mirror of
				https://github.com/python/cpython.git
				synced 2025-10-25 18:54:53 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			2682 lines
		
	
	
	
		
			67 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2682 lines
		
	
	
	
		
			67 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
 | |
| /* Dictionary object implementation using a hash table */
 | |
| 
 | |
| /* The distribution includes a separate file, Objects/dictnotes.txt,
 | |
|    describing explorations into dictionary design and optimization.
 | |
|    It covers typical dictionary use patterns, the parameters for
 | |
|    tuning dictionaries, and several ideas for possible optimizations.
 | |
| */
 | |
| 
 | |
| #include "Python.h"
 | |
| 
 | |
| typedef PyDictEntry dictentry;
 | |
| typedef PyDictObject dictobject;
 | |
| 
 | |
| /* Set a key error with the specified argument, wrapping it in a
 | |
|  * tuple automatically so that tuple keys are not unpacked as the
 | |
|  * exception arguments. */
 | |
| static void
 | |
| set_key_error(PyObject *arg)
 | |
| {
 | |
| 	PyObject *tup;
 | |
| 	tup = PyTuple_Pack(1, arg);
 | |
| 	if (!tup)
 | |
| 		return; /* caller will expect error to be set anyway */
 | |
| 	PyErr_SetObject(PyExc_KeyError, tup);
 | |
| 	Py_DECREF(tup);
 | |
| }
 | |
| 
 | |
| /* Define this out if you don't want conversion statistics on exit. */
 | |
| #undef SHOW_CONVERSION_COUNTS
 | |
| 
 | |
| /* See large comment block below.  This must be >= 1. */
 | |
| #define PERTURB_SHIFT 5
 | |
| 
 | |
| /*
 | |
| Major subtleties ahead:  Most hash schemes depend on having a "good" hash
 | |
| function, in the sense of simulating randomness.  Python doesn't:  its most
 | |
| important hash functions (for strings and ints) are very regular in common
 | |
| cases:
 | |
| 
 | |
|   >>> map(hash, (0, 1, 2, 3))
 | |
|   [0, 1, 2, 3]
 | |
|   >>> map(hash, ("namea", "nameb", "namec", "named"))
 | |
|   [-1658398457, -1658398460, -1658398459, -1658398462]
 | |
|   >>>
 | |
| 
 | |
| This isn't necessarily bad!  To the contrary, in a table of size 2**i, taking
 | |
| the low-order i bits as the initial table index is extremely fast, and there
 | |
| are no collisions at all for dicts indexed by a contiguous range of ints.
 | |
| The same is approximately true when keys are "consecutive" strings.  So this
 | |
| gives better-than-random behavior in common cases, and that's very desirable.
 | |
| 
 | |
| OTOH, when collisions occur, the tendency to fill contiguous slices of the
 | |
| hash table makes a good collision resolution strategy crucial.  Taking only
 | |
| the last i bits of the hash code is also vulnerable:  for example, consider
 | |
| the list [i << 16 for i in range(20000)] as a set of keys.  Since ints are 
 | |
| their own hash codes, and this fits in a dict of size 2**15, the last 15 bits
 | |
|  of every hash code are all 0:  they *all* map to the same table index.
 | |
| 
 | |
| But catering to unusual cases should not slow the usual ones, so we just take
 | |
| the last i bits anyway.  It's up to collision resolution to do the rest.  If
 | |
| we *usually* find the key we're looking for on the first try (and, it turns
 | |
| out, we usually do -- the table load factor is kept under 2/3, so the odds
 | |
| are solidly in our favor), then it makes best sense to keep the initial index
 | |
| computation dirt cheap.
 | |
| 
 | |
| The first half of collision resolution is to visit table indices via this
 | |
| recurrence:
 | |
| 
 | |
|     j = ((5*j) + 1) mod 2**i
 | |
| 
 | |
| For any initial j in range(2**i), repeating that 2**i times generates each
 | |
| int in range(2**i) exactly once (see any text on random-number generation for
 | |
| proof).  By itself, this doesn't help much:  like linear probing (setting
 | |
| j += 1, or j -= 1, on each loop trip), it scans the table entries in a fixed
 | |
| order.  This would be bad, except that's not the only thing we do, and it's
 | |
| actually *good* in the common cases where hash keys are consecutive.  In an
 | |
| example that's really too small to make this entirely clear, for a table of
 | |
| size 2**3 the order of indices is:
 | |
| 
 | |
|     0 -> 1 -> 6 -> 7 -> 4 -> 5 -> 2 -> 3 -> 0 [and here it's repeating]
 | |
| 
 | |
| If two things come in at index 5, the first place we look after is index 2,
 | |
| not 6, so if another comes in at index 6 the collision at 5 didn't hurt it.
 | |
| Linear probing is deadly in this case because there the fixed probe order
 | |
| is the *same* as the order consecutive keys are likely to arrive.  But it's
 | |
| extremely unlikely hash codes will follow a 5*j+1 recurrence by accident,
 | |
| and certain that consecutive hash codes do not.
 | |
| 
 | |
| The other half of the strategy is to get the other bits of the hash code
 | |
| into play.  This is done by initializing a (unsigned) vrbl "perturb" to the
 | |
| full hash code, and changing the recurrence to:
 | |
| 
 | |
|     j = (5*j) + 1 + perturb;
 | |
|     perturb >>= PERTURB_SHIFT;
 | |
|     use j % 2**i as the next table index;
 | |
| 
 | |
| Now the probe sequence depends (eventually) on every bit in the hash code,
 | |
| and the pseudo-scrambling property of recurring on 5*j+1 is more valuable,
 | |
| because it quickly magnifies small differences in the bits that didn't affect
 | |
| the initial index.  Note that because perturb is unsigned, if the recurrence
 | |
| is executed often enough perturb eventually becomes and remains 0.  At that
 | |
| point (very rarely reached) the recurrence is on (just) 5*j+1 again, and
 | |
| that's certain to find an empty slot eventually (since it generates every int
 | |
| in range(2**i), and we make sure there's always at least one empty slot).
 | |
| 
 | |
| Selecting a good value for PERTURB_SHIFT is a balancing act.  You want it
 | |
| small so that the high bits of the hash code continue to affect the probe
 | |
| sequence across iterations; but you want it large so that in really bad cases
 | |
| the high-order hash bits have an effect on early iterations.  5 was "the
 | |
| best" in minimizing total collisions across experiments Tim Peters ran (on
 | |
| both normal and pathological cases), but 4 and 6 weren't significantly worse.
 | |
| 
 | |
| Historical: Reimer Behrends contributed the idea of using a polynomial-based
 | |
| approach, using repeated multiplication by x in GF(2**n) where an irreducible
 | |
| polynomial for each table size was chosen such that x was a primitive root.
 | |
| Christian Tismer later extended that to use division by x instead, as an
 | |
| efficient way to get the high bits of the hash code into play.  This scheme
 | |
| also gave excellent collision statistics, but was more expensive: two if-tests
 | |
| were required inside the loop; computing "the next" index took about the same
 | |
| number of operations but without as much potential parallelism (e.g.,
 | |
| computing 5*j can go on at the same time as computing 1+perturb in the above,
 | |
| and then shifting perturb can be done while the table index is being masked);
 | |
| and the dictobject struct required a member to hold the table's polynomial.
 | |
| In Tim's experiments the current scheme ran faster, produced equally good
 | |
| collision statistics, needed less code & used less memory.
 | |
| 
 | |
| Theoretical Python 2.5 headache:  hash codes are only C "long", but
 | |
| sizeof(Py_ssize_t) > sizeof(long) may be possible.  In that case, and if a
 | |
| dict is genuinely huge, then only the slots directly reachable via indexing
 | |
| by a C long can be the first slot in a probe sequence.  The probe sequence
 | |
| will still eventually reach every slot in the table, but the collision rate
 | |
| on initial probes may be much higher than this scheme was designed for.
 | |
| Getting a hash code as fat as Py_ssize_t is the only real cure.  But in
 | |
| practice, this probably won't make a lick of difference for many years (at
 | |
| which point everyone will have terabytes of RAM on 64-bit boxes).
 | |
| */
 | |
| 
 | |
| /* Object used as dummy key to fill deleted entries */
 | |
| static PyObject *dummy = NULL; /* Initialized by first call to newdictobject() */
 | |
| 
 | |
| #ifdef Py_REF_DEBUG
 | |
| PyObject *
 | |
| _PyDict_Dummy(void)
 | |
| {
 | |
| 	return dummy;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* forward declarations */
 | |
| static dictentry *
 | |
| lookdict_string(dictobject *mp, PyObject *key, long hash);
 | |
| 
 | |
| #ifdef SHOW_CONVERSION_COUNTS
 | |
| static long created = 0L;
 | |
| static long converted = 0L;
 | |
| 
 | |
| static void
 | |
| show_counts(void)
 | |
| {
 | |
| 	fprintf(stderr, "created %ld string dicts\n", created);
 | |
| 	fprintf(stderr, "converted %ld to normal dicts\n", converted);
 | |
| 	fprintf(stderr, "%.2f%% conversion rate\n", (100.0*converted)/created);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Initialization macros.
 | |
|    There are two ways to create a dict:  PyDict_New() is the main C API
 | |
|    function, and the tp_new slot maps to dict_new().  In the latter case we
 | |
|    can save a little time over what PyDict_New does because it's guaranteed
 | |
|    that the PyDictObject struct is already zeroed out.
 | |
|    Everyone except dict_new() should use EMPTY_TO_MINSIZE (unless they have
 | |
|    an excellent reason not to).
 | |
| */
 | |
| 
 | |
| #define INIT_NONZERO_DICT_SLOTS(mp) do {				\
 | |
| 	(mp)->ma_table = (mp)->ma_smalltable;				\
 | |
| 	(mp)->ma_mask = PyDict_MINSIZE - 1;				\
 | |
|     } while(0)
 | |
| 
 | |
| #define EMPTY_TO_MINSIZE(mp) do {					\
 | |
| 	memset((mp)->ma_smalltable, 0, sizeof((mp)->ma_smalltable));	\
 | |
| 	(mp)->ma_used = (mp)->ma_fill = 0;				\
 | |
| 	INIT_NONZERO_DICT_SLOTS(mp);					\
 | |
|     } while(0)
 | |
| 
 | |
| /* Dictionary reuse scheme to save calls to malloc, free, and memset */
 | |
| #define MAXFREEDICTS 80
 | |
| static PyDictObject *free_dicts[MAXFREEDICTS];
 | |
| static int num_free_dicts = 0;
 | |
| 
 | |
| PyObject *
 | |
| PyDict_New(void)
 | |
| {
 | |
| 	register dictobject *mp;
 | |
| 	if (dummy == NULL) { /* Auto-initialize dummy */
 | |
| 		dummy = PyUnicode_FromString("<dummy key>");
 | |
| 		if (dummy == NULL)
 | |
| 			return NULL;
 | |
| #ifdef SHOW_CONVERSION_COUNTS
 | |
| 		Py_AtExit(show_counts);
 | |
| #endif
 | |
| 	}
 | |
| 	if (num_free_dicts) {
 | |
| 		mp = free_dicts[--num_free_dicts];
 | |
| 		assert (mp != NULL);
 | |
| 		assert (Py_Type(mp) == &PyDict_Type);
 | |
| 		_Py_NewReference((PyObject *)mp);
 | |
| 		if (mp->ma_fill) {
 | |
| 			EMPTY_TO_MINSIZE(mp);
 | |
| 		}
 | |
| 		assert (mp->ma_used == 0);
 | |
| 		assert (mp->ma_table == mp->ma_smalltable);
 | |
| 		assert (mp->ma_mask == PyDict_MINSIZE - 1);
 | |
| 	} else {
 | |
| 		mp = PyObject_GC_New(dictobject, &PyDict_Type);
 | |
| 		if (mp == NULL)
 | |
| 			return NULL;
 | |
| 		EMPTY_TO_MINSIZE(mp);
 | |
| 	}
 | |
| 	mp->ma_lookup = lookdict_string;
 | |
| #ifdef SHOW_CONVERSION_COUNTS
 | |
| 	++created;
 | |
| #endif
 | |
| 	_PyObject_GC_TRACK(mp);
 | |
| 	return (PyObject *)mp;
 | |
| }
 | |
| 
 | |
| /*
 | |
| The basic lookup function used by all operations.
 | |
| This is based on Algorithm D from Knuth Vol. 3, Sec. 6.4.
 | |
| Open addressing is preferred over chaining since the link overhead for
 | |
| chaining would be substantial (100% with typical malloc overhead).
 | |
| 
 | |
| The initial probe index is computed as hash mod the table size. Subsequent
 | |
| probe indices are computed as explained earlier.
 | |
| 
 | |
| All arithmetic on hash should ignore overflow.
 | |
| 
 | |
| The details in this version are due to Tim Peters, building on many past
 | |
| contributions by Reimer Behrends, Jyrki Alakuijala, Vladimir Marangozov and
 | |
| Christian Tismer.
 | |
| 
 | |
| lookdict() is general-purpose, and may return NULL if (and only if) a
 | |
| comparison raises an exception (this was new in Python 2.5).
 | |
| lookdict_string() below is specialized to string keys, comparison of which can
 | |
| never raise an exception; that function can never return NULL.  For both, when
 | |
| the key isn't found a dictentry* is returned for which the me_value field is
 | |
| NULL; this is the slot in the dict at which the key would have been found, and
 | |
| the caller can (if it wishes) add the <key, value> pair to the returned
 | |
| dictentry*.
 | |
| */
 | |
| static dictentry *
 | |
| lookdict(dictobject *mp, PyObject *key, register long hash)
 | |
| {
 | |
| 	register size_t i;
 | |
| 	register size_t perturb;
 | |
| 	register dictentry *freeslot;
 | |
| 	register size_t mask = (size_t)mp->ma_mask;
 | |
| 	dictentry *ep0 = mp->ma_table;
 | |
| 	register dictentry *ep;
 | |
| 	register int cmp;
 | |
| 	PyObject *startkey;
 | |
| 
 | |
| 	i = (size_t)hash & mask;
 | |
| 	ep = &ep0[i];
 | |
| 	if (ep->me_key == NULL || ep->me_key == key)
 | |
| 		return ep;
 | |
| 
 | |
| 	if (ep->me_key == dummy)
 | |
| 		freeslot = ep;
 | |
| 	else {
 | |
| 		if (ep->me_hash == hash) {
 | |
| 			startkey = ep->me_key;
 | |
| 			cmp = PyObject_RichCompareBool(startkey, key, Py_EQ);
 | |
| 			if (cmp < 0)
 | |
| 				return NULL;
 | |
| 			if (ep0 == mp->ma_table && ep->me_key == startkey) {
 | |
| 				if (cmp > 0)
 | |
| 					return ep;
 | |
| 			}
 | |
| 			else {
 | |
| 				/* The compare did major nasty stuff to the
 | |
| 				 * dict:  start over.
