 
 | |
| static inline int
 | |
| gc_list_is_empty(PyGC_Head *list)
 | |
| {
 | |
|     return (list->_gc_next == (uintptr_t)list);
 | |
| }
 | |
| 
 | |
| /* Append `node` to `list`. */
 | |
| static inline void
 | |
| gc_list_append(PyGC_Head *node, PyGC_Head *list)
 | |
| {
 | |
|     assert((list->_gc_prev & ~_PyGC_PREV_MASK) == 0);
 | |
|     PyGC_Head *last = (PyGC_Head *)list->_gc_prev;
 | |
| 
 | |
|     // last <-> node
 | |
|     _PyGCHead_SET_PREV(node, last);
 | |
|     _PyGCHead_SET_NEXT(last, node);
 | |
| 
 | |
|     // node <-> list
 | |
|     _PyGCHead_SET_NEXT(node, list);
 | |
|     list->_gc_prev = (uintptr_t)node;
 | |
| }
 | |
| 
 | |
| /* Remove `node` from the gc list it's currently in. */
 | |
| static inline void
 | |
| gc_list_remove(PyGC_Head *node)
 | |
| {
 | |
|     PyGC_Head *prev = GC_PREV(node);
 | |
|     PyGC_Head *next = GC_NEXT(node);
 | |
| 
 | |
|     _PyGCHead_SET_NEXT(prev, next);
 | |
|     _PyGCHead_SET_PREV(next, prev);
 | |
| 
 | |
|     node->_gc_next = 0; /* object is not currently tracked */
 | |
| }
 | |
| 
 | |
| /* Move `node` from the gc list it's currently in (which is not explicitly
 | |
|  * named here) to the end of `list`.  This is semantically the same as
 | |
|  * gc_list_remove(node) followed by gc_list_append(node, list).
 | |
|  */
 | |
| static void
 | |
| gc_list_move(PyGC_Head *node, PyGC_Head *list)
 | |
| {
 | |
|     /* Unlink from current list. */
 | |
|     PyGC_Head *from_prev = GC_PREV(node);
 | |
|     PyGC_Head *from_next = GC_NEXT(node);
 | |
|     _PyGCHead_SET_NEXT(from_prev, from_next);
 | |
|     _PyGCHead_SET_PREV(from_next, from_prev);
 | |
| 
 | |
|     /* Relink at end of new list. */
 | |
|     // list must not have flags.  So we can skip macros.
 | |
|     PyGC_Head *to_prev = (PyGC_Head*)list->_gc_prev;
 | |
|     _PyGCHead_SET_PREV(node, to_prev);
 | |
|     _PyGCHead_SET_NEXT(to_prev, node);
 | |
|     list->_gc_prev = (uintptr_t)node;
 | |
|     _PyGCHead_SET_NEXT(node, list);
 | |
| }
 | |
| 
 | |
| /* append list `from` onto list `to`; `from` becomes an empty list */
 | |
| static void
 | |
| gc_list_merge(PyGC_Head *from, PyGC_Head *to)
 | |
| {
 | |
|     assert(from != to);
 | |
|     if (!gc_list_is_empty(from)) {
 | |
|         PyGC_Head *to_tail = GC_PREV(to);
 | |
|         PyGC_Head *from_head = GC_NEXT(from);
 | |
|         PyGC_Head *from_tail = GC_PREV(from);
 | |
|         assert(from_head != from);
 | |
|         assert(from_tail != from);
 | |
|         assert(gc_list_is_empty(to) ||
 | |
|             gc_old_space(to_tail) == gc_old_space(from_tail));
 | |
| 
 | |
|         _PyGCHead_SET_NEXT(to_tail, from_head);
 | |
|         _PyGCHead_SET_PREV(from_head, to_tail);
 | |
| 
 | |
|         _PyGCHead_SET_NEXT(from_tail, to);
 | |
|         _PyGCHead_SET_PREV(to, from_tail);
 | |
|     }
 | |
|     gc_list_init(from);
 | |
| }
 | |
| 
 | |
| static Py_ssize_t
 | |
| gc_list_size(PyGC_Head *list)
 | |
| {
 | |
|     PyGC_Head *gc;
 | |
|     Py_ssize_t n = 0;
 | |
|     for (gc = GC_NEXT(list); gc != list; gc = GC_NEXT(gc)) {
 | |
|         n++;
 | |
|     }
 | |
|     return n;
 | |
| }
 | |
| 
 | |
| /* Walk the list and mark all objects as non-collecting */
 | |
| static inline void
 | |
| gc_list_clear_collecting(PyGC_Head *collectable)
 | |
| {
 | |
|     PyGC_Head *gc;
 | |
|     for (gc = GC_NEXT(collectable); gc != collectable; gc = GC_NEXT(gc)) {
 | |
|         gc_clear_collecting(gc);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Append objects in a GC list to a Python list.
 | |
|  * Return 0 if all OK, < 0 if error (out of memory for list)
 | |
|  */
 | |
| static int
 | |
| append_objects(PyObject *py_list, PyGC_Head *gc_list)
 | |
| {
 | |
|     PyGC_Head *gc;
 | |
|     for (gc = GC_NEXT(gc_list); gc != gc_list; gc = GC_NEXT(gc)) {
 | |
|         PyObject *op = FROM_GC(gc);
 | |
|         if (op != py_list) {
 | |
|             if (PyList_Append(py_list, op)) {
 | |
|                 return -1; /* exception */
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| // Constants for validate_list's flags argument.
 | |
| enum flagstates {collecting_clear_unreachable_clear,
 | |
|                  collecting_clear_unreachable_set,
 | |
|                  collecting_set_unreachable_clear,
 | |
|                  collecting_set_unreachable_set};
 | |
| 
 | |
| #ifdef GC_DEBUG
 | |
| // validate_list checks list consistency.  And it works as document
 | |
| // describing when flags are expected to be set / unset.
 | |
| // `head` must be a doubly-linked gc list, although it's fine (expected!) if
 | |
| // the prev and next pointers are "polluted" with flags.
 | |
| // What's checked:
 | |
| // - The `head` pointers are not polluted.
 | |
| // - The objects' PREV_MASK_COLLECTING and NEXT_MASK_UNREACHABLE flags are all
 | |
| //   `set or clear, as specified by the 'flags' argument.
 | |
| // - The prev and next pointers are mutually consistent.
 | |
| static void
 | |
| validate_list(PyGC_Head *head, enum flagstates flags)
 | |
| {
 | |
|     assert((head->_gc_prev & ~_PyGC_PREV_MASK) == 0);
 | |
|     assert((head->_gc_next & ~_PyGC_PREV_MASK) == 0);
 | |
|     uintptr_t prev_value = 0, next_value = 0;
 | |
|     switch (flags) {
 | |
|         case collecting_clear_unreachable_clear:
 | |
|             break;
 | |
|         case collecting_set_unreachable_clear:
 | |
|             prev_value = PREV_MASK_COLLECTING;
 | |
|             break;
 | |
|         case collecting_clear_unreachable_set:
 | |
|             next_value = NEXT_MASK_UNREACHABLE;
 | |
|             break;
 | |
|         case collecting_set_unreachable_set:
 | |
|             prev_value = PREV_MASK_COLLECTING;
 | |
|             next_value = NEXT_MASK_UNREACHABLE;
 | |
|             break;
 | |
|         default:
 | |
|             assert(! "bad internal flags argument");
 | |
|     }
 | |
|     PyGC_Head *prev = head;
 | |
|     PyGC_Head *gc = GC_NEXT(head);
 | |
|     while (gc != head) {
 | |
|         PyGC_Head *trueprev = GC_PREV(gc);
 | |
|         PyGC_Head *truenext = GC_NEXT(gc);
 | |
|         assert(truenext != NULL);
 | |
|         assert(trueprev == prev);
 | |
|         assert((gc->_gc_prev & PREV_MASK_COLLECTING) == prev_value);
 | |
|         assert((gc->_gc_next & NEXT_MASK_UNREACHABLE) == next_value);
 | |
|         prev = gc;
 | |
|         gc = truenext;
 | |
|     }
 | |
|     assert(prev == GC_PREV(head));
 | |
| }
 | |
| 
 | |
| static void
 | |
| validate_old(GCState *gcstate)
 | |
| {
 | |
|     for (int space = 0; space < 2; space++) {
 | |
|         PyGC_Head *head = &gcstate->old[space].head;
 | |
|         PyGC_Head *gc = GC_NEXT(head);
 | |
|         while (gc != head) {
 | |
|             PyGC_Head *next = GC_NEXT(gc);
 | |
|             assert(gc_old_space(gc) == space);
 | |
|             gc = next;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void
 | |
| validate_consistent_old_space(PyGC_Head *head)
 | |
| {
 | |
|     PyGC_Head *prev = head;
 | |
|     PyGC_Head *gc = GC_NEXT(head);
 | |
|     if (gc == head) {
 | |
|         return;
 | |
|     }
 | |
|     int old_space = gc_old_space(gc);
 | |
|     while (gc != head) {
 | |
|         PyGC_Head *truenext = GC_NEXT(gc);
 | |
|         assert(truenext != NULL);
 | |
|         assert(gc_old_space(gc) == old_space);
 | |
|         prev = gc;
 | |
|         gc = truenext;
 | |
|     }
 | |
|     assert(prev == GC_PREV(head));
 | |
| }
 | |
| 
 | |
| static void
 | |
| gc_list_validate_space(PyGC_Head *head, int space) {
 | |
|     PyGC_Head *gc = GC_NEXT(head);
 | |
|     while (gc != head) {
 | |
|         assert(gc_old_space(gc) == space);
 | |
|         gc = GC_NEXT(gc);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #else
 | |
| #define validate_list(x, y) do{}while(0)
 | |
| #define validate_old(g) do{}while(0)
 | |
| #define validate_consistent_old_space(l) do{}while(0)
 | |
| #define gc_list_validate_space(l, s) do{}while(0)
 | |
| #endif
 | |
| 
 | |
| /*** end of list stuff ***/
 | |
| 
 | |
| 
 | |
| /* Set all gc_refs = ob_refcnt.  After this, gc_refs is > 0 and
 | |
|  * PREV_MASK_COLLECTING bit is set for all objects in containers.
 | |
|  */
 | |
| static void
 | |
| update_refs(PyGC_Head *containers)
 | |
| {
 | |
|     PyGC_Head *next;
 | |
|     PyGC_Head *gc = GC_NEXT(containers);
 | |
| 
 | |
|     while (gc != containers) {
 | |
|         next = GC_NEXT(gc);
 | |
|         PyObject *op = FROM_GC(gc);
 | |
|         if (_Py_IsImmortal(op)) {
 | |
|            gc_list_move(gc, &get_gc_state()->permanent_generation.head);
 | |
|            gc = next;
 | |
|            continue;
 | |
|         }
 | |
|         gc_reset_refs(gc, Py_REFCNT(op));
 | |
|         /* Python's cyclic gc should never see an incoming refcount
 | |
|          * of 0:  if something decref'ed to 0, it should have been
 | |
|          * deallocated immediately at that time.
 | |
|          * Possible cause (if the assert triggers):  a tp_dealloc
 | |
|          * routine left a gc-aware object tracked during its teardown
 | |
|          * phase, and did something-- or allowed something to happen --
 | |
|          * that called back into Python.  gc can trigger then, and may
 | |
|          * see the still-tracked dying object.  Before this assert
 | |
|          * was added, such mistakes went on to allow gc to try to
 | |
|          * delete the object again.  In a debug build, that caused
 | |
|          * a mysterious segfault, when _Py_ForgetReference tried
 | |
|          * to remove the object from the doubly-linked list of all
 | |
|          * objects a second time.  In a release build, an actual
 | |
|          * double deallocation occurred, which leads to corruption
 | |
|          * of the allocator's internal bookkeeping pointers.  That's
 | |
|          * so serious that maybe this should be a release-build
 | |
|          * check instead of an assert?
