mirror of
				https://github.com/python/cpython.git
				synced 2025-11-02 22:51:25 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			3514 lines
		
	
	
	
		
			104 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3514 lines
		
	
	
	
		
			104 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* List object implementation */
 | 
						|
 | 
						|
#include "Python.h"
 | 
						|
#include "pycore_abstract.h"      // _PyIndex_Check()
 | 
						|
#include "pycore_interp.h"        // PyInterpreterState.list
 | 
						|
#include "pycore_list.h"          // struct _Py_list_state
 | 
						|
#include "pycore_object.h"        // _PyObject_GC_TRACK()
 | 
						|
#include "pycore_tuple.h"         // _PyTuple_FromArray()
 | 
						|
#include <stddef.h>
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
class list "PyListObject *" "&PyList_Type"
 | 
						|
[clinic start generated code]*/
 | 
						|
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=f9b222678f9f71e0]*/
 | 
						|
 | 
						|
#include "clinic/listobject.c.h"
 | 
						|
 | 
						|
_Py_DECLARE_STR(list_err, "list index out of range");
 | 
						|
 | 
						|
#if PyList_MAXFREELIST > 0
 | 
						|
static struct _Py_list_state *
 | 
						|
get_list_state(void)
 | 
						|
{
 | 
						|
    PyInterpreterState *interp = _PyInterpreterState_GET();
 | 
						|
    return &interp->list;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
/* Ensure ob_item has room for at least newsize elements, and set
 | 
						|
 * ob_size to newsize.  If newsize > ob_size on entry, the content
 | 
						|
 * of the new slots at exit is undefined heap trash; it's the caller's
 | 
						|
 * responsibility to overwrite them with sane values.
 | 
						|
 * The number of allocated elements may grow, shrink, or stay the same.
 | 
						|
 * Failure is impossible if newsize <= self.allocated on entry, although
 | 
						|
 * that partly relies on an assumption that the system realloc() never
 | 
						|
 * fails when passed a number of bytes <= the number of bytes last
 | 
						|
 * allocated (the C standard doesn't guarantee this, but it's hard to
 | 
						|
 * imagine a realloc implementation where it wouldn't be true).
 | 
						|
 * Note that self->ob_item may change, and even if newsize is less
 | 
						|
 * than ob_size on entry.
 | 
						|
 */
 | 
						|
static int
 | 
						|
list_resize(PyListObject *self, Py_ssize_t newsize)
 | 
						|
{
 | 
						|
    PyObject **items;
 | 
						|
    size_t new_allocated, num_allocated_bytes;
 | 
						|
    Py_ssize_t allocated = self->allocated;
 | 
						|
 | 
						|
    /* Bypass realloc() when a previous overallocation is large enough
 | 
						|
       to accommodate the newsize.  If the newsize falls lower than half
 | 
						|
       the allocated size, then proceed with the realloc() to shrink the list.
 | 
						|
    */
 | 
						|
    if (allocated >= newsize && newsize >= (allocated >> 1)) {
 | 
						|
        assert(self->ob_item != NULL || newsize == 0);
 | 
						|
        Py_SET_SIZE(self, newsize);
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    /* This over-allocates proportional to the list size, making room
 | 
						|
     * for additional growth.  The over-allocation is mild, but is
 | 
						|
     * enough to give linear-time amortized behavior over a long
 | 
						|
     * sequence of appends() in the presence of a poorly-performing
 | 
						|
     * system realloc().
 | 
						|
     * Add padding to make the allocated size multiple of 4.
 | 
						|
     * The growth pattern is:  0, 4, 8, 16, 24, 32, 40, 52, 64, 76, ...
 | 
						|
     * Note: new_allocated won't overflow because the largest possible value
 | 
						|
     *       is PY_SSIZE_T_MAX * (9 / 8) + 6 which always fits in a size_t.
 | 
						|
     */
 | 
						|
    new_allocated = ((size_t)newsize + (newsize >> 3) + 6) & ~(size_t)3;
 | 
						|
    /* Do not overallocate if the new size is closer to overallocated size
 | 
						|
     * than to the old size.