 | |
| 				 * XXX A clever adversary could prevent this
 | |
| 				 * XXX from terminating.
 | |
|  				 */
 | |
|  				return lookdict(mp, key, hash);
 | |
|  			}
 | |
| 		}
 | |
| 		freeslot = NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* In the loop, me_key == dummy is by far (factor of 100s) the
 | |
| 	   least likely outcome, so test for that last. */
 | |
| 	for (perturb = hash; ; perturb >>= PERTURB_SHIFT) {
 | |
| 		i = (i << 2) + i + perturb + 1;
 | |
| 		ep = &ep0[i & mask];
 | |
| 		if (ep->me_key == NULL)
 | |
| 			return freeslot == NULL ? ep : freeslot;
 | |
| 		if (ep->me_key == key)
 | |
| 			return ep;
 | |
| 		if (ep->me_hash == hash && ep->me_key != dummy) {
 | |
| 			startkey = ep->me_key;
 | |
| 			cmp = PyObject_RichCompareBool(startkey, key, Py_EQ);
 | |
| 			if (cmp < 0)
 | |
| 				return NULL;
 | |
| 			if (ep0 == mp->ma_table && ep->me_key == startkey) {
 | |
| 				if (cmp > 0)
 | |
| 					return ep;
 | |
| 			}
 | |
| 			else {
 | |
| 				/* The compare did major nasty stuff to the
 | |
| 				 * dict:  start over.
 | |
| 				 * XXX A clever adversary could prevent this
 | |
| 				 * XXX from terminating.
 | |
|  				 */
 | |
|  				return lookdict(mp, key, hash);
 | |
|  			}
 | |
| 		}
 | |
| 		else if (ep->me_key == dummy && freeslot == NULL)
 | |
| 			freeslot = ep;
 | |
| 	}
 | |
| 	assert(0);	/* NOT REACHED */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Hacked up version of lookdict which can assume keys are always strings;
 | |
|  * this assumption allows testing for errors during PyObject_RichCompareBool()
 | |
|  * to be dropped; string-string comparisons never raise exceptions.  This also
 | |
|  * means we don't need to go through PyObject_RichCompareBool(); we can always
 | |
|  * use _PyString_Eq() directly.
 | |
|  *
 | |
|  * This is valuable because dicts with only string keys are very common.
 | |
|  */
 | |
| static dictentry *
 | |
| lookdict_string(dictobject *mp, PyObject *key, register long hash)
 | |
| {
 | |
| 	register size_t i;
 | |
| 	register size_t perturb;
 | |
| 	register dictentry *freeslot;
 | |
| 	register size_t mask = (size_t)mp->ma_mask;
 | |
| 	dictentry *ep0 = mp->ma_table;
 | |
| 	register dictentry *ep;
 | |
| 
 | |
| 	/* Make sure this function doesn't have to handle non-string keys,
 | |
| 	   including subclasses of str; e.g., one reason to subclass
 | |
| 	   strings is to override __eq__, and for speed we don't cater to
 | |
| 	   that here. */
 | |
| 	if (!PyString_CheckExact(key)) {
 | |
| #ifdef SHOW_CONVERSION_COUNTS
 | |
| 		++converted;
 | |
| #endif
 | |
| 		mp->ma_lookup = lookdict;
 | |
| 		return lookdict(mp, key, hash);
 | |
| 	}
 | |
| 	i = hash & mask;
 | |
| 	ep = &ep0[i];
 | |
| 	if (ep->me_key == NULL || ep->me_key == key)
 | |
| 		return ep;
 | |
| 	if (ep->me_key == dummy)
 | |
| 		freeslot = ep;
 | |
| 	else {
 | |
| 		if (ep->me_hash == hash && _PyString_Eq(ep->me_key, key))
 | |
| 			return ep;
 | |
| 		freeslot = NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* In the loop, me_key == dummy is by far (factor of 100s) the
 | |
| 	   least likely outcome, so test for that last. */
 | |
| 	for (perturb = hash; ; perturb >>= PERTURB_SHIFT) {
 | |
| 		i = (i << 2) + i + perturb + 1;
 | |
| 		ep = &ep0[i & mask];
 | |
| 		if (ep->me_key == NULL)
 | |
| 			return freeslot == NULL ? ep : freeslot;
 | |
| 		if (ep->me_key == key
 | |
| 		    || (ep->me_hash == hash
 | |
| 		        && ep->me_key != dummy
 | |
| 			&& _PyString_Eq(ep->me_key, key)))
 | |
| 			return ep;
 | |
| 		if (ep->me_key == dummy && freeslot == NULL)
 | |
| 			freeslot = ep;
 | |
| 	}
 | |
| 	assert(0);	/* NOT REACHED */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| Internal routine to insert a new item into the table.
 | |
| Used both by the internal resize routine and by the public insert routine.
 | |
| Eats a reference to key and one to value.
 | |
| Returns -1 if an error occurred, or 0 on success.
 | |
| */
 | |
| static int
 | |
| insertdict(register dictobject *mp, PyObject *key, long hash, PyObject *value)
 | |
| {
 | |
| 	PyObject *old_value;
 | |
| 	register dictentry *ep;
 | |
| 	typedef PyDictEntry *(*lookupfunc)(PyDictObject *, PyObject *, long);
 | |
| 
 | |
| 	assert(mp->ma_lookup != NULL);
 | |
| 	ep = mp->ma_lookup(mp, key, hash);
 | |
| 	if (ep == NULL) {
 | |
| 		Py_DECREF(key);
 | |
| 		Py_DECREF(value);
 | |
| 		return -1;
 | |
| 	}
 | |
| 	if (ep->me_value != NULL) {
 | |
| 		old_value = ep->me_value;
 | |
| 		ep->me_value = value;
 | |
| 		Py_DECREF(old_value); /* which **CAN** re-enter */
 | |
| 		Py_DECREF(key);
 | |
| 	}
 | |
| 	else {
 | |
| 		if (ep->me_key == NULL)
 | |
| 			mp->ma_fill++;
 | |
| 		else {
 | |
| 			assert(ep->me_key == dummy);
 | |
| 			Py_DECREF(dummy);
 | |
| 		}
 | |
| 		ep->me_key = key;
 | |
| 		ep->me_hash = (Py_ssize_t)hash;
 | |
| 		ep->me_value = value;
 | |
| 		mp->ma_used++;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| Internal routine used by dictresize() to insert an item which is
 | |
| known to be absent from the dict.  This routine also assumes that
 | |
| the dict contains no deleted entries.  Besides the performance benefit,
 | |
| using insertdict() in dictresize() is dangerous (SF bug #1456209).
 | |
| Note that no refcounts are changed by this routine; if needed, the caller
 | |
| is responsible for incref'ing `key` and `value`.
 | |
| */
 | |
| static void
 | |
| insertdict_clean(register dictobject *mp, PyObject *key, long hash,
 | |
| 		 PyObject *value)
 | |
| {
 | |
| 	register size_t i;
 | |
| 	register size_t perturb;
 | |
| 	register size_t mask = (size_t)mp->ma_mask;
 | |
| 	dictentry *ep0 = mp->ma_table;
 | |
| 	register dictentry *ep;
 | |
| 
 | |
| 	i = hash & mask;
 | |
| 	ep = &ep0[i];
 | |
| 	for (perturb = hash; ep->me_key != NULL; perturb >>= PERTURB_SHIFT) {
 | |
| 		i = (i << 2) + i + perturb + 1;
 | |
| 		ep = &ep0[i & mask];
 | |
| 	}
 | |
| 	assert(ep->me_value == NULL);
 | |
| 	mp->ma_fill++;
 | |
| 	ep->me_key = key;
 | |
| 	ep->me_hash = (Py_ssize_t)hash;
 | |
| 	ep->me_value = value;
 | |
| 	mp->ma_used++;
 | |
| }
 | |
| 
 | |
| /*
 | |
| Restructure the table by allocating a new table and reinserting all
 | |
| items again.  When entries have been deleted, the new table may
 | |
| actually be smaller than the old one.
 | |
| */
 | |
| static int
 | |
| dictresize(dictobject *mp, Py_ssize_t minused)
 | |
| {
 | |
| 	Py_ssize_t newsize;
 | |
| 	dictentry *oldtable, *newtable, *ep;
 | |
| 	Py_ssize_t i;
 | |
| 	int is_oldtable_malloced;
 | |
| 	dictentry small_copy[PyDict_MINSIZE];
 | |
| 
 | |
| 	assert(minused >= 0);
 | |
| 
 | |
| 	/* Find the smallest table size > minused. */
 | |
| 	for (newsize = PyDict_MINSIZE;
 | |
| 	     newsize <= minused && newsize > 0;
 | |
| 	     newsize <<= 1)
 | |
| 		;
 | |
| 	if (newsize <= 0) {
 | |
| 		PyErr_NoMemory();
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	/* Get space for a new table. */
 | |
| 	oldtable = mp->ma_table;
 | |
| 	assert(oldtable != NULL);
 | |
| 	is_oldtable_malloced = oldtable != mp->ma_smalltable;
 | |
| 
 | |
| 	if (newsize == PyDict_MINSIZE) {
 | |
| 		/* A large table is shrinking, or we can't get any smaller. */
 | |
| 		newtable = mp->ma_smalltable;
 | |
| 		if (newtable == oldtable) {
 | |
| 			if (mp->ma_fill == mp->ma_used) {
 | |
| 				/* No dummies, so no point doing anything. */
 | |
| 				return 0;
 | |
| 			}
 | |
| 			/* We're not going to resize it, but rebuild the
 | |
| 			   table anyway to purge old dummy entries.
 | |
| 			   Subtle:  This is *necessary* if fill==size,
 | |
| 			   as lookdict needs at least one virgin slot to
 | |
| 			   terminate failing searches.  If fill < size, it's
 | |
| 			   merely desirable, as dummies slow searches. */
 | |
| 			assert(mp->ma_fill > mp->ma_used);
 | |
| 			memcpy(small_copy, oldtable, sizeof(small_copy));
 | |
| 			oldtable = small_copy;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		newtable = PyMem_NEW(dictentry, newsize);
 | |
| 		if (newtable == NULL) {
 | |
| 			PyErr_NoMemory();
 | |
| 			return -1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Make the dict empty, using the new table. */
 | |
| 	assert(newtable != oldtable);
 | |
| 	mp->ma_table = newtable;
 | |
| 	mp->ma_mask = newsize - 1;
 | |
| 	memset(newtable, 0, sizeof(dictentry) * newsize);
 | |
| 	mp->ma_used = 0;
 | |
| 	i = mp->ma_fill;
 | |
| 	mp->ma_fill = 0;
 | |
| 
 | |
| 	/* Copy the data over; this is refcount-neutral for active entries;
 | |
| 	   dummy entries aren't copied over, of course */
 | |
| 	for (ep = oldtable; i > 0; ep++) {
 | |
| 		if (ep->me_value != NULL) {	/* active entry */
 | |
| 			--i;
 | |
| 			insertdict_clean(mp, ep->me_key, (long)ep->me_hash,
 | |
| 					 ep->me_value);
 | |
| 		}
 | |
| 		else if (ep->me_key != NULL) {	/* dummy entry */
 | |
| 			--i;
 | |
| 			assert(ep->me_key == dummy);
 | |
| 			Py_DECREF(ep->me_key);
 | |
| 		}
 | |
| 		/* else key == value == NULL:  nothing to do */
 | |
| 	}
 | |
| 
 | |
| 	if (is_oldtable_malloced)
 | |
| 		PyMem_DEL(oldtable);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Note that, for historical reasons, PyDict_GetItem() suppresses all errors
 | |
|  * that may occur (originally dicts supported only string keys, and exceptions
 | |
|  * weren't possible).  So, while the original intent was that a NULL return
 | |
|  * meant the key wasn't present, in reality it can mean that, or that an error
 | |
|  * (suppressed) occurred while computing the key's hash, or that some error
 | |
|  * (suppressed) occurred when comparing keys in the dict's internal probe
 | |
|  * sequence.  A nasty example of the latter is when a Python-coded comparison
 | |
|  * function hits a stack-depth error, which can cause this to return NULL
 | |
|  * even if the key is present.
 | |
|  */
 | |
| PyObject *
 | |
| PyDict_GetItem(PyObject *op, PyObject *key)
 | |
| {
 | |
| 	long hash;
 | |
| 	dictobject *mp = (dictobject *)op;
 | |
| 	dictentry *ep;
 | |
| 	PyThreadState *tstate;
 | |
| 	if (!PyDict_Check(op))
 | |
| 		return NULL;
 | |
| 	if (!PyString_CheckExact(key) ||
 | |
| 	    (hash = ((PyStringObject *) key)->ob_shash) == -1)
 | |
| 	{
 | |
| 		hash = PyObject_Hash(key);
 | |
| 		if (hash == -1) {
 | |
| 			PyErr_Clear();
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* We can arrive here with a NULL tstate during initialization:
 | |
| 	   try running "python -Wi" for an example related to string
 | |
| 	   interning.  Let's just hope that no exception occurs then... */
 | |
| 	tstate = _PyThreadState_Current;
 | |
| 	if (tstate != NULL && tstate->curexc_type != NULL) {
 | |
| 		/* preserve the existing exception */
 | |
| 		PyObject *err_type, *err_value, *err_tb;
 | |
| 		PyErr_Fetch(&err_type, &err_value, &err_tb);
 | |
| 		ep = (mp->ma_lookup)(mp, key, hash);
 | |
| 		/* ignore errors */
 | |
| 		PyErr_Restore(err_type, err_value, err_tb);
 | |
| 		if (ep == NULL)
 | |
| 			return NULL;
 | |
| 	}
 | |
| 	else {
 | |
| 		ep = (mp->ma_lookup)(mp, key, hash);
 | |
| 		if (ep == NULL) {
 | |
| 			PyErr_Clear();
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	return ep->me_value;
 | |
| }
 | |
| 
 | |
| /* Variant of PyDict_GetItem() that doesn't suppress exceptions.
 | |
|    This returns NULL *with* an exception set if an exception occurred.
 | |
|    It returns NULL *without* an exception set if the key wasn't present.
