mirror of
				https://github.com/python/cpython.git
				synced 2025-10-25 02:43:41 +00:00 
			
		
		
		
	 c8749b5783
			
		
	
	
		c8749b5783
		
			
		
	
	
	
	
		
			
			This change is strictly renames and moving code around. It helps in the following ways: * ensures type-related init functions focus strictly on one of the three aspects (state, objects, types) * passes in PyInterpreterState * to all those functions, simplifying work on moving types/objects/state to the interpreter * consistent naming conventions help make what's going on more clear * keeping API related to a type in the corresponding header file makes it more obvious where to look for it https://bugs.python.org/issue46008
		
			
				
	
	
		
			2690 lines
		
	
	
	
		
			72 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2690 lines
		
	
	
	
		
			72 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Float object implementation */
 | |
| 
 | |
| /* XXX There should be overflow checks here, but it's hard to check
 | |
|    for any kind of float exception without losing portability. */
 | |
| 
 | |
| #include "Python.h"
 | |
| #include "pycore_dtoa.h"          // _Py_dg_dtoa()
 | |
| #include "pycore_floatobject.h"   // _PyFloat_FormatAdvancedWriter()
 | |
| #include "pycore_initconfig.h"    // _PyStatus_OK()
 | |
| #include "pycore_interp.h"        // _PyInterpreterState.float_state
 | |
| #include "pycore_long.h"          // _PyLong_GetOne()
 | |
| #include "pycore_object.h"        // _PyObject_Init()
 | |
| #include "pycore_pymath.h"        // _Py_ADJUST_ERANGE1()
 | |
| #include "pycore_pystate.h"       // _PyInterpreterState_GET()
 | |
| 
 | |
| #include <ctype.h>
 | |
| #include <float.h>
 | |
| #include <stdlib.h>               // strtol()
 | |
| 
 | |
| /*[clinic input]
 | |
| class float "PyObject *" "&PyFloat_Type"
 | |
| [clinic start generated code]*/
 | |
| /*[clinic end generated code: output=da39a3ee5e6b4b0d input=dd0003f68f144284]*/
 | |
| 
 | |
| #include "clinic/floatobject.c.h"
 | |
| 
 | |
| #ifndef PyFloat_MAXFREELIST
 | |
| #  define PyFloat_MAXFREELIST   100
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #if PyFloat_MAXFREELIST > 0
 | |
| static struct _Py_float_state *
 | |
| get_float_state(void)
 | |
| {
 | |
|     PyInterpreterState *interp = _PyInterpreterState_GET();
 | |
|     return &interp->float_state;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| double
 | |
| PyFloat_GetMax(void)
 | |
| {
 | |
|     return DBL_MAX;
 | |
| }
 | |
| 
 | |
| double
 | |
| PyFloat_GetMin(void)
 | |
| {
 | |
|     return DBL_MIN;
 | |
| }
 | |
| 
 | |
| static PyTypeObject FloatInfoType;
 | |
| 
 | |
| PyDoc_STRVAR(floatinfo__doc__,
 | |
| "sys.float_info\n\
 | |
| \n\
 | |
| A named tuple holding information about the float type. It contains low level\n\
 | |
| information about the precision and internal representation. Please study\n\
 | |
| your system's :file:`float.h` for more information.");
 | |
| 
 | |
| static PyStructSequence_Field floatinfo_fields[] = {
 | |
|     {"max",             "DBL_MAX -- maximum representable finite float"},
 | |
|     {"max_exp",         "DBL_MAX_EXP -- maximum int e such that radix**(e-1) "
 | |
|                     "is representable"},
 | |
|     {"max_10_exp",      "DBL_MAX_10_EXP -- maximum int e such that 10**e "
 | |
|                     "is representable"},
 | |
|     {"min",             "DBL_MIN -- Minimum positive normalized float"},
 | |
|     {"min_exp",         "DBL_MIN_EXP -- minimum int e such that radix**(e-1) "
 | |
|                     "is a normalized float"},
 | |
|     {"min_10_exp",      "DBL_MIN_10_EXP -- minimum int e such that 10**e is "
 | |
|                     "a normalized"},
 | |
|     {"dig",             "DBL_DIG -- maximum number of decimal digits that "
 | |
|                     "can be faithfully represented in a float"},
 | |
|     {"mant_dig",        "DBL_MANT_DIG -- mantissa digits"},
 | |
|     {"epsilon",         "DBL_EPSILON -- Difference between 1 and the next "
 | |
|                     "representable float"},
 | |
|     {"radix",           "FLT_RADIX -- radix of exponent"},
 | |
|     {"rounds",          "FLT_ROUNDS -- rounding mode used for arithmetic "
 | |
|                     "operations"},
 | |
|     {0}
 | |
| };
 | |
| 
 | |
| static PyStructSequence_Desc floatinfo_desc = {
 | |
|     "sys.float_info",           /* name */
 | |
|     floatinfo__doc__,           /* doc */
 | |
|     floatinfo_fields,           /* fields */
 | |
|     11
 | |
| };
 | |
| 
 | |
| PyObject *
 | |
| PyFloat_GetInfo(void)
 | |
| {
 | |
|     PyObject* floatinfo;
 | |
|     int pos = 0;
 | |
| 
 | |
|     floatinfo = PyStructSequence_New(&FloatInfoType);
 | |
|     if (floatinfo == NULL) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
| #define SetIntFlag(flag) \
 | |
|     PyStructSequence_SET_ITEM(floatinfo, pos++, PyLong_FromLong(flag))
 | |
| #define SetDblFlag(flag) \
 | |
|     PyStructSequence_SET_ITEM(floatinfo, pos++, PyFloat_FromDouble(flag))
 | |
| 
 | |
|     SetDblFlag(DBL_MAX);
 | |
|     SetIntFlag(DBL_MAX_EXP);
 | |
|     SetIntFlag(DBL_MAX_10_EXP);
 | |
|     SetDblFlag(DBL_MIN);
 | |
|     SetIntFlag(DBL_MIN_EXP);
 | |
|     SetIntFlag(DBL_MIN_10_EXP);
 | |
|     SetIntFlag(DBL_DIG);
 | |
|     SetIntFlag(DBL_MANT_DIG);
 | |
|     SetDblFlag(DBL_EPSILON);
 | |
|     SetIntFlag(FLT_RADIX);
 | |
|     SetIntFlag(FLT_ROUNDS);
 | |
| #undef SetIntFlag
 | |
| #undef SetDblFlag
 | |
| 
 | |
|     if (PyErr_Occurred()) {
 | |
|         Py_CLEAR(floatinfo);
 | |
|         return NULL;
 | |
|     }
 | |
|     return floatinfo;
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| PyFloat_FromDouble(double fval)
 | |
| {
 | |
|     PyFloatObject *op;
 | |
| #if PyFloat_MAXFREELIST > 0
 | |
|     struct _Py_float_state *state = get_float_state();
 | |
|     op = state->free_list;
 | |
|     if (op != NULL) {
 | |
| #ifdef Py_DEBUG
 | |
|         // PyFloat_FromDouble() must not be called after _PyFloat_Fini()
 | |
|         assert(state->numfree != -1);
 | |
| #endif
 | |
|         state->free_list = (PyFloatObject *) Py_TYPE(op);
 | |
|         state->numfree--;
 | |
|     }
 | |
|     else
 | |
| #endif
 | |
|     {
 | |
|         op = PyObject_Malloc(sizeof(PyFloatObject));
 | |
|         if (!op) {
 | |
|             return PyErr_NoMemory();
 | |
|         }
 | |
|     }
 | |
|     _PyObject_Init((PyObject*)op, &PyFloat_Type);
 | |
|     op->ob_fval = fval;
 | |
|     return (PyObject *) op;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_from_string_inner(const char *s, Py_ssize_t len, void *obj)
 | |
| {
 | |
|     double x;
 | |
|     const char *end;
 | |
|     const char *last = s + len;
 | |
|     /* strip space */
 | |
|     while (s < last && Py_ISSPACE(*s)) {
 | |
|         s++;
 | |
|     }
 | |
| 
 | |
|     while (s < last - 1 && Py_ISSPACE(last[-1])) {
 | |
|         last--;
 | |
|     }
 | |
| 
 | |
|     /* We don't care about overflow or underflow.  If the platform
 | |
|      * supports them, infinities and signed zeroes (on underflow) are
 | |
|      * fine. */
 | |
|     x = PyOS_string_to_double(s, (char **)&end, NULL);
 | |
|     if (end != last) {
 | |
|         PyErr_Format(PyExc_ValueError,
 | |
|                      "could not convert string to float: "
 | |
|                      "%R", obj);
 | |
|         return NULL;
 | |
|     }
 | |
|     else if (x == -1.0 && PyErr_Occurred()) {
 | |
|         return NULL;
 | |
|     }
 | |
|     else {
 | |
|         return PyFloat_FromDouble(x);
 | |
|     }
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| PyFloat_FromString(PyObject *v)
 | |
| {
 | |
|     const char *s;
 | |
|     PyObject *s_buffer = NULL;
 | |
|     Py_ssize_t len;
 | |
|     Py_buffer view = {NULL, NULL};
 | |
|     PyObject *result = NULL;
 | |
| 
 | |
|     if (PyUnicode_Check(v)) {
 | |
|         s_buffer = _PyUnicode_TransformDecimalAndSpaceToASCII(v);
 | |
|         if (s_buffer == NULL)
 | |
|             return NULL;
 | |
|         assert(PyUnicode_IS_ASCII(s_buffer));
 | |
|         /* Simply get a pointer to existing ASCII characters. */
 | |
|         s = PyUnicode_AsUTF8AndSize(s_buffer, &len);
 | |
|         assert(s != NULL);
 | |
|     }
 | |
|     else if (PyBytes_Check(v)) {
 | |
|         s = PyBytes_AS_STRING(v);
 | |
|         len = PyBytes_GET_SIZE(v);
 | |
|     }
 | |
|     else if (PyByteArray_Check(v)) {
 | |
|         s = PyByteArray_AS_STRING(v);
 | |
|         len = PyByteArray_GET_SIZE(v);
 | |
|     }
 | |
|     else if (PyObject_GetBuffer(v, &view, PyBUF_SIMPLE) == 0) {
 | |
|         s = (const char *)view.buf;
 | |
|         len = view.len;
 | |
|         /* Copy to NUL-terminated buffer. */
 | |
|         s_buffer = PyBytes_FromStringAndSize(s, len);
 | |
|         if (s_buffer == NULL) {
 | |
|             PyBuffer_Release(&view);
 | |
|             return NULL;
 | |
|         }
 | |
|         s = PyBytes_AS_STRING(s_buffer);
 | |
|     }
 | |
|     else {
 | |
|         PyErr_Format(PyExc_TypeError,
 | |
|             "float() argument must be a string or a real number, not '%.200s'",
 | |
|             Py_TYPE(v)->tp_name);
 | |
|         return NULL;
 | |
|     }
 | |
|     result = _Py_string_to_number_with_underscores(s, len, "float", v, v,
 | |
|                                                    float_from_string_inner);
 | |
|     PyBuffer_Release(&view);
 | |
|     Py_XDECREF(s_buffer);
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static void
 | |
| float_dealloc(PyFloatObject *op)
 | |
| {
 | |
| #if PyFloat_MAXFREELIST > 0
 | |
|     if (PyFloat_CheckExact(op)) {
 | |
|         struct _Py_float_state *state = get_float_state();
 | |
| #ifdef Py_DEBUG
 | |
|         // float_dealloc() must not be called after _PyFloat_Fini()
 | |
|         assert(state->numfree != -1);
 | |
| #endif
 | |
|         if (state->numfree >= PyFloat_MAXFREELIST)  {
 | |
|             PyObject_Free(op);
 | |
|             return;
 | |
|         }
 | |
|         state->numfree++;
 | |
|         Py_SET_TYPE(op, (PyTypeObject *)state->free_list);
 | |
|         state->free_list = op;
 | |
|     }
 | |
|     else
 | |
| #endif
 | |
|     {
 | |
|         Py_TYPE(op)->tp_free((PyObject *)op);
 | |
|     }
 | |
| }
 | |
| 
 | |
| double
 | |
| PyFloat_AsDouble(PyObject *op)
 | |
| {
 | |
|     PyNumberMethods *nb;
 | |
|     PyObject *res;
 | |
|     double val;
 | |
| 
 | |
|     if (op == NULL) {
 | |
|         PyErr_BadArgument();
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (PyFloat_Check(op)) {
 | |
|         return PyFloat_AS_DOUBLE(op);
 | |
|     }
 | |
| 
 | |
|     nb = Py_TYPE(op)->tp_as_number;
 | |
|     if (nb == NULL || nb->nb_float == NULL) {
 | |
|         if (nb && nb->nb_index) {
 | |
|             PyObject *res = _PyNumber_Index(op);
 | |
|             if (!res) {
 | |
|                 return -1;
 | |
|             }
 | |
|             double val = PyLong_AsDouble(res);
 | |
|             Py_DECREF(res);
 | |
|             return val;
 | |
|         }
 | |
|         PyErr_Format(PyExc_TypeError, "must be real number, not %.50s",
 | |
|                      Py_TYPE(op)->tp_name);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     res = (*nb->nb_float) (op);
 | |
|     if (res == NULL) {
 | |
|         return -1;
 | |
|     }
 | |
|     if (!PyFloat_CheckExact(res)) {
 | |
|         if (!PyFloat_Check(res)) {
 | |
|             PyErr_Format(PyExc_TypeError,
 | |
|                          "%.50s.__float__ returned non-float (type %.50s)",
 | |
|                          Py_TYPE(op)->tp_name, Py_TYPE(res)->tp_name);
 | |
|             Py_DECREF(res);