 | 
						|
     */
 | 
						|
    if (newsize - Py_SIZE(self) > (Py_ssize_t)(new_allocated - newsize))
 | 
						|
        new_allocated = ((size_t)newsize + 3) & ~(size_t)3;
 | 
						|
 | 
						|
    if (newsize == 0)
 | 
						|
        new_allocated = 0;
 | 
						|
    num_allocated_bytes = new_allocated * sizeof(PyObject *);
 | 
						|
    items = (PyObject **)PyMem_Realloc(self->ob_item, num_allocated_bytes);
 | 
						|
    if (items == NULL) {
 | 
						|
        PyErr_NoMemory();
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    self->ob_item = items;
 | 
						|
    Py_SET_SIZE(self, newsize);
 | 
						|
    self->allocated = new_allocated;
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
list_preallocate_exact(PyListObject *self, Py_ssize_t size)
 | 
						|
{
 | 
						|
    assert(self->ob_item == NULL);
 | 
						|
    assert(size > 0);
 | 
						|
 | 
						|
    PyObject **items = PyMem_New(PyObject*, size);
 | 
						|
    if (items == NULL) {
 | 
						|
        PyErr_NoMemory();
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    self->ob_item = items;
 | 
						|
    self->allocated = size;
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
_PyList_ClearFreeList(PyInterpreterState *interp)
 | 
						|
{
 | 
						|
#if PyList_MAXFREELIST > 0
 | 
						|
    struct _Py_list_state *state = &interp->list;
 | 
						|
    while (state->numfree) {
 | 
						|
        PyListObject *op = state->free_list[--state->numfree];
 | 
						|
        assert(PyList_CheckExact(op));
 | 
						|
        PyObject_GC_Del(op);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
_PyList_Fini(PyInterpreterState *interp)
 | 
						|
{
 | 
						|
    _PyList_ClearFreeList(interp);
 | 
						|
#if defined(Py_DEBUG) && PyList_MAXFREELIST > 0
 | 
						|
    struct _Py_list_state *state = &interp->list;
 | 
						|
    state->numfree = -1;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/* Print summary info about the state of the optimized allocator */
 | 
						|
void
 | 
						|
_PyList_DebugMallocStats(FILE *out)
 | 
						|
{
 | 
						|
#if PyList_MAXFREELIST > 0
 | 
						|
    struct _Py_list_state *state = get_list_state();
 | 
						|
    _PyDebugAllocatorStats(out,
 | 
						|
                           "free PyListObject",
 | 
						|
                           state->numfree, sizeof(PyListObject));
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyList_New(Py_ssize_t size)
 | 
						|
{
 | 
						|
    PyListObject *op;
 | 
						|
 | 
						|
    if (size < 0) {
 | 
						|
        PyErr_BadInternalCall();
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
#if PyList_MAXFREELIST > 0
 | 
						|
    struct _Py_list_state *state = get_list_state();
 | 
						|
#ifdef Py_DEBUG
 | 
						|
    // PyList_New() must not be called after _PyList_Fini()
 | 
						|
    assert(state->numfree != -1);
 | 
						|
#endif
 | 
						|
    if (PyList_MAXFREELIST && state->numfree) {
 | 
						|
        state->numfree--;
 | 
						|
        op = state->free_list[state->numfree];
 | 
						|
        _Py_NewReference((PyObject *)op);
 | 
						|
    }
 | 
						|
    else
 | 
						|
#endif
 | 
						|
    {
 | 
						|
        op = PyObject_GC_New(PyListObject, &PyList_Type);
 | 
						|
        if (op == NULL) {
 | 
						|
            return NULL;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (size <= 0) {
 | 
						|
        op->ob_item = NULL;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        op->ob_item = (PyObject **) PyMem_Calloc(size, sizeof(PyObject *));
 | 
						|
        if (op->ob_item == NULL) {
 | 
						|
            Py_DECREF(op);
 | 
						|
            return PyErr_NoMemory();
 | 
						|
        }
 | 
						|
    }
 | 
						|
    Py_SET_SIZE(op, size);
 | 
						|
    op->allocated = size;
 | 
						|
    _PyObject_GC_TRACK(op);
 | 
						|
    return (PyObject *) op;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_new_prealloc(Py_ssize_t size)
 | 
						|
{
 | 
						|
    assert(size > 0);
 | 
						|
    PyListObject *op = (PyListObject *) PyList_New(0);
 | 
						|
    if (op == NULL) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    assert(op->ob_item == NULL);
 | 
						|
    op->ob_item = PyMem_New(PyObject *, size);
 | 
						|
    if (op->ob_item == NULL) {
 | 
						|
        Py_DECREF(op);
 | 
						|
        return PyErr_NoMemory();
 | 
						|
    }
 | 
						|
    op->allocated = size;
 | 
						|
    return (PyObject *) op;
 | 
						|
}
 | 
						|
 | 
						|
Py_ssize_t
 | 
						|
PyList_Size(PyObject *op)
 | 
						|
{
 | 
						|
    if (!PyList_Check(op)) {
 | 
						|
        PyErr_BadInternalCall();
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    else
 | 
						|
        return Py_SIZE(op);
 | 
						|
}
 | 
						|
 | 
						|
static inline int
 | 
						|
valid_index(Py_ssize_t i, Py_ssize_t limit)
 | 
						|
{
 | 
						|
    /* The cast to size_t lets us use just a single comparison
 | 
						|
       to check whether i is in the range: 0 <= i < limit.