 | |
| */
 | |
| PyObject *
 | |
| PyDict_GetItemWithError(PyObject *op, PyObject *key)
 | |
| {
 | |
| 	long hash;
 | |
| 	dictobject *mp = (dictobject *)op;
 | |
| 	dictentry *ep;
 | |
| 
 | |
| 	if (!PyDict_Check(op)) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if (!PyString_CheckExact(key) ||
 | |
| 	    (hash = ((PyStringObject *) key)->ob_shash) == -1)
 | |
| 	{
 | |
| 		hash = PyObject_Hash(key);
 | |
| 		if (hash == -1) {
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ep = (mp->ma_lookup)(mp, key, hash);
 | |
| 	if (ep == NULL)
 | |
| 		return NULL;
 | |
| 	return ep->me_value;
 | |
| }
 | |
| 
 | |
| /* CAUTION: PyDict_SetItem() must guarantee that it won't resize the
 | |
|  * dictionary if it's merely replacing the value for an existing key.
 | |
|  * This means that it's safe to loop over a dictionary with PyDict_Next()
 | |
|  * and occasionally replace a value -- but you can't insert new keys or
 | |
|  * remove them.
 | |
|  */
 | |
| int
 | |
| PyDict_SetItem(register PyObject *op, PyObject *key, PyObject *value)
 | |
| {
 | |
| 	register dictobject *mp;
 | |
| 	register long hash;
 | |
| 	register Py_ssize_t n_used;
 | |
| 
 | |
| 	if (!PyDict_Check(op)) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return -1;
 | |
| 	}
 | |
| 	assert(key);
 | |
| 	assert(value);
 | |
| 	mp = (dictobject *)op;
 | |
| 	if (PyString_CheckExact(key)) {
 | |
| 		hash = ((PyStringObject *)key)->ob_shash;
 | |
| 		if (hash == -1)
 | |
| 			hash = PyObject_Hash(key);
 | |
| 	}
 | |
| 	else {
 | |
| 		hash = PyObject_Hash(key);
 | |
| 		if (hash == -1)
 | |
| 			return -1;
 | |
| 	}
 | |
| 	assert(mp->ma_fill <= mp->ma_mask);  /* at least one empty slot */
 | |
| 	n_used = mp->ma_used;
 | |
| 	Py_INCREF(value);
 | |
| 	Py_INCREF(key);
 | |
| 	if (insertdict(mp, key, hash, value) != 0)
 | |
| 		return -1;
 | |
| 	/* If we added a key, we can safely resize.  Otherwise just return!
 | |
| 	 * If fill >= 2/3 size, adjust size.  Normally, this doubles or
 | |
| 	 * quaduples the size, but it's also possible for the dict to shrink
 | |
| 	 * (if ma_fill is much larger than ma_used, meaning a lot of dict
 | |
| 	 * keys have been * deleted).
 | |
| 	 *
 | |
| 	 * Quadrupling the size improves average dictionary sparseness
 | |
| 	 * (reducing collisions) at the cost of some memory and iteration
 | |
| 	 * speed (which loops over every possible entry).  It also halves
 | |
| 	 * the number of expensive resize operations in a growing dictionary.
 | |
| 	 *
 | |
| 	 * Very large dictionaries (over 50K items) use doubling instead.
 | |
| 	 * This may help applications with severe memory constraints.
 | |
| 	 */
 | |
| 	if (!(mp->ma_used > n_used && mp->ma_fill*3 >= (mp->ma_mask+1)*2))
 | |
| 		return 0;
 | |
| 	return dictresize(mp, (mp->ma_used > 50000 ? 2 : 4) * mp->ma_used);
 | |
| }
 | |
| 
 | |
| int
 | |
| PyDict_DelItem(PyObject *op, PyObject *key)
 | |
| {
 | |
| 	register dictobject *mp;
 | |
| 	register long hash;
 | |
| 	register dictentry *ep;
 | |
| 	PyObject *old_value, *old_key;
 | |
| 
 | |
| 	if (!PyDict_Check(op)) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return -1;
 | |
| 	}
 | |
| 	assert(key);
 | |
| 	if (!PyString_CheckExact(key) ||
 | |
| 	    (hash = ((PyStringObject *) key)->ob_shash) == -1) {
 | |
| 		hash = PyObject_Hash(key);
 | |
| 		if (hash == -1)
 | |
| 			return -1;
 | |
| 	}
 | |
| 	mp = (dictobject *)op;
 | |
| 	ep = (mp->ma_lookup)(mp, key, hash);
 | |
| 	if (ep == NULL)
 | |
| 		return -1;
 | |
| 	if (ep->me_value == NULL) {
 | |
| 		set_key_error(key);
 | |
| 		return -1;
 | |
| 	}
 | |
| 	old_key = ep->me_key;
 | |
| 	Py_INCREF(dummy);
 | |
| 	ep->me_key = dummy;
 | |
| 	old_value = ep->me_value;
 | |
| 	ep->me_value = NULL;
 | |
| 	mp->ma_used--;
 | |
| 	Py_DECREF(old_value);
 | |
| 	Py_DECREF(old_key);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void
 | |
| PyDict_Clear(PyObject *op)
 | |
| {
 | |
| 	dictobject *mp;
 | |
| 	dictentry *ep, *table;
 | |
| 	int table_is_malloced;
 | |
| 	Py_ssize_t fill;
 | |
| 	dictentry small_copy[PyDict_MINSIZE];
 | |
| #ifdef Py_DEBUG
 | |
| 	Py_ssize_t i, n;
 | |
| #endif
 | |
| 
 | |
| 	if (!PyDict_Check(op))
 | |
| 		return;
 | |
| 	mp = (dictobject *)op;
 | |
| #ifdef Py_DEBUG
 | |
| 	n = mp->ma_mask + 1;
 | |
| 	i = 0;
 | |
| #endif
 | |
| 
 | |
| 	table = mp->ma_table;
 | |
| 	assert(table != NULL);
 | |
| 	table_is_malloced = table != mp->ma_smalltable;
 | |
| 
 | |
| 	/* This is delicate.  During the process of clearing the dict,
 | |
| 	 * decrefs can cause the dict to mutate.  To avoid fatal confusion
 | |
| 	 * (voice of experience), we have to make the dict empty before
 | |
| 	 * clearing the slots, and never refer to anything via mp->xxx while
 | |
| 	 * clearing.
 | |
| 	 */
 | |
| 	fill = mp->ma_fill;
 | |
| 	if (table_is_malloced)
 | |
| 		EMPTY_TO_MINSIZE(mp);
 | |
| 
 | |
| 	else if (fill > 0) {
 | |
| 		/* It's a small table with something that needs to be cleared.
 | |
| 		 * Afraid the only safe way is to copy the dict entries into
 | |
| 		 * another small table first.
 | |
| 		 */
 | |
| 		memcpy(small_copy, table, sizeof(small_copy));
 | |
| 		table = small_copy;
 | |
| 		EMPTY_TO_MINSIZE(mp);
 | |
| 	}
 | |
| 	/* else it's a small table that's already empty */
 | |
| 
 | |
| 	/* Now we can finally clear things.  If C had refcounts, we could
 | |
| 	 * assert that the refcount on table is 1 now, i.e. that this function
 | |
| 	 * has unique access to it, so decref side-effects can't alter it.
 | |
| 	 */
 | |
| 	for (ep = table; fill > 0; ++ep) {
 | |
| #ifdef Py_DEBUG
 | |
| 		assert(i < n);
 | |
| 		++i;
 | |
| #endif
 | |
| 		if (ep->me_key) {
 | |
| 			--fill;
 | |
| 			Py_DECREF(ep->me_key);
 | |
| 			Py_XDECREF(ep->me_value);
 | |
| 		}
 | |
| #ifdef Py_DEBUG
 | |
| 		else
 | |
| 			assert(ep->me_value == NULL);
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	if (table_is_malloced)
 | |
| 		PyMem_DEL(table);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Iterate over a dict.  Use like so:
 | |
|  *
 | |
|  *     Py_ssize_t i;
 | |
|  *     PyObject *key, *value;
 | |
|  *     i = 0;   # important!  i should not otherwise be changed by you
 | |
|  *     while (PyDict_Next(yourdict, &i, &key, &value)) {
 | |
|  *              Refer to borrowed references in key and value.
 | |
|  *     }
 | |
|  *
 | |
|  * CAUTION:  In general, it isn't safe to use PyDict_Next in a loop that
 | |
|  * mutates the dict.  One exception:  it is safe if the loop merely changes
 | |
|  * the values associated with the keys (but doesn't insert new keys or
 | |
|  * delete keys), via PyDict_SetItem().
 | |
|  */
 | |
| int
 | |
| PyDict_Next(PyObject *op, Py_ssize_t *ppos, PyObject **pkey, PyObject **pvalue)
 | |
| {
 | |
| 	register Py_ssize_t i;
 | |
| 	register Py_ssize_t mask;
 | |
| 	register dictentry *ep;
 | |
| 
 | |
| 	if (!PyDict_Check(op))
 | |
| 		return 0;
 | |
| 	i = *ppos;
 | |
| 	if (i < 0)
 | |
| 		return 0;
 | |
| 	ep = ((dictobject *)op)->ma_table;
 | |
| 	mask = ((dictobject *)op)->ma_mask;
 | |
| 	while (i <= mask && ep[i].me_value == NULL)
 | |
| 		i++;
 | |
| 	*ppos = i+1;
 | |
| 	if (i > mask)
 | |
| 		return 0;
 | |
| 	if (pkey)
 | |
| 		*pkey = ep[i].me_key;
 | |
| 	if (pvalue)
 | |
| 		*pvalue = ep[i].me_value;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* Internal version of PyDict_Next that returns a hash value in addition to the key and value.*/
 | |
| int
 | |
| _PyDict_Next(PyObject *op, Py_ssize_t *ppos, PyObject **pkey, PyObject **pvalue, long *phash)
 | |
| {
 | |
| 	register Py_ssize_t i;
 | |
| 	register Py_ssize_t mask;
 | |
| 	register dictentry *ep;
 | |
| 
 | |
| 	if (!PyDict_Check(op))
 | |
| 		return 0;
 | |
| 	i = *ppos;
 | |
| 	if (i < 0)
 | |
| 		return 0;
 | |
| 	ep = ((dictobject *)op)->ma_table;
 | |
| 	mask = ((dictobject *)op)->ma_mask;
 | |
| 	while (i <= mask && ep[i].me_value == NULL)
 | |
| 		i++;
 | |
| 	*ppos = i+1;
 | |
| 	if (i > mask)
 | |
| 		return 0;
 | |
|         *phash = (long)(ep[i].me_hash);
 | |
| 	if (pkey)
 | |
| 		*pkey = ep[i].me_key;
 | |
| 	if (pvalue)
 | |
| 		*pvalue = ep[i].me_value;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* Methods */
 | |
| 
 | |
| static void
 | |
| dict_dealloc(register dictobject *mp)
 | |
| {
 | |
| 	register dictentry *ep;
 | |
| 	Py_ssize_t fill = mp->ma_fill;
 | |
|  	PyObject_GC_UnTrack(mp);
 | |
| 	Py_TRASHCAN_SAFE_BEGIN(mp)
 | |
| 	for (ep = mp->ma_table; fill > 0; ep++) {
 | |
| 		if (ep->me_key) {
 | |
| 			--fill;
 | |
| 			Py_DECREF(ep->me_key);
 | |
| 			Py_XDECREF(ep->me_value);
 | |
| 		}
 | |
| 	}
 | |
| 	if (mp->ma_table != mp->ma_smalltable)
 | |
| 		PyMem_DEL(mp->ma_table);
 | |
| 	if (num_free_dicts < MAXFREEDICTS && Py_Type(mp) == &PyDict_Type)
 | |
| 		free_dicts[num_free_dicts++] = mp;
 | |
| 	else
 | |
| 		Py_Type(mp)->tp_free((PyObject *)mp);
 | |
| 	Py_TRASHCAN_SAFE_END(mp)
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| dict_repr(dictobject *mp)
 | |
| {
 | |
| 	Py_ssize_t i;
 | |
| 	PyObject *s, *temp, *colon = NULL;
 | |
| 	PyObject *pieces = NULL, *result = NULL;
 | |
| 	PyObject *key, *value;
 | |
| 
 | |
| 	i = Py_ReprEnter((PyObject *)mp);
 | |
| 	if (i != 0) {
 | |
| 		return i > 0 ? PyUnicode_FromString("{...}") : NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (mp->ma_used == 0) {
 | |
| 		result = PyUnicode_FromString("{}");
 | |
| 		goto Done;
 | |
| 	}
 | |
| 
 | |
| 	pieces = PyList_New(0);
 | |
| 	if (pieces == NULL)
 | |
| 		goto Done;
 | |
| 
 | |
| 	colon = PyUnicode_FromString(": ");
 | |
| 	if (colon == NULL)
 | |
| 		goto Done;
 | |
| 
 | |
| 	/* Do repr() on each key+value pair, and insert ": " between them.