 | |
|          */
 | |
|         _PyObject_ASSERT(op, gc_get_refs(gc) != 0);
 | |
|         gc = next;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* A traversal callback for subtract_refs. */
 | |
| static int
 | |
| visit_decref(PyObject *op, void *parent)
 | |
| {
 | |
|     OBJECT_STAT_INC(object_visits);
 | |
|     _PyObject_ASSERT(_PyObject_CAST(parent), !_PyObject_IsFreed(op));
 | |
| 
 | |
|     if (_PyObject_IS_GC(op)) {
 | |
|         PyGC_Head *gc = AS_GC(op);
 | |
|         /* We're only interested in gc_refs for objects in the
 | |
|          * generation being collected, which can be recognized
 | |
|          * because only they have positive gc_refs.
 | |
|          */
 | |
|         if (gc_is_collecting(gc)) {
 | |
|             gc_decref(gc);
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int
 | |
| _PyGC_VisitStackRef(_PyStackRef *ref, visitproc visit, void *arg)
 | |
| {
 | |
|     Py_VISIT(PyStackRef_AsPyObjectBorrow(*ref));
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int
 | |
| _PyGC_VisitFrameStack(_PyInterpreterFrame *frame, visitproc visit, void *arg)
 | |
| {
 | |
|     _PyStackRef *ref = _PyFrame_GetLocalsArray(frame);
 | |
|     /* locals and stack */
 | |
|     for (; ref < frame->stackpointer; ref++) {
 | |
|         Py_VISIT(PyStackRef_AsPyObjectBorrow(*ref));
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* Subtract internal references from gc_refs.  After this, gc_refs is >= 0
 | |
|  * for all objects in containers, and is GC_REACHABLE for all tracked gc
 | |
|  * objects not in containers.  The ones with gc_refs > 0 are directly
 | |
|  * reachable from outside containers, and so can't be collected.
 | |
|  */
 | |
| static void
 | |
| subtract_refs(PyGC_Head *containers)
 | |
| {
 | |
|     traverseproc traverse;
 | |
|     PyGC_Head *gc = GC_NEXT(containers);
 | |
|     for (; gc != containers; gc = GC_NEXT(gc)) {
 | |
|         PyObject *op = FROM_GC(gc);
 | |
|         traverse = Py_TYPE(op)->tp_traverse;
 | |
|         (void) traverse(op,
 | |
|                         visit_decref,
 | |
|                         op);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* A traversal callback for move_unreachable. */
 | |
| static int
 | |
| visit_reachable(PyObject *op, void *arg)
 | |
| {
 | |
|     PyGC_Head *reachable = arg;
 | |
|     OBJECT_STAT_INC(object_visits);
 | |
|     if (!_PyObject_IS_GC(op)) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     PyGC_Head *gc = AS_GC(op);
 | |
|     const Py_ssize_t gc_refs = gc_get_refs(gc);
 | |
| 
 | |
|     // Ignore objects in other generation.
 | |
|     // This also skips objects "to the left" of the current position in
 | |
|     // move_unreachable's scan of the 'young' list - they've already been
 | |
|     // traversed, and no longer have the PREV_MASK_COLLECTING flag.
 | |
|     if (! gc_is_collecting(gc)) {
 | |
|         return 0;
 | |
|     }
 | |
|     // It would be a logic error elsewhere if the collecting flag were set on
 | |
|     // an untracked object.
 | |
|     _PyObject_ASSERT(op, gc->_gc_next != 0);
 | |
| 
 | |
|     if (gc->_gc_next & NEXT_MASK_UNREACHABLE) {
 | |
|         /* This had gc_refs = 0 when move_unreachable got
 | |
|          * to it, but turns out it's reachable after all.
 | |
|          * Move it back to move_unreachable's 'young' list,
 | |
|          * and move_unreachable will eventually get to it
 | |
|          * again.
 | |
|          */
 | |
|         // Manually unlink gc from unreachable list because the list functions
 | |
|         // don't work right in the presence of NEXT_MASK_UNREACHABLE flags.
 | |
|         PyGC_Head *prev = GC_PREV(gc);
 | |
|         PyGC_Head *next = GC_NEXT(gc);
 | |
|         _PyObject_ASSERT(FROM_GC(prev),
 | |
|                          prev->_gc_next & NEXT_MASK_UNREACHABLE);
 | |
|         _PyObject_ASSERT(FROM_GC(next),
 | |
|                          next->_gc_next & NEXT_MASK_UNREACHABLE);
 | |
|         prev->_gc_next = gc->_gc_next;  // copy flag bits
 | |
|         gc->_gc_next &= ~NEXT_MASK_UNREACHABLE;
 | |
|         _PyGCHead_SET_PREV(next, prev);
 | |
| 
 | |
|         gc_list_append(gc, reachable);
 | |
|         gc_set_refs(gc, 1);
 | |
|     }
 | |
|     else if (gc_refs == 0) {
 | |
|         /* This is in move_unreachable's 'young' list, but
 | |
|          * the traversal hasn't yet gotten to it.  All
 | |
|          * we need to do is tell move_unreachable that it's
 | |
|          * reachable.
 | |
|          */
 | |
|         gc_set_refs(gc, 1);
 | |
|     }
 | |
|     /* Else there's nothing to do.
 | |
|      * If gc_refs > 0, it must be in move_unreachable's 'young'
 | |
|      * list, and move_unreachable will eventually get to it.
 | |
|      */
 | |
|     else {
 | |
|         _PyObject_ASSERT_WITH_MSG(op, gc_refs > 0, "refcount is too small");
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* Move the unreachable objects from young to unreachable.  After this,
 | |
|  * all objects in young don't have PREV_MASK_COLLECTING flag and
 | |
|  * unreachable have the flag.
 | |
|  * All objects in young after this are directly or indirectly reachable
 | |
|  * from outside the original young; and all objects in unreachable are
 | |
|  * not.
 | |
|  *
 | |
|  * This function restores _gc_prev pointer.  young and unreachable are
 | |
|  * doubly linked list after this function.
 | |
|  * But _gc_next in unreachable list has NEXT_MASK_UNREACHABLE flag.
 | |
|  * So we can not gc_list_* functions for unreachable until we remove the flag.
 | |
|  */
 | |
| static void
 | |
| move_unreachable(PyGC_Head *young, PyGC_Head *unreachable)
 | |
| {
 | |
|     // previous elem in the young list, used for restore gc_prev.
 | |
|     PyGC_Head *prev = young;
 | |
|     PyGC_Head *gc = GC_NEXT(young);
 | |
| 
 | |
|     /* Invariants:  all objects "to the left" of us in young are reachable
 | |
|      * (directly or indirectly) from outside the young list as it was at entry.
 | |
|      *
 | |
|      * All other objects from the original young "to the left" of us are in
 | |
|      * unreachable now, and have NEXT_MASK_UNREACHABLE.  All objects to the
 | |
|      * left of us in 'young' now have been scanned, and no objects here
 | |
|      * or to the right have been scanned yet.
 | |
|      */
 | |
| 
 | |
|     validate_consistent_old_space(young);
 | |
|     /* Record which old space we are in, and set NEXT_MASK_UNREACHABLE bit for convenience */
 | |
|     uintptr_t flags = NEXT_MASK_UNREACHABLE | (gc->_gc_next & _PyGC_NEXT_MASK_OLD_SPACE_1);
 | |
|     while (gc != young) {
 | |
|         if (gc_get_refs(gc)) {
 | |
|             /* gc is definitely reachable from outside the
 | |
|              * original 'young'.  Mark it as such, and traverse
 | |
|              * its pointers to find any other objects that may
 | |
|              * be directly reachable from it.  Note that the
 | |
|              * call to tp_traverse may append objects to young,
 | |
|              * so we have to wait until it returns to determine
 | |
|              * the next object to visit.
 | |
|              */
 | |
|             PyObject *op = FROM_GC(gc);
 | |
|             traverseproc traverse = Py_TYPE(op)->tp_traverse;
 | |
|             _PyObject_ASSERT_WITH_MSG(op, gc_get_refs(gc) > 0,
 | |
|                                       "refcount is too small");
 | |
|             // NOTE: visit_reachable may change gc->_gc_next when
 | |
|             // young->_gc_prev == gc.  Don't do gc = GC_NEXT(gc) before!
 | |
|             (void) traverse(op,
 | |
|                     visit_reachable,
 | |
|                     (void *)young);
 | |
|             // relink gc_prev to prev element.
 | |
|             _PyGCHead_SET_PREV(gc, prev);
 | |
|             // gc is not COLLECTING state after here.
 | |
|             gc_clear_collecting(gc);
 | |
|             prev = gc;
 | |
|         }
 | |
|         else {
 | |
|             /* This *may* be unreachable.  To make progress,
 | |
|              * assume it is.  gc isn't directly reachable from
 | |
|              * any object we've already traversed, but may be
 | |
|              * reachable from an object we haven't gotten to yet.
 | |
|              * visit_reachable will eventually move gc back into
 | |
|              * young if that's so, and we'll see it again.
 | |
|              */
 | |
|             // Move gc to unreachable.
 | |
|             // No need to gc->next->prev = prev because it is single linked.
 | |
|             prev->_gc_next = gc->_gc_next;
 | |
| 
 | |
|             // We can't use gc_list_append() here because we use
 | |
|             // NEXT_MASK_UNREACHABLE here.
 | |
|             PyGC_Head *last = GC_PREV(unreachable);
 | |
|             // NOTE: Since all objects in unreachable set has
 | |
|             // NEXT_MASK_UNREACHABLE flag, we set it unconditionally.
 | |
|             // But this may pollute the unreachable list head's 'next' pointer
 | |
|             // too. That's semantically senseless but expedient here - the
 | |
|             // damage is repaired when this function ends.
 | |
|             last->_gc_next = flags | (uintptr_t)gc;
 | |
|             _PyGCHead_SET_PREV(gc, last);
 | |
|             gc->_gc_next = flags | (uintptr_t)unreachable;
 | |
|             unreachable->_gc_prev = (uintptr_t)gc;
 | |
|         }
 | |
|         gc = _PyGCHead_NEXT(prev);
 | |
|     }
 | |
|     // young->_gc_prev must be last element remained in the list.
 | |
|     young->_gc_prev = (uintptr_t)prev;
 | |
|     young->_gc_next &= _PyGC_PREV_MASK;
 | |
|     // don't let the pollution of the list head's next pointer leak
 | |
|     unreachable->_gc_next &= _PyGC_PREV_MASK;
 | |
| }
 | |
| 
 | |
| static void
 | |
| untrack_tuples(PyGC_Head *head)
 | |
| {
 | |
|     PyGC_Head *next, *gc = GC_NEXT(head);
 | |
|     while (gc != head) {
 | |
|         PyObject *op = FROM_GC(gc);
 | |
|         next = GC_NEXT(gc);
 | |
|         if (PyTuple_CheckExact(op)) {
 | |
|             _PyTuple_MaybeUntrack(op);
 | |
|         }
 | |
|         gc = next;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Try to untrack all currently tracked dictionaries */
 | |
| static void
 | |
| untrack_dicts(PyGC_Head *head)
 | |
| {
 | |
|     PyGC_Head *next, *gc = GC_NEXT(head);
 | |
|     while (gc != head) {
 | |
|         PyObject *op = FROM_GC(gc);
 | |
|         next = GC_NEXT(gc);
 | |
|         if (PyDict_CheckExact(op)) {
 | |
|             _PyDict_MaybeUntrack(op);
 | |
|         }
 | |
|         gc = next;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Return true if object has a pre-PEP 442 finalization method. */
 | |
| static int
 | |
| has_legacy_finalizer(PyObject *op)
 | |
| {
 | |
|     return Py_TYPE(op)->tp_del != NULL;
 | |
| }
 | |
| 
 | |
| /* Move the objects in unreachable with tp_del slots into `finalizers`.
