mirror of
				https://github.com/python/cpython.git
				synced 2025-10-30 21:21:22 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			520 lines
		
	
	
	
		
			19 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable file
		
	
	
	
	
			
		
		
	
	
			520 lines
		
	
	
	
		
			19 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable file
		
	
	
	
	
| # Originally contributed by Sjoerd Mullender.
 | |
| # Significantly modified by Jeffrey Yasskin <jyasskin at gmail.com>.
 | |
| 
 | |
| """Rational, infinite-precision, real numbers."""
 | |
| 
 | |
| from __future__ import division
 | |
| import math
 | |
| import numbers
 | |
| import operator
 | |
| import re
 | |
| 
 | |
| __all__ = ["Rational"]
 | |
| 
 | |
| RationalAbc = numbers.Rational
 | |
| 
 | |
| 
 | |
| def gcd(a, b):
 | |
|     """Calculate the Greatest Common Divisor of a and b.
 | |
| 
 | |
|     Unless b==0, the result will have the same sign as b (so that when
 | |
|     b is divided by it, the result comes out positive).
 | |
|     """
 | |
|     while b:
 | |
|         a, b = b, a%b
 | |
|     return a
 | |
| 
 | |
| 
 | |
| _RATIONAL_FORMAT = re.compile(r"""
 | |
|     \A\s*                      # optional whitespace at the start, then
 | |
|     (?P<sign>[-+]?)            # an optional sign, then
 | |
|     (?=\d|\.\d)                # lookahead for digit or .digit
 | |
|     (?P<num>\d*)               # numerator (possibly empty)
 | |
|     (?:                        # followed by an optional
 | |
|        /(?P<denom>\d+)         # / and denominator
 | |
|     |                          # or
 | |
|        \.(?P<decimal>\d*)      # decimal point and fractional part
 | |
|     )?
 | |
|     \s*\Z                      # and optional whitespace to finish
 | |
| """, re.VERBOSE)
 | |
| 
 | |
| 
 | |
| class Rational(RationalAbc):
 | |
|     """This class implements rational numbers.
 | |
| 
 | |
|     Rational(8, 6) will produce a rational number equivalent to
 | |
|     4/3. Both arguments must be Integral. The numerator defaults to 0
 | |
|     and the denominator defaults to 1 so that Rational(3) == 3 and
 | |
|     Rational() == 0.
 | |
| 
 | |
|     Rationals can also be constructed from strings of the form
 | |
|     '[-+]?[0-9]+((/|.)[0-9]+)?', optionally surrounded by spaces.
 | |
| 
 | |
|     """
 | |
| 
 | |
|     __slots__ = ('_numerator', '_denominator')
 | |
| 
 | |
|     # We're immutable, so use __new__ not __init__
 | |
|     def __new__(cls, numerator=0, denominator=1):
 | |
|         """Constructs a Rational.
 | |
| 
 | |
|         Takes a string like '3/2' or '1.5', another Rational, or a
 | |
|         numerator/denominator pair.
 | |
| 
 | |
|         """
 | |
|         self = super(Rational, cls).__new__(cls)
 | |
| 
 | |
|         if denominator == 1:
 | |
|             if isinstance(numerator, basestring):
 | |
|                 # Handle construction from strings.
 | |
|                 input = numerator
 | |
|                 m = _RATIONAL_FORMAT.match(input)
 | |
|                 if m is None:
 | |
|                     raise ValueError('Invalid literal for Rational: ' + input)
 | |
|                 numerator = m.group('num')
 | |
|                 decimal = m.group('decimal')
 | |
|                 if decimal:
 | |
|                     # The literal is a decimal number.
 | |
|                     numerator = int(numerator + decimal)
 | |
|                     denominator = 10**len(decimal)
 | |
|                 else:
 | |
|                     # The literal is an integer or fraction.
 | |
|                     numerator = int(numerator)
 | |
|                     # Default denominator to 1.
 | |
|                     denominator = int(m.group('denom') or 1)
 | |
| 
 | |
|                 if m.group('sign') == '-':
 | |
|                     numerator = -numerator