 | |
|             return -1;
 | |
|         }
 | |
|         if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1,
 | |
|                 "%.50s.__float__ returned non-float (type %.50s).  "
 | |
|                 "The ability to return an instance of a strict subclass of float "
 | |
|                 "is deprecated, and may be removed in a future version of Python.",
 | |
|                 Py_TYPE(op)->tp_name, Py_TYPE(res)->tp_name)) {
 | |
|             Py_DECREF(res);
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     val = PyFloat_AS_DOUBLE(res);
 | |
|     Py_DECREF(res);
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| /* Macro and helper that convert PyObject obj to a C double and store
 | |
|    the value in dbl.  If conversion to double raises an exception, obj is
 | |
|    set to NULL, and the function invoking this macro returns NULL.  If
 | |
|    obj is not of float or int type, Py_NotImplemented is incref'ed,
 | |
|    stored in obj, and returned from the function invoking this macro.
 | |
| */
 | |
| #define CONVERT_TO_DOUBLE(obj, dbl)                     \
 | |
|     if (PyFloat_Check(obj))                             \
 | |
|         dbl = PyFloat_AS_DOUBLE(obj);                   \
 | |
|     else if (convert_to_double(&(obj), &(dbl)) < 0)     \
 | |
|         return obj;
 | |
| 
 | |
| /* Methods */
 | |
| 
 | |
| static int
 | |
| convert_to_double(PyObject **v, double *dbl)
 | |
| {
 | |
|     PyObject *obj = *v;
 | |
| 
 | |
|     if (PyLong_Check(obj)) {
 | |
|         *dbl = PyLong_AsDouble(obj);
 | |
|         if (*dbl == -1.0 && PyErr_Occurred()) {
 | |
|             *v = NULL;
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         Py_INCREF(Py_NotImplemented);
 | |
|         *v = Py_NotImplemented;
 | |
|         return -1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_repr(PyFloatObject *v)
 | |
| {
 | |
|     PyObject *result;
 | |
|     char *buf;
 | |
| 
 | |
|     buf = PyOS_double_to_string(PyFloat_AS_DOUBLE(v),
 | |
|                                 'r', 0,
 | |
|                                 Py_DTSF_ADD_DOT_0,
 | |
|                                 NULL);
 | |
|     if (!buf)
 | |
|         return PyErr_NoMemory();
 | |
|     result = _PyUnicode_FromASCII(buf, strlen(buf));
 | |
|     PyMem_Free(buf);
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /* Comparison is pretty much a nightmare.  When comparing float to float,
 | |
|  * we do it as straightforwardly (and long-windedly) as conceivable, so
 | |
|  * that, e.g., Python x == y delivers the same result as the platform
 | |
|  * C x == y when x and/or y is a NaN.
 | |
|  * When mixing float with an integer type, there's no good *uniform* approach.
 | |
|  * Converting the double to an integer obviously doesn't work, since we
 | |
|  * may lose info from fractional bits.  Converting the integer to a double
 | |
|  * also has two failure modes:  (1) an int may trigger overflow (too
 | |
|  * large to fit in the dynamic range of a C double); (2) even a C long may have
 | |
|  * more bits than fit in a C double (e.g., on a 64-bit box long may have
 | |
|  * 63 bits of precision, but a C double probably has only 53), and then
 | |
|  * we can falsely claim equality when low-order integer bits are lost by
 | |
|  * coercion to double.  So this part is painful too.
 | |
|  */
 | |
| 
 | |
| static PyObject*
 | |
| float_richcompare(PyObject *v, PyObject *w, int op)
 | |
| {
 | |
|     double i, j;
 | |
|     int r = 0;
 | |
| 
 | |
|     assert(PyFloat_Check(v));
 | |
|     i = PyFloat_AS_DOUBLE(v);
 | |
| 
 | |
|     /* Switch on the type of w.  Set i and j to doubles to be compared,
 | |
|      * and op to the richcomp to use.
 | |
|      */
 | |
|     if (PyFloat_Check(w))
 | |
|         j = PyFloat_AS_DOUBLE(w);
 | |
| 
 | |
|     else if (!Py_IS_FINITE(i)) {
 | |
|         if (PyLong_Check(w))
 | |
|             /* If i is an infinity, its magnitude exceeds any
 | |
|              * finite integer, so it doesn't matter which int we
 | |
|              * compare i with.  If i is a NaN, similarly.
 | |
|              */
 | |
|             j = 0.0;
 | |
|         else
 | |
|             goto Unimplemented;
 | |
|     }
 | |
| 
 | |
|     else if (PyLong_Check(w)) {
 | |
|         int vsign = i == 0.0 ? 0 : i < 0.0 ? -1 : 1;
 | |
|         int wsign = _PyLong_Sign(w);
 | |
|         size_t nbits;
 | |
|         int exponent;
 | |
| 
 | |
|         if (vsign != wsign) {
 | |
|             /* Magnitudes are irrelevant -- the signs alone
 | |
|              * determine the outcome.
 | |
|              */
 | |
|             i = (double)vsign;
 | |
|             j = (double)wsign;
 | |
|             goto Compare;
 | |
|         }
 | |
|         /* The signs are the same. */
 | |
|         /* Convert w to a double if it fits.  In particular, 0 fits. */
 | |
|         nbits = _PyLong_NumBits(w);
 | |
|         if (nbits == (size_t)-1 && PyErr_Occurred()) {
 | |
|             /* This long is so large that size_t isn't big enough
 | |
|              * to hold the # of bits.  Replace with little doubles
 | |
|              * that give the same outcome -- w is so large that
 | |
|              * its magnitude must exceed the magnitude of any
 | |
|              * finite float.
 | |
|              */
 | |
|             PyErr_Clear();
 | |
|             i = (double)vsign;
 | |
|             assert(wsign != 0);
 | |
|             j = wsign * 2.0;
 | |
|             goto Compare;
 | |
|         }
 | |
|         if (nbits <= 48) {
 | |
|             j = PyLong_AsDouble(w);
 | |
|             /* It's impossible that <= 48 bits overflowed. */
 | |
|             assert(j != -1.0 || ! PyErr_Occurred());
 | |
|             goto Compare;
 | |
|         }
 | |
|         assert(wsign != 0); /* else nbits was 0 */
 | |
|         assert(vsign != 0); /* if vsign were 0, then since wsign is
 | |
|                              * not 0, we would have taken the
 | |
|                              * vsign != wsign branch at the start */
 | |
|         /* We want to work with non-negative numbers. */
 | |
|         if (vsign < 0) {
 | |
|             /* "Multiply both sides" by -1; this also swaps the
 | |
|              * comparator.
 | |
|              */
 | |
|             i = -i;
 | |
|             op = _Py_SwappedOp[op];
 | |
|         }
 | |
|         assert(i > 0.0);
 | |
|         (void) frexp(i, &exponent);
 | |
|         /* exponent is the # of bits in v before the radix point;
 | |
|          * we know that nbits (the # of bits in w) > 48 at this point
 | |
|          */
 | |
|         if (exponent < 0 || (size_t)exponent < nbits) {
 | |
|             i = 1.0;
 | |
|             j = 2.0;
 | |
|             goto Compare;
 | |
|         }
 | |
|         if ((size_t)exponent > nbits) {
 | |
|             i = 2.0;
 | |
|             j = 1.0;
 | |
|             goto Compare;
 | |
|         }
 | |
|         /* v and w have the same number of bits before the radix
 | |
|          * point.  Construct two ints that have the same comparison
 | |
|          * outcome.
 | |
|          */
 | |
|         {
 | |
|             double fracpart;
 | |
|             double intpart;
 | |
|             PyObject *result = NULL;
 | |
|             PyObject *vv = NULL;
 | |
|             PyObject *ww = w;
 | |
| 
 | |
|             if (wsign < 0) {
 | |
|                 ww = PyNumber_Negative(w);
 | |
|                 if (ww == NULL)
 | |
|                     goto Error;
 | |
|             }
 | |
|             else
 | |
|                 Py_INCREF(ww);
 | |
| 
 | |
|             fracpart = modf(i, &intpart);
 | |
|             vv = PyLong_FromDouble(intpart);
 | |
|             if (vv == NULL)
 | |
|                 goto Error;
 | |
| 
 | |
|             if (fracpart != 0.0) {
 | |
|                 /* Shift left, and or a 1 bit into vv
 | |
|                  * to represent the lost fraction.
 | |
|                  */
 | |
|                 PyObject *temp;
 | |
| 
 | |
|                 temp = _PyLong_Lshift(ww, 1);
 | |
|                 if (temp == NULL)
 | |
|                     goto Error;
 | |
|                 Py_DECREF(ww);
 | |
|                 ww = temp;
 | |
| 
 | |
|                 temp = _PyLong_Lshift(vv, 1);
 | |
|                 if (temp == NULL)
 | |
|                     goto Error;
 | |
|                 Py_DECREF(vv);
 | |
|                 vv = temp;
 | |
| 
 | |
|                 temp = PyNumber_Or(vv, _PyLong_GetOne());
 | |
|                 if (temp == NULL)
 | |
|                     goto Error;
 | |
|                 Py_DECREF(vv);
 | |
|                 vv = temp;
 | |
|             }
 | |
| 
 | |
|             r = PyObject_RichCompareBool(vv, ww, op);
 | |
|             if (r < 0)
 | |
|                 goto Error;
 | |
|             result = PyBool_FromLong(r);
 | |
|          Error:
 | |
|             Py_XDECREF(vv);
 | |
|             Py_XDECREF(ww);
 | |
|             return result;
 | |
|         }
 | |
|     } /* else if (PyLong_Check(w)) */
 | |
| 
 | |
|     else        /* w isn't float or int */
 | |
|         goto Unimplemented;
 | |
| 
 | |
|  Compare:
 | |
|     switch (op) {
 | |
|     case Py_EQ:
 | |
|         r = i == j;
 | |
|         break;
 | |
|     case Py_NE:
 | |
|         r = i != j;
 | |
|         break;
 | |
|     case Py_LE:
 | |
|         r = i <= j;
 | |
|         break;
 | |
|     case Py_GE:
 | |
|         r = i >= j;
 | |
|         break;
 | |
|     case Py_LT:
 | |
|         r = i < j;
 | |
|         break;
 | |
|     case Py_GT:
 | |
|         r = i > j;
 | |
|         break;
 | |
|     }
 | |
|     return PyBool_FromLong(r);
 | |
| 
 | |
|  Unimplemented:
 | |
|     Py_RETURN_NOTIMPLEMENTED;
 | |
| }
 | |
| 
 | |
| static Py_hash_t
 | |
| float_hash(PyFloatObject *v)
 | |
| {
 | |
|     return _Py_HashDouble((PyObject *)v, v->ob_fval);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_add(PyObject *v, PyObject *w)
 | |
| {
 | |
|     double a,b;
 | |
|     CONVERT_TO_DOUBLE(v, a);
 | |
|     CONVERT_TO_DOUBLE(w, b);
 | |
|     a = a + b;
 | |
|     return PyFloat_FromDouble(a);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_sub(PyObject *v, PyObject *w)
 | |
| {
 | |
|     double a,b;
 | |
|     CONVERT_TO_DOUBLE(v, a);
 | |
|     CONVERT_TO_DOUBLE(w, b);
 | |
|     a = a - b;
 | |
|     return PyFloat_FromDouble(a);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_mul(PyObject *v, PyObject *w)
 | |
| {
 | |
|     double a,b;
 | |
|     CONVERT_TO_DOUBLE(v, a);
 | |
|     CONVERT_TO_DOUBLE(w, b);
 | |
|     a = a * b;
 | |
|     return PyFloat_FromDouble(a);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_div(PyObject *v, PyObject *w)
 | |
| {
 | |
|     double a,b;
 | |
|     CONVERT_TO_DOUBLE(v, a);
 | |
|     CONVERT_TO_DOUBLE(w, b);
 | |
|     if (b == 0.0) {
 | |
|         PyErr_SetString(PyExc_ZeroDivisionError,
 | |
|                         "float division by zero");
 | |
|         return NULL;
 | |
|     }
 | |
|     a = a / b;
 | |
|     return PyFloat_FromDouble(a);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_rem(PyObject *v, PyObject *w)
 | |
| {
 | |
|     double vx, wx;
 | |
|     double mod;
 | |
|     CONVERT_TO_DOUBLE(v, vx);
 | |
|     CONVERT_TO_DOUBLE(w, wx);
 | |
|     if (wx == 0.0) {
 | |
|         PyErr_SetString(PyExc_ZeroDivisionError,
 | |
|                         "float modulo");
 | |
|         return NULL;
 | |
|     }
 | |
|     mod = fmod(vx, wx);
 | |
|     if (mod) {
 | |
|         /* ensure the remainder has the same sign as the denominator */
 | |
|         if ((wx < 0) != (mod < 0)) {
 | |