 | 
						|
 | 
						|
       See:  Section 14.2 "Bounds Checking" in the Agner Fog
 | 
						|
       optimization manual found at:
 | 
						|
       https://www.agner.org/optimize/optimizing_cpp.pdf
 | 
						|
    */
 | 
						|
    return (size_t) i < (size_t) limit;
 | 
						|
}
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyList_GetItem(PyObject *op, Py_ssize_t i)
 | 
						|
{
 | 
						|
    if (!PyList_Check(op)) {
 | 
						|
        PyErr_BadInternalCall();
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    if (!valid_index(i, Py_SIZE(op))) {
 | 
						|
        _Py_DECLARE_STR(list_err, "list index out of range");
 | 
						|
        PyErr_SetObject(PyExc_IndexError, &_Py_STR(list_err));
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    return ((PyListObject *)op) -> ob_item[i];
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
PyList_SetItem(PyObject *op, Py_ssize_t i,
 | 
						|
               PyObject *newitem)
 | 
						|
{
 | 
						|
    PyObject **p;
 | 
						|
    if (!PyList_Check(op)) {
 | 
						|
        Py_XDECREF(newitem);
 | 
						|
        PyErr_BadInternalCall();
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    if (!valid_index(i, Py_SIZE(op))) {
 | 
						|
        Py_XDECREF(newitem);
 | 
						|
        PyErr_SetString(PyExc_IndexError,
 | 
						|
                        "list assignment index out of range");
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    p = ((PyListObject *)op) -> ob_item + i;
 | 
						|
    Py_XSETREF(*p, newitem);
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
ins1(PyListObject *self, Py_ssize_t where, PyObject *v)
 | 
						|
{
 | 
						|
    Py_ssize_t i, n = Py_SIZE(self);
 | 
						|
    PyObject **items;
 | 
						|
    if (v == NULL) {
 | 
						|
        PyErr_BadInternalCall();
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    assert((size_t)n + 1 < PY_SSIZE_T_MAX);
 | 
						|
    if (list_resize(self, n+1) < 0)
 | 
						|
        return -1;
 | 
						|
 | 
						|
    if (where < 0) {
 | 
						|
        where += n;
 | 
						|
        if (where < 0)
 | 
						|
            where = 0;
 | 
						|
    }
 | 
						|
    if (where > n)
 | 
						|
        where = n;
 | 
						|
    items = self->ob_item;
 | 
						|
    for (i = n; --i >= where; )
 | 
						|
        items[i+1] = items[i];
 | 
						|
    Py_INCREF(v);
 | 
						|
    items[where] = v;
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
PyList_Insert(PyObject *op, Py_ssize_t where, PyObject *newitem)
 | 
						|
{
 | 
						|
    if (!PyList_Check(op)) {
 | 
						|
        PyErr_BadInternalCall();
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    return ins1((PyListObject *)op, where, newitem);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
app1(PyListObject *self, PyObject *v)
 | 
						|
{
 | 
						|
    Py_ssize_t n = PyList_GET_SIZE(self);
 | 
						|
 | 
						|
    assert (v != NULL);
 | 
						|
    assert((size_t)n + 1 < PY_SSIZE_T_MAX);
 | 
						|
    if (list_resize(self, n+1) < 0)
 | 
						|
        return -1;
 | 
						|
 | 
						|
    Py_INCREF(v);
 | 
						|
    PyList_SET_ITEM(self, n, v);
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
PyList_Append(PyObject *op, PyObject *newitem)
 | 
						|
{
 | 
						|
    if (PyList_Check(op) && (newitem != NULL))
 | 
						|
        return app1((PyListObject *)op, newitem);
 | 
						|
    PyErr_BadInternalCall();
 | 
						|
    return -1;
 | 
						|
}
 | 
						|
 | 
						|
/* Methods */
 | 
						|
 | 
						|
static void
 | 
						|
list_dealloc(PyListObject *op)
 | 
						|
{
 | 
						|
    Py_ssize_t i;
 | 
						|
    PyObject_GC_UnTrack(op);
 | 
						|
    Py_TRASHCAN_BEGIN(op, list_dealloc)
 | 
						|
    if (op->ob_item != NULL) {
 | 
						|
        /* Do it backwards, for Christian Tismer.