 | |
| 
 | |
|             elif (not isinstance(numerator, numbers.Integral) and
 | |
|                   isinstance(numerator, RationalAbc)):
 | |
|                 # Handle copies from other rationals.
 | |
|                 other_rational = numerator
 | |
|                 numerator = other_rational.numerator
 | |
|                 denominator = other_rational.denominator
 | |
| 
 | |
|         if (not isinstance(numerator, numbers.Integral) or
 | |
|             not isinstance(denominator, numbers.Integral)):
 | |
|             raise TypeError("Rational(%(numerator)s, %(denominator)s):"
 | |
|                             " Both arguments must be integral." % locals())
 | |
| 
 | |
|         if denominator == 0:
 | |
|             raise ZeroDivisionError('Rational(%s, 0)' % numerator)
 | |
| 
 | |
|         g = gcd(numerator, denominator)
 | |
|         self._numerator = int(numerator // g)
 | |
|         self._denominator = int(denominator // g)
 | |
|         return self
 | |
| 
 | |
|     @classmethod
 | |
|     def from_float(cls, f):
 | |
|         """Converts a finite float to a rational number, exactly.
 | |
| 
 | |
|         Beware that Rational.from_float(0.3) != Rational(3, 10).
 | |
| 
 | |
|         """
 | |
|         if not isinstance(f, float):
 | |
|             raise TypeError("%s.from_float() only takes floats, not %r (%s)" %
 | |
|                             (cls.__name__, f, type(f).__name__))
 | |
|         if math.isnan(f) or math.isinf(f):
 | |
|             raise TypeError("Cannot convert %r to %s." % (f, cls.__name__))
 | |
|         return cls(*f.as_integer_ratio())
 | |
| 
 | |
|     @classmethod
 | |
|     def from_decimal(cls, dec):
 | |
|         """Converts a finite Decimal instance to a rational number, exactly."""
 | |
|         from decimal import Decimal
 | |
|         if not isinstance(dec, Decimal):
 | |
|             raise TypeError(
 | |
|                 "%s.from_decimal() only takes Decimals, not %r (%s)" %
 | |
|                 (cls.__name__, dec, type(dec).__name__))
 | |
|         if not dec.is_finite():
 | |
|             # Catches infinities and nans.
 | |
|             raise TypeError("Cannot convert %s to %s." % (dec, cls.__name__))
 | |
|         sign, digits, exp = dec.as_tuple()
 | |
|         digits = int(''.join(map(str, digits)))
 | |
|         if sign:
 | |
|             digits = -digits
 | |
|         if exp >= 0:
 | |
|             return cls(digits * 10 ** exp)
 | |
|         else:
 | |
|             return cls(digits, 10 ** -exp)
 | |
| 
 | |
|     @classmethod
 | |
|     def from_continued_fraction(cls, seq):
 | |
|         'Build a Rational from a continued fraction expessed as a sequence'
 | |
|         n, d = 1, 0
 | |
|         for e in reversed(seq):
 | |
|             n, d = d, n
 | |
|             n += e * d
 | |
|         return cls(n, d) if seq else cls(0)
 | |
| 
 | |
|     def as_continued_fraction(self):
 | |
|         'Return continued fraction expressed as a list'
 | |
|         n = self.numerator
 | |
|         d = self.denominator
 | |
|         cf = []
 | |
|         while d:
 | |
|             e = int(n // d)
 | |
|             cf.append(e)
 | |
|             n -= e * d
 | |
|             n, d = d, n
 | |
|         return cf
 | |
| 
 | |
|     def approximate(self, max_denominator):
 | |
|         'Best rational approximation with a denominator <= max_denominator'
 | |
|         # XXX First cut at algorithm
 | |
|         # Still needs rounding rules as specified at
 | |
|         #       http://en.wikipedia.org/wiki/Continued_fraction
 | |
|         if self.denominator <= max_denominator:
 | |
|             return self
 | |
|         cf = self.as_continued_fraction()
 | |
|         result = Rational(0)
 | |
|         for i in range(1, len(cf)):
 | |