|             mod += wx;
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         /* the remainder is zero, and in the presence of signed zeroes
 | |
|            fmod returns different results across platforms; ensure
 | |
|            it has the same sign as the denominator. */
 | |
|         mod = copysign(0.0, wx);
 | |
|     }
 | |
|     return PyFloat_FromDouble(mod);
 | |
| }
 | |
| 
 | |
| static void
 | |
| _float_div_mod(double vx, double wx, double *floordiv, double *mod)
 | |
| {
 | |
|     double div;
 | |
|     *mod = fmod(vx, wx);
 | |
|     /* fmod is typically exact, so vx-mod is *mathematically* an
 | |
|        exact multiple of wx.  But this is fp arithmetic, and fp
 | |
|        vx - mod is an approximation; the result is that div may
 | |
|        not be an exact integral value after the division, although
 | |
|        it will always be very close to one.
 | |
|     */
 | |
|     div = (vx - *mod) / wx;
 | |
|     if (*mod) {
 | |
|         /* ensure the remainder has the same sign as the denominator */
 | |
|         if ((wx < 0) != (*mod < 0)) {
 | |
|             *mod += wx;
 | |
|             div -= 1.0;
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         /* the remainder is zero, and in the presence of signed zeroes
 | |
|            fmod returns different results across platforms; ensure
 | |
|            it has the same sign as the denominator. */
 | |
|         *mod = copysign(0.0, wx);
 | |
|     }
 | |
|     /* snap quotient to nearest integral value */
 | |
|     if (div) {
 | |
|         *floordiv = floor(div);
 | |
|         if (div - *floordiv > 0.5) {
 | |
|             *floordiv += 1.0;
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         /* div is zero - get the same sign as the true quotient */
 | |
|         *floordiv = copysign(0.0, vx / wx); /* zero w/ sign of vx/wx */
 | |
|     }
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_divmod(PyObject *v, PyObject *w)
 | |
| {
 | |
|     double vx, wx;
 | |
|     double mod, floordiv;
 | |
|     CONVERT_TO_DOUBLE(v, vx);
 | |
|     CONVERT_TO_DOUBLE(w, wx);
 | |
|     if (wx == 0.0) {
 | |
|         PyErr_SetString(PyExc_ZeroDivisionError, "float divmod()");
 | |
|         return NULL;
 | |
|     }
 | |
|     _float_div_mod(vx, wx, &floordiv, &mod);
 | |
|     return Py_BuildValue("(dd)", floordiv, mod);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_floor_div(PyObject *v, PyObject *w)
 | |
| {
 | |
|     double vx, wx;
 | |
|     double mod, floordiv;
 | |
|     CONVERT_TO_DOUBLE(v, vx);
 | |
|     CONVERT_TO_DOUBLE(w, wx);
 | |
|     if (wx == 0.0) {
 | |
|         PyErr_SetString(PyExc_ZeroDivisionError, "float floor division by zero");
 | |
|         return NULL;
 | |
|     }
 | |
|     _float_div_mod(vx, wx, &floordiv, &mod);
 | |
|     return PyFloat_FromDouble(floordiv);
 | |
| }
 | |
| 
 | |
| /* determine whether x is an odd integer or not;  assumes that
 | |
|    x is not an infinity or nan. */
 | |
| #define DOUBLE_IS_ODD_INTEGER(x) (fmod(fabs(x), 2.0) == 1.0)
 | |
| 
 | |
| static PyObject *
 | |
| float_pow(PyObject *v, PyObject *w, PyObject *z)
 | |
| {
 | |
|     double iv, iw, ix;
 | |
|     int negate_result = 0;
 | |
| 
 | |
|     if ((PyObject *)z != Py_None) {
 | |
|         PyErr_SetString(PyExc_TypeError, "pow() 3rd argument not "
 | |
|             "allowed unless all arguments are integers");
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     CONVERT_TO_DOUBLE(v, iv);
 | |
|     CONVERT_TO_DOUBLE(w, iw);
 | |
| 
 | |
|     /* Sort out special cases here instead of relying on pow() */
 | |
|     if (iw == 0) {              /* v**0 is 1, even 0**0 */
 | |
|         return PyFloat_FromDouble(1.0);
 | |
|     }
 | |
|     if (Py_IS_NAN(iv)) {        /* nan**w = nan, unless w == 0 */
 | |
|         return PyFloat_FromDouble(iv);
 | |
|     }
 | |
|     if (Py_IS_NAN(iw)) {        /* v**nan = nan, unless v == 1; 1**nan = 1 */
 | |
|         return PyFloat_FromDouble(iv == 1.0 ? 1.0 : iw);
 | |
|     }
 | |
|     if (Py_IS_INFINITY(iw)) {
 | |
|         /* v**inf is: 0.0 if abs(v) < 1; 1.0 if abs(v) == 1; inf if
 | |
|          *     abs(v) > 1 (including case where v infinite)
 | |
|          *
 | |
|          * v**-inf is: inf if abs(v) < 1; 1.0 if abs(v) == 1; 0.0 if
 | |
|          *     abs(v) > 1 (including case where v infinite)
 | |
|          */
 | |
|         iv = fabs(iv);
 | |
|         if (iv == 1.0)
 | |
|             return PyFloat_FromDouble(1.0);
 | |
|         else if ((iw > 0.0) == (iv > 1.0))
 | |
|             return PyFloat_FromDouble(fabs(iw)); /* return inf */
 | |
|         else
 | |
|             return PyFloat_FromDouble(0.0);
 | |
|     }
 | |
|     if (Py_IS_INFINITY(iv)) {
 | |
|         /* (+-inf)**w is: inf for w positive, 0 for w negative; in
 | |
|          *     both cases, we need to add the appropriate sign if w is
 | |
|          *     an odd integer.
 | |
|          */
 | |
|         int iw_is_odd = DOUBLE_IS_ODD_INTEGER(iw);
 | |
|         if (iw > 0.0)
 | |
|             return PyFloat_FromDouble(iw_is_odd ? iv : fabs(iv));
 | |
|         else
 | |
|             return PyFloat_FromDouble(iw_is_odd ?
 | |
|                                       copysign(0.0, iv) : 0.0);
 | |
|     }
 | |
|     if (iv == 0.0) {  /* 0**w is: 0 for w positive, 1 for w zero
 | |
|                          (already dealt with above), and an error
 | |
|                          if w is negative. */
 | |
|         int iw_is_odd = DOUBLE_IS_ODD_INTEGER(iw);
 | |
|         if (iw < 0.0) {
 | |
|             PyErr_SetString(PyExc_ZeroDivisionError,
 | |
|                             "0.0 cannot be raised to a "
 | |
|                             "negative power");
 | |
|             return NULL;
 | |
|         }
 | |
|         /* use correct sign if iw is odd */
 | |
|         return PyFloat_FromDouble(iw_is_odd ? iv : 0.0);
 | |
|     }
 | |
| 
 | |
|     if (iv < 0.0) {
 | |
|         /* Whether this is an error is a mess, and bumps into libm
 | |
|          * bugs so we have to figure it out ourselves.
 | |
|          */
 | |
|         if (iw != floor(iw)) {
 | |
|             /* Negative numbers raised to fractional powers
 | |
|              * become complex.
 | |
|              */
 | |
|             return PyComplex_Type.tp_as_number->nb_power(v, w, z);
 | |
|         }
 | |
|         /* iw is an exact integer, albeit perhaps a very large
 | |
|          * one.  Replace iv by its absolute value and remember
 | |
|          * to negate the pow result if iw is odd.
 | |
|          */
 | |
|         iv = -iv;
 | |
|         negate_result = DOUBLE_IS_ODD_INTEGER(iw);
 | |
|     }
 | |
| 
 | |
|     if (iv == 1.0) { /* 1**w is 1, even 1**inf and 1**nan */
 | |
|         /* (-1) ** large_integer also ends up here.  Here's an
 | |
|          * extract from the comments for the previous
 | |
|          * implementation explaining why this special case is
 | |
|          * necessary:
 | |
|          *
 | |
|          * -1 raised to an exact integer should never be exceptional.
 | |
|          * Alas, some libms (chiefly glibc as of early 2003) return
 | |
|          * NaN and set EDOM on pow(-1, large_int) if the int doesn't
 | |
|          * happen to be representable in a *C* integer.  That's a
 | |
|          * bug.
 | |
|          */
 | |
|         return PyFloat_FromDouble(negate_result ? -1.0 : 1.0);
 | |
|     }
 | |
| 
 | |
|     /* Now iv and iw are finite, iw is nonzero, and iv is
 | |
|      * positive and not equal to 1.0.  We finally allow
 | |
|      * the platform pow to step in and do the rest.
 | |
|      */
 | |
|     errno = 0;
 | |
|     ix = pow(iv, iw);
 | |
|     _Py_ADJUST_ERANGE1(ix);
 | |
|     if (negate_result)
 | |
|         ix = -ix;
 | |
| 
 | |
|     if (errno != 0) {
 | |
|         /* We don't expect any errno value other than ERANGE, but
 | |
|          * the range of libm bugs appears unbounded.
 | |
|          */
 | |
|         PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError :
 | |
|                              PyExc_ValueError);
 | |
|         return NULL;
 | |
|     }
 | |
|     return PyFloat_FromDouble(ix);
 | |
| }
 | |
| 
 | |
| #undef DOUBLE_IS_ODD_INTEGER
 | |
| 
 | |
| static PyObject *
 | |
| float_neg(PyFloatObject *v)
 | |
| {
 | |
|     return PyFloat_FromDouble(-v->ob_fval);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_abs(PyFloatObject *v)
 | |
| {
 | |
|     return PyFloat_FromDouble(fabs(v->ob_fval));
 | |
| }
 | |
| 
 | |
| static int
 | |
| float_bool(PyFloatObject *v)
 | |
| {
 | |
|     return v->ob_fval != 0.0;
 | |
| }
 | |
| 
 | |
| /*[clinic input]
 | |
| float.is_integer
 | |
| 
 | |
| Return True if the float is an integer.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| float_is_integer_impl(PyObject *self)
 | |
| /*[clinic end generated code: output=7112acf95a4d31ea input=311810d3f777e10d]*/
 | |
| {
 | |
|     double x = PyFloat_AsDouble(self);
 | |
|     PyObject *o;
 | |
| 
 | |
|     if (x == -1.0 && PyErr_Occurred())
 | |
|         return NULL;
 | |
|     if (!Py_IS_FINITE(x))
 | |
|         Py_RETURN_FALSE;
 | |
|     errno = 0;
 | |
|     o = (floor(x) == x) ? Py_True : Py_False;
 | |
|     if (errno != 0) {
 | |
|         PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError :
 | |
|                              PyExc_ValueError);
 | |
|         return NULL;
 | |
|     }
 | |
|     Py_INCREF(o);
 | |
|     return o;
 | |
| }
 | |
| 
 | |
| /*[clinic input]
 | |
| float.__trunc__
 | |
| 
 | |
| Return the Integral closest to x between 0 and x.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| float___trunc___impl(PyObject *self)
 | |
| /*[clinic end generated code: output=dd3e289dd4c6b538 input=591b9ba0d650fdff]*/
 | |
| {
 | |
|     return PyLong_FromDouble(PyFloat_AS_DOUBLE(self));
 | |
| }
 | |
| 
 | |
| /*[clinic input]
 | |
| float.__floor__
 | |
| 
 | |
| Return the floor as an Integral.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| float___floor___impl(PyObject *self)
 | |
| /*[clinic end generated code: output=e0551dbaea8c01d1 input=77bb13eb12e268df]*/
 | |
| {
 | |
|     double x = PyFloat_AS_DOUBLE(self);
 | |
|     return PyLong_FromDouble(floor(x));
 | |
| }
 | |
| 
 | |
| /*[clinic input]
 | |
| float.__ceil__
 | |
| 
 | |
| Return the ceiling as an Integral.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| float___ceil___impl(PyObject *self)
 | |
| /*[clinic end generated code: output=a2fd8858f73736f9 input=79e41ae94aa0a516]*/
 | |
| {
 | |
|     double x = PyFloat_AS_DOUBLE(self);
 | |
|     return PyLong_FromDouble(ceil(x));
 | |
| }
 | |
| 
 | |
| /* double_round: rounds a finite double to the closest multiple of
 | |
|    10**-ndigits; here ndigits is within reasonable bounds (typically, -308 <=
 | |
|    ndigits <= 323).  Returns a Python float, or sets a Python error and
 | |
|    returns NULL on failure (OverflowError and memory errors are possible). */
 | |
| 
 | |
| #ifndef PY_NO_SHORT_FLOAT_REPR
 | |
| /* version of double_round that uses the correctly-rounded string<->double
 | |
|    conversions from Python/dtoa.c */
 | |
| 
 | |
| static PyObject *
 | |
| double_round(double x, int ndigits) {
 | |
| 
 | |
|     double rounded;
 | |
|     Py_ssize_t buflen, mybuflen=100;
 | |
|     char *buf, *buf_end, shortbuf[100], *mybuf=shortbuf;
 | |
|     int decpt, sign;
 | |
|     PyObject *result = NULL;
 | |
|     _Py_SET_53BIT_PRECISION_HEADER;
 | |
| 
 | |
|     /* round to a decimal string */
 | |
|     _Py_SET_53BIT_PRECISION_START;
 | |
|     buf = _Py_dg_dtoa(x, 3, ndigits, &decpt, &sign, &buf_end);
 | |
|     _Py_SET_53BIT_PRECISION_END;