 | |
|  *
 | |
|  * This function also removes NEXT_MASK_UNREACHABLE flag
 | |
|  * from _gc_next in unreachable.
 | |
|  */
 | |
| static void
 | |
| move_legacy_finalizers(PyGC_Head *unreachable, PyGC_Head *finalizers)
 | |
| {
 | |
|     PyGC_Head *gc, *next;
 | |
|     _PyObject_ASSERT(
 | |
|         FROM_GC(unreachable),
 | |
|         (unreachable->_gc_next & NEXT_MASK_UNREACHABLE) == 0);
 | |
| 
 | |
|     /* March over unreachable.  Move objects with finalizers into
 | |
|      * `finalizers`.
 | |
|      */
 | |
|     for (gc = GC_NEXT(unreachable); gc != unreachable; gc = next) {
 | |
|         PyObject *op = FROM_GC(gc);
 | |
| 
 | |
|         _PyObject_ASSERT(op, gc->_gc_next & NEXT_MASK_UNREACHABLE);
 | |
|         next = GC_NEXT(gc);
 | |
|         gc->_gc_next &= ~NEXT_MASK_UNREACHABLE;
 | |
| 
 | |
|         if (has_legacy_finalizer(op)) {
 | |
|             gc_clear_collecting(gc);
 | |
|             gc_list_move(gc, finalizers);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| clear_unreachable_mask(PyGC_Head *unreachable)
 | |
| {
 | |
|     /* Check that the list head does not have the unreachable bit set */
 | |
|     _PyObject_ASSERT(
 | |
|         FROM_GC(unreachable),
 | |
|         ((uintptr_t)unreachable & NEXT_MASK_UNREACHABLE) == 0);
 | |
|     _PyObject_ASSERT(
 | |
|         FROM_GC(unreachable),
 | |
|         (unreachable->_gc_next & NEXT_MASK_UNREACHABLE) == 0);
 | |
| 
 | |
|     PyGC_Head *gc, *next;
 | |
|     for (gc = GC_NEXT(unreachable); gc != unreachable; gc = next) {
 | |
|         _PyObject_ASSERT((PyObject*)FROM_GC(gc), gc->_gc_next & NEXT_MASK_UNREACHABLE);
 | |
|         next = GC_NEXT(gc);
 | |
|         gc->_gc_next &= ~NEXT_MASK_UNREACHABLE;
 | |
|     }
 | |
|     validate_list(unreachable, collecting_set_unreachable_clear);
 | |
| }
 | |
| 
 | |
| /* A traversal callback for move_legacy_finalizer_reachable. */
 | |
| static int
 | |
| visit_move(PyObject *op, void *arg)
 | |
| {
 | |
|     PyGC_Head *tolist = arg;
 | |
|     OBJECT_STAT_INC(object_visits);
 | |
|     if (_PyObject_IS_GC(op)) {
 | |
|         PyGC_Head *gc = AS_GC(op);
 | |
|         if (gc_is_collecting(gc)) {
 | |
|             gc_list_move(gc, tolist);
 | |
|             gc_clear_collecting(gc);
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* Move objects that are reachable from finalizers, from the unreachable set
 | |
|  * into finalizers set.
 | |
|  */
 | |
| static void
 | |
| move_legacy_finalizer_reachable(PyGC_Head *finalizers)
 | |
| {
 | |
|     traverseproc traverse;
 | |
|     PyGC_Head *gc = GC_NEXT(finalizers);
 | |
|     for (; gc != finalizers; gc = GC_NEXT(gc)) {
 | |
|         /* Note that the finalizers list may grow during this. */
 | |
|         traverse = Py_TYPE(FROM_GC(gc))->tp_traverse;
 | |
|         (void) traverse(FROM_GC(gc),
 | |
|                         visit_move,
 | |
|                         (void *)finalizers);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Clear all weakrefs to unreachable objects, and if such a weakref has a
 | |
|  * callback, invoke it if necessary.  Note that it's possible for such
 | |
|  * weakrefs to be outside the unreachable set -- indeed, those are precisely
 | |
|  * the weakrefs whose callbacks must be invoked.  See gc_weakref.txt for
 | |
|  * overview & some details.  Some weakrefs with callbacks may be reclaimed
 | |
|  * directly by this routine; the number reclaimed is the return value.  Other
 | |
|  * weakrefs with callbacks may be moved into the `old` generation.  Objects
 | |
|  * moved into `old` have gc_refs set to GC_REACHABLE; the objects remaining in
 | |
|  * unreachable are left at GC_TENTATIVELY_UNREACHABLE.  When this returns,
 | |
|  * no object in `unreachable` is weakly referenced anymore.
 | |
|  */
 | |
| static int
 | |
| handle_weakrefs(PyGC_Head *unreachable, PyGC_Head *old)
 | |
| {
 | |
|     PyGC_Head *gc;
 | |
|     PyObject *op;               /* generally FROM_GC(gc) */
 | |
|     PyWeakReference *wr;        /* generally a cast of op */
 | |
|     PyGC_Head wrcb_to_call;     /* weakrefs with callbacks to call */
 | |
|     PyGC_Head *next;
 | |
|     int num_freed = 0;
 | |
| 
 | |
|     gc_list_init(&wrcb_to_call);
 | |
| 
 | |
|     /* Clear all weakrefs to the objects in unreachable.  If such a weakref
 | |
|      * also has a callback, move it into `wrcb_to_call` if the callback
 | |
|      * needs to be invoked.  Note that we cannot invoke any callbacks until
 | |
|      * all weakrefs to unreachable objects are cleared, lest the callback
 | |
|      * resurrect an unreachable object via a still-active weakref.  We
 | |
|      * make another pass over wrcb_to_call, invoking callbacks, after this
 | |
|      * pass completes.
 | |
|      */
 | |
|     for (gc = GC_NEXT(unreachable); gc != unreachable; gc = next) {
 | |
|         PyWeakReference **wrlist;
 | |
| 
 | |
|         op = FROM_GC(gc);
 | |
|         next = GC_NEXT(gc);
 | |
| 
 | |
|         if (PyWeakref_Check(op)) {
 | |
|             /* A weakref inside the unreachable set must be cleared.  If we
 | |
|              * allow its callback to execute inside delete_garbage(), it
 | |
|              * could expose objects that have tp_clear already called on
 | |
|              * them.  Or, it could resurrect unreachable objects.  One way
 | |
|              * this can happen is if some container objects do not implement
 | |
|              * tp_traverse.  Then, wr_object can be outside the unreachable
 | |
|              * set but can be deallocated as a result of breaking the
 | |
|              * reference cycle.  If we don't clear the weakref, the callback
 | |
|              * will run and potentially cause a crash.  See bpo-38006 for
 | |
|              * one example.
 | |
|              */
 | |
|             _PyWeakref_ClearRef((PyWeakReference *)op);
 | |
|         }
 | |
| 
 | |
|         if (! _PyType_SUPPORTS_WEAKREFS(Py_TYPE(op))) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         /* It supports weakrefs.  Does it have any?
 | |
|          *
 | |
|          * This is never triggered for static types so we can avoid the
 | |
|          * (slightly) more costly _PyObject_GET_WEAKREFS_LISTPTR().
 | |
|          */
 | |
|         wrlist = _PyObject_GET_WEAKREFS_LISTPTR_FROM_OFFSET(op);
 | |
| 
 | |
|         /* `op` may have some weakrefs.  March over the list, clear
 | |
|          * all the weakrefs, and move the weakrefs with callbacks
 | |
|          * that must be called into wrcb_to_call.
 | |
|          */
 | |
|         for (wr = *wrlist; wr != NULL; wr = *wrlist) {
 | |
|             PyGC_Head *wrasgc;                  /* AS_GC(wr) */
 | |
| 
 | |
|             /* _PyWeakref_ClearRef clears the weakref but leaves
 | |
|              * the callback pointer intact.  Obscure:  it also
 | |
|              * changes *wrlist.
 | |
|              */
 | |
|             _PyObject_ASSERT((PyObject *)wr, wr->wr_object == op);
 | |
|             _PyWeakref_ClearRef(wr);
 | |
|             _PyObject_ASSERT((PyObject *)wr, wr->wr_object == Py_None);
 | |
|             if (wr->wr_callback == NULL) {
 | |
|                 /* no callback */
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             /* Headache time.  `op` is going away, and is weakly referenced by
 | |
|              * `wr`, which has a callback.  Should the callback be invoked?  If wr
 | |
|              * is also trash, no:
 | |
|              *
 | |
|              * 1. There's no need to call it.  The object and the weakref are
 | |
|              *    both going away, so it's legitimate to pretend the weakref is
 | |
|              *    going away first.  The user has to ensure a weakref outlives its
 | |
|              *    referent if they want a guarantee that the wr callback will get
 | |
|              *    invoked.
 | |
|              *
 | |
|              * 2. It may be catastrophic to call it.  If the callback is also in
 | |
|              *    cyclic trash (CT), then although the CT is unreachable from
 | |
|              *    outside the current generation, CT may be reachable from the
 | |
|              *    callback.  Then the callback could resurrect insane objects.
 | |
|              *
 | |
|              * Since the callback is never needed and may be unsafe in this case,
 | |
|              * wr is simply left in the unreachable set.  Note that because we
 | |
|              * already called _PyWeakref_ClearRef(wr), its callback will never
 | |
|              * trigger.
 | |
|              *
 | |
|              * OTOH, if wr isn't part of CT, we should invoke the callback:  the
 | |
|              * weakref outlived the trash.  Note that since wr isn't CT in this
 | |
|              * case, its callback can't be CT either -- wr acted as an external
 | |
|              * root to this generation, and therefore its callback did too.  So
 | |
|              * nothing in CT is reachable from the callback either, so it's hard
 | |
|              * to imagine how calling it later could create a problem for us.  wr
 | |
|              * is moved to wrcb_to_call in this case.
 | |
|              */
 | |
|             if (gc_is_collecting(AS_GC((PyObject *)wr))) {
 | |
|                 /* it should already have been cleared above */
 | |
|                 _PyObject_ASSERT((PyObject*)wr, wr->wr_object == Py_None);
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             /* Create a new reference so that wr can't go away
 | |
|              * before we can process it again.
 | |
|              */
 | |
|             Py_INCREF(wr);
 | |
| 
 | |
|             /* Move wr to wrcb_to_call, for the next pass. */
 | |
|             wrasgc = AS_GC((PyObject *)wr);
 | |
|             // wrasgc is reachable, but next isn't, so they can't be the same
 | |
|             _PyObject_ASSERT((PyObject *)wr, wrasgc != next);
 | |
|             gc_list_move(wrasgc, &wrcb_to_call);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Invoke the callbacks we decided to honor.  It's safe to invoke them
 | |
|      * because they can't reference unreachable objects.