|             new = self.from_continued_fraction(cf[:i])
 | |
|             if new.denominator > max_denominator:
 | |
|                 break
 | |
|             result = new
 | |
|         return result
 | |
| 
 | |
|     @property
 | |
|     def numerator(a):
 | |
|         return a._numerator
 | |
| 
 | |
|     @property
 | |
|     def denominator(a):
 | |
|         return a._denominator
 | |
| 
 | |
|     def __repr__(self):
 | |
|         """repr(self)"""
 | |
|         return ('Rational(%r,%r)' % (self.numerator, self.denominator))
 | |
| 
 | |
|     def __str__(self):
 | |
|         """str(self)"""
 | |
|         if self.denominator == 1:
 | |
|             return str(self.numerator)
 | |
|         else:
 | |
|             return '%s/%s' % (self.numerator, self.denominator)
 | |
| 
 | |
|     def _operator_fallbacks(monomorphic_operator, fallback_operator):
 | |
|         """Generates forward and reverse operators given a purely-rational
 | |
|         operator and a function from the operator module.
 | |
| 
 | |
|         Use this like:
 | |
|         __op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op)
 | |
| 
 | |
|         In general, we want to implement the arithmetic operations so
 | |
|         that mixed-mode operations either call an implementation whose
 | |
|         author knew about the types of both arguments, or convert both
 | |
|         to the nearest built in type and do the operation there. In
 | |
|         Rational, that means that we define __add__ and __radd__ as:
 | |
| 
 | |
|             def __add__(self, other):
 | |
|                 # Both types have numerators/denominator attributes,
 | |
|                 # so do the operation directly
 | |
|                 if isinstance(other, (int, long, Rational)):
 | |
|                     return Rational(self.numerator * other.denominator +
 | |
|                                     other.numerator * self.denominator,
 | |
|                                     self.denominator * other.denominator)
 | |
|                 # float and complex don't have those operations, but we
 | |
|                 # know about those types, so special case them.
 | |
|                 elif isinstance(other, float):
 | |
|                     return float(self) + other
 | |
|                 elif isinstance(other, complex):
 | |
|                     return complex(self) + other
 | |
|                 # Let the other type take over.
 | |
|                 return NotImplemented
 | |
| 
 | |
|             def __radd__(self, other):
 | |
|                 # radd handles more types than add because there's
 | |
|                 # nothing left to fall back to.
 | |
|                 if isinstance(other, RationalAbc):
 | |
|                     return Rational(self.numerator * other.denominator +
 | |
|                                     other.numerator * self.denominator,
 | |
|                                     self.denominator * other.denominator)
 | |
|                 elif isinstance(other, Real):
 | |
|                     return float(other) + float(self)
 | |
|                 elif isinstance(other, Complex):
 | |
|                     return complex(other) + complex(self)
 | |
|                 return NotImplemented
 | |
| 
 | |
| 
 | |
|         There are 5 different cases for a mixed-type addition on
 | |
|         Rational. I'll refer to all of the above code that doesn't
 | |
|         refer to Rational, float, or complex as "boilerplate". 'r'
 | |
|         will be an instance of Rational, which is a subtype of
 | |
|         RationalAbc (r : Rational <: RationalAbc), and b : B <:
 | |
|         Complex. The first three involve 'r + b':
 | |
| 
 | |
|             1. If B <: Rational, int, float, or complex, we handle
 | |
|                that specially, and all is well.
 | |