 | |
|     if (buf == NULL) {
 | |
|         PyErr_NoMemory();
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     /* Get new buffer if shortbuf is too small.  Space needed <= buf_end -
 | |
|     buf + 8: (1 extra for '0', 1 for sign, 5 for exp, 1 for '\0').  */
 | |
|     buflen = buf_end - buf;
 | |
|     if (buflen + 8 > mybuflen) {
 | |
|         mybuflen = buflen+8;
 | |
|         mybuf = (char *)PyMem_Malloc(mybuflen);
 | |
|         if (mybuf == NULL) {
 | |
|             PyErr_NoMemory();
 | |
|             goto exit;
 | |
|         }
 | |
|     }
 | |
|     /* copy buf to mybuf, adding exponent, sign and leading 0 */
 | |
|     PyOS_snprintf(mybuf, mybuflen, "%s0%se%d", (sign ? "-" : ""),
 | |
|                   buf, decpt - (int)buflen);
 | |
| 
 | |
|     /* and convert the resulting string back to a double */
 | |
|     errno = 0;
 | |
|     _Py_SET_53BIT_PRECISION_START;
 | |
|     rounded = _Py_dg_strtod(mybuf, NULL);
 | |
|     _Py_SET_53BIT_PRECISION_END;
 | |
|     if (errno == ERANGE && fabs(rounded) >= 1.)
 | |
|         PyErr_SetString(PyExc_OverflowError,
 | |
|                         "rounded value too large to represent");
 | |
|     else
 | |
|         result = PyFloat_FromDouble(rounded);
 | |
| 
 | |
|     /* done computing value;  now clean up */
 | |
|     if (mybuf != shortbuf)
 | |
|         PyMem_Free(mybuf);
 | |
|   exit:
 | |
|     _Py_dg_freedtoa(buf);
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| #else /* PY_NO_SHORT_FLOAT_REPR */
 | |
| 
 | |
| /* fallback version, to be used when correctly rounded binary<->decimal
 | |
|    conversions aren't available */
 | |
| 
 | |
| static PyObject *
 | |
| double_round(double x, int ndigits) {
 | |
|     double pow1, pow2, y, z;
 | |
|     if (ndigits >= 0) {
 | |
|         if (ndigits > 22) {
 | |
|             /* pow1 and pow2 are each safe from overflow, but
 | |
|                pow1*pow2 ~= pow(10.0, ndigits) might overflow */
 | |
|             pow1 = pow(10.0, (double)(ndigits-22));
 | |
|             pow2 = 1e22;
 | |
|         }
 | |
|         else {
 | |
|             pow1 = pow(10.0, (double)ndigits);
 | |
|             pow2 = 1.0;
 | |
|         }
 | |
|         y = (x*pow1)*pow2;
 | |
|         /* if y overflows, then rounded value is exactly x */
 | |
|         if (!Py_IS_FINITE(y))
 | |
|             return PyFloat_FromDouble(x);
 | |
|     }
 | |
|     else {
 | |
|         pow1 = pow(10.0, (double)-ndigits);
 | |
|         pow2 = 1.0; /* unused; silences a gcc compiler warning */
 | |
|         y = x / pow1;
 | |
|     }
 | |
| 
 | |
|     z = round(y);
 | |
|     if (fabs(y-z) == 0.5)
 | |
|         /* halfway between two integers; use round-half-even */
 | |
|         z = 2.0*round(y/2.0);
 | |
| 
 | |
|     if (ndigits >= 0)
 | |
|         z = (z / pow2) / pow1;
 | |
|     else
 | |
|         z *= pow1;
 | |
| 
 | |
|     /* if computation resulted in overflow, raise OverflowError */
 | |
|     if (!Py_IS_FINITE(z)) {
 | |
|         PyErr_SetString(PyExc_OverflowError,
 | |
|                         "overflow occurred during round");
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     return PyFloat_FromDouble(z);
 | |
| }
 | |
| 
 | |
| #endif /* PY_NO_SHORT_FLOAT_REPR */
 | |
| 
 | |
| /* round a Python float v to the closest multiple of 10**-ndigits */
 | |
| 
 | |
| /*[clinic input]
 | |
| float.__round__
 | |
| 
 | |
|     ndigits as o_ndigits: object = None
 | |
|     /
 | |
| 
 | |
| Return the Integral closest to x, rounding half toward even.
 | |
| 
 | |
| When an argument is passed, work like built-in round(x, ndigits).
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| float___round___impl(PyObject *self, PyObject *o_ndigits)
 | |
| /*[clinic end generated code: output=374c36aaa0f13980 input=fc0fe25924fbc9ed]*/
 | |
| {
 | |
|     double x, rounded;
 | |
|     Py_ssize_t ndigits;
 | |
| 
 | |
|     x = PyFloat_AsDouble(self);
 | |
|     if (o_ndigits == Py_None) {
 | |
|         /* single-argument round or with None ndigits:
 | |
|          * round to nearest integer */
 | |
|         rounded = round(x);
 | |
|         if (fabs(x-rounded) == 0.5)
 | |
|             /* halfway case: round to even */
 | |
|             rounded = 2.0*round(x/2.0);
 | |
|         return PyLong_FromDouble(rounded);
 | |
|     }
 | |
| 
 | |
|     /* interpret second argument as a Py_ssize_t; clips on overflow */
 | |
|     ndigits = PyNumber_AsSsize_t(o_ndigits, NULL);
 | |
|     if (ndigits == -1 && PyErr_Occurred())
 | |
|         return NULL;
 | |
| 
 | |
|     /* nans and infinities round to themselves */
 | |
|     if (!Py_IS_FINITE(x))
 | |
|         return PyFloat_FromDouble(x);
 | |
| 
 | |
|     /* Deal with extreme values for ndigits. For ndigits > NDIGITS_MAX, x
 | |
|        always rounds to itself.  For ndigits < NDIGITS_MIN, x always
 | |
|        rounds to +-0.0.  Here 0.30103 is an upper bound for log10(2). */
 | |
| #define NDIGITS_MAX ((int)((DBL_MANT_DIG-DBL_MIN_EXP) * 0.30103))
 | |
| #define NDIGITS_MIN (-(int)((DBL_MAX_EXP + 1) * 0.30103))
 | |
|     if (ndigits > NDIGITS_MAX)
 | |
|         /* return x */
 | |
|         return PyFloat_FromDouble(x);
 | |
|     else if (ndigits < NDIGITS_MIN)
 | |
|         /* return 0.0, but with sign of x */
 | |
|         return PyFloat_FromDouble(0.0*x);
 | |
|     else
 | |
|         /* finite x, and ndigits is not unreasonably large */
 | |
|         return double_round(x, (int)ndigits);
 | |
| #undef NDIGITS_MAX
 | |
| #undef NDIGITS_MIN
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_float(PyObject *v)
 | |
| {
 | |
|     if (PyFloat_CheckExact(v))
 | |
|         Py_INCREF(v);
 | |
|     else
 | |
|         v = PyFloat_FromDouble(((PyFloatObject *)v)->ob_fval);
 | |
|     return v;
 | |
| }
 | |
| 
 | |
| /*[clinic input]
 | |
| float.conjugate
 | |
| 
 | |
| Return self, the complex conjugate of any float.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| float_conjugate_impl(PyObject *self)
 | |
| /*[clinic end generated code: output=8ca292c2479194af input=82ba6f37a9ff91dd]*/
 | |
| {
 | |
|     return float_float(self);
 | |
| }
 | |
| 
 | |
| /* turn ASCII hex characters into integer values and vice versa */
 | |
| 
 | |
| static char
 | |
| char_from_hex(int x)
 | |
| {
 | |
|     assert(0 <= x && x < 16);
 | |
|     return Py_hexdigits[x];
 | |
| }
 | |
| 
 | |
| static int
 | |
| hex_from_char(char c) {
 | |
|     int x;
 | |
|     switch(c) {
 | |
|     case '0':
 | |
|         x = 0;
 | |
|         break;
 | |
|     case '1':
 | |
|         x = 1;
 | |
|         break;
 | |
|     case '2':
 | |
|         x = 2;
 | |
|         break;
 | |
|     case '3':
 | |
|         x = 3;
 | |
|         break;
 | |
|     case '4':
 | |
|         x = 4;
 | |
|         break;
 | |
|     case '5':
 | |
|         x = 5;
 | |
|         break;
 | |
|     case '6':
 | |
|         x = 6;
 | |
|         break;
 | |
|     case '7':
 | |
|         x = 7;
 | |
|         break;
 | |
|     case '8':
 | |
|         x = 8;
 | |
|         break;
 | |
|     case '9':
 | |
|         x = 9;
 | |
|         break;
 | |
|     case 'a':
 | |
|     case 'A':
 | |
|         x = 10;
 | |
|         break;
 | |
|     case 'b':
 | |
|     case 'B':
 | |
|         x = 11;
 | |
|         break;
 | |
|     case 'c':
 | |
|     case 'C':
 | |
|         x = 12;
 | |
|         break;
 | |
|     case 'd':
 | |
|     case 'D':
 | |
|         x = 13;
 | |
|         break;
 | |
|     case 'e':
 | |
|     case 'E':
 | |
|         x = 14;
 | |
|         break;
 | |
|     case 'f':
 | |
|     case 'F':
 | |
|         x = 15;
 | |
|         break;
 | |
|     default:
 | |
|         x = -1;
 | |
|         break;
 | |
|     }
 | |
|     return x;
 | |
| }
 | |
| 
 | |
| /* convert a float to a hexadecimal string */
 | |
| 
 | |
| /* TOHEX_NBITS is DBL_MANT_DIG rounded up to the next integer
 | |
|    of the form 4k+1. */
 | |
| #define TOHEX_NBITS DBL_MANT_DIG + 3 - (DBL_MANT_DIG+2)%4
 | |
| 
 | |
| /*[clinic input]
 | |
| float.hex
 | |
| 
 | |
| Return a hexadecimal representation of a floating-point number.
 | |
| 
 | |
| >>> (-0.1).hex()
 | |
| '-0x1.999999999999ap-4'
 | |
| >>> 3.14159.hex()
 | |
| '0x1.921f9f01b866ep+1'
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| float_hex_impl(PyObject *self)
 | |
| /*[clinic end generated code: output=0ebc9836e4d302d4 input=bec1271a33d47e67]*/
 | |
| {
 | |
|     double x, m;
 | |
|     int e, shift, i, si, esign;
 | |
|     /* Space for 1+(TOHEX_NBITS-1)/4 digits, a decimal point, and the
 | |
|        trailing NUL byte. */
 | |
|     char s[(TOHEX_NBITS-1)/4+3];
 | |
| 
 | |
|     CONVERT_TO_DOUBLE(self, x);
 | |
| 
 | |
|     if (Py_IS_NAN(x) || Py_IS_INFINITY(x))
 | |
|         return float_repr((PyFloatObject *)self);
 | |
| 
 | |
|     if (x == 0.0) {
 | |
|         if (copysign(1.0, x) == -1.0)
 | |
|             return PyUnicode_FromString("-0x0.0p+0");
 | |
|         else
 | |
|             return PyUnicode_FromString("0x0.0p+0");
 | |
|     }
 | |
| 
 | |
|     m = frexp(fabs(x), &e);
 | |
|     shift = 1 - Py_MAX(DBL_MIN_EXP - e, 0);
 | |
|     m = ldexp(m, shift);
 | |
|     e -= shift;
 | |
| 
 | |
|     si = 0;
 | |
|     s[si] = char_from_hex((int)m);
 | |
|     si++;
 | |
|     m -= (int)m;
 | |
|     s[si] = '.';
 | |
|     si++;
 | |
|     for (i=0; i < (TOHEX_NBITS-1)/4; i++) {
 | |
|         m *= 16.0;
 | |
|         s[si] = char_from_hex((int)m);
 | |
|         si++;
 | |
|         m -= (int)m;
 | |
|     }
 | |
|     s[si] = '\0';
 | |
| 
 | |
|     if (e < 0) {
 | |
|         esign = (int)'-';
 | |
|         e = -e;
 | |
|     }
 | |
|     else
 | |
|         esign = (int)'+';
 | |
| 
 | |
|     if (x < 0.0)
 | |
|         return PyUnicode_FromFormat("-0x%sp%c%d", s, esign, e);
 | |
|     else
 | |
|         return PyUnicode_FromFormat("0x%sp%c%d", s, esign, e);
 | |
| }
 | |
| 
 | |
| /* Convert a hexadecimal string to a float. */
 | |
| 
 | |
| /*[clinic input]
 | |
| @classmethod
 | |
| float.fromhex
 | |
| 
 | |
|     string: object
 | |
|     /
 | |
| 
 | |
| Create a floating-point number from a hexadecimal string.
 | |
| 
 | |
| >>> float.fromhex('0x1.ffffp10')
 | |
| 2047.984375
 | |
| >>> float.fromhex('-0x1p-1074')
 | |
| -5e-324
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| float_fromhex(PyTypeObject *type, PyObject *string)
 | |
| /*[clinic end generated code: output=46c0274d22b78e82 input=0407bebd354bca89]*/
 | |
| {
 | |
|     PyObject *result;
 | |
|     double x;
 | |
|     long exp, top_exp, lsb, key_digit;
 | |
|     const char *s, *coeff_start, *s_store, *coeff_end, *exp_start, *s_end;
 | |
|     int half_eps, digit, round_up, negate=0;
 | |
|     Py_ssize_t length, ndigits, fdigits, i;
 | |
| 
 | |
|     /*
 | |
|      * For the sake of simplicity and correctness, we impose an artificial
 | |
|      * limit on ndigits, the total number of hex digits in the coefficient
 | |
|      * The limit is chosen to ensure that, writing exp for the exponent,
 | |
|      *
 | |
|      *   (1) if exp > LONG_MAX/2 then the value of the hex string is
 | |
|      *   guaranteed to overflow (provided it's nonzero)
 | |
|      *
 | |
|      *   (2) if exp < LONG_MIN/2 then the value of the hex string is
 | |
|      *   guaranteed to underflow to 0.
 | |
|      *
 | |
|      *   (3) if LONG_MIN/2 <= exp <= LONG_MAX/2 then there's no danger of
 | |
|      *   overflow in the calculation of exp and top_exp below.
 | |
|      *
 | |
|      * More specifically, ndigits is assumed to satisfy the following
 | |
|      * inequalities:
 | |
|      *
 | |
|      *   4*ndigits <= DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2