 | |
| 	   Note that repr may mutate the dict. */
 | |
| 	i = 0;
 | |
| 	while (PyDict_Next((PyObject *)mp, &i, &key, &value)) {
 | |
| 		int status;
 | |
| 		/* Prevent repr from deleting value during key format. */
 | |
| 		Py_INCREF(value);
 | |
| 		s = PyObject_Repr(key);
 | |
| 		PyUnicode_Append(&s, colon);
 | |
| 		PyUnicode_AppendAndDel(&s, PyObject_Repr(value));
 | |
| 		Py_DECREF(value);
 | |
| 		if (s == NULL)
 | |
| 			goto Done;
 | |
| 		status = PyList_Append(pieces, s);
 | |
| 		Py_DECREF(s);  /* append created a new ref */
 | |
| 		if (status < 0)
 | |
| 			goto Done;
 | |
| 	}
 | |
| 
 | |
| 	/* Add "{}" decorations to the first and last items. */
 | |
| 	assert(PyList_GET_SIZE(pieces) > 0);
 | |
| 	s = PyUnicode_FromString("{");
 | |
| 	if (s == NULL)
 | |
| 		goto Done;
 | |
| 	temp = PyList_GET_ITEM(pieces, 0);
 | |
| 	PyUnicode_AppendAndDel(&s, temp);
 | |
| 	PyList_SET_ITEM(pieces, 0, s);
 | |
| 	if (s == NULL)
 | |
| 		goto Done;
 | |
| 
 | |
| 	s = PyUnicode_FromString("}");
 | |
| 	if (s == NULL)
 | |
| 		goto Done;
 | |
| 	temp = PyList_GET_ITEM(pieces, PyList_GET_SIZE(pieces) - 1);
 | |
| 	PyUnicode_AppendAndDel(&temp, s);
 | |
| 	PyList_SET_ITEM(pieces, PyList_GET_SIZE(pieces) - 1, temp);
 | |
| 	if (temp == NULL)
 | |
| 		goto Done;
 | |
| 
 | |
| 	/* Paste them all together with ", " between. */
 | |
| 	s = PyUnicode_FromString(", ");
 | |
| 	if (s == NULL)
 | |
| 		goto Done;
 | |
| 	result = PyUnicode_Join(s, pieces);
 | |
| 	Py_DECREF(s);
 | |
| 
 | |
| Done:
 | |
| 	Py_XDECREF(pieces);
 | |
| 	Py_XDECREF(colon);
 | |
| 	Py_ReprLeave((PyObject *)mp);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static Py_ssize_t
 | |
| dict_length(dictobject *mp)
 | |
| {
 | |
| 	return mp->ma_used;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| dict_subscript(dictobject *mp, register PyObject *key)
 | |
| {
 | |
| 	PyObject *v;
 | |
| 	long hash;
 | |
| 	dictentry *ep;
 | |
| 	assert(mp->ma_table != NULL);
 | |
| 	if (!PyString_CheckExact(key) ||
 | |
| 	    (hash = ((PyStringObject *) key)->ob_shash) == -1) {
 | |
| 		hash = PyObject_Hash(key);
 | |
| 		if (hash == -1)
 | |
| 			return NULL;
 | |
| 	}
 | |
| 	ep = (mp->ma_lookup)(mp, key, hash);
 | |
| 	if (ep == NULL)
 | |
| 		return NULL;
 | |
| 	v = ep->me_value;
 | |
| 	if (v == NULL) {
 | |
| 		if (!PyDict_CheckExact(mp)) {
 | |
| 			/* Look up __missing__ method if we're a subclass. */
 | |
| 		    	PyObject *missing;
 | |
| 			static PyObject *missing_str = NULL;
 | |
| 			if (missing_str == NULL)
 | |
| 				missing_str =
 | |
| 				  PyUnicode_InternFromString("__missing__");
 | |
| 			missing = _PyType_Lookup(Py_Type(mp), missing_str);
 | |
| 			if (missing != NULL)
 | |
| 				return PyObject_CallFunctionObjArgs(missing,
 | |
| 					(PyObject *)mp, key, NULL);
 | |
| 		}
 | |
| 		set_key_error(key);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	else
 | |
| 		Py_INCREF(v);
 | |
| 	return v;
 | |
| }
 | |
| 
 | |
| static int
 | |
| dict_ass_sub(dictobject *mp, PyObject *v, PyObject *w)
 | |
| {
 | |
| 	if (w == NULL)
 | |
| 		return PyDict_DelItem((PyObject *)mp, v);
 | |
| 	else
 | |
| 		return PyDict_SetItem((PyObject *)mp, v, w);
 | |
| }
 | |
| 
 | |
| static PyMappingMethods dict_as_mapping = {
 | |
| 	(lenfunc)dict_length, /*mp_length*/
 | |
| 	(binaryfunc)dict_subscript, /*mp_subscript*/
 | |
| 	(objobjargproc)dict_ass_sub, /*mp_ass_subscript*/
 | |
| };
 | |
| 
 | |
| static PyObject *
 | |
| dict_keys(register dictobject *mp)
 | |
| {
 | |
| 	register PyObject *v;
 | |
| 	register Py_ssize_t i, j;
 | |
| 	dictentry *ep;
 | |
| 	Py_ssize_t mask, n;
 | |
| 
 | |
|   again:
 | |
| 	n = mp->ma_used;
 | |
| 	v = PyList_New(n);
 | |
| 	if (v == NULL)
 | |
| 		return NULL;
 | |
| 	if (n != mp->ma_used) {
 | |
| 		/* Durnit.  The allocations caused the dict to resize.
 | |
| 		 * Just start over, this shouldn't normally happen.
 | |
| 		 */
 | |
| 		Py_DECREF(v);
 | |
| 		goto again;
 | |
| 	}
 | |
| 	ep = mp->ma_table;
 | |
| 	mask = mp->ma_mask;
 | |
| 	for (i = 0, j = 0; i <= mask; i++) {
 | |
| 		if (ep[i].me_value != NULL) {
 | |
| 			PyObject *key = ep[i].me_key;
 | |
| 			Py_INCREF(key);
 | |
| 			PyList_SET_ITEM(v, j, key);
 | |
| 			j++;
 | |
| 		}
 | |
| 	}
 | |
| 	assert(j == n);
 | |
| 	return v;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| dict_values(register dictobject *mp)
 | |
| {
 | |
| 	register PyObject *v;
 | |
| 	register Py_ssize_t i, j;
 | |
| 	dictentry *ep;
 | |
| 	Py_ssize_t mask, n;
 | |
| 
 | |
|   again:
 | |
| 	n = mp->ma_used;
 | |
| 	v = PyList_New(n);
 | |
| 	if (v == NULL)
 | |
| 		return NULL;
 | |
| 	if (n != mp->ma_used) {
 | |
| 		/* Durnit.  The allocations caused the dict to resize.
 | |
| 		 * Just start over, this shouldn't normally happen.
 | |
| 		 */
 | |
| 		Py_DECREF(v);
 | |
| 		goto again;
 | |
| 	}
 | |
| 	ep = mp->ma_table;
 | |
| 	mask = mp->ma_mask;
 | |
| 	for (i = 0, j = 0; i <= mask; i++) {
 | |
| 		if (ep[i].me_value != NULL) {
 | |
| 			PyObject *value = ep[i].me_value;
 | |
| 			Py_INCREF(value);
 | |
| 			PyList_SET_ITEM(v, j, value);
 | |
| 			j++;
 | |
| 		}
 | |
| 	}
 | |
| 	assert(j == n);
 | |
| 	return v;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| dict_items(register dictobject *mp)
 | |
| {
 | |
| 	register PyObject *v;
 | |
| 	register Py_ssize_t i, j, n;
 | |
| 	Py_ssize_t mask;
 | |
| 	PyObject *item, *key, *value;
 | |
| 	dictentry *ep;
 | |
| 
 | |
| 	/* Preallocate the list of tuples, to avoid allocations during
 | |
| 	 * the loop over the items, which could trigger GC, which
 | |
| 	 * could resize the dict. :-(
 | |
| 	 */
 | |
|   again:
 | |
| 	n = mp->ma_used;
 | |
| 	v = PyList_New(n);
 | |
| 	if (v == NULL)
 | |
| 		return NULL;
 | |
| 	for (i = 0; i < n; i++) {
 | |
| 		item = PyTuple_New(2);
 | |
| 		if (item == NULL) {
 | |
| 			Py_DECREF(v);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		PyList_SET_ITEM(v, i, item);
 | |
| 	}
 | |
| 	if (n != mp->ma_used) {
 | |
| 		/* Durnit.  The allocations caused the dict to resize.
 | |
| 		 * Just start over, this shouldn't normally happen.
 | |
| 		 */
 | |
| 		Py_DECREF(v);
 | |
| 		goto again;
 | |
| 	}
 | |
| 	/* Nothing we do below makes any function calls. */
 | |
| 	ep = mp->ma_table;
 | |
| 	mask = mp->ma_mask;
 | |
| 	for (i = 0, j = 0; i <= mask; i++) {
 | |
| 		if ((value=ep[i].me_value) != NULL) {
 | |
| 			key = ep[i].me_key;
 | |
| 			item = PyList_GET_ITEM(v, j);
 | |
| 			Py_INCREF(key);
 | |
| 			PyTuple_SET_ITEM(item, 0, key);
 | |
| 			Py_INCREF(value);
 | |
| 			PyTuple_SET_ITEM(item, 1, value);
 | |
| 			j++;
 | |
| 		}
 | |
| 	}
 | |
| 	assert(j == n);
 | |
| 	return v;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| dict_fromkeys(PyObject *cls, PyObject *args)
 | |
| {
 | |
| 	PyObject *seq;
 | |
| 	PyObject *value = Py_None;
 | |
| 	PyObject *it;	/* iter(seq) */
 | |
| 	PyObject *key;
 | |
| 	PyObject *d;
 | |
| 	int status;
 | |
| 
 | |
| 	if (!PyArg_UnpackTuple(args, "fromkeys", 1, 2, &seq, &value))
 | |
| 		return NULL;
 | |
| 
 | |
| 	d = PyObject_CallObject(cls, NULL);
 | |
| 	if (d == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (PyDict_CheckExact(d) && PyAnySet_CheckExact(seq)) {
 | |
| 		dictobject *mp = (dictobject *)d;
 | |
| 		Py_ssize_t pos = 0;
 | |
| 		PyObject *key;
 | |
| 		long hash;
 | |
| 
 | |
| 		if (dictresize(mp, PySet_GET_SIZE(seq)))
 | |
| 			return NULL;
 | |
| 
 | |
| 		while (_PySet_NextEntry(seq, &pos, &key, &hash)) {
 | |
| 			Py_INCREF(key);
 | |
| 			Py_INCREF(value);
 | |
| 			if (insertdict(mp, key, hash, value))
 | |
| 				return NULL;
 | |
| 		}
 | |
| 		return d;
 | |
| 	}
 | |
| 
 | |
| 	it = PyObject_GetIter(seq);
 | |
| 	if (it == NULL){
 | |
| 		Py_DECREF(d);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	for (;;) {
 | |
| 		key = PyIter_Next(it);
 | |
| 		if (key == NULL) {
 | |
| 			if (PyErr_Occurred())
 | |
| 				goto Fail;
 | |
| 			break;
 | |
| 		}
 | |
| 		status = PyObject_SetItem(d, key, value);
 | |
| 		Py_DECREF(key);
 | |
| 		if (status < 0)
 | |
| 			goto Fail;
 | |
| 	}
 | |
| 
 | |
| 	Py_DECREF(it);
 | |
| 	return d;
 | |
| 
 | |
| Fail:
 | |
| 	Py_DECREF(it);
 | |
| 	Py_DECREF(d);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static int
 | |
| dict_update_common(PyObject *self, PyObject *args, PyObject *kwds, char *methname)
 | |
| {
 | |
| 	PyObject *arg = NULL;
 | |
| 	int result = 0;
 | |
| 
 | |
| 	if (!PyArg_UnpackTuple(args, methname, 0, 1, &arg))
 | |
| 		result = -1;
 | |
| 
 | |
| 	else if (arg != NULL) {
 | |
| 		if (PyObject_HasAttrString(arg, "keys"))
 | |
| 			result = PyDict_Merge(self, arg, 1);
 | |
| 		else
 | |
| 			result = PyDict_MergeFromSeq2(self, arg, 1);
 | |
| 	}
 | |
| 	if (result == 0 && kwds != NULL)
 | |
| 		result = PyDict_Merge(self, kwds, 1);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| dict_update(PyObject *self, PyObject *args, PyObject *kwds)
 | |
| {
 | |
| 	if (dict_update_common(self, args, kwds, "update") != -1)
 | |
| 		Py_RETURN_NONE;
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Update unconditionally replaces existing items.
 | |
|    Merge has a 3rd argument 'override'; if set, it acts like Update,
 | |
|    otherwise it leaves existing items unchanged.
 | |
| 
 | |
|    PyDict_{Update,Merge} update/merge from a mapping object.
 | |
| 
 | |
|    PyDict_MergeFromSeq2 updates/merges from any iterable object
 | |
|    producing iterable objects of length 2.
 | |
| */
 | |
| 
 | |
| int
 | |
| PyDict_MergeFromSeq2(PyObject *d, PyObject *seq2, int override)
 | |
| {
 | |
| 	PyObject *it;	/* iter(seq2) */
 | |
| 	Py_ssize_t i;	/* index into seq2 of current element */
 | |
| 	PyObject *item;	/* seq2[i] */
 | |
| 	PyObject *fast;	/* item as a 2-tuple or 2-list */
 | |
| 
 | |
| 	assert(d != NULL);
 | |
| 	assert(PyDict_Check(d));
 | |
| 	assert(seq2 != NULL);
 | |
| 
 | |
| 	it = PyObject_GetIter(seq2);
 | |
| 	if (it == NULL)
 | |
| 		return -1;
 | |
| 
 | |
| 	for (i = 0; ; ++i) {
 | |
| 		PyObject *key, *value;
 | |
| 		Py_ssize_t n;
 | |
| 
 | |
| 		fast = NULL;
 | |
| 		item = PyIter_Next(it);
 | |
| 		if (item == NULL) {
 | |
| 			if (PyErr_Occurred())
 | |
| 				goto Fail;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* Convert item to sequence, and verify length 2. */
 | |
| 		fast = PySequence_Fast(item, "");
 | |
| 		if (fast == NULL) {
 | |
| 			if (PyErr_ExceptionMatches(PyExc_TypeError))
 | |
| 				PyErr_Format(PyExc_TypeError,
 | |
| 					"cannot convert dictionary update "
 | |
| 					"sequence element #%zd to a sequence",
 | |
| 					i);
 | |
| 			goto Fail;
 | |
| 		}
 | |
| 		n = PySequence_Fast_GET_SIZE(fast);
 | |
| 		if (n != 2) {
 | |
| 			PyErr_Format(PyExc_ValueError,
 | |
| 				     "dictionary update sequence element #%zd "
 | |
| 				     "has length %zd; 2 is required",
 | |
| 				     i, n);
 | |
| 			goto Fail;
 | |
| 		}
 | |
| 
 | |
| 		/* Update/merge with this (key, value) pair. */
 | |
| 		key = PySequence_Fast_GET_ITEM(fast, 0);
 | |
| 		value = PySequence_Fast_GET_ITEM(fast, 1);
 | |
| 		if (override || PyDict_GetItem(d, key) == NULL) {
 | |
| 			int status = PyDict_SetItem(d, key, value);
 | |
| 			if (status < 0)
 | |
| 				goto Fail;
 | |
| 		}
 | |
| 		Py_DECREF(fast);
 | |
| 		Py_DECREF(item);
 | |
| 	}
 | |
| 
 | |
| 	i = 0;
 | |
| 	goto Return;
 | |
| Fail:
 | |
| 	Py_XDECREF(item);
 | |
| 	Py_XDECREF(fast);
 | |
| 	i = -1;
 | |
| Return:
 | |
| 	Py_DECREF(it);
 | |
| 	return Py_SAFE_DOWNCAST(i, Py_ssize_t, int);
 | |
| }
 | |
| 
 | |
| int
 | |
| PyDict_Update(PyObject *a, PyObject *b)
 | |
| {
 | |
| 	return PyDict_Merge(a, b, 1);
 | |
| }
 | |
| 
 | |
| int
 | |
| PyDict_Merge(PyObject *a, PyObject *b, int override)
 | |
| {
 | |
| 	register PyDictObject *mp, *other;
 | |
| 	register Py_ssize_t i;
 | |
| 	dictentry *entry;
 | |
| 
 | |
| 	/* We accept for the argument either a concrete dictionary object,
 | |
| 	 * or an abstract "mapping" object.  For the former, we can do
 | |
| 	 * things quite efficiently.  For the latter, we only require that
 | |
| 	 * PyMapping_Keys() and PyObject_GetItem() be supported.