 | 
						|
           There's a simple test case where somehow this reduces
 | 
						|
           thrashing when a *very* large list is created and
 | 
						|
           immediately deleted. */
 | 
						|
        i = Py_SIZE(op);
 | 
						|
        while (--i >= 0) {
 | 
						|
            Py_XDECREF(op->ob_item[i]);
 | 
						|
        }
 | 
						|
        PyMem_Free(op->ob_item);
 | 
						|
    }
 | 
						|
#if PyList_MAXFREELIST > 0
 | 
						|
    struct _Py_list_state *state = get_list_state();
 | 
						|
#ifdef Py_DEBUG
 | 
						|
    // list_dealloc() must not be called after _PyList_Fini()
 | 
						|
    assert(state->numfree != -1);
 | 
						|
#endif
 | 
						|
    if (state->numfree < PyList_MAXFREELIST && PyList_CheckExact(op)) {
 | 
						|
        state->free_list[state->numfree++] = op;
 | 
						|
    }
 | 
						|
    else
 | 
						|
#endif
 | 
						|
    {
 | 
						|
        Py_TYPE(op)->tp_free((PyObject *)op);
 | 
						|
    }
 | 
						|
    Py_TRASHCAN_END
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_repr(PyListObject *v)
 | 
						|
{
 | 
						|
    Py_ssize_t i;
 | 
						|
    PyObject *s;
 | 
						|
    _PyUnicodeWriter writer;
 | 
						|
 | 
						|
    if (Py_SIZE(v) == 0) {
 | 
						|
        return PyUnicode_FromString("[]");
 | 
						|
    }
 | 
						|
 | 
						|
    i = Py_ReprEnter((PyObject*)v);
 | 
						|
    if (i != 0) {
 | 
						|
        return i > 0 ? PyUnicode_FromString("[...]") : NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    _PyUnicodeWriter_Init(&writer);
 | 
						|
    writer.overallocate = 1;
 | 
						|
    /* "[" + "1" + ", 2" * (len - 1) + "]" */
 | 
						|
    writer.min_length = 1 + 1 + (2 + 1) * (Py_SIZE(v) - 1) + 1;
 | 
						|
 | 
						|
    if (_PyUnicodeWriter_WriteChar(&writer, '[') < 0)
 | 
						|
        goto error;
 | 
						|
 | 
						|
    /* Do repr() on each element.  Note that this may mutate the list,
 | 
						|
       so must refetch the list size on each iteration. */
 | 
						|
    for (i = 0; i < Py_SIZE(v); ++i) {
 | 
						|
        if (i > 0) {
 | 
						|
            if (_PyUnicodeWriter_WriteASCIIString(&writer, ", ", 2) < 0)
 | 
						|
                goto error;
 | 
						|
        }
 | 
						|
 | 
						|
        s = PyObject_Repr(v->ob_item[i]);
 | 
						|
        if (s == NULL)
 | 
						|
            goto error;
 | 
						|
 | 
						|
        if (_PyUnicodeWriter_WriteStr(&writer, s) < 0) {
 | 
						|
            Py_DECREF(s);
 | 
						|
            goto error;
 | 
						|
        }
 | 
						|
        Py_DECREF(s);
 | 
						|
    }
 | 
						|
 | 
						|
    writer.overallocate = 0;
 | 
						|
    if (_PyUnicodeWriter_WriteChar(&writer, ']') < 0)
 | 
						|
        goto error;
 | 
						|
 | 
						|
    Py_ReprLeave((PyObject *)v);
 | 
						|
    return _PyUnicodeWriter_Finish(&writer);
 | 
						|
 | 
						|
error:
 | 
						|
    _PyUnicodeWriter_Dealloc(&writer);
 | 
						|
    Py_ReprLeave((PyObject *)v);
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static Py_ssize_t
 | 
						|
list_length(PyListObject *a)
 | 
						|
{
 | 
						|