 | |
|      *   4*ndigits <= LONG_MAX/2 + 1 - DBL_MAX_EXP
 | |
|      *
 | |
|      * If either of these inequalities is not satisfied, a ValueError is
 | |
|      * raised.  Otherwise, write x for the value of the hex string, and
 | |
|      * assume x is nonzero.  Then
 | |
|      *
 | |
|      *   2**(exp-4*ndigits) <= |x| < 2**(exp+4*ndigits).
 | |
|      *
 | |
|      * Now if exp > LONG_MAX/2 then:
 | |
|      *
 | |
|      *   exp - 4*ndigits >= LONG_MAX/2 + 1 - (LONG_MAX/2 + 1 - DBL_MAX_EXP)
 | |
|      *                    = DBL_MAX_EXP
 | |
|      *
 | |
|      * so |x| >= 2**DBL_MAX_EXP, which is too large to be stored in C
 | |
|      * double, so overflows.  If exp < LONG_MIN/2, then
 | |
|      *
 | |
|      *   exp + 4*ndigits <= LONG_MIN/2 - 1 + (
 | |
|      *                      DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2)
 | |
|      *                    = DBL_MIN_EXP - DBL_MANT_DIG - 1
 | |
|      *
 | |
|      * and so |x| < 2**(DBL_MIN_EXP-DBL_MANT_DIG-1), hence underflows to 0
 | |
|      * when converted to a C double.
 | |
|      *
 | |
|      * It's easy to show that if LONG_MIN/2 <= exp <= LONG_MAX/2 then both
 | |
|      * exp+4*ndigits and exp-4*ndigits are within the range of a long.
 | |
|      */
 | |
| 
 | |
|     s = PyUnicode_AsUTF8AndSize(string, &length);
 | |
|     if (s == NULL)
 | |
|         return NULL;
 | |
|     s_end = s + length;
 | |
| 
 | |
|     /********************
 | |
|      * Parse the string *
 | |
|      ********************/
 | |
| 
 | |
|     /* leading whitespace */
 | |
|     while (Py_ISSPACE(*s))
 | |
|         s++;
 | |
| 
 | |
|     /* infinities and nans */
 | |
|     x = _Py_parse_inf_or_nan(s, (char **)&coeff_end);
 | |
|     if (coeff_end != s) {
 | |
|         s = coeff_end;
 | |
|         goto finished;
 | |
|     }
 | |
| 
 | |
|     /* optional sign */
 | |
|     if (*s == '-') {
 | |
|         s++;
 | |
|         negate = 1;
 | |
|     }
 | |
|     else if (*s == '+')
 | |
|         s++;
 | |
| 
 | |
|     /* [0x] */
 | |
|     s_store = s;
 | |
|     if (*s == '0') {
 | |
|         s++;
 | |
|         if (*s == 'x' || *s == 'X')
 | |
|             s++;
 | |
|         else
 | |
|             s = s_store;
 | |
|     }
 | |
| 
 | |
|     /* coefficient: <integer> [. <fraction>] */
 | |
|     coeff_start = s;
 | |
|     while (hex_from_char(*s) >= 0)
 | |
|         s++;
 | |
|     s_store = s;
 | |
|     if (*s == '.') {
 | |
|         s++;
 | |
|         while (hex_from_char(*s) >= 0)
 | |
|             s++;
 | |
|         coeff_end = s-1;
 | |
|     }
 | |
|     else
 | |
|         coeff_end = s;
 | |
| 
 | |
|     /* ndigits = total # of hex digits; fdigits = # after point */
 | |
|     ndigits = coeff_end - coeff_start;
 | |
|     fdigits = coeff_end - s_store;
 | |
|     if (ndigits == 0)
 | |
|         goto parse_error;
 | |
|     if (ndigits > Py_MIN(DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2,
 | |
|                          LONG_MAX/2 + 1 - DBL_MAX_EXP)/4)
 | |
|         goto insane_length_error;
 | |
| 
 | |
|     /* [p <exponent>] */
 | |
|     if (*s == 'p' || *s == 'P') {
 | |
|         s++;
 | |
|         exp_start = s;
 | |
|         if (*s == '-' || *s == '+')
 | |
|             s++;
 | |
|         if (!('0' <= *s && *s <= '9'))
 | |
|             goto parse_error;
 | |
|         s++;
 | |
|         while ('0' <= *s && *s <= '9')
 | |
|             s++;
 | |
|         exp = strtol(exp_start, NULL, 10);
 | |
|     }
 | |
|     else
 | |
|         exp = 0;
 | |
| 
 | |
| /* for 0 <= j < ndigits, HEX_DIGIT(j) gives the jth most significant digit */
 | |
| #define HEX_DIGIT(j) hex_from_char(*((j) < fdigits ?            \
 | |
|                      coeff_end-(j) :                                    \
 | |
|                      coeff_end-1-(j)))
 | |
| 
 | |
|     /*******************************************
 | |
|      * Compute rounded value of the hex string *
 | |
|      *******************************************/
 | |
| 
 | |
|     /* Discard leading zeros, and catch extreme overflow and underflow */
 | |
|     while (ndigits > 0 && HEX_DIGIT(ndigits-1) == 0)
 | |
|         ndigits--;
 | |
|     if (ndigits == 0 || exp < LONG_MIN/2) {
 | |
|         x = 0.0;
 | |
|         goto finished;
 | |
|     }
 | |
|     if (exp > LONG_MAX/2)
 | |
|         goto overflow_error;
 | |
| 
 | |
|     /* Adjust exponent for fractional part. */
 | |
|     exp = exp - 4*((long)fdigits);
 | |
| 
 | |
|     /* top_exp = 1 more than exponent of most sig. bit of coefficient */
 | |
|     top_exp = exp + 4*((long)ndigits - 1);
 | |
|     for (digit = HEX_DIGIT(ndigits-1); digit != 0; digit /= 2)
 | |
|         top_exp++;
 | |
| 
 | |
|     /* catch almost all nonextreme cases of overflow and underflow here */
 | |
|     if (top_exp < DBL_MIN_EXP - DBL_MANT_DIG) {
 | |
|         x = 0.0;
 | |
|         goto finished;
 | |
|     }
 | |
|     if (top_exp > DBL_MAX_EXP)
 | |
|         goto overflow_error;
 | |
| 
 | |
|     /* lsb = exponent of least significant bit of the *rounded* value.
 | |
|        This is top_exp - DBL_MANT_DIG unless result is subnormal. */
 | |
|     lsb = Py_MAX(top_exp, (long)DBL_MIN_EXP) - DBL_MANT_DIG;
 | |
| 
 | |
|     x = 0.0;
 | |
|     if (exp >= lsb) {
 | |
|         /* no rounding required */
 | |
|         for (i = ndigits-1; i >= 0; i--)
 | |
|             x = 16.0*x + HEX_DIGIT(i);
 | |
|         x = ldexp(x, (int)(exp));
 | |
|         goto finished;
 | |
|     }
 | |
|     /* rounding required.  key_digit is the index of the hex digit
 | |
|        containing the first bit to be rounded away. */
 | |
|     half_eps = 1 << (int)((lsb - exp - 1) % 4);
 | |
|     key_digit = (lsb - exp - 1) / 4;
 | |
|     for (i = ndigits-1; i > key_digit; i--)
 | |
|         x = 16.0*x + HEX_DIGIT(i);
 | |
|     digit = HEX_DIGIT(key_digit);
 | |
|     x = 16.0*x + (double)(digit & (16-2*half_eps));
 | |
| 
 | |
|     /* round-half-even: round up if bit lsb-1 is 1 and at least one of
 | |
|        bits lsb, lsb-2, lsb-3, lsb-4, ... is 1. */
 | |
|     if ((digit & half_eps) != 0) {
 | |
|         round_up = 0;
 | |
|         if ((digit & (3*half_eps-1)) != 0 || (half_eps == 8 &&
 | |
|                 key_digit+1 < ndigits && (HEX_DIGIT(key_digit+1) & 1) != 0))
 | |
|             round_up = 1;
 | |
|         else
 | |
|             for (i = key_digit-1; i >= 0; i--)
 | |
|                 if (HEX_DIGIT(i) != 0) {
 | |
|                     round_up = 1;
 | |
|                     break;
 | |
|                 }
 | |
|         if (round_up) {
 | |
|             x += 2*half_eps;
 | |
|             if (top_exp == DBL_MAX_EXP &&
 | |
|                 x == ldexp((double)(2*half_eps), DBL_MANT_DIG))
 | |
|                 /* overflow corner case: pre-rounded value <
 | |
|                    2**DBL_MAX_EXP; rounded=2**DBL_MAX_EXP. */
 | |
|                 goto overflow_error;
 | |
|         }
 | |
|     }
 | |
|     x = ldexp(x, (int)(exp+4*key_digit));
 | |
| 
 | |
|   finished:
 | |
|     /* optional trailing whitespace leading to the end of the string */
 | |
|     while (Py_ISSPACE(*s))
 | |
|         s++;
 | |
|     if (s != s_end)
 | |
|         goto parse_error;
 | |
|     result = PyFloat_FromDouble(negate ? -x : x);
 | |
|     if (type != &PyFloat_Type && result != NULL) {
 | |
|         Py_SETREF(result, PyObject_CallOneArg((PyObject *)type, result));
 | |
|     }
 | |
|     return result;
 | |
| 
 | |
|   overflow_error:
 | |
|     PyErr_SetString(PyExc_OverflowError,
 | |
|                     "hexadecimal value too large to represent as a float");
 | |
|     return NULL;
 | |
| 
 | |
|   parse_error:
 | |
|     PyErr_SetString(PyExc_ValueError,
 | |
|                     "invalid hexadecimal floating-point string");
 | |
|     return NULL;
 | |
| 
 | |
|   insane_length_error:
 | |
|     PyErr_SetString(PyExc_ValueError,
 | |
|                     "hexadecimal string too long to convert");
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| /*[clinic input]
 | |
| float.as_integer_ratio
 | |
| 
 | |
| Return integer ratio.
 | |
| 
 | |
| Return a pair of integers, whose ratio is exactly equal to the original float
 | |
| and with a positive denominator.
 | |
| 
 | |
| Raise OverflowError on infinities and a ValueError on NaNs.
 | |
| 
 | |
| >>> (10.0).as_integer_ratio()
 | |
| (10, 1)
 | |
| >>> (0.0).as_integer_ratio()
 | |
| (0, 1)
 | |
| >>> (-.25).as_integer_ratio()
 | |
| (-1, 4)
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| float_as_integer_ratio_impl(PyObject *self)
 | |
| /*[clinic end generated code: output=65f25f0d8d30a712 input=e21d08b4630c2e44]*/
 | |
| {
 | |
|     double self_double;
 | |
|     double float_part;
 | |
|     int exponent;
 | |
|     int i;
 | |
| 
 | |
|     PyObject *py_exponent = NULL;
 | |
|     PyObject *numerator = NULL;
 | |
|     PyObject *denominator = NULL;
 | |
|     PyObject *result_pair = NULL;
 | |
|     PyNumberMethods *long_methods = PyLong_Type.tp_as_number;
 | |
| 
 | |
|     CONVERT_TO_DOUBLE(self, self_double);
 | |
| 
 | |
|     if (Py_IS_INFINITY(self_double)) {
 | |
|         PyErr_SetString(PyExc_OverflowError,
 | |
|                         "cannot convert Infinity to integer ratio");
 | |
|         return NULL;
 | |
|     }
 | |
|     if (Py_IS_NAN(self_double)) {
 | |
|         PyErr_SetString(PyExc_ValueError,
 | |
|                         "cannot convert NaN to integer ratio");
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     float_part = frexp(self_double, &exponent);        /* self_double == float_part * 2**exponent exactly */
 | |
| 
 | |
|     for (i=0; i<300 && float_part != floor(float_part) ; i++) {
 | |
|         float_part *= 2.0;
 | |
|         exponent--;
 | |
|     }
 | |
|     /* self == float_part * 2**exponent exactly and float_part is integral.
 | |
|        If FLT_RADIX != 2, the 300 steps may leave a tiny fractional part
 | |
|        to be truncated by PyLong_FromDouble(). */
 | |
| 
 | |
|     numerator = PyLong_FromDouble(float_part);
 | |
|     if (numerator == NULL)
 | |
|         goto error;
 | |
|     denominator = PyLong_FromLong(1);
 | |
|     if (denominator == NULL)
 | |
|         goto error;
 | |
|     py_exponent = PyLong_FromLong(Py_ABS(exponent));
 | |
|     if (py_exponent == NULL)
 | |
|         goto error;
 | |
| 
 | |
|     /* fold in 2**exponent */
 | |
|     if (exponent > 0) {
 | |
|         Py_SETREF(numerator,
 | |
|                   long_methods->nb_lshift(numerator, py_exponent));
 | |
|         if (numerator == NULL)
 | |
|             goto error;
 | |
|     }
 | |
|     else {
 | |
|         Py_SETREF(denominator,
 | |
|                   long_methods->nb_lshift(denominator, py_exponent));
 | |
|         if (denominator == NULL)
 | |
|             goto error;
 | |
|     }
 | |
| 
 | |
|     result_pair = PyTuple_Pack(2, numerator, denominator);
 | |
| 
 | |
| error:
 | |
|     Py_XDECREF(py_exponent);
 | |
|     Py_XDECREF(denominator);
 | |
|     Py_XDECREF(numerator);
 | |
|     return result_pair;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_subtype_new(PyTypeObject *type, PyObject *x);
 | |
| 
 | |
| /*[clinic input]
 | |
| @classmethod
 | |
| float.__new__ as float_new
 | |
|     x: object(c_default="NULL") = 0
 | |
|     /
 | |
| 
 | |
| Convert a string or number to a floating point number, if possible.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| float_new_impl(PyTypeObject *type, PyObject *x)
 | |
| /*[clinic end generated code: output=ccf1e8dc460ba6ba input=f43661b7de03e9d8]*/
 | |
| {
 | |
|     if (type != &PyFloat_Type) {