 | |
| 	 */
 | |
| 	if (a == NULL || !PyDict_Check(a) || b == NULL) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return -1;
 | |
| 	}
 | |
| 	mp = (dictobject*)a;
 | |
| 	if (PyDict_CheckExact(b)) {
 | |
| 		other = (dictobject*)b;
 | |
| 		if (other == mp || other->ma_used == 0)
 | |
| 			/* a.update(a) or a.update({}); nothing to do */
 | |
| 			return 0;
 | |
| 		if (mp->ma_used == 0)
 | |
| 			/* Since the target dict is empty, PyDict_GetItem()
 | |
| 			 * always returns NULL.  Setting override to 1
 | |
| 			 * skips the unnecessary test.
 | |
| 			 */
 | |
| 			override = 1;
 | |
| 		/* Do one big resize at the start, rather than
 | |
| 		 * incrementally resizing as we insert new items.  Expect
 | |
| 		 * that there will be no (or few) overlapping keys.
 | |
| 		 */
 | |
| 		if ((mp->ma_fill + other->ma_used)*3 >= (mp->ma_mask+1)*2) {
 | |
| 		   if (dictresize(mp, (mp->ma_used + other->ma_used)*2) != 0)
 | |
| 			   return -1;
 | |
| 		}
 | |
| 		for (i = 0; i <= other->ma_mask; i++) {
 | |
| 			entry = &other->ma_table[i];
 | |
| 			if (entry->me_value != NULL &&
 | |
| 			    (override ||
 | |
| 			     PyDict_GetItem(a, entry->me_key) == NULL)) {
 | |
| 				Py_INCREF(entry->me_key);
 | |
| 				Py_INCREF(entry->me_value);
 | |
| 				if (insertdict(mp, entry->me_key,
 | |
| 					       (long)entry->me_hash,
 | |
| 					       entry->me_value) != 0)
 | |
| 					return -1;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		/* Do it the generic, slower way */
 | |
| 		PyObject *keys = PyMapping_Keys(b);
 | |
| 		PyObject *iter;
 | |
| 		PyObject *key, *value;
 | |
| 		int status;
 | |
| 
 | |
| 		if (keys == NULL)
 | |
| 			/* Docstring says this is equivalent to E.keys() so
 | |
| 			 * if E doesn't have a .keys() method we want
 | |
| 			 * AttributeError to percolate up.  Might as well
 | |
| 			 * do the same for any other error.
 | |
| 			 */
 | |
| 			return -1;
 | |
| 
 | |
| 		iter = PyObject_GetIter(keys);
 | |
| 		Py_DECREF(keys);
 | |
| 		if (iter == NULL)
 | |
| 			return -1;
 | |
| 
 | |
| 		for (key = PyIter_Next(iter); key; key = PyIter_Next(iter)) {
 | |
| 			if (!override && PyDict_GetItem(a, key) != NULL) {
 | |
| 				Py_DECREF(key);
 | |
| 				continue;
 | |
| 			}
 | |
| 			value = PyObject_GetItem(b, key);
 | |
| 			if (value == NULL) {
 | |
| 				Py_DECREF(iter);
 | |
| 				Py_DECREF(key);
 | |
| 				return -1;
 | |
| 			}
 | |
| 			status = PyDict_SetItem(a, key, value);
 | |
| 			Py_DECREF(key);
 | |
| 			Py_DECREF(value);
 | |
| 			if (status < 0) {
 | |
| 				Py_DECREF(iter);
 | |
| 				return -1;
 | |
| 			}
 | |
| 		}
 | |
| 		Py_DECREF(iter);
 | |
| 		if (PyErr_Occurred())
 | |
| 			/* Iterator completed, via error */
 | |
| 			return -1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| dict_copy(register dictobject *mp)
 | |
| {
 | |
| 	return PyDict_Copy((PyObject*)mp);
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| PyDict_Copy(PyObject *o)
 | |
| {
 | |
| 	PyObject *copy;
 | |
| 
 | |
| 	if (o == NULL || !PyDict_Check(o)) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	copy = PyDict_New();
 | |
| 	if (copy == NULL)
 | |
| 		return NULL;
 | |
| 	if (PyDict_Merge(copy, o, 1) == 0)
 | |
| 		return copy;
 | |
| 	Py_DECREF(copy);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| Py_ssize_t
 | |
| PyDict_Size(PyObject *mp)
 | |
| {
 | |
| 	if (mp == NULL || !PyDict_Check(mp)) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return -1;
 | |
| 	}
 | |
| 	return ((dictobject *)mp)->ma_used;
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| PyDict_Keys(PyObject *mp)
 | |
| {
 | |
| 	if (mp == NULL || !PyDict_Check(mp)) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return dict_keys((dictobject *)mp);
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| PyDict_Values(PyObject *mp)
 | |
| {
 | |
| 	if (mp == NULL || !PyDict_Check(mp)) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return dict_values((dictobject *)mp);
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| PyDict_Items(PyObject *mp)
 | |
| {
 | |
| 	if (mp == NULL || !PyDict_Check(mp)) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return dict_items((dictobject *)mp);
 | |
| }
 | |
| 
 | |
| /* Return 1 if dicts equal, 0 if not, -1 if error.
 | |
|  * Gets out as soon as any difference is detected.
 | |
|  * Uses only Py_EQ comparison.
 | |
|  */
 | |
| static int
 | |
| dict_equal(dictobject *a, dictobject *b)
 | |
| {
 | |
| 	Py_ssize_t i;
 | |
| 
 | |
| 	if (a->ma_used != b->ma_used)
 | |
| 		/* can't be equal if # of entries differ */
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Same # of entries -- check all of 'em.  Exit early on any diff. */
 | |
| 	for (i = 0; i <= a->ma_mask; i++) {
 | |
| 		PyObject *aval = a->ma_table[i].me_value;
 | |
| 		if (aval != NULL) {
 | |
| 			int cmp;
 | |
| 			PyObject *bval;
 | |
| 			PyObject *key = a->ma_table[i].me_key;
 | |
| 			/* temporarily bump aval's refcount to ensure it stays
 | |
| 			   alive until we're done with it */
 | |
| 			Py_INCREF(aval);
 | |
| 			/* ditto for key */
 | |
| 			Py_INCREF(key);
 | |
| 			bval = PyDict_GetItemWithError((PyObject *)b, key);
 | |
| 			Py_DECREF(key);
 | |
| 			if (bval == NULL) {
 | |
| 				Py_DECREF(aval);
 | |
| 				if (PyErr_Occurred())
 | |
| 					return -1;
 | |
| 				return 0;
 | |
| 			}
 | |
| 			cmp = PyObject_RichCompareBool(aval, bval, Py_EQ);
 | |
| 			Py_DECREF(aval);
 | |
| 			if (cmp <= 0)  /* error or not equal */
 | |
| 				return cmp;
 | |
|  		}
 | |
| 	}
 | |
| 	return 1;
 | |
|  }
 | |
| 
 | |
| static PyObject *
 | |
| dict_richcompare(PyObject *v, PyObject *w, int op)
 | |
| {
 | |
| 	int cmp;
 | |
| 	PyObject *res;
 | |
| 
 | |
| 	if (!PyDict_Check(v) || !PyDict_Check(w)) {
 | |
| 		res = Py_NotImplemented;
 | |
| 	}
 | |
| 	else if (op == Py_EQ || op == Py_NE) {
 | |
| 		cmp = dict_equal((dictobject *)v, (dictobject *)w);
 | |
| 		if (cmp < 0)
 | |
| 			return NULL;
 | |
| 		res = (cmp == (op == Py_EQ)) ? Py_True : Py_False;
 | |
| 	}
 | |
| 	else
 | |
| 		res = Py_NotImplemented;
 | |
| 	Py_INCREF(res);
 | |
| 	return res;
 | |
|  }
 | |
| 
 | |
| static PyObject *
 | |
| dict_contains(register dictobject *mp, PyObject *key)
 | |
| {
 | |
| 	long hash;
 | |
| 	dictentry *ep;
 | |
| 
 | |
| 	if (!PyString_CheckExact(key) ||
 | |
| 	    (hash = ((PyStringObject *) key)->ob_shash) == -1) {
 | |
| 		hash = PyObject_Hash(key);
 | |
| 		if (hash == -1)
 | |
| 			return NULL;
 | |
| 	}
 | |
| 	ep = (mp->ma_lookup)(mp, key, hash);
 | |
| 	if (ep == NULL)
 | |
| 		return NULL;
 | |
| 	return PyBool_FromLong(ep->me_value != NULL);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| dict_get(register dictobject *mp, PyObject *args)
 | |
| {
 | |
| 	PyObject *key;
 | |
| 	PyObject *failobj = Py_None;
 | |
| 	PyObject *val = NULL;
 | |
| 	long hash;
 | |
| 	dictentry *ep;
 | |
| 
 | |
| 	if (!PyArg_UnpackTuple(args, "get", 1, 2, &key, &failobj))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (!PyString_CheckExact(key) ||
 | |
| 	    (hash = ((PyStringObject *) key)->ob_shash) == -1) {
 | |
| 		hash = PyObject_Hash(key);
 | |
| 		if (hash == -1)
 | |
| 			return NULL;
 | |
| 	}
 | |
| 	ep = (mp->ma_lookup)(mp, key, hash);
 | |
| 	if (ep == NULL)
 | |
| 		return NULL;
 | |
| 	val = ep->me_value;
 | |
| 	if (val == NULL)
 | |
| 		val = failobj;
 | |
| 	Py_INCREF(val);
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| 
 | |
| static PyObject *
 | |
| dict_setdefault(register dictobject *mp, PyObject *args)
 | |
| {
 | |
| 	PyObject *key;
 | |
| 	PyObject *failobj = Py_None;
 | |
| 	PyObject *val = NULL;
 | |
| 	long hash;
 | |
| 	dictentry *ep;
 | |
| 
 | |
| 	if (!PyArg_UnpackTuple(args, "setdefault", 1, 2, &key, &failobj))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (!PyString_CheckExact(key) ||
 | |
| 	    (hash = ((PyStringObject *) key)->ob_shash) == -1) {
 | |
| 		hash = PyObject_Hash(key);
 | |
| 		if (hash == -1)
 | |
| 			return NULL;
 | |
| 	}
 | |
| 	ep = (mp->ma_lookup)(mp, key, hash);
 | |
| 	if (ep == NULL)
 | |
| 		return NULL;
 | |
| 	val = ep->me_value;
 | |
| 	if (val == NULL) {
 | |
| 		val = failobj;
 | |
| 		if (PyDict_SetItem((PyObject*)mp, key, failobj))
 | |
| 			val = NULL;
 | |
| 	}
 | |
| 	Py_XINCREF(val);
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| 
 | |
| static PyObject *
 | |
| dict_clear(register dictobject *mp)
 | |
| {
 | |
| 	PyDict_Clear((PyObject *)mp);
 | |
| 	Py_RETURN_NONE;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| dict_pop(dictobject *mp, PyObject *args)
 | |
| {
 | |
| 	long hash;
 | |
| 	dictentry *ep;
 | |
| 	PyObject *old_value, *old_key;
 | |
| 	PyObject *key, *deflt = NULL;
 | |
| 
 | |
| 	if(!PyArg_UnpackTuple(args, "pop", 1, 2, &key, &deflt))
 | |
| 		return NULL;
 | |
| 	if (mp->ma_used == 0) {
 | |
| 		if (deflt) {
 | |
| 			Py_INCREF(deflt);
 | |
| 			return deflt;
 | |
| 		}
 | |
| 		PyErr_SetString(PyExc_KeyError,
 | |
| 				"pop(): dictionary is empty");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if (!PyString_CheckExact(key) ||
 | |
| 	    (hash = ((PyStringObject *) key)->ob_shash) == -1) {
 | |
| 		hash = PyObject_Hash(key);
 | |
| 		if (hash == -1)
 | |
| 			return NULL;
 | |
| 	}
 | |
| 	ep = (mp->ma_lookup)(mp, key, hash);
 | |
| 	if (ep == NULL)
 | |
| 		return NULL;
 | |
| 	if (ep->me_value == NULL) {
 | |
| 		if (deflt) {
 | |
| 			Py_INCREF(deflt);
 | |
| 			return deflt;
 | |
| 		}
 | |
| 		set_key_error(key);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	old_key = ep->me_key;
 | |
| 	Py_INCREF(dummy);
 | |
| 	ep->me_key = dummy;
 | |
| 	old_value = ep->me_value;
 | |
| 	ep->me_value = NULL;
 | |
| 	mp->ma_used--;
 | |
| 	Py_DECREF(old_key);
 | |
| 	return old_value;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| dict_popitem(dictobject *mp)
 | |
| {
 | |
| 	Py_ssize_t i = 0;
 | |
| 	dictentry *ep;
 | |
| 	PyObject *res;
 | |
| 
 | |
| 	/* Allocate the result tuple before checking the size.  Believe it
 | |
| 	 * or not, this allocation could trigger a garbage collection which
 | |
| 	 * could empty the dict, so if we checked the size first and that
 | |
| 	 * happened, the result would be an infinite loop (searching for an
 | |
| 	 * entry that no longer exists).  Note that the usual popitem()
 | |
| 	 * idiom is "while d: k, v = d.popitem()". so needing to throw the
 | |
| 	 * tuple away if the dict *is* empty isn't a significant
 | |
| 	 * inefficiency -- possible, but unlikely in practice.
 | |
| 	 */
 | |
| 	res = PyTuple_New(2);
 | |
| 	if (res == NULL)
 | |
| 		return NULL;
 | |
| 	if (mp->ma_used == 0) {
 | |
| 		Py_DECREF(res);
 | |
| 		PyErr_SetString(PyExc_KeyError,
 | |
| 				"popitem(): dictionary is empty");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	/* Set ep to "the first" dict entry with a value.  We abuse the hash
 | |
| 	 * field of slot 0 to hold a search finger:
 | |
| 	 * If slot 0 has a value, use slot 0.