|             2. If Rational falls back to the boilerplate code, and it
 | |
|                were to return a value from __add__, we'd miss the
 | |
|                possibility that B defines a more intelligent __radd__,
 | |
|                so the boilerplate should return NotImplemented from
 | |
|                __add__. In particular, we don't handle RationalAbc
 | |
|                here, even though we could get an exact answer, in case
 | |
|                the other type wants to do something special.
 | |
|             3. If B <: Rational, Python tries B.__radd__ before
 | |
|                Rational.__add__. This is ok, because it was
 | |
|                implemented with knowledge of Rational, so it can
 | |
|                handle those instances before delegating to Real or
 | |
|                Complex.
 | |
| 
 | |
|         The next two situations describe 'b + r'. We assume that b
 | |
|         didn't know about Rational in its implementation, and that it
 | |
|         uses similar boilerplate code:
 | |
| 
 | |
|             4. If B <: RationalAbc, then __radd_ converts both to the
 | |
|                builtin rational type (hey look, that's us) and
 | |
|                proceeds.
 | |
|             5. Otherwise, __radd__ tries to find the nearest common
 | |
|                base ABC, and fall back to its builtin type. Since this
 | |
|                class doesn't subclass a concrete type, there's no
 | |
|                implementation to fall back to, so we need to try as
 | |
|                hard as possible to return an actual value, or the user
 | |
|                will get a TypeError.
 | |
| 
 | |
|         """
 | |
|         def forward(a, b):
 | |
|             if isinstance(b, (int, long, Rational)):
 | |
|                 return monomorphic_operator(a, b)
 | |
|             elif isinstance(b, float):
 | |
|                 return fallback_operator(float(a), b)
 | |
|             elif isinstance(b, complex):
 | |
|                 return fallback_operator(complex(a), b)
 | |
|             else:
 | |
|                 return NotImplemented
 | |
|         forward.__name__ = '__' + fallback_operator.__name__ + '__'
 | |
|         forward.__doc__ = monomorphic_operator.__doc__
 | |
| 
 | |
|         def reverse(b, a):
 | |
|             if isinstance(a, RationalAbc):
 | |
|                 # Includes ints.
 | |
|                 return monomorphic_operator(a, b)
 | |
|             elif isinstance(a, numbers.Real):
 | |
|                 return fallback_operator(float(a), float(b))
 | |
|             elif isinstance(a, numbers.Complex):
 | |
|                 return fallback_operator(complex(a), complex(b))
 | |
|             else:
 | |
|                 return NotImplemented
 | |
|         reverse.__name__ = '__r' + fallback_operator.__name__ + '__'
 | |
|         reverse.__doc__ = monomorphic_operator.__doc__
 | |
| 
 | |
|         return forward, reverse
 | |
| 
 | |
|     def _add(a, b):
 | |
|         """a + b"""
 | |
|         return Rational(a.numerator * b.denominator +
 | |
|                         b.numerator * a.denominator,
 | |
|                         a.denominator * b.denominator)
 | |
| 
 | |
|     __add__, __radd__ = _operator_fallbacks(_add, operator.add)
 | |
| 
 | |
|     def _sub(a, b):
 | |
|         """a - b"""
 | |
|         return Rational(a.numerator * b.denominator -
 | |
|                         b.numerator * a.denominator,
 | |
|                         a.denominator * b.denominator)
 | |
| 
 | |
|     __sub__, __rsub__ = _operator_fallbacks(_sub, operator.sub)
 | |
| 
 | |
|     def _mul(a, b):
 | |
|         """a * b"""
 | |
|         return Rational(a.numerator * b.numerator, a.denominator * b.denominator)
 | |
| 
 | |
|     __mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul)
 | |
| 
 | |
|     def _div(a, b):
 | |