 | |
|      */
 | |
|     int visited_space = get_gc_state()->visited_space;
 | |
|     while (! gc_list_is_empty(&wrcb_to_call)) {
 | |
|         PyObject *temp;
 | |
|         PyObject *callback;
 | |
| 
 | |
|         gc = (PyGC_Head*)wrcb_to_call._gc_next;
 | |
|         op = FROM_GC(gc);
 | |
|         _PyObject_ASSERT(op, PyWeakref_Check(op));
 | |
|         wr = (PyWeakReference *)op;
 | |
|         callback = wr->wr_callback;
 | |
|         _PyObject_ASSERT(op, callback != NULL);
 | |
| 
 | |
|         /* copy-paste of weakrefobject.c's handle_callback() */
 | |
|         temp = PyObject_CallOneArg(callback, (PyObject *)wr);
 | |
|         if (temp == NULL) {
 | |
|             PyErr_WriteUnraisable(callback);
 | |
|         }
 | |
|         else {
 | |
|             Py_DECREF(temp);
 | |
|         }
 | |
| 
 | |
|         /* Give up the reference we created in the first pass.  When
 | |
|          * op's refcount hits 0 (which it may or may not do right now),
 | |
|          * op's tp_dealloc will decref op->wr_callback too.  Note
 | |
|          * that the refcount probably will hit 0 now, and because this
 | |
|          * weakref was reachable to begin with, gc didn't already
 | |
|          * add it to its count of freed objects.  Example:  a reachable
 | |
|          * weak value dict maps some key to this reachable weakref.
 | |
|          * The callback removes this key->weakref mapping from the
 | |
|          * dict, leaving no other references to the weakref (excepting
 | |
|          * ours).
 | |
|          */
 | |
|         Py_DECREF(op);
 | |
|         if (wrcb_to_call._gc_next == (uintptr_t)gc) {
 | |
|             /* object is still alive -- move it */
 | |
|             gc_set_old_space(gc, visited_space);
 | |
|             gc_list_move(gc, old);
 | |
|         }
 | |
|         else {
 | |
|             ++num_freed;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return num_freed;
 | |
| }
 | |
| 
 | |
| static void
 | |
| debug_cycle(const char *msg, PyObject *op)
 | |
| {
 | |
|     PySys_FormatStderr("gc: %s <%s %p>\n",
 | |
|                        msg, Py_TYPE(op)->tp_name, op);
 | |
| }
 | |
| 
 | |
| /* Handle uncollectable garbage (cycles with tp_del slots, and stuff reachable
 | |
|  * only from such cycles).
 | |
|  * If _PyGC_DEBUG_SAVEALL, all objects in finalizers are appended to the module
 | |
|  * garbage list (a Python list), else only the objects in finalizers with
 | |
|  * __del__ methods are appended to garbage.  All objects in finalizers are
 | |
|  * merged into the old list regardless.
 | |
|  */
 | |
| static void
 | |
| handle_legacy_finalizers(PyThreadState *tstate,
 | |
|                          GCState *gcstate,
 | |
|                          PyGC_Head *finalizers, PyGC_Head *old)
 | |
| {
 | |
|     assert(!_PyErr_Occurred(tstate));
 | |
|     assert(gcstate->garbage != NULL);
 | |
| 
 | |
|     PyGC_Head *gc = GC_NEXT(finalizers);
 | |
|     for (; gc != finalizers; gc = GC_NEXT(gc)) {
 | |
|         PyObject *op = FROM_GC(gc);
 | |
| 
 | |
|         if ((gcstate->debug & _PyGC_DEBUG_SAVEALL) || has_legacy_finalizer(op)) {
 | |
|             if (PyList_Append(gcstate->garbage, op) < 0) {
 | |
|                 _PyErr_Clear(tstate);
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     gc_list_merge(finalizers, old);
 | |
| }
 | |
| 
 | |
| /* Run first-time finalizers (if any) on all the objects in collectable.
 | |
|  * Note that this may remove some (or even all) of the objects from the
 | |
|  * list, due to refcounts falling to 0.
 | |
|  */
 | |
| static void
 | |
| finalize_garbage(PyThreadState *tstate, PyGC_Head *collectable)
 | |
| {
 | |
|     destructor finalize;
 | |
|     PyGC_Head seen;
 | |
| 
 | |
|     /* While we're going through the loop, `finalize(op)` may cause op, or
 | |
|      * other objects, to be reclaimed via refcounts falling to zero.  So
 | |
|      * there's little we can rely on about the structure of the input
 | |
|      * `collectable` list across iterations.  For safety, we always take the
 | |
|      * first object in that list and move it to a temporary `seen` list.
 | |
|      * If objects vanish from the `collectable` and `seen` lists we don't
 | |
|      * care.
 | |
|      */
 | |
|     gc_list_init(&seen);
 | |
| 
 | |
|     while (!gc_list_is_empty(collectable)) {
 | |
|         PyGC_Head *gc = GC_NEXT(collectable);
 | |
|         PyObject *op = FROM_GC(gc);
 | |
|         gc_list_move(gc, &seen);
 | |
|         if (!_PyGC_FINALIZED(op) &&
 | |
|             (finalize = Py_TYPE(op)->tp_finalize) != NULL)
 | |
|         {
 | |
|             _PyGC_SET_FINALIZED(op);
 | |
|             Py_INCREF(op);
 | |
|             finalize(op);
 | |
|             assert(!_PyErr_Occurred(tstate));
 | |
|             Py_DECREF(op);
 | |
|         }
 | |
|     }
 | |
|     gc_list_merge(&seen, collectable);
 | |
| }
 | |
| 
 | |
| /* Break reference cycles by clearing the containers involved.  This is
 | |
|  * tricky business as the lists can be changing and we don't know which
 | |
|  * objects may be freed.  It is possible I screwed something up here.
 | |
|  */
 | |
| static void
 | |
| delete_garbage(PyThreadState *tstate, GCState *gcstate,
 | |
|                PyGC_Head *collectable, PyGC_Head *old)
 | |
| {
 | |
|     assert(!_PyErr_Occurred(tstate));
 | |
| 
 | |
|     while (!gc_list_is_empty(collectable)) {
 | |
|         PyGC_Head *gc = GC_NEXT(collectable);
 | |
|         PyObject *op = FROM_GC(gc);
 | |
| 
 | |
|         _PyObject_ASSERT_WITH_MSG(op, Py_REFCNT(op) > 0,
 | |
|                                   "refcount is too small");
 | |
| 
 | |
|         if (gcstate->debug & _PyGC_DEBUG_SAVEALL) {
 | |
|             assert(gcstate->garbage != NULL);
 | |
|             if (PyList_Append(gcstate->garbage, op) < 0) {
 | |
|                 _PyErr_Clear(tstate);
 | |
|             }
 | |
|         }
 | |
|         else {
 | |
|             inquiry clear;
 | |
|             if ((clear = Py_TYPE(op)->tp_clear) != NULL) {
 | |
|                 Py_INCREF(op);
 | |
|                 (void) clear(op);
 | |
|                 if (_PyErr_Occurred(tstate)) {
 | |
|                     PyErr_FormatUnraisable("Exception ignored in tp_clear of %s",
 | |
|                                            Py_TYPE(op)->tp_name);
 | |
|                 }
 | |
|                 Py_DECREF(op);
 | |
|             }
 | |
|         }
 | |
|         if (GC_NEXT(collectable) == gc) {
 | |
|             /* object is still alive, move it, it may die later */
 | |
|             gc_clear_collecting(gc);
 | |
|             gc_list_move(gc, old);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Deduce which objects among "base" are unreachable from outside the list
 | |
|    and move them to 'unreachable'. The process consist in the following steps:
 | |
| 
 | |
| 1. Copy all reference counts to a different field (gc_prev is used to hold
 | |
|    this copy to save memory).
 | |
| 2. Traverse all objects in "base" and visit all referred objects using
 | |
|    "tp_traverse" and for every visited object, subtract 1 to the reference
 | |
|    count (the one that we copied in the previous step). After this step, all
 | |
|    objects that can be reached directly from outside must have strictly positive
 | |
|    reference count, while all unreachable objects must have a count of exactly 0.
 | |
| 3. Identify all unreachable objects (the ones with 0 reference count) and move
 | |
|    them to the "unreachable" list. This step also needs to move back to "base" all
 | |
|    objects that were initially marked as unreachable but are referred transitively
 | |
|    by the reachable objects (the ones with strictly positive reference count).
 | |
| 
 | |
| Contracts:
 | |
| 
 | |
|     * The "base" has to be a valid list with no mask set.
 | |
| 
 | |
|     * The "unreachable" list must be uninitialized (this function calls
 | |
|       gc_list_init over 'unreachable').
 | |
| 
 | |
| IMPORTANT: This function leaves 'unreachable' with the NEXT_MASK_UNREACHABLE
 | |
| flag set but it does not clear it to skip unnecessary iteration. Before the
 | |
| flag is cleared (for example, by using 'clear_unreachable_mask' function or
 | |
| by a call to 'move_legacy_finalizers'), the 'unreachable' list is not a normal
 | |
| list and we can not use most gc_list_* functions for it. */
 | |
| static inline void
 | |
| deduce_unreachable(PyGC_Head *base, PyGC_Head *unreachable) {
 | |
|     validate_list(base, collecting_clear_unreachable_clear);
 | |
|     /* Using ob_refcnt and gc_refs, calculate which objects in the
 | |
|      * container set are reachable from outside the set (i.e., have a
 | |
|      * refcount greater than 0 when all the references within the
 | |
|      * set are taken into account).
 | |
|      */
 | |
|     update_refs(base);  // gc_prev is used for gc_refs
 | |
|     subtract_refs(base);
 | |
| 
 | |
|     /* Leave everything reachable from outside base in base, and move
 | |
|      * everything else (in base) to unreachable.
 | |
|      *
 | |
|      * NOTE:  This used to move the reachable objects into a reachable
 | |
|      * set instead.  But most things usually turn out to be reachable,
 | |
|      * so it's more efficient to move the unreachable things.  It "sounds slick"
 | |
|      * to move the unreachable objects, until you think about it - the reason it
 | |
|      * pays isn't actually obvious.
 | |
|      *
 | |
|      * Suppose we create objects A, B, C in that order.  They appear in the young
 | |
|      * generation in the same order.  If B points to A, and C to B, and C is
 | |
|      * reachable from outside, then the adjusted refcounts will be 0, 0, and 1
 | |
|      * respectively.
 | |
|      *
 | |
|      * When move_unreachable finds A, A is moved to the unreachable list.  The
 | |
|      * same for B when it's first encountered.  Then C is traversed, B is moved
 | |
|      * _back_ to the reachable list.  B is eventually traversed, and then A is
 | |
|      * moved back to the reachable list.
 | |
|      *
 | |
|      * So instead of not moving at all, the reachable objects B and A are moved
 | |
|      * twice each.  Why is this a win?  A straightforward algorithm to move the
 | |
|      * reachable objects instead would move A, B, and C once each.
 | |
|      *
 | |
|      * The key is that this dance leaves the objects in order C, B, A - it's
 | |
|      * reversed from the original order.  On all _subsequent_ scans, none of
 | |
|      * them will move.  Since most objects aren't in cycles, this can save an
 | |
|      * unbounded number of moves across an unbounded number of later collections.
 | |
|      * It can cost more only the first time the chain is scanned.
 | |
|      *
 | |
|      * Drawback:  move_unreachable is also used to find out what's still trash
 | |
|      * after finalizers may resurrect objects.  In _that_ case most unreachable
 | |
|      * objects will remain unreachable, so it would be more efficient to move
 | |
|      * the reachable objects instead.  But this is a one-time cost, probably not
 | |
|      * worth complicating the code to speed just a little.