 | |
| 	 * Else slot 0 is being used to hold a search finger,
 | |
| 	 * and we use its hash value as the first index to look.
 | |
| 	 */
 | |
| 	ep = &mp->ma_table[0];
 | |
| 	if (ep->me_value == NULL) {
 | |
| 		i = ep->me_hash;
 | |
| 		/* The hash field may be a real hash value, or it may be a
 | |
| 		 * legit search finger, or it may be a once-legit search
 | |
| 		 * finger that's out of bounds now because it wrapped around
 | |
| 		 * or the table shrunk -- simply make sure it's in bounds now.
 | |
| 		 */
 | |
| 		if (i > mp->ma_mask || i < 1)
 | |
| 			i = 1;	/* skip slot 0 */
 | |
| 		while ((ep = &mp->ma_table[i])->me_value == NULL) {
 | |
| 			i++;
 | |
| 			if (i > mp->ma_mask)
 | |
| 				i = 1;
 | |
| 		}
 | |
| 	}
 | |
| 	PyTuple_SET_ITEM(res, 0, ep->me_key);
 | |
| 	PyTuple_SET_ITEM(res, 1, ep->me_value);
 | |
| 	Py_INCREF(dummy);
 | |
| 	ep->me_key = dummy;
 | |
| 	ep->me_value = NULL;
 | |
| 	mp->ma_used--;
 | |
| 	assert(mp->ma_table[0].me_value == NULL);
 | |
| 	mp->ma_table[0].me_hash = i + 1;  /* next place to start */
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| static int
 | |
| dict_traverse(PyObject *op, visitproc visit, void *arg)
 | |
| {
 | |
| 	Py_ssize_t i = 0;
 | |
| 	PyObject *pk;
 | |
| 	PyObject *pv;
 | |
| 
 | |
| 	while (PyDict_Next(op, &i, &pk, &pv)) {
 | |
| 		Py_VISIT(pk);
 | |
| 		Py_VISIT(pv);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| dict_tp_clear(PyObject *op)
 | |
| {
 | |
| 	PyDict_Clear(op);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| extern PyTypeObject PyDictIterKey_Type; /* Forward */
 | |
| extern PyTypeObject PyDictIterValue_Type; /* Forward */
 | |
| extern PyTypeObject PyDictIterItem_Type; /* Forward */
 | |
| static PyObject *dictiter_new(dictobject *, PyTypeObject *);
 | |
| 
 | |
| 
 | |
| PyDoc_STRVAR(contains__doc__,
 | |
| "D.__contains__(k) -> True if D has a key k, else False");
 | |
| 
 | |
| PyDoc_STRVAR(getitem__doc__, "x.__getitem__(y) <==> x[y]");
 | |
| 
 | |
| PyDoc_STRVAR(get__doc__,
 | |
| "D.get(k[,d]) -> D[k] if k in D, else d.  d defaults to None.");
 | |
| 
 | |
| PyDoc_STRVAR(setdefault_doc__,
 | |
| "D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D");
 | |
| 
 | |
| PyDoc_STRVAR(pop__doc__,
 | |
| "D.pop(k[,d]) -> v, remove specified key and return the corresponding value\n\
 | |
| If key is not found, d is returned if given, otherwise KeyError is raised");
 | |
| 
 | |
| PyDoc_STRVAR(popitem__doc__,
 | |
| "D.popitem() -> (k, v), remove and return some (key, value) pair as a\n\
 | |
| 2-tuple; but raise KeyError if D is empty");
 | |
| 
 | |
| PyDoc_STRVAR(update__doc__,
 | |
| "D.update(E, **F) -> None.  Update D from E and F: for k in E: D[k] = E[k]\
 | |
| \n(if E has keys else: for (k, v) in E: D[k] = v) then: for k in F: D[k] = F[k]");
 | |
| 
 | |
| PyDoc_STRVAR(fromkeys__doc__,
 | |
| "dict.fromkeys(S[,v]) -> New dict with keys from S and values equal to v.\n\
 | |
| v defaults to None.");
 | |
| 
 | |
| PyDoc_STRVAR(clear__doc__,
 | |
| "D.clear() -> None.  Remove all items from D.");
 | |
| 
 | |
| PyDoc_STRVAR(copy__doc__,
 | |
| "D.copy() -> a shallow copy of D");
 | |
| 
 | |
| /* Forward */
 | |
| static PyObject *dictkeys_new(PyObject *);
 | |
| static PyObject *dictitems_new(PyObject *);
 | |
| static PyObject *dictvalues_new(PyObject *);
 | |
| 
 | |
| PyDoc_STRVAR(keys__doc__,
 | |
| 	     "D.keys() -> a set-like object providing a view on D's keys");
 | |
| PyDoc_STRVAR(items__doc__,
 | |
| 	     "D.items() -> a set-like object providing a view on D's items");
 | |
| PyDoc_STRVAR(values__doc__,
 | |
| 	     "D.values() -> an object providing a view on D's values");
 | |
| 
 | |
| static PyMethodDef mapp_methods[] = {
 | |
| 	{"__contains__",(PyCFunction)dict_contains,     METH_O | METH_COEXIST,
 | |
| 	 contains__doc__},
 | |
| 	{"__getitem__", (PyCFunction)dict_subscript,	METH_O | METH_COEXIST,
 | |
| 	 getitem__doc__},
 | |
| 	{"get",         (PyCFunction)dict_get,          METH_VARARGS,
 | |
| 	 get__doc__},
 | |
| 	{"setdefault",  (PyCFunction)dict_setdefault,   METH_VARARGS,
 | |
| 	 setdefault_doc__},
 | |
| 	{"pop",         (PyCFunction)dict_pop,          METH_VARARGS,
 | |
| 	 pop__doc__},
 | |
| 	{"popitem",	(PyCFunction)dict_popitem,	METH_NOARGS,
 | |
| 	 popitem__doc__},
 | |
| 	{"keys",	(PyCFunction)dictkeys_new,	METH_NOARGS,
 | |
| 	keys__doc__},
 | |
| 	{"items",	(PyCFunction)dictitems_new,	METH_NOARGS,
 | |
| 	items__doc__},
 | |
| 	{"values",	(PyCFunction)dictvalues_new,	METH_NOARGS,
 | |
| 	values__doc__},
 | |
| 	{"update",	(PyCFunction)dict_update,	METH_VARARGS | METH_KEYWORDS,
 | |
| 	 update__doc__},
 | |
| 	{"fromkeys",	(PyCFunction)dict_fromkeys,	METH_VARARGS | METH_CLASS,
 | |
| 	 fromkeys__doc__},
 | |
| 	{"clear",	(PyCFunction)dict_clear,	METH_NOARGS,
 | |
| 	 clear__doc__},
 | |
| 	{"copy",	(PyCFunction)dict_copy,		METH_NOARGS,
 | |
| 	 copy__doc__},
 | |
| 	{NULL,		NULL}	/* sentinel */
 | |
| };
 | |
| 
 | |
| /* Return 1 if `key` is in dict `op`, 0 if not, and -1 on error. */
 | |
| int
 | |
| PyDict_Contains(PyObject *op, PyObject *key)
 | |
| {
 | |
| 	long hash;
 | |
| 	dictobject *mp = (dictobject *)op;
 | |
| 	dictentry *ep;
 | |
| 
 | |
| 	if (!PyString_CheckExact(key) ||
 | |
| 	    (hash = ((PyStringObject *) key)->ob_shash) == -1) {
 | |
| 		hash = PyObject_Hash(key);
 | |
| 		if (hash == -1)
 | |
| 			return -1;
 | |
| 	}
 | |
| 	ep = (mp->ma_lookup)(mp, key, hash);
 | |
| 	return ep == NULL ? -1 : (ep->me_value != NULL);
 | |
| }
 | |
| 
 | |
| /* Internal version of PyDict_Contains used when the hash value is already known */
 | |
| int
 | |
| _PyDict_Contains(PyObject *op, PyObject *key, long hash)
 | |
| {
 | |
| 	dictobject *mp = (dictobject *)op;
 | |
| 	dictentry *ep;
 | |
| 
 | |
| 	ep = (mp->ma_lookup)(mp, key, hash);
 | |
| 	return ep == NULL ? -1 : (ep->me_value != NULL);
 | |
| }
 | |
| 
 | |
| /* Hack to implement "key in dict" */
 | |
| static PySequenceMethods dict_as_sequence = {
 | |
| 	0,			/* sq_length */
 | |
| 	0,			/* sq_concat */
 | |
| 	0,			/* sq_repeat */
 | |
| 	0,			/* sq_item */
 | |
| 	0,			/* sq_slice */
 | |
| 	0,			/* sq_ass_item */
 | |
| 	0,			/* sq_ass_slice */
 | |
| 	PyDict_Contains,	/* sq_contains */
 | |
| 	0,			/* sq_inplace_concat */
 | |
| 	0,			/* sq_inplace_repeat */
 | |
| };
 | |
| 
 | |
| static PyObject *
 | |
| dict_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
 | |
| {
 | |
| 	PyObject *self;
 | |
| 
 | |
| 	assert(type != NULL && type->tp_alloc != NULL);
 | |
| 	self = type->tp_alloc(type, 0);
 | |
| 	if (self != NULL) {
 | |
| 		PyDictObject *d = (PyDictObject *)self;
 | |
| 		/* It's guaranteed that tp->alloc zeroed out the struct. */
 | |
| 		assert(d->ma_table == NULL && d->ma_fill == 0 && d->ma_used == 0);
 | |
| 		INIT_NONZERO_DICT_SLOTS(d);
 | |
| 		d->ma_lookup = lookdict_string;
 | |
| #ifdef SHOW_CONVERSION_COUNTS
 | |
| 		++created;
 | |
| #endif
 | |
| 	}
 | |
| 	return self;
 | |
| }
 | |
| 
 | |
| static int
 | |
| dict_init(PyObject *self, PyObject *args, PyObject *kwds)
 | |
| {
 | |
| 	return dict_update_common(self, args, kwds, "dict");
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| dict_iter(dictobject *dict)
 | |
| {
 | |
| 	return dictiter_new(dict, &PyDictIterKey_Type);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(dictionary_doc,
 | |
| "dict() -> new empty dictionary.\n"
 | |
| "dict(mapping) -> new dictionary initialized from a mapping object's\n"
 | |
| "    (key, value) pairs.\n"
 | |
| "dict(seq) -> new dictionary initialized as if via:\n"
 | |
| "    d = {}\n"
 | |
| "    for k, v in seq:\n"
 | |
| "        d[k] = v\n"
 | |
| "dict(**kwargs) -> new dictionary initialized with the name=value pairs\n"
 | |
| "    in the keyword argument list.  For example:  dict(one=1, two=2)");
 | |
| 
 | |
| PyTypeObject PyDict_Type = {
 | |
| 	PyVarObject_HEAD_INIT(&PyType_Type, 0)
 | |
| 	"dict",
 | |
| 	sizeof(dictobject),
 | |
| 	0,
 | |
| 	(destructor)dict_dealloc,		/* tp_dealloc */
 | |
| 	0,					/* tp_print */
 | |
| 	0,					/* tp_getattr */
 | |
| 	0,					/* tp_setattr */
 | |
| 	0,					/* tp_compare */
 | |
| 	(reprfunc)dict_repr,			/* tp_repr */
 | |
| 	0,					/* tp_as_number */
 | |
| 	&dict_as_sequence,			/* tp_as_sequence */
 | |
| 	&dict_as_mapping,			/* tp_as_mapping */
 | |
| 	0,					/* tp_hash */
 | |
| 	0,					/* tp_call */
 | |
| 	0,					/* tp_str */
 | |
| 	PyObject_GenericGetAttr,		/* tp_getattro */
 | |
| 	0,					/* tp_setattro */
 | |
| 	0,					/* tp_as_buffer */
 | |
| 	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC |
 | |
| 		Py_TPFLAGS_BASETYPE | Py_TPFLAGS_DICT_SUBCLASS,	/* tp_flags */
 | |
| 	dictionary_doc,				/* tp_doc */
 | |
| 	dict_traverse,				/* tp_traverse */
 | |
| 	dict_tp_clear,				/* tp_clear */
 | |
| 	dict_richcompare,			/* tp_richcompare */
 | |
| 	0,					/* tp_weaklistoffset */
 | |
| 	(getiterfunc)dict_iter,			/* tp_iter */
 | |
| 	0,					/* tp_iternext */
 | |
| 	mapp_methods,				/* tp_methods */
 | |
| 	0,					/* tp_members */
 | |
| 	0,					/* tp_getset */
 | |
| 	0,					/* tp_base */
 | |
| 	0,					/* tp_dict */
 | |
| 	0,					/* tp_descr_get */
 | |
| 	0,					/* tp_descr_set */
 | |
| 	0,					/* tp_dictoffset */
 | |
| 	dict_init,				/* tp_init */
 | |
| 	PyType_GenericAlloc,			/* tp_alloc */
 | |
| 	dict_new,				/* tp_new */
 | |
| 	PyObject_GC_Del,        		/* tp_free */
 | |
| };
 | |
| 
 | |
| /* For backward compatibility with old dictionary interface */
 | |
| 
 | |
| PyObject *
 | |
| PyDict_GetItemString(PyObject *v, const char *key)
 | |
| {
 | |
| 	PyObject *kv, *rv;
 | |
| 	kv = PyUnicode_FromString(key);
 | |
| 	if (kv == NULL)
 | |
| 		return NULL;
 | |
| 	rv = PyDict_GetItem(v, kv);
 | |
| 	Py_DECREF(kv);
 | |
| 	return rv;
 | |
| }
 | |
| 
 | |
| int
 | |
| PyDict_SetItemString(PyObject *v, const char *key, PyObject *item)
 | |
| {
 | |
| 	PyObject *kv;
 | |
| 	int err;
 | |
| 	kv = PyUnicode_FromString(key);
 | |
| 	if (kv == NULL)
 | |
| 		return -1;
 | |
| 	PyUnicode_InternInPlace(&kv); /* XXX Should we really? */
 | |
| 	err = PyDict_SetItem(v, kv, item);
 | |
| 	Py_DECREF(kv);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| int
 | |
| PyDict_DelItemString(PyObject *v, const char *key)
 | |
| {
 | |
| 	PyObject *kv;
 | |
| 	int err;
 | |
| 	kv = PyUnicode_FromString(key);
 | |
| 	if (kv == NULL)
 | |
| 		return -1;
 | |
| 	err = PyDict_DelItem(v, kv);
 | |