 | |
|         if (x == NULL) {
 | |
|             x = _PyLong_GetZero();
 | |
|         }
 | |
|         return float_subtype_new(type, x); /* Wimp out */
 | |
|     }
 | |
| 
 | |
|     if (x == NULL) {
 | |
|         return PyFloat_FromDouble(0.0);
 | |
|     }
 | |
|     /* If it's a string, but not a string subclass, use
 | |
|        PyFloat_FromString. */
 | |
|     if (PyUnicode_CheckExact(x))
 | |
|         return PyFloat_FromString(x);
 | |
|     return PyNumber_Float(x);
 | |
| }
 | |
| 
 | |
| /* Wimpy, slow approach to tp_new calls for subtypes of float:
 | |
|    first create a regular float from whatever arguments we got,
 | |
|    then allocate a subtype instance and initialize its ob_fval
 | |
|    from the regular float.  The regular float is then thrown away.
 | |
| */
 | |
| static PyObject *
 | |
| float_subtype_new(PyTypeObject *type, PyObject *x)
 | |
| {
 | |
|     PyObject *tmp, *newobj;
 | |
| 
 | |
|     assert(PyType_IsSubtype(type, &PyFloat_Type));
 | |
|     tmp = float_new_impl(&PyFloat_Type, x);
 | |
|     if (tmp == NULL)
 | |
|         return NULL;
 | |
|     assert(PyFloat_Check(tmp));
 | |
|     newobj = type->tp_alloc(type, 0);
 | |
|     if (newobj == NULL) {
 | |
|         Py_DECREF(tmp);
 | |
|         return NULL;
 | |
|     }
 | |
|     ((PyFloatObject *)newobj)->ob_fval = ((PyFloatObject *)tmp)->ob_fval;
 | |
|     Py_DECREF(tmp);
 | |
|     return newobj;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_vectorcall(PyObject *type, PyObject * const*args,
 | |
|                  size_t nargsf, PyObject *kwnames)
 | |
| {
 | |
|     if (!_PyArg_NoKwnames("float", kwnames)) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     Py_ssize_t nargs = PyVectorcall_NARGS(nargsf);
 | |
|     if (!_PyArg_CheckPositional("float", nargs, 0, 1)) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     PyObject *x = nargs >= 1 ? args[0] : NULL;
 | |
|     return float_new_impl((PyTypeObject *)type, x);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*[clinic input]
 | |
| float.__getnewargs__
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| float___getnewargs___impl(PyObject *self)
 | |
| /*[clinic end generated code: output=873258c9d206b088 input=002279d1d77891e6]*/
 | |
| {
 | |
|     return Py_BuildValue("(d)", ((PyFloatObject *)self)->ob_fval);
 | |
| }
 | |
| 
 | |
| /* this is for the benefit of the pack/unpack routines below */
 | |
| 
 | |
| typedef enum {
 | |
|     unknown_format, ieee_big_endian_format, ieee_little_endian_format
 | |
| } float_format_type;
 | |
| 
 | |
| static float_format_type double_format, float_format;
 | |
| static float_format_type detected_double_format, detected_float_format;
 | |
| 
 | |
| /*[clinic input]
 | |
| @classmethod
 | |
| float.__getformat__
 | |
| 
 | |
|     typestr: str
 | |
|         Must be 'double' or 'float'.
 | |
|     /
 | |
| 
 | |
| You probably don't want to use this function.
 | |
| 
 | |
| It exists mainly to be used in Python's test suite.
 | |
| 
 | |
| This function returns whichever of 'unknown', 'IEEE, big-endian' or 'IEEE,
 | |
| little-endian' best describes the format of floating point numbers used by the
 | |
| C type named by typestr.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| float___getformat___impl(PyTypeObject *type, const char *typestr)
 | |
| /*[clinic end generated code: output=2bfb987228cc9628 input=d5a52600f835ad67]*/
 | |
| {
 | |
|     float_format_type r;
 | |
| 
 | |
|     if (strcmp(typestr, "double") == 0) {
 | |
|         r = double_format;
 | |
|     }
 | |
|     else if (strcmp(typestr, "float") == 0) {
 | |
|         r = float_format;
 | |
|     }
 | |
|     else {
 | |
|         PyErr_SetString(PyExc_ValueError,
 | |
|                         "__getformat__() argument 1 must be "
 | |
|                         "'double' or 'float'");
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     switch (r) {
 | |
|     case unknown_format:
 | |
|         return PyUnicode_FromString("unknown");
 | |
|     case ieee_little_endian_format:
 | |
|         return PyUnicode_FromString("IEEE, little-endian");
 | |
|     case ieee_big_endian_format:
 | |
|         return PyUnicode_FromString("IEEE, big-endian");
 | |
|     default:
 | |
|         PyErr_SetString(PyExc_RuntimeError,
 | |
|                         "insane float_format or double_format");
 | |
|         return NULL;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*[clinic input]
 | |
| @classmethod
 | |
| float.__set_format__
 | |
| 
 | |
|     typestr: str
 | |
|         Must be 'double' or 'float'.
 | |
|     fmt: str
 | |
|         Must be one of 'unknown', 'IEEE, big-endian' or 'IEEE, little-endian',
 | |
|         and in addition can only be one of the latter two if it appears to
 | |
|         match the underlying C reality.
 | |
|     /
 | |
| 
 | |
| You probably don't want to use this function.
 | |
| 
 | |
| It exists mainly to be used in Python's test suite.
 | |
| 
 | |
| Override the automatic determination of C-level floating point type.
 | |
| This affects how floats are converted to and from binary strings.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| float___set_format___impl(PyTypeObject *type, const char *typestr,
 | |
|                           const char *fmt)
 | |
| /*[clinic end generated code: output=504460f5dc85acbd input=5306fa2b81a997e4]*/
 | |
| {
 | |
|     float_format_type f;
 | |
|     float_format_type detected;
 | |
|     float_format_type *p;
 | |
| 
 | |
|     if (strcmp(typestr, "double") == 0) {
 | |
|         p = &double_format;
 | |
|         detected = detected_double_format;
 | |
|     }
 | |
|     else if (strcmp(typestr, "float") == 0) {
 | |
|         p = &float_format;
 | |
|         detected = detected_float_format;
 | |
|     }
 | |
|     else {
 | |
|         PyErr_SetString(PyExc_ValueError,
 | |
|                         "__setformat__() argument 1 must "
 | |
|                         "be 'double' or 'float'");
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     if (strcmp(fmt, "unknown") == 0) {
 | |
|         f = unknown_format;
 | |
|     }
 | |
|     else if (strcmp(fmt, "IEEE, little-endian") == 0) {
 | |
|         f = ieee_little_endian_format;
 | |
|     }
 | |
|     else if (strcmp(fmt, "IEEE, big-endian") == 0) {
 | |
|         f = ieee_big_endian_format;
 | |
|     }
 | |
|     else {
 | |
|         PyErr_SetString(PyExc_ValueError,
 | |
|                         "__setformat__() argument 2 must be "
 | |
|                         "'unknown', 'IEEE, little-endian' or "
 | |
|                         "'IEEE, big-endian'");
 | |
|         return NULL;
 | |
| 
 | |
|     }
 | |
| 
 | |
|     if (f != unknown_format && f != detected) {
 | |
|         PyErr_Format(PyExc_ValueError,
 | |
|                      "can only set %s format to 'unknown' or the "
 | |
|                      "detected platform value", typestr);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     *p = f;
 | |
|     Py_RETURN_NONE;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_getreal(PyObject *v, void *closure)
 | |
| {
 | |
|     return float_float(v);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_getimag(PyObject *v, void *closure)
 | |
| {
 | |
|     return PyFloat_FromDouble(0.0);
 | |
| }
 | |
| 
 | |
| /*[clinic input]
 | |
| float.__format__
 | |
| 
 | |
|   format_spec: unicode
 | |
|   /
 | |
| 
 | |
| Formats the float according to format_spec.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| float___format___impl(PyObject *self, PyObject *format_spec)
 | |
| /*[clinic end generated code: output=b260e52a47eade56 input=2ece1052211fd0e6]*/
 | |
| {
 | |
|     _PyUnicodeWriter writer;
 | |
|     int ret;
 | |
| 
 | |
|     _PyUnicodeWriter_Init(&writer);
 | |
|     ret = _PyFloat_FormatAdvancedWriter(
 | |
|         &writer,
 | |
|         self,
 | |
|         format_spec, 0, PyUnicode_GET_LENGTH(format_spec));
 | |
|     if (ret == -1) {
 | |
|         _PyUnicodeWriter_Dealloc(&writer);
 | |
|         return NULL;
 | |
|     }
 | |
|     return _PyUnicodeWriter_Finish(&writer);
 | |
| }
 | |
| 
 | |
| static PyMethodDef float_methods[] = {
 | |
|     FLOAT_CONJUGATE_METHODDEF
 | |
|     FLOAT___TRUNC___METHODDEF
 | |
|     FLOAT___FLOOR___METHODDEF
 | |
|     FLOAT___CEIL___METHODDEF
 | |
|     FLOAT___ROUND___METHODDEF
 | |
|     FLOAT_AS_INTEGER_RATIO_METHODDEF
 | |
|     FLOAT_FROMHEX_METHODDEF
 | |
|     FLOAT_HEX_METHODDEF
 | |
|     FLOAT_IS_INTEGER_METHODDEF
 | |
|     FLOAT___GETNEWARGS___METHODDEF
 | |
|     FLOAT___GETFORMAT___METHODDEF
 | |
|     FLOAT___SET_FORMAT___METHODDEF
 | |
|     FLOAT___FORMAT___METHODDEF
 | |
|     {NULL,              NULL}           /* sentinel */
 | |
| };
 | |
| 
 | |
| static PyGetSetDef float_getset[] = {
 | |
|     {"real",
 | |
|      float_getreal, (setter)NULL,
 | |
|      "the real part of a complex number",
 | |
|      NULL},
 | |
|     {"imag",
 | |
|      float_getimag, (setter)NULL,
 | |
|      "the imaginary part of a complex number",
 | |
|      NULL},
 | |
|     {NULL}  /* Sentinel */
 | |
| };
 | |
| 
 | |
| 
 | |
| static PyNumberMethods float_as_number = {
 | |
|     float_add,          /* nb_add */
 | |
|     float_sub,          /* nb_subtract */
 | |
|     float_mul,          /* nb_multiply */
 | |
|     float_rem,          /* nb_remainder */
 | |
|     float_divmod,       /* nb_divmod */
 | |
|     float_pow,          /* nb_power */
 | |
|     (unaryfunc)float_neg, /* nb_negative */
 | |
|     float_float,        /* nb_positive */
 | |
|     (unaryfunc)float_abs, /* nb_absolute */
 | |
|     (inquiry)float_bool, /* nb_bool */
 | |
|     0,                  /* nb_invert */
 | |
|     0,                  /* nb_lshift */
 | |
|     0,                  /* nb_rshift */
 | |
|     0,                  /* nb_and */
 | |
|     0,                  /* nb_xor */
 | |
|     0,                  /* nb_or */
 | |
|     float___trunc___impl, /* nb_int */
 | |
|     0,                  /* nb_reserved */
 | |
|     float_float,        /* nb_float */
 | |
|     0,                  /* nb_inplace_add */
 | |
|     0,                  /* nb_inplace_subtract */
 | |
|     0,                  /* nb_inplace_multiply */
 | |
|     0,                  /* nb_inplace_remainder */
 | |
|     0,                  /* nb_inplace_power */
 | |
|     0,                  /* nb_inplace_lshift */
 | |
|     0,                  /* nb_inplace_rshift */
 | |
|     0,                  /* nb_inplace_and */
 | |
|     0,                  /* nb_inplace_xor */
 | |
|     0,                  /* nb_inplace_or */
 | |
|     float_floor_div,    /* nb_floor_divide */
 | |
|     float_div,          /* nb_true_divide */
 | |
|     0,                  /* nb_inplace_floor_divide */
 | |
|     0,                  /* nb_inplace_true_divide */
 | |
| };
 | |
| 
 | |
| PyTypeObject PyFloat_Type = {
 | |
|     PyVarObject_HEAD_INIT(&PyType_Type, 0)
 | |
|     "float",
 | |
|     sizeof(PyFloatObject),
 | |
|     0,
 | |
|     (destructor)float_dealloc,                  /* tp_dealloc */
 | |
|     0,                                          /* tp_vectorcall_offset */
 | |
|     0,                                          /* tp_getattr */
 | |
|     0,                                          /* tp_setattr */
 | |
|     0,                                          /* tp_as_async */
 | |
|     (reprfunc)float_repr,                       /* tp_repr */
 | |
|     &float_as_number,                           /* tp_as_number */
 | |
|     0,                                          /* tp_as_sequence */
 | |
|     0,                                          /* tp_as_mapping */