 | |
|      */
 | |
|     move_unreachable(base, unreachable);  // gc_prev is pointer again
 | |
|     validate_list(base, collecting_clear_unreachable_clear);
 | |
|     validate_list(unreachable, collecting_set_unreachable_set);
 | |
| }
 | |
| 
 | |
| /* Handle objects that may have resurrected after a call to 'finalize_garbage', moving
 | |
|    them to 'old_generation' and placing the rest on 'still_unreachable'.
 | |
| 
 | |
|    Contracts:
 | |
|        * After this function 'unreachable' must not be used anymore and 'still_unreachable'
 | |
|          will contain the objects that did not resurrect.
 | |
| 
 | |
|        * The "still_unreachable" list must be uninitialized (this function calls
 | |
|          gc_list_init over 'still_unreachable').
 | |
| 
 | |
| IMPORTANT: After a call to this function, the 'still_unreachable' set will have the
 | |
| PREV_MARK_COLLECTING set, but the objects in this set are going to be removed so
 | |
| we can skip the expense of clearing the flag to avoid extra iteration. */
 | |
| static inline void
 | |
| handle_resurrected_objects(PyGC_Head *unreachable, PyGC_Head* still_unreachable,
 | |
|                            PyGC_Head *old_generation)
 | |
| {
 | |
|     // Remove the PREV_MASK_COLLECTING from unreachable
 | |
|     // to prepare it for a new call to 'deduce_unreachable'
 | |
|     gc_list_clear_collecting(unreachable);
 | |
| 
 | |
|     // After the call to deduce_unreachable, the 'still_unreachable' set will
 | |
|     // have the PREV_MARK_COLLECTING set, but the objects are going to be
 | |
|     // removed so we can skip the expense of clearing the flag.
 | |
|     PyGC_Head* resurrected = unreachable;
 | |
|     deduce_unreachable(resurrected, still_unreachable);
 | |
|     clear_unreachable_mask(still_unreachable);
 | |
| 
 | |
|     // Move the resurrected objects to the old generation for future collection.
 | |
|     gc_list_merge(resurrected, old_generation);
 | |
| }
 | |
| 
 | |
| 
 | |
| #define UNTRACK_TUPLES 1
 | |
| #define UNTRACK_DICTS 2
 | |
| 
 | |
| static void
 | |
| gc_collect_region(PyThreadState *tstate,
 | |
|                   PyGC_Head *from,
 | |
|                   PyGC_Head *to,
 | |
|                   int untrack,
 | |
|                   struct gc_collection_stats *stats);
 | |
| 
 | |
| static inline Py_ssize_t
 | |
| gc_list_set_space(PyGC_Head *list, int space)
 | |
| {
 | |
|     Py_ssize_t size = 0;
 | |
|     PyGC_Head *gc;
 | |
|     for (gc = GC_NEXT(list); gc != list; gc = GC_NEXT(gc)) {
 | |
|         gc_set_old_space(gc, space);
 | |
|         size++;
 | |
|     }
 | |
|     return size;
 | |
| }
 | |
| 
 | |
| /* Making progress in the incremental collector
 | |
|  * In order to eventually collect all cycles
 | |
|  * the incremental collector must progress through the old
 | |
|  * space faster than objects are added to the old space.
 | |
|  *
 | |
|  * Each young or incremental collection adds a number of
 | |
|  * objects, S (for survivors) to the old space, and
 | |
|  * incremental collectors scan I objects from the old space.
 | |
|  * I > S must be true. We also want I > S * N to be where
 | |
|  * N > 1. Higher values of N mean that the old space is
 | |
|  * scanned more rapidly.
 | |
|  * The default incremental threshold of 10 translates to
 | |
|  * N == 1.4 (1 + 4/threshold)
 | |
|  */
 | |
| 
 | |
| /* Divide by 10, so that the default incremental threshold of 10
 | |
|  * scans objects at 1% of the heap size */
 | |
| #define SCAN_RATE_DIVISOR 10
 | |
| 
 | |
| static void
 | |
| add_stats(GCState *gcstate, int gen, struct gc_collection_stats *stats)
 | |
| {
 | |
|     gcstate->generation_stats[gen].collected += stats->collected;
 | |
|     gcstate->generation_stats[gen].uncollectable += stats->uncollectable;
 | |
|     gcstate->generation_stats[gen].collections += 1;
 | |
| }
 | |
| 
 | |
| static void
 | |
| gc_collect_young(PyThreadState *tstate,
 | |
|                  struct gc_collection_stats *stats)
 | |
| {
 | |
|     GCState *gcstate = &tstate->interp->gc;
 | |
|     PyGC_Head *young = &gcstate->young.head;
 | |
|     PyGC_Head *visited = &gcstate->old[gcstate->visited_space].head;
 | |
|     GC_STAT_ADD(0, collections, 1);
 | |
| #ifdef Py_STATS
 | |
|     {
 | |
|         Py_ssize_t count = 0;
 | |
|         PyGC_Head *gc;
 | |
|         for (gc = GC_NEXT(young); gc != young; gc = GC_NEXT(gc)) {
 | |
|             count++;
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     PyGC_Head survivors;
 | |
|     gc_list_init(&survivors);
 | |
|     gc_collect_region(tstate, young, &survivors, UNTRACK_TUPLES, stats);
 | |
|     Py_ssize_t survivor_count = 0;
 | |
|     if (gcstate->visited_space) {
 | |
|         /* objects in visited space have bit set, so we set it here */
 | |
|         survivor_count = gc_list_set_space(&survivors, 1);
 | |
|     }
 | |
|     else {
 | |
|         PyGC_Head *gc;
 | |
|         for (gc = GC_NEXT(&survivors); gc != &survivors; gc = GC_NEXT(gc)) {
 | |
| #ifdef GC_DEBUG
 | |
|             assert(gc_old_space(gc) == 0);
 | |
| #endif
 | |
|             survivor_count++;
 | |
|         }
 | |
|     }
 | |
|     (void)survivor_count;  // Silence compiler warning
 | |
|     gc_list_merge(&survivors, visited);
 | |
|     validate_old(gcstate);
 | |
|     gcstate->young.count = 0;
 | |
|     gcstate->old[gcstate->visited_space].count++;
 | |
|     Py_ssize_t scale_factor = gcstate->old[0].threshold;
 | |
|     if (scale_factor < 1) {
 | |
|         scale_factor = 1;
 | |
|     }
 | |
|     gcstate->work_to_do += gcstate->heap_size / SCAN_RATE_DIVISOR / scale_factor;
 | |
|     add_stats(gcstate, 0, stats);
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| static inline int
 | |
| IS_IN_VISITED(PyGC_Head *gc, int visited_space)
 | |
| {
 | |
|     assert(visited_space == 0 || flip_old_space(visited_space) == 0);
 | |
|     return gc_old_space(gc) == visited_space;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| struct container_and_flag {
 | |
|     PyGC_Head *container;
 | |
|     int visited_space;
 | |
|     uintptr_t size;
 | |
| };
 | |
| 
 | |
| /* A traversal callback for adding to container) */
 | |
| static int
 | |
| visit_add_to_container(PyObject *op, void *arg)
 | |
| {
 | |
|     OBJECT_STAT_INC(object_visits);
 | |
|     struct container_and_flag *cf = (struct container_and_flag *)arg;
 | |
|     int visited = cf->visited_space;
 | |
|     assert(visited == get_gc_state()->visited_space);
 | |
|     if (!_Py_IsImmortal(op) && _PyObject_IS_GC(op)) {
 | |
|         PyGC_Head *gc = AS_GC(op);
 | |
|         if (_PyObject_GC_IS_TRACKED(op) &&
 | |
|             gc_old_space(gc) != visited) {
 | |
|             gc_flip_old_space(gc);
 | |
|             gc_list_move(gc, cf->container);
 | |
|             cf->size++;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static uintptr_t
 | |
| expand_region_transitively_reachable(PyGC_Head *container, PyGC_Head *gc, GCState *gcstate)
 | |
| {
 | |
|     validate_list(container, collecting_clear_unreachable_clear);
 | |
|     struct container_and_flag arg = {
 | |
|         .container = container,
 | |
|         .visited_space = gcstate->visited_space,
 | |
|         .size = 0
 | |
|     };
 | |
|     assert(GC_NEXT(gc) == container);
 | |
|     while (gc != container) {
 | |
|         /* Survivors will be moved to visited space, so they should
 | |
|          * have been marked as visited */
 | |
|         assert(IS_IN_VISITED(gc, gcstate->visited_space));
 | |
|         PyObject *op = FROM_GC(gc);
 | |
|         if (_Py_IsImmortal(op)) {
 | |
|             PyGC_Head *next = GC_NEXT(gc);
 | |
|             gc_list_move(gc, &get_gc_state()->permanent_generation.head);
 | |
|             gc = next;
 | |
|             continue;
 | |
|         }
 | |
|         traverseproc traverse = Py_TYPE(op)->tp_traverse;
 | |
|         (void) traverse(op,
 | |
|                         visit_add_to_container,
 | |
|                         &arg);
 | |
|         gc = GC_NEXT(gc);
 | |
|     }
 | |
|     return arg.size;
 | |
| }
 | |
| 
 | |
| /* Do bookkeeping for a completed GC cycle */
 | |
| static void
 | |
| completed_cycle(GCState *gcstate)
 | |
| {
 | |
| #ifdef Py_DEBUG
 | |
|     PyGC_Head *not_visited = &gcstate->old[gcstate->visited_space^1].head;
 | |
|     assert(gc_list_is_empty(not_visited));
 | |
| #endif
 | |
|     gcstate->visited_space = flip_old_space(gcstate->visited_space);
 | |
|     /* Make sure all young objects have old space bit set correctly */
 | |
|     PyGC_Head *young = &gcstate->young.head;
 | |
|     PyGC_Head *gc = GC_NEXT(young);
 | |
|     while (gc != young) {
 | |
|         PyGC_Head *next = GC_NEXT(gc);
 | |
|         gc_set_old_space(gc, gcstate->visited_space);
 | |
|         gc = next;
 | |
|     }
 | |
|     gcstate->work_to_do = 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| gc_collect_increment(PyThreadState *tstate, struct gc_collection_stats *stats)
 | |
| {
 | |
|     GC_STAT_ADD(1, collections, 1);
 | |
|     GCState *gcstate = &tstate->interp->gc;
 | |
|     PyGC_Head *not_visited = &gcstate->old[gcstate->visited_space^1].head;
 | |
|     PyGC_Head *visited = &gcstate->old[gcstate->visited_space].head;
 | |
|     PyGC_Head increment;
 | |
|     gc_list_init(&increment);
 | |
|     Py_ssize_t scale_factor = gcstate->old[0].threshold;
 | |
|     if (scale_factor < 1) {
 | |
|         scale_factor = 1;
 | |
|     }
 | |
|     gc_list_merge(&gcstate->young.head, &increment);
 | |
|     gcstate->young.count = 0;
 | |
|     gc_list_validate_space(&increment, gcstate->visited_space);
 | |
|     Py_ssize_t increment_size = 0;
 | |
|     while (increment_size < gcstate->work_to_do) {
 | |
|         if (gc_list_is_empty(not_visited)) {
 | |
|             break;
 | |
|         }
 | |
|         PyGC_Head *gc = _PyGCHead_NEXT(not_visited);
 | |
|         gc_list_move(gc, &increment);
 | |
|         increment_size++;
 | |
|         gc_set_old_space(gc, gcstate->visited_space);
 | |
|         increment_size += expand_region_transitively_reachable(&increment, gc, gcstate);