|         """a / b"""
 | |
|         return Rational(a.numerator * b.denominator,
 | |
|                         a.denominator * b.numerator)
 | |
| 
 | |
|     __truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv)
 | |
|     __div__, __rdiv__ = _operator_fallbacks(_div, operator.div)
 | |
| 
 | |
|     def __floordiv__(a, b):
 | |
|         """a // b"""
 | |
|         # Will be math.floor(a / b) in 3.0.
 | |
|         div = a / b
 | |
|         if isinstance(div, RationalAbc):
 | |
|             # trunc(math.floor(div)) doesn't work if the rational is
 | |
|             # more precise than a float because the intermediate
 | |
|             # rounding may cross an integer boundary.
 | |
|             return div.numerator // div.denominator
 | |
|         else:
 | |
|             return math.floor(div)
 | |
| 
 | |
|     def __rfloordiv__(b, a):
 | |
|         """a // b"""
 | |
|         # Will be math.floor(a / b) in 3.0.
 | |
|         div = a / b
 | |
|         if isinstance(div, RationalAbc):
 | |
|             # trunc(math.floor(div)) doesn't work if the rational is
 | |
|             # more precise than a float because the intermediate
 | |
|             # rounding may cross an integer boundary.
 | |
|             return div.numerator // div.denominator
 | |
|         else:
 | |
|             return math.floor(div)
 | |
| 
 | |
|     def __mod__(a, b):
 | |
|         """a % b"""
 | |
|         div = a // b
 | |
|         return a - b * div
 | |
| 
 | |
|     def __rmod__(b, a):
 | |
|         """a % b"""
 | |
|         div = a // b
 | |
|         return a - b * div
 | |
| 
 | |
|     def __pow__(a, b):
 | |
|         """a ** b
 | |
| 
 | |
|         If b is not an integer, the result will be a float or complex
 | |
|         since roots are generally irrational. If b is an integer, the
 | |
|         result will be rational.
 | |
| 
 | |
|         """
 | |
|         if isinstance(b, RationalAbc):
 | |
|             if b.denominator == 1:
 | |
|                 power = b.numerator
 | |
|                 if power >= 0:
 | |
|                     return Rational(a.numerator ** power,
 | |
|                                     a.denominator ** power)
 | |
|                 else:
 | |
|                     return Rational(a.denominator ** -power,
 | |
|                                     a.numerator ** -power)
 | |
|             else:
 | |
|                 # A fractional power will generally produce an
 | |
|                 # irrational number.
 | |
|                 return float(a) ** float(b)
 | |
|         else:
 | |
|             return float(a) ** b
 | |
| 
 | |
|     def __rpow__(b, a):
 | |
|         """a ** b"""
 | |
|         if b.denominator == 1 and b.numerator >= 0:
 | |
|             # If a is an int, keep it that way if possible.
 | |
|             return a ** b.numerator
 | |
| 
 | |
|         if isinstance(a, RationalAbc):
 | |
|             return Rational(a.numerator, a.denominator) ** b
 | |
| 
 | |
|         if b.denominator == 1:
 | |
|             return a ** b.numerator
 | |
| 
 | |
|         return a ** float(b)
 | |
| 
 | |
|     def __pos__(a):
 | |
|         """+a: Coerces a subclass instance to Rational"""
 | |
|         return Rational(a.numerator, a.denominator)
 | |
| 
 | |
|     def __neg__(a):
 | |
|         """-a"""
 | |
|         return Rational(-a.numerator, a.denominator)
 | |
| 
 | |
|     def __abs__(a):
 | |
|         """abs(a)"""
 | |
|         return Rational(abs(a.numerator), a.denominator)
 | |
| 
 | |
|     def __trunc__(a):
 | |
|         """trunc(a)"""
 | |
|         if a.numerator < 0:
 | |
|             return -(-a.numerator // a.denominator)
 | |
|         else:
 | |
|             return a.numerator // a.denominator
 | |
| 
 | |
|     def __hash__(self):
 | |
|         """hash(self)
 | |
| 
 | |