| 	Py_DECREF(kv);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /* Dictionary iterator types */
 | |
| 
 | |
| typedef struct {
 | |
| 	PyObject_HEAD
 | |
| 	dictobject *di_dict; /* Set to NULL when iterator is exhausted */
 | |
| 	Py_ssize_t di_used;
 | |
| 	Py_ssize_t di_pos;
 | |
| 	PyObject* di_result; /* reusable result tuple for iteritems */
 | |
| 	Py_ssize_t len;
 | |
| } dictiterobject;
 | |
| 
 | |
| static PyObject *
 | |
| dictiter_new(dictobject *dict, PyTypeObject *itertype)
 | |
| {
 | |
| 	dictiterobject *di;
 | |
| 	di = PyObject_New(dictiterobject, itertype);
 | |
| 	if (di == NULL)
 | |
| 		return NULL;
 | |
| 	Py_INCREF(dict);
 | |
| 	di->di_dict = dict;
 | |
| 	di->di_used = dict->ma_used;
 | |
| 	di->di_pos = 0;
 | |
| 	di->len = dict->ma_used;
 | |
| 	if (itertype == &PyDictIterItem_Type) {
 | |
| 		di->di_result = PyTuple_Pack(2, Py_None, Py_None);
 | |
| 		if (di->di_result == NULL) {
 | |
| 			Py_DECREF(di);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	else
 | |
| 		di->di_result = NULL;
 | |
| 	return (PyObject *)di;
 | |
| }
 | |
| 
 | |
| static void
 | |
| dictiter_dealloc(dictiterobject *di)
 | |
| {
 | |
| 	Py_XDECREF(di->di_dict);
 | |
| 	Py_XDECREF(di->di_result);
 | |
| 	PyObject_Del(di);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| dictiter_len(dictiterobject *di)
 | |
| {
 | |
| 	Py_ssize_t len = 0;
 | |
| 	if (di->di_dict != NULL && di->di_used == di->di_dict->ma_used)
 | |
| 		len = di->len;
 | |
| 	return PyInt_FromSize_t(len);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(length_hint_doc,
 | |
|              "Private method returning an estimate of len(list(it)).");
 | |
| 
 | |
| static PyMethodDef dictiter_methods[] = {
 | |
| 	{"__length_hint__", (PyCFunction)dictiter_len, METH_NOARGS,
 | |
|          length_hint_doc},
 | |
|  	{NULL,		NULL}		/* sentinel */
 | |
| };
 | |
| 
 | |
| static PyObject *dictiter_iternextkey(dictiterobject *di)
 | |
| {
 | |
| 	PyObject *key;
 | |
| 	register Py_ssize_t i, mask;
 | |
| 	register dictentry *ep;
 | |
| 	dictobject *d = di->di_dict;
 | |
| 
 | |
| 	if (d == NULL)
 | |
| 		return NULL;
 | |
| 	assert (PyDict_Check(d));
 | |
| 
 | |
| 	if (di->di_used != d->ma_used) {
 | |
| 		PyErr_SetString(PyExc_RuntimeError,
 | |
| 				"dictionary changed size during iteration");
 | |
| 		di->di_used = -1; /* Make this state sticky */
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	i = di->di_pos;
 | |
| 	if (i < 0)
 | |
| 		goto fail;
 | |
| 	ep = d->ma_table;
 | |
| 	mask = d->ma_mask;
 | |
| 	while (i <= mask && ep[i].me_value == NULL)
 | |
| 		i++;
 | |
| 	di->di_pos = i+1;
 | |
| 	if (i > mask)
 | |
| 		goto fail;
 | |
| 	di->len--;
 | |
| 	key = ep[i].me_key;
 | |
| 	Py_INCREF(key);
 | |
| 	return key;
 | |
| 
 | |
| fail:
 | |
| 	Py_DECREF(d);
 | |
| 	di->di_dict = NULL;
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| PyTypeObject PyDictIterKey_Type = {
 | |
| 	PyVarObject_HEAD_INIT(&PyType_Type, 0)
 | |
| 	"dictionary-keyiterator",		/* tp_name */
 | |
| 	sizeof(dictiterobject),			/* tp_basicsize */
 | |
| 	0,					/* tp_itemsize */
 | |
| 	/* methods */
 | |
| 	(destructor)dictiter_dealloc, 		/* tp_dealloc */
 | |
| 	0,					/* tp_print */
 | |
| 	0,					/* tp_getattr */
 | |
| 	0,					/* tp_setattr */
 | |
| 	0,					/* tp_compare */
 | |
| 	0,					/* tp_repr */
 | |
| 	0,					/* tp_as_number */
 | |
| 	0,					/* tp_as_sequence */
 | |
| 	0,					/* tp_as_mapping */
 | |
| 	0,					/* tp_hash */
 | |
| 	0,					/* tp_call */
 | |
| 	0,					/* tp_str */
 | |
| 	PyObject_GenericGetAttr,		/* tp_getattro */
 | |
| 	0,					/* tp_setattro */
 | |
| 	0,					/* tp_as_buffer */
 | |
| 	Py_TPFLAGS_DEFAULT,			/* tp_flags */
 | |
|  	0,					/* tp_doc */
 | |
|  	0,					/* tp_traverse */
 | |
|  	0,					/* tp_clear */
 | |
| 	0,					/* tp_richcompare */
 | |
| 	0,					/* tp_weaklistoffset */
 | |
| 	PyObject_SelfIter,			/* tp_iter */
 | |
| 	(iternextfunc)dictiter_iternextkey,	/* tp_iternext */
 | |
| 	dictiter_methods,			/* tp_methods */
 | |
| 	0,
 | |
| };
 | |
| 
 | |
| static PyObject *dictiter_iternextvalue(dictiterobject *di)
 | |
| {
 | |
| 	PyObject *value;
 | |
| 	register Py_ssize_t i, mask;
 | |
| 	register dictentry *ep;
 | |
| 	dictobject *d = di->di_dict;
 | |
| 
 | |
| 	if (d == NULL)
 | |
| 		return NULL;
 | |
| 	assert (PyDict_Check(d));
 | |
| 
 | |
| 	if (di->di_used != d->ma_used) {
 | |
| 		PyErr_SetString(PyExc_RuntimeError,
 | |
| 				"dictionary changed size during iteration");
 | |
| 		di->di_used = -1; /* Make this state sticky */
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	i = di->di_pos;
 | |
| 	mask = d->ma_mask;
 | |
| 	if (i < 0 || i > mask)
 | |
| 		goto fail;
 | |
| 	ep = d->ma_table;
 | |
| 	while ((value=ep[i].me_value) == NULL) {
 | |
| 		i++;
 | |
| 		if (i > mask)
 | |
| 			goto fail;
 | |
| 	}
 | |
| 	di->di_pos = i+1;
 | |
| 	di->len--;
 | |
| 	Py_INCREF(value);
 | |
| 	return value;
 | |
| 
 | |
| fail:
 | |
| 	Py_DECREF(d);
 | |
| 	di->di_dict = NULL;
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| PyTypeObject PyDictIterValue_Type = {
 | |
| 	PyVarObject_HEAD_INIT(&PyType_Type, 0)
 | |
| 	"dictionary-valueiterator",		/* tp_name */
 | |
| 	sizeof(dictiterobject),			/* tp_basicsize */
 | |
| 	0,					/* tp_itemsize */
 | |
| 	/* methods */
 | |
| 	(destructor)dictiter_dealloc, 		/* tp_dealloc */
 | |
| 	0,					/* tp_print */
 | |
| 	0,					/* tp_getattr */
 | |
| 	0,					/* tp_setattr */
 | |
| 	0,					/* tp_compare */
 | |
| 	0,					/* tp_repr */
 | |
| 	0,					/* tp_as_number */
 | |
| 	0,					/* tp_as_sequence */
 | |
| 	0,					/* tp_as_mapping */
 | |
| 	0,					/* tp_hash */
 | |
| 	0,					/* tp_call */
 | |
| 	0,					/* tp_str */
 | |
| 	PyObject_GenericGetAttr,		/* tp_getattro */
 | |
| 	0,					/* tp_setattro */
 | |
| 	0,					/* tp_as_buffer */
 | |
| 	Py_TPFLAGS_DEFAULT,			/* tp_flags */
 | |
|  	0,					/* tp_doc */
 | |
|  	0,					/* tp_traverse */
 | |
|  	0,					/* tp_clear */
 | |
| 	0,					/* tp_richcompare */
 | |
| 	0,					/* tp_weaklistoffset */
 | |
| 	PyObject_SelfIter,			/* tp_iter */
 | |
| 	(iternextfunc)dictiter_iternextvalue,	/* tp_iternext */
 | |
| 	dictiter_methods,			/* tp_methods */
 | |
| 	0,
 | |
| };
 | |
| 
 | |
| static PyObject *dictiter_iternextitem(dictiterobject *di)
 | |
| {
 | |
| 	PyObject *key, *value, *result = di->di_result;
 | |
| 	register Py_ssize_t i, mask;
 | |
| 	register dictentry *ep;
 | |
| 	dictobject *d = di->di_dict;
 | |
| 
 | |
| 	if (d == NULL)
 | |
| 		return NULL;
 | |
| 	assert (PyDict_Check(d));
 | |
| 
 | |
| 	if (di->di_used != d->ma_used) {
 | |
| 		PyErr_SetString(PyExc_RuntimeError,
 | |
| 				"dictionary changed size during iteration");
 | |
| 		di->di_used = -1; /* Make this state sticky */
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	i = di->di_pos;
 | |
| 	if (i < 0)
 | |
| 		goto fail;
 | |
| 	ep = d->ma_table;
 | |
| 	mask = d->ma_mask;
 | |
| 	while (i <= mask && ep[i].me_value == NULL)
 | |
| 		i++;
 | |
| 	di->di_pos = i+1;
 | |
| 	if (i > mask)
 | |
| 		goto fail;
 | |
| 
 | |
| 	if (result->ob_refcnt == 1) {
 | |
| 		Py_INCREF(result);
 | |
| 		Py_DECREF(PyTuple_GET_ITEM(result, 0));
 | |
| 		Py_DECREF(PyTuple_GET_ITEM(result, 1));
 | |
| 	} else {
 | |
| 		result = PyTuple_New(2);
 | |
| 		if (result == NULL)
 | |
| 			return NULL;
 | |
| 	}
 | |
| 	di->len--;
 | |
| 	key = ep[i].me_key;
 | |
| 	value = ep[i].me_value;
 | |
| 	Py_INCREF(key);
 | |
| 	Py_INCREF(value);
 | |
| 	PyTuple_SET_ITEM(result, 0, key);
 | |
| 	PyTuple_SET_ITEM(result, 1, value);
 | |
| 	return result;
 | |
| 
 | |
| fail:
 | |
| 	Py_DECREF(d);
 | |
| 	di->di_dict = NULL;
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| PyTypeObject PyDictIterItem_Type = {
 | |
| 	PyVarObject_HEAD_INIT(&PyType_Type, 0)
 | |
| 	"dictionary-itemiterator",		/* tp_name */
 | |
| 	sizeof(dictiterobject),			/* tp_basicsize */
 | |
| 	0,					/* tp_itemsize */
 | |
| 	/* methods */
 | |
| 	(destructor)dictiter_dealloc, 		/* tp_dealloc */
 | |
| 	0,					/* tp_print */
 | |
| 	0,					/* tp_getattr */
 | |
| 	0,					/* tp_setattr */
 | |
| 	0,					/* tp_compare */
 | |
| 	0,					/* tp_repr */
 | |
| 	0,					/* tp_as_number */
 | |
| 	0,					/* tp_as_sequence */
 | |
| 	0,					/* tp_as_mapping */
 | |
| 	0,					/* tp_hash */
 | |
| 	0,					/* tp_call */
 | |
| 	0,					/* tp_str */
 | |
| 	PyObject_GenericGetAttr,		/* tp_getattro */
 | |
| 	0,					/* tp_setattro */
 | |
| 	0,					/* tp_as_buffer */
 | |
| 	Py_TPFLAGS_DEFAULT,			/* tp_flags */
 | |
|  	0,					/* tp_doc */
 | |
|  	0,					/* tp_traverse */
 | |
|  	0,					/* tp_clear */
 | |
| 	0,					/* tp_richcompare */
 | |
| 	0,					/* tp_weaklistoffset */
 | |
| 	PyObject_SelfIter,			/* tp_iter */
 | |
| 	(iternextfunc)dictiter_iternextitem,	/* tp_iternext */
 | |
| 	dictiter_methods,			/* tp_methods */
 | |
| 	0,
 | |
| };
 | |
| 
 | |
| 
 | |
| /***********************************************/
 | |
| /* View objects for keys(), items(), values(). */
 | |
| /***********************************************/
 | |
| 
 | |
| /* The instance lay-out is the same for all three; but the type differs. */
 | |
| 
 | |
| typedef struct {
 | |
| 	PyObject_HEAD
 | |
| 	dictobject *dv_dict;
 | |
| } dictviewobject;
 | |
| 
 | |
| 
 | |
| static void
 | |
| dictview_dealloc(dictviewobject *dv)
 | |
| {
 | |
| 	Py_XDECREF(dv->dv_dict);
 | |
| 	PyObject_Del(dv);
 | |
| }
 | |
| 
 | |
| static Py_ssize_t
 | |
| dictview_len(dictviewobject *dv)
 | |
| {
 | |
| 	Py_ssize_t len = 0;
 | |
| 	if (dv->dv_dict != NULL)
 | |
| 		len = dv->dv_dict->ma_used;
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| dictview_new(PyObject *dict, PyTypeObject *type)
 | |
| {
 | |
| 	dictviewobject *dv;
 | |
| 	if (dict == NULL) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if (!PyDict_Check(dict)) {
 | |
| 		/* XXX Get rid of this restriction later */
 | |
| 		PyErr_Format(PyExc_TypeError,
 | |
| 			     "%s() requires a dict argument, not '%s'",
 | |
| 			     type->tp_name, dict->ob_type->tp_name);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	dv = PyObject_New(dictviewobject, type);
 | |
| 	if (dv == NULL)
 | |
| 		return NULL;
 | |
| 	Py_INCREF(dict);
 | |
| 	dv->dv_dict = (dictobject *)dict;
 | |
| 	return (PyObject *)dv;
 | |
| }
 | |
| 
 | |
| /* TODO(guido): The views objects are not complete:
 | |
| 
 | |
|  * support more set operations
 | |
|  * support arbitrary mappings?