 | |
|     }
 | |
|     gc_list_validate_space(&increment, gcstate->visited_space);
 | |
|     PyGC_Head survivors;
 | |
|     gc_list_init(&survivors);
 | |
|     gc_collect_region(tstate, &increment, &survivors, UNTRACK_TUPLES, stats);
 | |
|     gc_list_validate_space(&survivors, gcstate->visited_space);
 | |
|     gc_list_merge(&survivors, visited);
 | |
|     assert(gc_list_is_empty(&increment));
 | |
|     gcstate->work_to_do += gcstate->heap_size / SCAN_RATE_DIVISOR / scale_factor;
 | |
|     gcstate->work_to_do -= increment_size;
 | |
| 
 | |
|     validate_old(gcstate);
 | |
|     add_stats(gcstate, 1, stats);
 | |
|     if (gc_list_is_empty(not_visited)) {
 | |
|         completed_cycle(gcstate);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| static void
 | |
| gc_collect_full(PyThreadState *tstate,
 | |
|                 struct gc_collection_stats *stats)
 | |
| {
 | |
|     GC_STAT_ADD(2, collections, 1);
 | |
|     GCState *gcstate = &tstate->interp->gc;
 | |
|     validate_old(gcstate);
 | |
|     PyGC_Head *young = &gcstate->young.head;
 | |
|     PyGC_Head *pending = &gcstate->old[gcstate->visited_space^1].head;
 | |
|     PyGC_Head *visited = &gcstate->old[gcstate->visited_space].head;
 | |
|     /* merge all generations into visited */
 | |
|     gc_list_validate_space(young, gcstate->visited_space);
 | |
|     gc_list_set_space(pending, gcstate->visited_space);
 | |
|     gc_list_merge(young, pending);
 | |
|     gcstate->young.count = 0;
 | |
|     gc_list_merge(pending, visited);
 | |
| 
 | |
|     gc_collect_region(tstate, visited, visited,
 | |
|                       UNTRACK_TUPLES | UNTRACK_DICTS,
 | |
|                       stats);
 | |
|     gcstate->young.count = 0;
 | |
|     gcstate->old[0].count = 0;
 | |
|     gcstate->old[1].count = 0;
 | |
| 
 | |
|     gcstate->work_to_do = - gcstate->young.threshold * 2;
 | |
|     _PyGC_ClearAllFreeLists(tstate->interp);
 | |
|     validate_old(gcstate);
 | |
|     add_stats(gcstate, 2, stats);
 | |
| }
 | |
| 
 | |
| /* This is the main function. Read this to understand how the
 | |
|  * collection process works. */
 | |
| static void
 | |
| gc_collect_region(PyThreadState *tstate,
 | |
|                   PyGC_Head *from,
 | |
|                   PyGC_Head *to,
 | |
|                   int untrack,
 | |
|                   struct gc_collection_stats *stats)
 | |
| {
 | |
|     PyGC_Head unreachable; /* non-problematic unreachable trash */
 | |
|     PyGC_Head finalizers;  /* objects with, & reachable from, __del__ */
 | |
|     PyGC_Head *gc; /* initialize to prevent a compiler warning */
 | |
|     GCState *gcstate = &tstate->interp->gc;
 | |
| 
 | |
|     assert(gcstate->garbage != NULL);
 | |
|     assert(!_PyErr_Occurred(tstate));
 | |
| 
 | |
|     gc_list_init(&unreachable);
 | |
|     deduce_unreachable(from, &unreachable);
 | |
|     validate_consistent_old_space(from);
 | |
|     if (untrack & UNTRACK_TUPLES) {
 | |
|         untrack_tuples(from);
 | |
|     }
 | |
|     if (untrack & UNTRACK_DICTS) {
 | |
|         untrack_dicts(from);
 | |
|     }
 | |
|     validate_consistent_old_space(to);
 | |
|     if (from != to) {
 | |
|         gc_list_merge(from, to);
 | |
|     }
 | |
|     validate_consistent_old_space(to);
 | |
|     /* Move reachable objects to next generation. */
 | |
| 
 | |
|     /* All objects in unreachable are trash, but objects reachable from
 | |
|      * legacy finalizers (e.g. tp_del) can't safely be deleted.
 | |
|      */
 | |
|     gc_list_init(&finalizers);
 | |
|     // NEXT_MASK_UNREACHABLE is cleared here.
 | |
|     // After move_legacy_finalizers(), unreachable is normal list.
 | |
|     move_legacy_finalizers(&unreachable, &finalizers);
 | |
|     /* finalizers contains the unreachable objects with a legacy finalizer;
 | |
|      * unreachable objects reachable *from* those are also uncollectable,
 | |
|      * and we move those into the finalizers list too.
 | |
|      */
 | |
|     move_legacy_finalizer_reachable(&finalizers);
 | |
|     validate_list(&finalizers, collecting_clear_unreachable_clear);
 | |
|     validate_list(&unreachable, collecting_set_unreachable_clear);
 | |
|     /* Print debugging information. */
 | |
|     if (gcstate->debug & _PyGC_DEBUG_COLLECTABLE) {
 | |
|         for (gc = GC_NEXT(&unreachable); gc != &unreachable; gc = GC_NEXT(gc)) {
 | |
|             debug_cycle("collectable", FROM_GC(gc));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Clear weakrefs and invoke callbacks as necessary. */
 | |
|     stats->collected += handle_weakrefs(&unreachable, to);
 | |
|     gc_list_validate_space(to, gcstate->visited_space);
 | |
|     validate_list(to, collecting_clear_unreachable_clear);
 | |
|     validate_list(&unreachable, collecting_set_unreachable_clear);
 | |
| 
 | |
|     /* Call tp_finalize on objects which have one. */
 | |
|     finalize_garbage(tstate, &unreachable);
 | |
|     /* Handle any objects that may have resurrected after the call
 | |
|      * to 'finalize_garbage' and continue the collection with the
 | |
|      * objects that are still unreachable */
 | |
|     PyGC_Head final_unreachable;
 | |
|     gc_list_init(&final_unreachable);
 | |
|     handle_resurrected_objects(&unreachable, &final_unreachable, to);
 | |
| 
 | |
|     /* Call tp_clear on objects in the final_unreachable set.  This will cause
 | |
|     * the reference cycles to be broken.  It may also cause some objects
 | |
|     * in finalizers to be freed.
 | |
|     */
 | |
|     stats->collected += gc_list_size(&final_unreachable);
 | |
|     delete_garbage(tstate, gcstate, &final_unreachable, to);
 | |
| 
 | |
|     /* Collect statistics on uncollectable objects found and print
 | |
|      * debugging information. */
 | |
|     Py_ssize_t n = 0;
 | |
|     for (gc = GC_NEXT(&finalizers); gc != &finalizers; gc = GC_NEXT(gc)) {
 | |
|         n++;
 | |
|         if (gcstate->debug & _PyGC_DEBUG_COLLECTABLE)
 | |
|             debug_cycle("uncollectable", FROM_GC(gc));
 | |
|     }
 | |
|     stats->uncollectable = n;
 | |
|     /* Append instances in the uncollectable set to a Python
 | |
|      * reachable list of garbage.  The programmer has to deal with
 | |
|      * this if they insist on creating this type of structure.
 | |
|      */
 | |
|     handle_legacy_finalizers(tstate, gcstate, &finalizers, to);
 | |
|     gc_list_validate_space(to, gcstate->visited_space);
 | |
|     validate_list(to, collecting_clear_unreachable_clear);
 | |
| }
 | |
| 
 | |
| /* Invoke progress callbacks to notify clients that garbage collection
 | |
|  * is starting or stopping
 | |
|  */
 | |
| static void
 | |
| do_gc_callback(GCState *gcstate, const char *phase,
 | |
|                    int generation, struct gc_collection_stats *stats)
 | |
| {
 | |
|     assert(!PyErr_Occurred());
 | |
| 
 | |
|     /* The local variable cannot be rebound, check it for sanity */
 | |
|     assert(PyList_CheckExact(gcstate->callbacks));
 | |
|     PyObject *info = NULL;
 | |
|     if (PyList_GET_SIZE(gcstate->callbacks) != 0) {
 | |
|         info = Py_BuildValue("{sisnsn}",
 | |
|             "generation", generation,
 | |
|             "collected", stats->collected,
 | |
|             "uncollectable", stats->uncollectable);
 | |
|         if (info == NULL) {
 | |
|             PyErr_FormatUnraisable("Exception ignored on invoking gc callbacks");
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     PyObject *phase_obj = PyUnicode_FromString(phase);
 | |
|     if (phase_obj == NULL) {
 | |
|         Py_XDECREF(info);
 | |
|         PyErr_FormatUnraisable("Exception ignored on invoking gc callbacks");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     PyObject *stack[] = {phase_obj, info};
 | |
|     for (Py_ssize_t i=0; i<PyList_GET_SIZE(gcstate->callbacks); i++) {
 | |
|         PyObject *r, *cb = PyList_GET_ITEM(gcstate->callbacks, i);
 | |
|         Py_INCREF(cb); /* make sure cb doesn't go away */
 | |
|         r = PyObject_Vectorcall(cb, stack, 2, NULL);
 | |
|         if (r == NULL) {
 | |
|             PyErr_WriteUnraisable(cb);
 | |
|         }
 | |
|         else {
 | |
|             Py_DECREF(r);
 | |
|         }
 | |
|         Py_DECREF(cb);
 | |
|     }
 | |
|     Py_DECREF(phase_obj);
 | |
|     Py_XDECREF(info);
 | |
|     assert(!PyErr_Occurred());
 | |
| }
 | |
| 
 | |
| static void
 | |
| invoke_gc_callback(GCState *gcstate, const char *phase,
 | |
|                    int generation, struct gc_collection_stats *stats)
 | |
| {
 | |
|     if (gcstate->callbacks == NULL) {
 | |
|         return;
 | |
|     }
 | |
|     do_gc_callback(gcstate, phase, generation, stats);
 | |
| }
 | |
| 
 | |
| static int
 | |
| referrersvisit(PyObject* obj, void *arg)
 | |
| {
 | |
|     PyObject *objs = arg;
 | |
|     Py_ssize_t i;
 | |
|     for (i = 0; i < PyTuple_GET_SIZE(objs); i++) {
 | |
|         if (PyTuple_GET_ITEM(objs, i) == obj) {
 | |
|             return 1;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| gc_referrers_for(PyObject *objs, PyGC_Head *list, PyObject *resultlist)
 | |
| {
 | |
|     PyGC_Head *gc;
 | |
|     PyObject *obj;
 | |
|     traverseproc traverse;
 | |
|     for (gc = GC_NEXT(list); gc != list; gc = GC_NEXT(gc)) {
 | |
|         obj = FROM_GC(gc);
 | |
|         traverse = Py_TYPE(obj)->tp_traverse;
 | |
|         if (obj == objs || obj == resultlist) {
 | |
|             continue;
 | |
|         }
 | |
|         if (traverse(obj, referrersvisit, objs)) {
 | |
|             if (PyList_Append(resultlist, obj) < 0) {
 | |
|                 return 0; /* error */
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return 1; /* no error */
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| _PyGC_GetReferrers(PyInterpreterState *interp, PyObject *objs)
 | |
| {
 | |
|     PyObject *result = PyList_New(0);
 | |
|     if (!result) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     GCState *gcstate = &interp->gc;
 | |
|     for (int i = 0; i < NUM_GENERATIONS; i++) {
 | |
