mirror of
				https://github.com/python/cpython.git
				synced 2025-10-31 21:51:50 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			119 lines
		
	
	
	
		
			4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			119 lines
		
	
	
	
		
			4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """Unittests for heapq."""
 | |
| 
 | |
| from heapq import heappush, heappop, heapify, heapreplace, nlargest, nsmallest
 | |
| import random
 | |
| import unittest
 | |
| from test import test_support
 | |
| import sys
 | |
| 
 | |
| 
 | |
| def heapiter(heap):
 | |
|     # An iterator returning a heap's elements, smallest-first.
 | |
|     try:
 | |
|         while 1:
 | |
|             yield heappop(heap)
 | |
|     except IndexError:
 | |
|         pass
 | |
| 
 | |
| class TestHeap(unittest.TestCase):
 | |
| 
 | |
|     def test_push_pop(self):
 | |
|         # 1) Push 256 random numbers and pop them off, verifying all's OK.
 | |
|         heap = []
 | |
|         data = []
 | |
|         self.check_invariant(heap)
 | |
|         for i in range(256):
 | |
|             item = random.random()
 | |
|             data.append(item)
 | |
|             heappush(heap, item)
 | |
|             self.check_invariant(heap)
 | |
|         results = []
 | |
|         while heap:
 | |
|             item = heappop(heap)
 | |
|             self.check_invariant(heap)
 | |
|             results.append(item)
 | |
|         data_sorted = data[:]
 | |
|         data_sorted.sort()
 | |
|         self.assertEqual(data_sorted, results)
 | |
|         # 2) Check that the invariant holds for a sorted array
 | |
|         self.check_invariant(results)
 | |
| 
 | |
|     def check_invariant(self, heap):
 | |
|         # Check the heap invariant.
 | |
|         for pos, item in enumerate(heap):
 | |
|             if pos: # pos 0 has no parent
 | |
|                 parentpos = (pos-1) >> 1
 | |
|                 self.assert_(heap[parentpos] <= item)
 | |
| 
 | |
|     def test_heapify(self):
 | |
|         for size in range(30):
 | |
|             heap = [random.random() for dummy in range(size)]
 | |
|             heapify(heap)
 | |
|             self.check_invariant(heap)
 | |
| 
 | |
|     def test_naive_nbest(self):
 | |
|         data = [random.randrange(2000) for i in range(1000)]
 | |
|         heap = []
 | |
|         for item in data:
 | |
|             heappush(heap, item)
 | |
|             if len(heap) > 10:
 | |
|                 heappop(heap)
 | |
|         heap.sort()
 | |
|         self.assertEqual(heap, sorted(data)[-10:])
 | |
| 
 | |
|     def test_nbest(self):
 | |
|         # Less-naive "N-best" algorithm, much faster (if len(data) is big
 | |
|         # enough <wink>) than sorting all of data.  However, if we had a max
 | |
|         # heap instead of a min heap, it could go faster still via
 | |
|         # heapify'ing all of data (linear time), then doing 10 heappops
 | |
|         # (10 log-time steps).
 | |
|         data = [random.randrange(2000) for i in range(1000)]
 | |
|         heap = data[:10]
 | |
|         heapify(heap)
 | |
|         for item in data[10:]:
 | |
|             if item > heap[0]:  # this gets rarer the longer we run
 | |
|                 heapreplace(heap, item)
 | |
|         self.assertEqual(list(heapiter(heap)), sorted(data)[-10:])
 | |
| 
 | |
|     def test_heapsort(self):
 | |
|         # Exercise everything with repeated heapsort checks
 | |
|         for trial in xrange(100):
 | |
|             size = random.randrange(50)
 | |
|             data = [random.randrange(25) for i in range(size)]
 | |
|             if trial & 1:     # Half of the time, use heapify
 | |
|                 heap = data[:]
 | |
|                 heapify(heap)
 | |
|             else:             # The rest of the time, use heappush
 | |
|                 heap = []
 | |
|                 for item in data:
 | |
|                     heappush(heap, item)
 | |
|             heap_sorted = [heappop(heap) for i in range(size)]
 | |
|             self.assertEqual(heap_sorted, sorted(data))
 | |
| 
 | |
|     def test_nsmallest(self):
 | |
|         data = [random.randrange(2000) for i in range(1000)]
 | |
|         for n in (0, 1, 2, 10, 100, 400, 999, 1000, 1100):
 | |
|             self.assertEqual(nsmallest(n, data), sorted(data)[:n])
 | |
| 
 | |
|     def test_largest(self):
 | |
|         data = [random.randrange(2000) for i in range(1000)]
 | |
|         for n in (0, 1, 2, 10, 100, 400, 999, 1000, 1100):
 | |
|             self.assertEqual(nlargest(n, data), sorted(data, reverse=True)[:n])
 | |
| 
 | |
| def test_main(verbose=None):
 | |
|     test_classes = [TestHeap]
 | |
|     test_support.run_unittest(*test_classes)
 | |
| 
 | |
|     # verify reference counting
 | |
|     if verbose and hasattr(sys, "gettotalrefcount"):
 | |
|         import gc
 | |
|         counts = [None] * 5
 | |
|         for i in xrange(len(counts)):
 | |
|             test_support.run_unittest(*test_classes)
 | |
|             gc.collect()
 | |
|             counts[i] = sys.gettotalrefcount()
 | |
|         print counts
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     test_main(verbose=True)
 | |
| 
 | 