|         Tricky because values that are exactly representable as a
 | |
|         float must have the same hash as that float.
 | |
| 
 | |
|         """
 | |
|         # XXX since this method is expensive, consider caching the result
 | |
|         if self.denominator == 1:
 | |
|             # Get integers right.
 | |
|             return hash(self.numerator)
 | |
|         # Expensive check, but definitely correct.
 | |
|         if self == float(self):
 | |
|             return hash(float(self))
 | |
|         else:
 | |
|             # Use tuple's hash to avoid a high collision rate on
 | |
|             # simple fractions.
 | |
|             return hash((self.numerator, self.denominator))
 | |
| 
 | |
|     def __eq__(a, b):
 | |
|         """a == b"""
 | |
|         if isinstance(b, RationalAbc):
 | |
|             return (a.numerator == b.numerator and
 | |
|                     a.denominator == b.denominator)
 | |
|         if isinstance(b, numbers.Complex) and b.imag == 0:
 | |
|             b = b.real
 | |
|         if isinstance(b, float):
 | |
|             return a == a.from_float(b)
 | |
|         else:
 | |
|             # XXX: If b.__eq__ is implemented like this method, it may
 | |
|             # give the wrong answer after float(a) changes a's
 | |
|             # value. Better ways of doing this are welcome.
 | |
|             return float(a) == b
 | |
| 
 | |
|     def _subtractAndCompareToZero(a, b, op):
 | |
|         """Helper function for comparison operators.
 | |
| 
 | |
|         Subtracts b from a, exactly if possible, and compares the
 | |
|         result with 0 using op, in such a way that the comparison
 | |
|         won't recurse. If the difference raises a TypeError, returns
 | |
|         NotImplemented instead.
 | |
| 
 | |
|         """
 | |
|         if isinstance(b, numbers.Complex) and b.imag == 0:
 | |
|             b = b.real
 | |
|         if isinstance(b, float):
 | |
|             b = a.from_float(b)
 | |
|         try:
 | |
|             # XXX: If b <: Real but not <: RationalAbc, this is likely
 | |
|             # to fall back to a float. If the actual values differ by
 | |
|             # less than MIN_FLOAT, this could falsely call them equal,
 | |
|             # which would make <= inconsistent with ==. Better ways of
 | |
|             # doing this are welcome.
 | |
|             diff = a - b
 | |
|         except TypeError:
 | |
|             return NotImplemented
 | |
|         if isinstance(diff, RationalAbc):
 | |
|             return op(diff.numerator, 0)
 | |
|         return op(diff, 0)
 | |
| 
 | |
|     def __lt__(a, b):
 | |
|         """a < b"""
 | |
|         return a._subtractAndCompareToZero(b, operator.lt)
 | |
| 
 | |
|     def __gt__(a, b):
 | |
|         """a > b"""
 | |
|         return a._subtractAndCompareToZero(b, operator.gt)
 | |
| 
 | |
|     def __le__(a, b):
 | |
|         """a <= b"""
 | |
|         return a._subtractAndCompareToZero(b, operator.le)
 | |
| 
 | |
|     def __ge__(a, b):
 | |
|         """a >= b"""
 | |
|         return a._subtractAndCompareToZero(b, operator.ge)
 | |
| 
 | |
|     def __nonzero__(a):
 | |
|         """a != 0"""
 | |
|         return a.numerator != 0
 | |
| 
 | |
|     # support for pickling, copy, and deepcopy
 | |
| 
 | |
|     def __reduce__(self):
 | |
|         return (self.__class__, (str(self),))
 | |
| 
 | |
|     def __copy__(self):
 | |
|         if type(self) == Rational:
 | |
|             return self     # I'm immutable; therefore I am my own clone
 | |
|         return self.__class__(self.numerator, self.denominator)
 | |
| 
 | |
|     def __deepcopy__(self, memo):
 | |
|         if type(self) == Rational:
 | |
|             return self     # My components are also immutable
 | |
|         return self.__class__(self.numerator, self.denominator)
 | 