|         if (!(gc_referrers_for(objs, GEN_HEAD(gcstate, i), result))) {
 | |
|             Py_DECREF(result);
 | |
|             return NULL;
 | |
|         }
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| _PyGC_GetObjects(PyInterpreterState *interp, int generation)
 | |
| {
 | |
|     assert(generation >= -1 && generation < NUM_GENERATIONS);
 | |
|     GCState *gcstate = &interp->gc;
 | |
| 
 | |
|     PyObject *result = PyList_New(0);
 | |
|     /* Generation:
 | |
|      * -1: Return all objects
 | |
|      * 0: All young objects
 | |
|      * 1: No objects
 | |
|      * 2: All old objects
 | |
|      */
 | |
|     if (result == NULL || generation == 1) {
 | |
|         return result;
 | |
|     }
 | |
|     if (generation <= 0) {
 | |
|         if (append_objects(result, &gcstate->young.head)) {
 | |
|             goto error;
 | |
|         }
 | |
|     }
 | |
|     if (generation != 0) {
 | |
|         if (append_objects(result, &gcstate->old[0].head)) {
 | |
|             goto error;
 | |
|         }
 | |
|         if (append_objects(result, &gcstate->old[1].head)) {
 | |
|             goto error;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| error:
 | |
|     Py_DECREF(result);
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| void
 | |
| _PyGC_Freeze(PyInterpreterState *interp)
 | |
| {
 | |
|     GCState *gcstate = &interp->gc;
 | |
|     /* The permanent_generation has its old space bit set to zero */
 | |
|     if (gcstate->visited_space) {
 | |
|         gc_list_set_space(&gcstate->young.head, 0);
 | |
|     }
 | |
|     gc_list_merge(&gcstate->young.head, &gcstate->permanent_generation.head);
 | |
|     gcstate->young.count = 0;
 | |
|     PyGC_Head*old0 = &gcstate->old[0].head;
 | |
|     PyGC_Head*old1 = &gcstate->old[1].head;
 | |
|     gc_list_merge(old0, &gcstate->permanent_generation.head);
 | |
|     gcstate->old[0].count = 0;
 | |
|     gc_list_set_space(old1, 0);
 | |
|     gc_list_merge(old1, &gcstate->permanent_generation.head);
 | |
|     gcstate->old[1].count = 0;
 | |
|     validate_old(gcstate);
 | |
| }
 | |
| 
 | |
| void
 | |
| _PyGC_Unfreeze(PyInterpreterState *interp)
 | |
| {
 | |
|     GCState *gcstate = &interp->gc;
 | |
|     gc_list_merge(&gcstate->permanent_generation.head,
 | |
|                   &gcstate->old[0].head);
 | |
|     validate_old(gcstate);
 | |
| }
 | |
| 
 | |
| Py_ssize_t
 | |
| _PyGC_GetFreezeCount(PyInterpreterState *interp)
 | |
| {
 | |
|     GCState *gcstate = &interp->gc;
 | |
|     return gc_list_size(&gcstate->permanent_generation.head);
 | |
| }
 | |
| 
 | |
| /* C API for controlling the state of the garbage collector */
 | |
| int
 | |
| PyGC_Enable(void)
 | |
| {
 | |
|     GCState *gcstate = get_gc_state();
 | |
|     int old_state = gcstate->enabled;
 | |
|     gcstate->enabled = 1;
 | |
|     return old_state;
 | |
| }
 | |
| 
 | |
| int
 | |
| PyGC_Disable(void)
 | |
| {
 | |
|     GCState *gcstate = get_gc_state();
 | |
|     int old_state = gcstate->enabled;
 | |
|     gcstate->enabled = 0;
 | |
|     return old_state;
 | |
| }
 | |
| 
 | |
| int
 | |
| PyGC_IsEnabled(void)
 | |
| {
 | |
|     GCState *gcstate = get_gc_state();
 | |
|     return gcstate->enabled;
 | |
| }
 | |
| 
 | |
| // Show stats for objects in each generations
 | |
| static void
 | |
| show_stats_each_generations(GCState *gcstate)
 | |
| {
 | |
|     char buf[100];
 | |
|     size_t pos = 0;
 | |
| 
 | |
|     for (int i = 0; i < NUM_GENERATIONS && pos < sizeof(buf); i++) {
 | |
|         pos += PyOS_snprintf(buf+pos, sizeof(buf)-pos,
 | |
|                              " %zd",
 | |
|                              gc_list_size(GEN_HEAD(gcstate, i)));
 | |
|     }
 | |
|     PySys_FormatStderr(
 | |
|         "gc: objects in each generation:%s\n"
 | |
|         "gc: objects in permanent generation: %zd\n",
 | |
|         buf, gc_list_size(&gcstate->permanent_generation.head));
 | |
| }
 | |
| 
 | |
| Py_ssize_t
 | |
| _PyGC_Collect(PyThreadState *tstate, int generation, _PyGC_Reason reason)
 | |
| {
 | |
|     GCState *gcstate = &tstate->interp->gc;
 | |
| 
 | |
|     int expected = 0;
 | |
|     if (!_Py_atomic_compare_exchange_int(&gcstate->collecting, &expected, 1)) {
 | |
|         // Don't start a garbage collection if one is already in progress.
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     struct gc_collection_stats stats = { 0 };
 | |
|     if (reason != _Py_GC_REASON_SHUTDOWN) {
 | |
|         invoke_gc_callback(gcstate, "start", generation, &stats);
 | |
|     }
 | |
|     if (gcstate->debug & _PyGC_DEBUG_STATS) {
 | |
|         PySys_WriteStderr("gc: collecting generation %d...\n", generation);
 | |
|         show_stats_each_generations(gcstate);
 | |
|     }
 | |
|     if (PyDTrace_GC_START_ENABLED()) {
 | |
|         PyDTrace_GC_START(generation);
 | |
|     }
 | |
|     PyObject *exc = _PyErr_GetRaisedException(tstate);
 | |
|     switch(generation) {
 | |
|         case 0:
 | |
|             gc_collect_young(tstate, &stats);
 | |
|             break;
 | |
|         case 1:
 | |
|             gc_collect_increment(tstate, &stats);
 | |
|             break;
 | |
|         case 2:
 | |
|             gc_collect_full(tstate, &stats);
 | |
|             break;
 | |
|         default:
 | |
|             Py_UNREACHABLE();
 | |
|     }
 | |
|     if (PyDTrace_GC_DONE_ENABLED()) {
 | |
|         PyDTrace_GC_DONE(stats.uncollectable + stats.collected);
 | |
|     }
 | |
|     if (reason != _Py_GC_REASON_SHUTDOWN) {
 | |
|         invoke_gc_callback(gcstate, "stop", generation, &stats);
 | |
|     }
 | |
|     _PyErr_SetRaisedException(tstate, exc);
 | |
|     GC_STAT_ADD(generation, objects_collected, stats.collected);
 | |
| #ifdef Py_STATS
 | |
|     if (_Py_stats) {
 | |
|         GC_STAT_ADD(generation, object_visits,
 | |
|             _Py_stats->object_stats.object_visits);
 | |
|         _Py_stats->object_stats.object_visits = 0;
 | |
|     }
 | |
| #endif
 | |
|     validate_old(gcstate);
 | |
|     _Py_atomic_store_int(&gcstate->collecting, 0);
 | |
|     return stats.uncollectable + stats.collected;
 | |
| }
 | |
| 
 | |
| /* Public API to invoke gc.collect() from C */
 | |
| Py_ssize_t
 | |
| PyGC_Collect(void)
 | |
| {
 | |
|     return _PyGC_Collect(_PyThreadState_GET(), 2, _Py_GC_REASON_MANUAL);
 | |
| }
 | |
| 
 | |
| void
 | |
| _PyGC_CollectNoFail(PyThreadState *tstate)
 | |
| {
 | |
|     /* Ideally, this function is only called on interpreter shutdown,
 | |
|        and therefore not recursively.  Unfortunately, when there are daemon
 | |
|        threads, a daemon thread can start a cyclic garbage collection
 | |
|        during interpreter shutdown (and then never finish it).
 | |
|        See http://bugs.python.org/issue8713#msg195178 for an example.
 | |
|        */
 | |
|     _PyGC_Collect(_PyThreadState_GET(), 2, _Py_GC_REASON_SHUTDOWN);
 | |
| }
 | |
| 
 | |
| void
 | |
| _PyGC_DumpShutdownStats(PyInterpreterState *interp)
 | |
| {
 | |
|     GCState *gcstate = &interp->gc;
 | |
|     if (!(gcstate->debug & _PyGC_DEBUG_SAVEALL)
 | |
|         && gcstate->garbage != NULL && PyList_GET_SIZE(gcstate->garbage) > 0) {
 | |
|         const char *message;
 | |
|         if (gcstate->debug & _PyGC_DEBUG_UNCOLLECTABLE) {
 | |
|             message = "gc: %zd uncollectable objects at shutdown";
 | |
|         }
 | |
|         else {
 | |
|             message = "gc: %zd uncollectable objects at shutdown; " \
 | |
|                 "use gc.set_debug(gc.DEBUG_UNCOLLECTABLE) to list them";
 | |
|         }
 | |
|         /* PyErr_WarnFormat does too many things and we are at shutdown,
 | |
|            the warnings module's dependencies (e.g. linecache) may be gone
 | |
|            already. */
 | |
|         if (PyErr_WarnExplicitFormat(PyExc_ResourceWarning, "gc", 0,
 | |
|                                      "gc", NULL, message,
 | |
|                                      PyList_GET_SIZE(gcstate->garbage)))
 | |
|         {
 | |
|             PyErr_WriteUnraisable(NULL);
 | |
|         }
 | |
|         if (gcstate->debug & _PyGC_DEBUG_UNCOLLECTABLE) {
 | |
|             PyObject *repr = NULL, *bytes = NULL;
 | |
|             repr = PyObject_Repr(gcstate->garbage);
 | |
|             if (!repr || !(bytes = PyUnicode_EncodeFSDefault(repr))) {
 | |
|                 PyErr_WriteUnraisable(gcstate->garbage);
 | |
|             }
 | |
|             else {
 | |
|                 PySys_WriteStderr(
 | |
|                     "      %s\n",
 | |
|                     PyBytes_AS_STRING(bytes)
 | |
|                     );
 | |
|             }
 | |
|             Py_XDECREF(repr);
 | |
|             Py_XDECREF(bytes);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void
 | |
| finalize_unlink_gc_head(PyGC_Head *gc) {
 | |
|     PyGC_Head *prev = GC_PREV(gc);
 | |
|     PyGC_Head *next = GC_NEXT(gc);
 | |
|     _PyGCHead_SET_NEXT(prev, next);
 | |
|     _PyGCHead_SET_PREV(next, prev);
 | |
| }
 | |
| 
 | |
| void
 | |
| _PyGC_Fini(PyInterpreterState *interp)
 | |
| {
 | |
|     GCState *gcstate = &interp->gc;
 | |
|     Py_CLEAR(gcstate->garbage);
 | |
|     Py_CLEAR(gcstate->callbacks);
 | |
| 
 | |
|     /* Prevent a subtle bug that affects sub-interpreters that use basic
 | |
|      * single-phase init extensions (m_size == -1).  Those extensions cause objects
 | |
|      * to be shared between interpreters, via the PyDict_Update(mdict, m_copy) call
 | |
|      * in import_find_extension().
 | |
|      *
 | |
|      * If they are GC objects, their GC head next or prev links could refer to
 | |
|      * the interpreter _gc_runtime_state PyGC_Head nodes.  Those nodes go away
 | |
|      * when the interpreter structure is freed and so pointers to them become
 | |
|      * invalid.  If those objects are still used by another interpreter and
 | |
|      * UNTRACK is called on them, a crash will happen.  We untrack the nodes
 | |
|      * here to avoid that.
 | |
|      *
 | |
|      * This bug was originally fixed when reported as gh-90228.  The bug was
 | |
|      * re-introduced in gh-94673.