 | |
|     (hashfunc)float_hash,                       /* tp_hash */
 | |
|     0,                                          /* tp_call */
 | |
|     0,                                          /* tp_str */
 | |
|     PyObject_GenericGetAttr,                    /* tp_getattro */
 | |
|     0,                                          /* tp_setattro */
 | |
|     0,                                          /* tp_as_buffer */
 | |
|     Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE |
 | |
|         _Py_TPFLAGS_MATCH_SELF,               /* tp_flags */
 | |
|     float_new__doc__,                           /* tp_doc */
 | |
|     0,                                          /* tp_traverse */
 | |
|     0,                                          /* tp_clear */
 | |
|     float_richcompare,                          /* tp_richcompare */
 | |
|     0,                                          /* tp_weaklistoffset */
 | |
|     0,                                          /* tp_iter */
 | |
|     0,                                          /* tp_iternext */
 | |
|     float_methods,                              /* tp_methods */
 | |
|     0,                                          /* tp_members */
 | |
|     float_getset,                               /* tp_getset */
 | |
|     0,                                          /* tp_base */
 | |
|     0,                                          /* tp_dict */
 | |
|     0,                                          /* tp_descr_get */
 | |
|     0,                                          /* tp_descr_set */
 | |
|     0,                                          /* tp_dictoffset */
 | |
|     0,                                          /* tp_init */
 | |
|     0,                                          /* tp_alloc */
 | |
|     float_new,                                  /* tp_new */
 | |
|     .tp_vectorcall = (vectorcallfunc)float_vectorcall,
 | |
| };
 | |
| 
 | |
| void
 | |
| _PyFloat_InitState(PyInterpreterState *interp)
 | |
| {
 | |
|     if (!_Py_IsMainInterpreter(interp)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* We attempt to determine if this machine is using IEEE
 | |
|        floating point formats by peering at the bits of some
 | |
|        carefully chosen values.  If it looks like we are on an
 | |
|        IEEE platform, the float packing/unpacking routines can
 | |
|        just copy bits, if not they resort to arithmetic & shifts
 | |
|        and masks.  The shifts & masks approach works on all finite
 | |
|        values, but what happens to infinities, NaNs and signed
 | |
|        zeroes on packing is an accident, and attempting to unpack
 | |
|        a NaN or an infinity will raise an exception.
 | |
| 
 | |
|        Note that if we're on some whacked-out platform which uses
 | |
|        IEEE formats but isn't strictly little-endian or big-
 | |
|        endian, we will fall back to the portable shifts & masks
 | |
|        method. */
 | |
| 
 | |
| #if SIZEOF_DOUBLE == 8
 | |
|     {
 | |
|         double x = 9006104071832581.0;
 | |
|         if (memcmp(&x, "\x43\x3f\xff\x01\x02\x03\x04\x05", 8) == 0)
 | |
|             detected_double_format = ieee_big_endian_format;
 | |
|         else if (memcmp(&x, "\x05\x04\x03\x02\x01\xff\x3f\x43", 8) == 0)
 | |
|             detected_double_format = ieee_little_endian_format;
 | |
|         else
 | |
|             detected_double_format = unknown_format;
 | |
|     }
 | |
| #else
 | |
|     detected_double_format = unknown_format;
 | |
| #endif
 | |
| 
 | |
| #if SIZEOF_FLOAT == 4
 | |
|     {
 | |
|         float y = 16711938.0;
 | |
|         if (memcmp(&y, "\x4b\x7f\x01\x02", 4) == 0)
 | |
|             detected_float_format = ieee_big_endian_format;
 | |
|         else if (memcmp(&y, "\x02\x01\x7f\x4b", 4) == 0)
 | |
|             detected_float_format = ieee_little_endian_format;
 | |
|         else
 | |
|             detected_float_format = unknown_format;
 | |
|     }
 | |
| #else
 | |
|     detected_float_format = unknown_format;
 | |
| #endif
 | |
| 
 | |
|     double_format = detected_double_format;
 | |
|     float_format = detected_float_format;
 | |
| }
 | |
| 
 | |
| PyStatus
 | |
| _PyFloat_InitTypes(PyInterpreterState *interp)
 | |
| {
 | |
|     if (!_Py_IsMainInterpreter(interp)) {
 | |
|         return _PyStatus_OK();
 | |
|     }
 | |
| 
 | |
|     if (PyType_Ready(&PyFloat_Type) < 0) {
 | |
|         return _PyStatus_ERR("Can't initialize float type");
 | |
|     }
 | |
| 
 | |
|     /* Init float info */
 | |
|     if (FloatInfoType.tp_name == NULL) {
 | |
|         if (PyStructSequence_InitType2(&FloatInfoType, &floatinfo_desc) < 0) {
 | |
|             return _PyStatus_ERR("can't init float info type");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return _PyStatus_OK();
 | |
| }
 | |
| 
 | |
| void
 | |
| _PyFloat_ClearFreeList(PyInterpreterState *interp)
 | |
| {
 | |
| #if PyFloat_MAXFREELIST > 0
 | |
|     struct _Py_float_state *state = &interp->float_state;
 | |
|     PyFloatObject *f = state->free_list;
 | |
|     while (f != NULL) {
 | |
|         PyFloatObject *next = (PyFloatObject*) Py_TYPE(f);
 | |
|         PyObject_Free(f);
 | |
|         f = next;
 | |
|     }
 | |
|     state->free_list = NULL;
 | |
|     state->numfree = 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void
 | |
| _PyFloat_Fini(PyInterpreterState *interp)
 | |
| {
 | |
|     _PyFloat_ClearFreeList(interp);
 | |
| #if defined(Py_DEBUG) && PyFloat_MAXFREELIST > 0
 | |
|     struct _Py_float_state *state = &interp->float_state;
 | |
|     state->numfree = -1;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Print summary info about the state of the optimized allocator */
 | |
| void
 | |
| _PyFloat_DebugMallocStats(FILE *out)
 | |
| {
 | |
| #if PyFloat_MAXFREELIST > 0
 | |
|     struct _Py_float_state *state = get_float_state();
 | |
|     _PyDebugAllocatorStats(out,
 | |
|                            "free PyFloatObject",
 | |
|                            state->numfree, sizeof(PyFloatObject));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
|  * _PyFloat_{Pack,Unpack}{2,4,8}.  See floatobject.h.
 | |
|  * To match the NPY_HALF_ROUND_TIES_TO_EVEN behavior in:
 | |
|  * https://github.com/numpy/numpy/blob/master/numpy/core/src/npymath/halffloat.c
 | |
|  * We use:
 | |
|  *       bits = (unsigned short)f;    Note the truncation
 | |
|  *       if ((f - bits > 0.5) || (f - bits == 0.5 && bits % 2)) {
 | |
|  *           bits++;
 | |
|  *       }
 | |
|  */
 | |
| 
 | |
| int
 | |
| _PyFloat_Pack2(double x, unsigned char *p, int le)
 | |
| {
 | |
|     unsigned char sign;
 | |
|     int e;
 | |
|     double f;
 | |
|     unsigned short bits;
 | |
|     int incr = 1;
 | |
| 
 | |
|     if (x == 0.0) {
 | |
|         sign = (copysign(1.0, x) == -1.0);
 | |
|         e = 0;
 | |
|         bits = 0;
 | |
|     }
 | |
|     else if (Py_IS_INFINITY(x)) {
 | |
|         sign = (x < 0.0);
 | |
|         e = 0x1f;
 | |
|         bits = 0;
 | |
|     }
 | |
|     else if (Py_IS_NAN(x)) {
 | |
|         /* There are 2046 distinct half-precision NaNs (1022 signaling and
 | |
|            1024 quiet), but there are only two quiet NaNs that don't arise by
 | |
|            quieting a signaling NaN; we get those by setting the topmost bit
 | |
|            of the fraction field and clearing all other fraction bits. We
 | |
|            choose the one with the appropriate sign. */
 | |
|         sign = (copysign(1.0, x) == -1.0);
 | |
|         e = 0x1f;
 | |
|         bits = 512;
 | |
|     }
 | |
|     else {
 | |
|         sign = (x < 0.0);
 | |
|         if (sign) {
 | |
|             x = -x;
 | |
|         }
 | |
| 
 | |
|         f = frexp(x, &e);
 | |
|         if (f < 0.5 || f >= 1.0) {
 | |
|             PyErr_SetString(PyExc_SystemError,
 | |
|                             "frexp() result out of range");
 | |
|             return -1;
 | |
|         }
 | |
| 
 | |
|         /* Normalize f to be in the range [1.0, 2.0) */
 | |
|         f *= 2.0;
 | |
|         e--;
 | |
| 
 | |
|         if (e >= 16) {
 | |
|             goto Overflow;
 | |
|         }
 | |
|         else if (e < -25) {
 | |
|             /* |x| < 2**-25. Underflow to zero. */
 | |
|             f = 0.0;
 | |
|             e = 0;
 | |
|         }
 | |
|         else if (e < -14) {
 | |
|             /* |x| < 2**-14. Gradual underflow */
 | |
|             f = ldexp(f, 14 + e);
 | |
|             e = 0;
 | |
|         }
 | |
|         else /* if (!(e == 0 && f == 0.0)) */ {
 | |
|             e += 15;
 | |
|             f -= 1.0; /* Get rid of leading 1 */
 | |
|         }
 | |
| 
 | |
|         f *= 1024.0; /* 2**10 */
 | |
|         /* Round to even */
 | |
|         bits = (unsigned short)f; /* Note the truncation */
 | |
|         assert(bits < 1024);
 | |
|         assert(e < 31);
 | |
|         if ((f - bits > 0.5) || ((f - bits == 0.5) && (bits % 2 == 1))) {
 | |
|             ++bits;
 | |
|             if (bits == 1024) {
 | |
|                 /* The carry propagated out of a string of 10 1 bits. */
 | |
|                 bits = 0;
 | |
|                 ++e;
 | |
|                 if (e == 31)
 | |
|                     goto Overflow;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     bits |= (e << 10) | (sign << 15);
 | |
| 
 | |
|     /* Write out result. */
 | |
|     if (le) {
 | |
|         p += 1;
 | |
|         incr = -1;
 | |
|     }
 | |
| 
 | |
|     /* First byte */
 | |
|     *p = (unsigned char)((bits >> 8) & 0xFF);
 | |
|     p += incr;
 | |
| 
 | |
|     /* Second byte */
 | |
|     *p = (unsigned char)(bits & 0xFF);
 | |
| 
 | |
|     return 0;
 | |
| 
 | |
|   Overflow:
 | |
|     PyErr_SetString(PyExc_OverflowError,
 | |
|                     "float too large to pack with e format");
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| int
 | |
| _PyFloat_Pack4(double x, unsigned char *p, int le)
 | |
| {
 | |
|     if (float_format == unknown_format) {
 | |
|         unsigned char sign;
 | |
|         int e;
 | |
|         double f;
 | |
|         unsigned int fbits;
 | |
|         int incr = 1;
 | |
| 
 | |
|         if (le) {
 | |
|             p += 3;
 | |
|             incr = -1;
 | |
|         }
 | |
| 
 | |
|         if (x < 0) {
 | |
|             sign = 1;
 | |
|             x = -x;
 | |
|         }
 | |
|         else
 | |
|             sign = 0;
 | |
| 
 | |
|         f = frexp(x, &e);
 | |
| 
 | |
|         /* Normalize f to be in the range [1.0, 2.0) */
 | |
|         if (0.5 <= f && f < 1.0) {
 | |
|             f *= 2.0;
 | |
|             e--;
 | |
|         }
 | |
|         else if (f == 0.0)
 | |
|             e = 0;
 | |
|         else {
 | |
|             PyErr_SetString(PyExc_SystemError,
 | |
|                             "frexp() result out of range");
 | |
|             return -1;
 | |
|         }
 | |
| 
 | |
|         if (e >= 128)
 | |
|             goto Overflow;
 | |
|         else if (e < -126) {
 | |
|             /* Gradual underflow */
 | |
|             f = ldexp(f, 126 + e);
 | |
|             e = 0;
 | |
|         }
 | |
|         else if (!(e == 0 && f == 0.0)) {
 | |
|             e += 127;
 | |
|             f -= 1.0; /* Get rid of leading 1 */
 | |
|         }
 | |
| 
 | |
|         f *= 8388608.0; /* 2**23 */
 | |
|         fbits = (unsigned int)(f + 0.5); /* Round */
 | |
|         assert(fbits <= 8388608);
 | |
|         if (fbits >> 23) {
 | |
|             /* The carry propagated out of a string of 23 1 bits. */
 | |
|             fbits = 0;
 | |
|             ++e;
 | |
|             if (e >= 255)
 | |
|                 goto Overflow;