 | |
|    - either these should be static or exported in dictobject.h
 | |
|    - if public then they should probably be in builtins
 | |
| */
 | |
| 
 | |
| /* Forward */
 | |
| PyTypeObject PyDictKeys_Type;
 | |
| PyTypeObject PyDictItems_Type;
 | |
| PyTypeObject PyDictValues_Type;
 | |
| 
 | |
| #define PyDictKeys_Check(obj) ((obj)->ob_type == &PyDictKeys_Type)
 | |
| #define PyDictItems_Check(obj) ((obj)->ob_type == &PyDictItems_Type)
 | |
| #define PyDictValues_Check(obj) ((obj)->ob_type == &PyDictValues_Type)
 | |
| 
 | |
| /* This excludes Values, since they are not sets. */
 | |
| # define PyDictViewSet_Check(obj) \
 | |
| 	(PyDictKeys_Check(obj) || PyDictItems_Check(obj))
 | |
| 
 | |
| /* Return 1 if self is a subset of other, iterating over self;
 | |
|    0 if not; -1 if an error occurred. */
 | |
| static int
 | |
| all_contained_in(PyObject *self, PyObject *other)
 | |
| {
 | |
| 	PyObject *iter = PyObject_GetIter(self);
 | |
| 	int ok = 1;
 | |
| 
 | |
| 	if (iter == NULL)
 | |
| 		return -1;
 | |
| 	for (;;) {
 | |
| 		PyObject *next = PyIter_Next(iter);
 | |
| 		if (next == NULL) {
 | |
| 			if (PyErr_Occurred())
 | |
| 				ok = -1;
 | |
| 			break;
 | |
| 		}
 | |
| 		ok = PySequence_Contains(other, next);
 | |
| 		Py_DECREF(next);
 | |
| 		if (ok <= 0)
 | |
| 			break;
 | |
| 	}
 | |
| 	Py_DECREF(iter);
 | |
| 	return ok;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| dictview_richcompare(PyObject *self, PyObject *other, int op)
 | |
| {
 | |
| 	Py_ssize_t len_self, len_other;
 | |
| 	int ok;
 | |
| 	PyObject *result;
 | |
| 
 | |
| 	assert(self != NULL);
 | |
| 	assert(PyDictViewSet_Check(self));
 | |
| 	assert(other != NULL);
 | |
| 
 | |
| 	if (!PyAnySet_Check(other) && !PyDictViewSet_Check(other)) {
 | |
| 		Py_INCREF(Py_NotImplemented);
 | |
| 		return Py_NotImplemented;
 | |
| 	}
 | |
| 
 | |
| 	len_self = PyObject_Size(self);
 | |
| 	if (len_self < 0)
 | |
| 		return NULL;
 | |
| 	len_other = PyObject_Size(other);
 | |
| 	if (len_other < 0)
 | |
| 		return NULL;
 | |
| 
 | |
| 	ok = 0;
 | |
| 	switch(op) {
 | |
| 
 | |
| 	case Py_NE:
 | |
| 	case Py_EQ:
 | |
| 		if (len_self == len_other)
 | |
| 			ok = all_contained_in(self, other);
 | |
| 		if (op == Py_NE && ok >= 0)
 | |
| 			ok = !ok;
 | |
| 		break;
 | |
| 
 | |
| 	case Py_LT:
 | |
| 		if (len_self < len_other)
 | |
| 			ok = all_contained_in(self, other);
 | |
| 		break;
 | |
| 
 | |
| 	  case Py_LE:
 | |
| 		  if (len_self <= len_other)
 | |
| 			  ok = all_contained_in(self, other);
 | |
| 		  break;
 | |
| 
 | |
| 	case Py_GT:
 | |
| 		if (len_self > len_other)
 | |
| 			ok = all_contained_in(other, self);
 | |
| 		break;
 | |
| 
 | |
| 	case Py_GE:
 | |
| 		if (len_self >= len_other)
 | |
| 			ok = all_contained_in(other, self);
 | |
| 		break;
 | |
| 
 | |
| 	}
 | |
| 	if (ok < 0)
 | |
| 		return NULL;
 | |
| 	result = ok ? Py_True : Py_False;
 | |
| 	Py_INCREF(result);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /*** dict_keys ***/
 | |
| 
 | |
| static PyObject *
 | |
| dictkeys_iter(dictviewobject *dv)
 | |
| {
 | |
| 	if (dv->dv_dict == NULL) {
 | |
| 		Py_RETURN_NONE;
 | |
| 	}
 | |
| 	return dictiter_new(dv->dv_dict, &PyDictIterKey_Type);
 | |
| }
 | |
| 
 | |
| static int
 | |
| dictkeys_contains(dictviewobject *dv, PyObject *obj)
 | |
| {
 | |
| 	if (dv->dv_dict == NULL)
 | |
| 		return 0;
 | |
| 	return PyDict_Contains((PyObject *)dv->dv_dict, obj);
 | |
| }
 | |
| 
 | |
| static PySequenceMethods dictkeys_as_sequence = {
 | |
| 	(lenfunc)dictview_len,		/* sq_length */
 | |
| 	0,				/* sq_concat */
 | |
| 	0,				/* sq_repeat */
 | |
| 	0,				/* sq_item */
 | |
| 	0,				/* sq_slice */
 | |
| 	0,				/* sq_ass_item */
 | |
| 	0,				/* sq_ass_slice */
 | |
| 	(objobjproc)dictkeys_contains,	/* sq_contains */
 | |
| };
 | |
| 
 | |
| static PyMethodDef dictkeys_methods[] = {
 | |
|  	{NULL,		NULL}		/* sentinel */
 | |
| };
 | |
| 
 | |
| PyTypeObject PyDictKeys_Type = {
 | |
| 	PyVarObject_HEAD_INIT(&PyType_Type, 0)
 | |
| 	"dict_keys",				/* tp_name */
 | |
| 	sizeof(dictviewobject),			/* tp_basicsize */
 | |
| 	0,					/* tp_itemsize */
 | |
| 	/* methods */
 | |
| 	(destructor)dictview_dealloc, 		/* tp_dealloc */
 | |
| 	0,					/* tp_print */
 | |
| 	0,					/* tp_getattr */
 | |
| 	0,					/* tp_setattr */
 | |
| 	0,					/* tp_compare */
 | |
| 	0,					/* tp_repr */
 | |
| 	0,					/* tp_as_number */
 | |
| 	&dictkeys_as_sequence,			/* tp_as_sequence */
 | |
| 	0,					/* tp_as_mapping */
 | |
| 	0,					/* tp_hash */
 | |
| 	0,					/* tp_call */
 | |
| 	0,					/* tp_str */
 | |
| 	PyObject_GenericGetAttr,		/* tp_getattro */
 | |
| 	0,					/* tp_setattro */
 | |
| 	0,					/* tp_as_buffer */
 | |
| 	Py_TPFLAGS_DEFAULT,			/* tp_flags */
 | |
|  	0,					/* tp_doc */
 | |
|  	0,					/* tp_traverse */
 | |
|  	0,					/* tp_clear */
 | |
| 	dictview_richcompare,			/* tp_richcompare */
 | |
| 	0,					/* tp_weaklistoffset */
 | |
| 	(getiterfunc)dictkeys_iter,		/* tp_iter */
 | |
| 	0,					/* tp_iternext */
 | |
| 	dictkeys_methods,			/* tp_methods */
 | |
| 	0,
 | |
| };
 | |
| 
 | |
| static PyObject *
 | |
| dictkeys_new(PyObject *dict)
 | |
| {
 | |
| 	return dictview_new(dict, &PyDictKeys_Type);
 | |
| }
 | |
| 
 | |
| /*** dict_items ***/
 | |
| 
 | |
| static PyObject *
 | |
| dictitems_iter(dictviewobject *dv)
 | |
| {
 | |
| 	if (dv->dv_dict == NULL) {
 | |
| 		Py_RETURN_NONE;
 | |
| 	}
 | |
| 	return dictiter_new(dv->dv_dict, &PyDictIterItem_Type);
 | |
| }
 | |
| 
 | |
| static int
 | |
| dictitems_contains(dictviewobject *dv, PyObject *obj)
 | |
| {
 | |
| 	PyObject *key, *value, *found;
 | |
| 	if (dv->dv_dict == NULL)
 | |
| 		return 0;
 | |
| 	if (!PyTuple_Check(obj) || PyTuple_GET_SIZE(obj) != 2)
 | |
| 		return 0;
 | |
| 	key = PyTuple_GET_ITEM(obj, 0);
 | |
| 	value = PyTuple_GET_ITEM(obj, 1);
 | |
| 	found = PyDict_GetItem((PyObject *)dv->dv_dict, key);
 | |
| 	if (found == NULL) {
 | |
| 		if (PyErr_Occurred())
 | |
| 			return -1;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return PyObject_RichCompareBool(value, found, Py_EQ);
 | |
| }
 | |
| 
 | |
| static PySequenceMethods dictitems_as_sequence = {
 | |
| 	(lenfunc)dictview_len,		/* sq_length */
 | |
| 	0,				/* sq_concat */
 | |
| 	0,				/* sq_repeat */
 | |
| 	0,				/* sq_item */
 | |
| 	0,				/* sq_slice */
 | |
| 	0,				/* sq_ass_item */
 | |
| 	0,				/* sq_ass_slice */
 | |
| 	(objobjproc)dictitems_contains,	/* sq_contains */
 | |
| };
 | |
| 
 | |
| static PyMethodDef dictitems_methods[] = {
 | |
|  	{NULL,		NULL}		/* sentinel */
 | |
| };
 | |
| 
 | |
| PyTypeObject PyDictItems_Type = {
 | |
| 	PyVarObject_HEAD_INIT(&PyType_Type, 0)
 | |
| 	"dict_items",				/* tp_name */
 | |
| 	sizeof(dictviewobject),			/* tp_basicsize */
 | |
| 	0,					/* tp_itemsize */
 | |
| 	/* methods */
 | |
| 	(destructor)dictview_dealloc, 		/* tp_dealloc */
 | |
| 	0,					/* tp_print */
 | |
| 	0,					/* tp_getattr */
 | |
| 	0,					/* tp_setattr */
 | |
| 	0,					/* tp_compare */
 | |
| 	0,					/* tp_repr */
 | |
| 	0,					/* tp_as_number */
 | |
| 	&dictitems_as_sequence,			/* tp_as_sequence */
 | |
| 	0,					/* tp_as_mapping */
 | |
| 	0,					/* tp_hash */
 | |
| 	0,					/* tp_call */
 | |
| 	0,					/* tp_str */
 | |
| 	PyObject_GenericGetAttr,		/* tp_getattro */
 | |
| 	0,					/* tp_setattro */
 | |
| 	0,					/* tp_as_buffer */
 | |
| 	Py_TPFLAGS_DEFAULT,			/* tp_flags */
 | |
|  	0,					/* tp_doc */
 | |
|  	0,					/* tp_traverse */
 | |
|  	0,					/* tp_clear */
 | |
| 	dictview_richcompare,			/* tp_richcompare */
 | |
| 	0,					/* tp_weaklistoffset */
 | |
| 	(getiterfunc)dictitems_iter,		/* tp_iter */
 | |
| 	0,					/* tp_iternext */
 | |
| 	dictitems_methods,			/* tp_methods */
 | |
| 	0,
 | |
| };
 | |
| 
 | |
| static PyObject *
 | |
| dictitems_new(PyObject *dict)
 | |
| {
 | |
| 	return dictview_new(dict, &PyDictItems_Type);
 | |
| }
 | |
| 
 | |
| /*** dict_values ***/
 | |
| 
 | |
| static PyObject *
 | |
| dictvalues_iter(dictviewobject *dv)
 | |
| {
 | |
| 	if (dv->dv_dict == NULL) {
 | |
| 		Py_RETURN_NONE;
 | |
| 	}
 | |
| 	return dictiter_new(dv->dv_dict, &PyDictIterValue_Type);
 | |
| }
 | |
| 
 | |
| static PySequenceMethods dictvalues_as_sequence = {
 | |
| 	(lenfunc)dictview_len,		/* sq_length */
 | |
| 	0,				/* sq_concat */
 | |
| 	0,				/* sq_repeat */
 | |
| 	0,				/* sq_item */
 | |
| 	0,				/* sq_slice */
 | |
| 	0,				/* sq_ass_item */
 | |
| 	0,				/* sq_ass_slice */
 | |
| 	(objobjproc)0,			/* sq_contains */
 | |
| };
 | |
| 
 | |
| static PyMethodDef dictvalues_methods[] = {
 | |
|  	{NULL,		NULL}		/* sentinel */
 | |
| };
 | |
| 
 | |
| PyTypeObject PyDictValues_Type = {
 | |
| 	PyVarObject_HEAD_INIT(&PyType_Type, 0)
 | |
| 	"dict_values",				/* tp_name */
 | |
| 	sizeof(dictviewobject),			/* tp_basicsize */
 | |
| 	0,					/* tp_itemsize */
 | |
| 	/* methods */
 | |
| 	(destructor)dictview_dealloc, 		/* tp_dealloc */
 | |
| 	0,					/* tp_print */
 | |
| 	0,					/* tp_getattr */
 | |
| 	0,					/* tp_setattr */
 | |
| 	0,					/* tp_compare */
 | |
| 	0,					/* tp_repr */
 | |
| 	0,					/* tp_as_number */
 | |
| 	&dictvalues_as_sequence,		/* tp_as_sequence */
 | |
| 	0,					/* tp_as_mapping */
 | |
| 	0,					/* tp_hash */
 | |
| 	0,					/* tp_call */
 | |
| 	0,					/* tp_str */
 | |
| 	PyObject_GenericGetAttr,		/* tp_getattro */
 | |
| 	0,					/* tp_setattro */
 | |
| 	0,					/* tp_as_buffer */
 | |
| 	Py_TPFLAGS_DEFAULT,			/* tp_flags */
 | |
|  	0,					/* tp_doc */
 | |
|  	0,					/* tp_traverse */
 | |
|  	0,					/* tp_clear */
 | |
| 	0,					/* tp_richcompare */
 | |
| 	0,					/* tp_weaklistoffset */
 | |
| 	(getiterfunc)dictvalues_iter,		/* tp_iter */
 | |
| 	0,					/* tp_iternext */
 | |
| 	dictvalues_methods,			/* tp_methods */
 | |
| 	0,
 | |
| };
 | |
| 
 | |
| static PyObject *
 | |
| dictvalues_new(PyObject *dict)
 | |
| {
 | |
| 	return dictview_new(dict, &PyDictValues_Type);
 | |
| }
 | 