 | |
|      */
 | |
|     finalize_unlink_gc_head(&gcstate->young.head);
 | |
|     finalize_unlink_gc_head(&gcstate->old[0].head);
 | |
|     finalize_unlink_gc_head(&gcstate->old[1].head);
 | |
|     finalize_unlink_gc_head(&gcstate->permanent_generation.head);
 | |
| }
 | |
| 
 | |
| /* for debugging */
 | |
| void
 | |
| _PyGC_Dump(PyGC_Head *g)
 | |
| {
 | |
|     _PyObject_Dump(FROM_GC(g));
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifdef Py_DEBUG
 | |
| static int
 | |
| visit_validate(PyObject *op, void *parent_raw)
 | |
| {
 | |
|     PyObject *parent = _PyObject_CAST(parent_raw);
 | |
|     if (_PyObject_IsFreed(op)) {
 | |
|         _PyObject_ASSERT_FAILED_MSG(parent,
 | |
|                                     "PyObject_GC_Track() object is not valid");
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* extension modules might be compiled with GC support so these
 | |
|    functions must always be available */
 | |
| 
 | |
| void
 | |
| PyObject_GC_Track(void *op_raw)
 | |
| {
 | |
|     PyObject *op = _PyObject_CAST(op_raw);
 | |
|     if (_PyObject_GC_IS_TRACKED(op)) {
 | |
|         _PyObject_ASSERT_FAILED_MSG(op,
 | |
|                                     "object already tracked "
 | |
|                                     "by the garbage collector");
 | |
|     }
 | |
|     _PyObject_GC_TRACK(op);
 | |
| 
 | |
| #ifdef Py_DEBUG
 | |
|     /* Check that the object is valid: validate objects traversed
 | |
|        by tp_traverse() */
 | |
|     traverseproc traverse = Py_TYPE(op)->tp_traverse;
 | |
|     (void)traverse(op, visit_validate, op);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void
 | |
| PyObject_GC_UnTrack(void *op_raw)
 | |
| {
 | |
|     PyObject *op = _PyObject_CAST(op_raw);
 | |
|     /* Obscure:  the Py_TRASHCAN mechanism requires that we be able to
 | |
|      * call PyObject_GC_UnTrack twice on an object.
 | |
|      */
 | |
|     if (_PyObject_GC_IS_TRACKED(op)) {
 | |
|         _PyObject_GC_UNTRACK(op);
 | |
|     }
 | |
| }
 | |
| 
 | |
| int
 | |
| PyObject_IS_GC(PyObject *obj)
 | |
| {
 | |
|     return _PyObject_IS_GC(obj);
 | |
| }
 | |
| 
 | |
| void
 | |
| _Py_ScheduleGC(PyThreadState *tstate)
 | |
| {
 | |
|     if (!_Py_eval_breaker_bit_is_set(tstate, _PY_GC_SCHEDULED_BIT))
 | |
|     {
 | |
|         _Py_set_eval_breaker_bit(tstate, _PY_GC_SCHEDULED_BIT);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void
 | |
| _PyObject_GC_Link(PyObject *op)
 | |
| {
 | |
|     PyGC_Head *gc = AS_GC(op);
 | |
|     // gc must be correctly aligned
 | |
|     _PyObject_ASSERT(op, ((uintptr_t)gc & (sizeof(uintptr_t)-1)) == 0);
 | |
| 
 | |
|     PyThreadState *tstate = _PyThreadState_GET();
 | |
|     GCState *gcstate = &tstate->interp->gc;
 | |
|     gc->_gc_next = 0;
 | |
|     gc->_gc_prev = 0;
 | |
|     gcstate->young.count++; /* number of allocated GC objects */
 | |
|     gcstate->heap_size++;
 | |
|     if (gcstate->young.count > gcstate->young.threshold &&
 | |
|         gcstate->enabled &&
 | |
|         gcstate->young.threshold &&
 | |
|         !_Py_atomic_load_int_relaxed(&gcstate->collecting) &&
 | |
|         !_PyErr_Occurred(tstate))
 | |
|     {
 | |
|         _Py_ScheduleGC(tstate);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void
 | |
| _Py_RunGC(PyThreadState *tstate)
 | |
| {
 | |
|     if (tstate->interp->gc.enabled) {
 | |
|         _PyGC_Collect(tstate, 1, _Py_GC_REASON_HEAP);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| gc_alloc(PyTypeObject *tp, size_t basicsize, size_t presize)
 | |
| {
 | |
|     PyThreadState *tstate = _PyThreadState_GET();
 | |
|     if (basicsize > PY_SSIZE_T_MAX - presize) {
 | |
|         return _PyErr_NoMemory(tstate);
 | |
|     }
 | |
|     size_t size = presize + basicsize;
 | |
|     char *mem = _PyObject_MallocWithType(tp, size);
 | |
|     if (mem == NULL) {
 | |
|         return _PyErr_NoMemory(tstate);
 | |
|     }
 | |
|     ((PyObject **)mem)[0] = NULL;
 | |
|     ((PyObject **)mem)[1] = NULL;
 | |
|     PyObject *op = (PyObject *)(mem + presize);
 | |
|     _PyObject_GC_Link(op);
 | |
|     return op;
 | |
| }
 | |
| 
 | |
| 
 | |
| PyObject *
 | |
| _PyObject_GC_New(PyTypeObject *tp)
 | |
| {
 | |
|     size_t presize = _PyType_PreHeaderSize(tp);
 | |
|     size_t size = _PyObject_SIZE(tp);
 | |
|     if (_PyType_HasFeature(tp, Py_TPFLAGS_INLINE_VALUES)) {
 | |
|         size += _PyInlineValuesSize(tp);
 | |
|     }
 | |
|     PyObject *op = gc_alloc(tp, size, presize);
 | |
|     if (op == NULL) {
 | |
|         return NULL;
 | |
|     }
 | |
|     _PyObject_Init(op, tp);
 | |
|     if (tp->tp_flags & Py_TPFLAGS_INLINE_VALUES) {
 | |
|         _PyObject_InitInlineValues(op, tp);
 | |
|     }
 | |
|     return op;
 | |
| }
 | |
| 
 | |
| PyVarObject *
 | |
| _PyObject_GC_NewVar(PyTypeObject *tp, Py_ssize_t nitems)
 | |
| {
 | |
|     PyVarObject *op;
 | |
| 
 | |
|     if (nitems < 0) {
 | |
|         PyErr_BadInternalCall();
 | |
|         return NULL;
 | |
|     }
 | |
|     size_t presize = _PyType_PreHeaderSize(tp);
 | |
|     size_t size = _PyObject_VAR_SIZE(tp, nitems);
 | |
|     op = (PyVarObject *)gc_alloc(tp, size, presize);
 | |
|     if (op == NULL) {
 | |
|         return NULL;
 | |
|     }
 | |
|     _PyObject_InitVar(op, tp, nitems);
 | |
|     return op;
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| PyUnstable_Object_GC_NewWithExtraData(PyTypeObject *tp, size_t extra_size)
 | |
| {
 | |
|     size_t presize = _PyType_PreHeaderSize(tp);
 | |
|     PyObject *op = gc_alloc(tp, _PyObject_SIZE(tp) + extra_size, presize);
 | |
|     if (op == NULL) {
 | |
|         return NULL;
 | |
|     }
 | |
|     memset(op, 0, _PyObject_SIZE(tp) + extra_size);
 | |
|     _PyObject_Init(op, tp);
 | |
|     return op;
 | |
| }
 | |
| 
 | |
| PyVarObject *
 | |
| _PyObject_GC_Resize(PyVarObject *op, Py_ssize_t nitems)
 | |
| {
 | |
|     const size_t basicsize = _PyObject_VAR_SIZE(Py_TYPE(op), nitems);
 | |
|     const size_t presize = _PyType_PreHeaderSize(Py_TYPE(op));
 | |
|     _PyObject_ASSERT((PyObject *)op, !_PyObject_GC_IS_TRACKED(op));
 | |
|     if (basicsize > (size_t)PY_SSIZE_T_MAX - presize) {
 | |
|         return (PyVarObject *)PyErr_NoMemory();
 | |
|     }
 | |
|     char *mem = (char *)op - presize;
 | |
|     mem = (char *)_PyObject_ReallocWithType(Py_TYPE(op), mem, presize + basicsize);
 | |
|     if (mem == NULL) {
 | |
|         return (PyVarObject *)PyErr_NoMemory();
 | |
|     }
 | |
|     op = (PyVarObject *) (mem + presize);
 | |
|     Py_SET_SIZE(op, nitems);
 | |
|     return op;
 | |
| }
 | |
| 
 | |
| void
 | |
| PyObject_GC_Del(void *op)
 | |
| {
 | |
|     size_t presize = _PyType_PreHeaderSize(Py_TYPE(op));
 | |
|     PyGC_Head *g = AS_GC(op);
 | |
|     if (_PyObject_GC_IS_TRACKED(op)) {
 | |
|         gc_list_remove(g);
 | |
| #ifdef Py_DEBUG
 | |
|         PyObject *exc = PyErr_GetRaisedException();
 | |
|         if (PyErr_WarnExplicitFormat(PyExc_ResourceWarning, "gc", 0,
 | |
|                                      "gc", NULL, "Object of type %s is not untracked before destruction",
 | |
|                                      Py_TYPE(op)->tp_name)) {
 | |
|             PyErr_WriteUnraisable(NULL);
 | |
|         }
 | |
|         PyErr_SetRaisedException(exc);
 | |
| #endif
 | |
|     }
 | |
|     GCState *gcstate = get_gc_state();
 | |
|     if (gcstate->young.count > 0) {
 | |
|         gcstate->young.count--;
 | |
|     }
 | |
|     gcstate->heap_size--;
 | |
|     PyObject_Free(((char *)op)-presize);
 | |
| }
 | |
| 
 | |
| int
 | |
| PyObject_GC_IsTracked(PyObject* obj)
 | |
| {
 | |
|     if (_PyObject_IS_GC(obj) && _PyObject_GC_IS_TRACKED(obj)) {
 | |
|         return 1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int
 | |
| PyObject_GC_IsFinalized(PyObject *obj)
 | |
| {
 | |
|     if (_PyObject_IS_GC(obj) && _PyGC_FINALIZED(obj)) {
 | |
|          return 1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| visit_generation(gcvisitobjects_t callback, void *arg, struct gc_generation *gen)
 | |
| {
 | |
|     PyGC_Head *gc_list, *gc;
 | |
|     gc_list = &gen->head;
 | |
|     for (gc = GC_NEXT(gc_list); gc != gc_list; gc = GC_NEXT(gc)) {
 | |
|         PyObject *op = FROM_GC(gc);
 | |
|         Py_INCREF(op);
 | |
|         int res = callback(op, arg);
 | |
|         Py_DECREF(op);
 | |
|         if (!res) {
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void
 | |
| PyUnstable_GC_VisitObjects(gcvisitobjects_t callback, void *arg)
 | |
| {
 | |
|     GCState *gcstate = get_gc_state();
 | |
|     int origenstate = gcstate->enabled;
 | |
|     gcstate->enabled = 0;
 | |
|     if (visit_generation(callback, arg, &gcstate->young)) {
 | |
|         goto done;
 | |
|     }
 | |
|     if (visit_generation(callback, arg, &gcstate->old[0])) {
 | |
|         goto done;
 | |
|     }
 | |
|     visit_generation(callback, arg, &gcstate->old[1]);
 | |
| done:
 | |
|     gcstate->enabled = origenstate;
 | |
| }
 | |
| 
 | |
| #endif  // Py_GIL_DISABLED
 |