 | |
|         }
 | |
| 
 | |
|         /* First byte */
 | |
|         *p = (sign << 7) | (e >> 1);
 | |
|         p += incr;
 | |
| 
 | |
|         /* Second byte */
 | |
|         *p = (char) (((e & 1) << 7) | (fbits >> 16));
 | |
|         p += incr;
 | |
| 
 | |
|         /* Third byte */
 | |
|         *p = (fbits >> 8) & 0xFF;
 | |
|         p += incr;
 | |
| 
 | |
|         /* Fourth byte */
 | |
|         *p = fbits & 0xFF;
 | |
| 
 | |
|         /* Done */
 | |
|         return 0;
 | |
| 
 | |
|     }
 | |
|     else {
 | |
|         float y = (float)x;
 | |
|         int i, incr = 1;
 | |
| 
 | |
|         if (Py_IS_INFINITY(y) && !Py_IS_INFINITY(x))
 | |
|             goto Overflow;
 | |
| 
 | |
|         unsigned char s[sizeof(float)];
 | |
|         memcpy(s, &y, sizeof(float));
 | |
| 
 | |
|         if ((float_format == ieee_little_endian_format && !le)
 | |
|             || (float_format == ieee_big_endian_format && le)) {
 | |
|             p += 3;
 | |
|             incr = -1;
 | |
|         }
 | |
| 
 | |
|         for (i = 0; i < 4; i++) {
 | |
|             *p = s[i];
 | |
|             p += incr;
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|   Overflow:
 | |
|     PyErr_SetString(PyExc_OverflowError,
 | |
|                     "float too large to pack with f format");
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| int
 | |
| _PyFloat_Pack8(double x, unsigned char *p, int le)
 | |
| {
 | |
|     if (double_format == unknown_format) {
 | |
|         unsigned char sign;
 | |
|         int e;
 | |
|         double f;
 | |
|         unsigned int fhi, flo;
 | |
|         int incr = 1;
 | |
| 
 | |
|         if (le) {
 | |
|             p += 7;
 | |
|             incr = -1;
 | |
|         }
 | |
| 
 | |
|         if (x < 0) {
 | |
|             sign = 1;
 | |
|             x = -x;
 | |
|         }
 | |
|         else
 | |
|             sign = 0;
 | |
| 
 | |
|         f = frexp(x, &e);
 | |
| 
 | |
|         /* Normalize f to be in the range [1.0, 2.0) */
 | |
|         if (0.5 <= f && f < 1.0) {
 | |
|             f *= 2.0;
 | |
|             e--;
 | |
|         }
 | |
|         else if (f == 0.0)
 | |
|             e = 0;
 | |
|         else {
 | |
|             PyErr_SetString(PyExc_SystemError,
 | |
|                             "frexp() result out of range");
 | |
|             return -1;
 | |
|         }
 | |
| 
 | |
|         if (e >= 1024)
 | |
|             goto Overflow;
 | |
|         else if (e < -1022) {
 | |
|             /* Gradual underflow */
 | |
|             f = ldexp(f, 1022 + e);
 | |
|             e = 0;
 | |
|         }
 | |
|         else if (!(e == 0 && f == 0.0)) {
 | |
|             e += 1023;
 | |
|             f -= 1.0; /* Get rid of leading 1 */
 | |
|         }
 | |
| 
 | |
|         /* fhi receives the high 28 bits; flo the low 24 bits (== 52 bits) */
 | |
|         f *= 268435456.0; /* 2**28 */
 | |
|         fhi = (unsigned int)f; /* Truncate */
 | |
|         assert(fhi < 268435456);
 | |
| 
 | |
|         f -= (double)fhi;
 | |
|         f *= 16777216.0; /* 2**24 */
 | |
|         flo = (unsigned int)(f + 0.5); /* Round */
 | |
|         assert(flo <= 16777216);
 | |
|         if (flo >> 24) {
 | |
|             /* The carry propagated out of a string of 24 1 bits. */
 | |
|             flo = 0;
 | |
|             ++fhi;
 | |
|             if (fhi >> 28) {
 | |
|                 /* And it also propagated out of the next 28 bits. */
 | |
|                 fhi = 0;
 | |
|                 ++e;
 | |
|                 if (e >= 2047)
 | |
|                     goto Overflow;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* First byte */
 | |
|         *p = (sign << 7) | (e >> 4);
 | |
|         p += incr;
 | |
| 
 | |
|         /* Second byte */
 | |
|         *p = (unsigned char) (((e & 0xF) << 4) | (fhi >> 24));
 | |
|         p += incr;
 | |
| 
 | |
|         /* Third byte */
 | |
|         *p = (fhi >> 16) & 0xFF;
 | |
|         p += incr;
 | |
| 
 | |
|         /* Fourth byte */
 | |
|         *p = (fhi >> 8) & 0xFF;
 | |
|         p += incr;
 | |
| 
 | |
|         /* Fifth byte */
 | |
|         *p = fhi & 0xFF;
 | |
|         p += incr;
 | |
| 
 | |
|         /* Sixth byte */
 | |
|         *p = (flo >> 16) & 0xFF;
 | |
|         p += incr;
 | |
| 
 | |
|         /* Seventh byte */
 | |
|         *p = (flo >> 8) & 0xFF;
 | |
|         p += incr;
 | |
| 
 | |
|         /* Eighth byte */
 | |
|         *p = flo & 0xFF;
 | |
|         /* p += incr; */
 | |
| 
 | |
|         /* Done */
 | |
|         return 0;
 | |
| 
 | |
|       Overflow:
 | |
|         PyErr_SetString(PyExc_OverflowError,
 | |
|                         "float too large to pack with d format");
 | |
|         return -1;
 | |
|     }
 | |
|     else {
 | |
|         const unsigned char *s = (unsigned char*)&x;
 | |
|         int i, incr = 1;
 | |
| 
 | |
|         if ((double_format == ieee_little_endian_format && !le)
 | |
|             || (double_format == ieee_big_endian_format && le)) {
 | |
|             p += 7;
 | |
|             incr = -1;
 | |
|         }
 | |
| 
 | |
|         for (i = 0; i < 8; i++) {
 | |
|             *p = *s++;
 | |
|             p += incr;
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| double
 | |
| _PyFloat_Unpack2(const unsigned char *p, int le)
 | |
| {
 | |
|     unsigned char sign;
 | |
|     int e;
 | |
|     unsigned int f;
 | |
|     double x;
 | |
|     int incr = 1;
 | |
| 
 | |
|     if (le) {
 | |
|         p += 1;
 | |
|         incr = -1;
 | |
|     }
 | |
| 
 | |
|     /* First byte */
 | |
|     sign = (*p >> 7) & 1;
 | |
|     e = (*p & 0x7C) >> 2;
 | |
|     f = (*p & 0x03) << 8;
 | |
|     p += incr;
 | |
| 
 | |
|     /* Second byte */
 | |
|     f |= *p;
 | |
| 
 | |
|     if (e == 0x1f) {
 | |
| #ifdef PY_NO_SHORT_FLOAT_REPR
 | |
|         if (f == 0) {
 | |
|             /* Infinity */
 | |
|             return sign ? -Py_HUGE_VAL : Py_HUGE_VAL;
 | |
|         }
 | |
|         else {
 | |
|             /* NaN */
 | |
| #ifdef Py_NAN
 | |
|             return sign ? -Py_NAN : Py_NAN;
 | |
| #else
 | |
|             PyErr_SetString(
 | |
|                 PyExc_ValueError,
 | |
|                 "can't unpack IEEE 754 NaN "
 | |
|                 "on platform that does not support NaNs");
 | |
|             return -1;
 | |
| #endif  /* #ifdef Py_NAN */
 | |
|         }
 | |
| #else
 | |
|         if (f == 0) {
 | |
|             /* Infinity */
 | |
|             return _Py_dg_infinity(sign);
 | |
|         }
 | |
|         else {
 | |
|             /* NaN */
 | |
|             return _Py_dg_stdnan(sign);
 | |
|         }
 | |
| #endif  /* #ifdef PY_NO_SHORT_FLOAT_REPR */
 | |
|     }
 | |
| 
 | |
|     x = (double)f / 1024.0;
 | |
| 
 | |
|     if (e == 0) {
 | |
|         e = -14;
 | |
|     }
 | |
|     else {
 | |
|         x += 1.0;
 | |
|         e -= 15;
 | |
|     }
 | |
|     x = ldexp(x, e);
 | |
| 
 | |
|     if (sign)
 | |
|         x = -x;
 | |
| 
 | |
|     return x;
 | |
| }
 | |
| 
 | |
| double
 | |
| _PyFloat_Unpack4(const unsigned char *p, int le)
 | |
| {
 | |
|     if (float_format == unknown_format) {
 | |
|         unsigned char sign;
 | |
|         int e;
 | |
|         unsigned int f;
 | |
|         double x;
 | |
|         int incr = 1;
 | |
| 
 | |
|         if (le) {
 | |
|             p += 3;
 | |
|             incr = -1;
 | |
|         }
 | |
| 
 | |
|         /* First byte */
 | |
|         sign = (*p >> 7) & 1;
 | |
|         e = (*p & 0x7F) << 1;
 | |
|         p += incr;
 | |
| 
 | |
|         /* Second byte */
 | |
|         e |= (*p >> 7) & 1;
 | |
|         f = (*p & 0x7F) << 16;
 | |
|         p += incr;
 | |
| 
 | |
|         if (e == 255) {
 | |
|             PyErr_SetString(
 | |
|                 PyExc_ValueError,
 | |
|                 "can't unpack IEEE 754 special value "
 | |
|                 "on non-IEEE platform");
 | |
|             return -1;
 | |
|         }
 | |
| 
 | |
|         /* Third byte */
 | |
|         f |= *p << 8;
 | |
|         p += incr;
 | |
| 
 | |
|         /* Fourth byte */
 | |
|         f |= *p;
 | |
| 
 | |
|         x = (double)f / 8388608.0;
 | |
| 
 | |
|         /* XXX This sadly ignores Inf/NaN issues */
 | |
|         if (e == 0)
 | |
|             e = -126;
 | |
|         else {
 | |
|             x += 1.0;
 | |
|             e -= 127;
 | |
|         }
 | |
|         x = ldexp(x, e);
 | |
| 
 | |
|         if (sign)
 | |
|             x = -x;
 | |
| 
 | |
|         return x;
 | |
|     }
 | |
|     else {
 | |
|         float x;
 | |
| 
 | |
|         if ((float_format == ieee_little_endian_format && !le)
 | |
|             || (float_format == ieee_big_endian_format && le)) {
 | |
|             char buf[4];
 | |
|             char *d = &buf[3];
 | |
|             int i;
 | |
| 
 | |
|             for (i = 0; i < 4; i++) {
 | |
|                 *d-- = *p++;
 | |
|             }
 | |
|             memcpy(&x, buf, 4);
 | |
|         }
 | |
|         else {
 | |
|             memcpy(&x, p, 4);
 | |
|         }
 | |
| 
 | |
|         return x;
 | |
|     }
 | |
| }
 | |
| 
 | |
| double
 | |
| _PyFloat_Unpack8(const unsigned char *p, int le)
 | |
| {
 | |
|     if (double_format == unknown_format) {
 | |
|         unsigned char sign;
 | |
|         int e;
 | |
|         unsigned int fhi, flo;
 | |
|         double x;
 | |
|         int incr = 1;
 | |
| 
 | |
|         if (le) {
 | |
|             p += 7;
 | |
|             incr = -1;
 | |
|         }
 | |
| 
 | |
|         /* First byte */
 | |
|         sign = (*p >> 7) & 1;
 | |
|         e = (*p & 0x7F) << 4;
 | |
| 
 | |
|         p += incr;
 | |
| 
 | |
|         /* Second byte */
 | |
|         e |= (*p >> 4) & 0xF;
 | |
|         fhi = (*p & 0xF) << 24;
 | |
|         p += incr;
 | |
| 
 | |
|         if (e == 2047) {
 | |
|             PyErr_SetString(
 | |
|                 PyExc_ValueError,
 | |
|                 "can't unpack IEEE 754 special value "
 | |
|                 "on non-IEEE platform");
 | |
|             return -1.0;
 | |
|         }
 | |
| 
 | |
|         /* Third byte */
 | |
|         fhi |= *p << 16;
 | |
|         p += incr;
 | |
| 
 | |
|         /* Fourth byte */
 | |
|         fhi |= *p  << 8;
 | |
|         p += incr;
 | |
| 
 | |
|         /* Fifth byte */
 | |
|         fhi |= *p;
 | |
|         p += incr;
 | |
| 
 | |
|         /* Sixth byte */
 | |
|         flo = *p << 16;
 | |
|         p += incr;
 | |
| 
 | |
|         /* Seventh byte */
 | |
|         flo |= *p << 8;
 | |
|         p += incr;
 | |
| 
 | |
|         /* Eighth byte */
 | |
|         flo |= *p;
 | |
| 
 | |
|         x = (double)fhi + (double)flo / 16777216.0; /* 2**24 */
 | |
|         x /= 268435456.0; /* 2**28 */
 | |
| 
 | |
|         if (e == 0)
 | |
|             e = -1022;
 | |
|         else {
 | |
|             x += 1.0;
 | |
|             e -= 1023;
 | |
|         }
 | |
|         x = ldexp(x, e);
 | |
| 
 | |
|         if (sign)
 | |
|             x = -x;
 | |
| 
 | |
|         return x;
 | |
|     }
 | |
|     else {
 | |
|         double x;
 | |
| 
 | |
|         if ((double_format == ieee_little_endian_format && !le)
 | |
|             || (double_format == ieee_big_endian_format && le)) {
 | |
|             char buf[8];
 | |
|             char *d = &buf[7];
 | |
|             int i;
 | |
| 
 | |
|             for (i = 0; i < 8; i++) {
 | |
|                 *d-- = *p++;
 | |
|             }
 | |
|             memcpy(&x, buf, 8);
 | |
|         }
 | |
|         else {
 | |
|             memcpy(&x, p, 8);
 | |
|         }
 | |
| 
 | |
|         return x;
 | |
|     }
 | |
| }
 |