    return Py_SIZE(a);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
list_contains(PyListObject *a, PyObject *el)
 | 
						|
{
 | 
						|
    PyObject *item;
 | 
						|
    Py_ssize_t i;
 | 
						|
    int cmp;
 | 
						|
 | 
						|
    for (i = 0, cmp = 0 ; cmp == 0 && i < Py_SIZE(a); ++i) {
 | 
						|
        item = PyList_GET_ITEM(a, i);
 | 
						|
        Py_INCREF(item);
 | 
						|
        cmp = PyObject_RichCompareBool(item, el, Py_EQ);
 | 
						|
        Py_DECREF(item);
 | 
						|
    }
 | 
						|
    return cmp;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_item(PyListObject *a, Py_ssize_t i)
 | 
						|
{
 | 
						|
    if (!valid_index(i, Py_SIZE(a))) {
 | 
						|
        PyErr_SetObject(PyExc_IndexError, &_Py_STR(list_err));
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    Py_INCREF(a->ob_item[i]);
 | 
						|
    return a->ob_item[i];
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_slice(PyListObject *a, Py_ssize_t ilow, Py_ssize_t ihigh)
 | 
						|
{
 | 
						|
    PyListObject *np;
 | 
						|
    PyObject **src, **dest;
 | 
						|
    Py_ssize_t i, len;
 | 
						|
    len = ihigh - ilow;
 | 
						|
    if (len <= 0) {
 | 
						|
        return PyList_New(0);
 | 
						|
    }
 | 
						|
    np = (PyListObject *) list_new_prealloc(len);
 | 
						|
    if (np == NULL)
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    src = a->ob_item + ilow;
 | 
						|
    dest = np->ob_item;
 | 
						|
    for (i = 0; i < len; i++) {
 | 
						|
        PyObject *v = src[i];
 | 
						|
        Py_INCREF(v);
 | 
						|
        dest[i] = v;
 | 
						|
    }
 | 
						|
    Py_SET_SIZE(np, len);
 | 
						|
    return (PyObject *)np;
 | 
						|
}
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyList_GetSlice(PyObject *a, Py_ssize_t ilow, Py_ssize_t ihigh)
 | 
						|
{
 | 
						|
    if (!PyList_Check(a)) {
 | 
						|
        PyErr_BadInternalCall();
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    if (ilow < 0) {
 | 
						|
        ilow = 0;
 | 
						|
    }
 | 
						|
    else if (ilow > Py_SIZE(a)) {
 | 
						|
        ilow = Py_SIZE(a);
 | 
						|
    }
 | 
						|
    if (ihigh < ilow) {
 | 
						|
        ihigh = ilow;
 | 
						|
    }
 | 
						|
    else if (ihigh > Py_SIZE(a)) {
 | 
						|
        ihigh = Py_SIZE(a);
 | 
						|
    }
 | 
						|
    return list_slice((PyListObject *)a, ilow, ihigh);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_concat(PyListObject *a, PyObject *bb)
 | 
						|
{
 | 
						|
    Py_ssize_t size;
 | 
						|
    Py_ssize_t i;
 | 
						|
    PyObject **src, **dest;
 | 
						|
    PyListObject *np;
 | 
						|
    if (!PyList_Check(bb)) {
 | 
						|
        PyErr_Format(PyExc_TypeError,
 | 
						|
                  "can only concatenate list (not \"%.200s\") to list",
 | 
						|
                  Py_TYPE(bb)->tp_name);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
#define b ((PyListObject *)bb)
 | 
						|
    assert((size_t)Py_SIZE(a) + (size_t)Py_SIZE(b) < PY_SSIZE_T_MAX);
 | 
						|
    size = Py_SIZE(a) + Py_SIZE(b);
 | 
						|
    if (size == 0) {
 | 
						|
        return PyList_New(0);
 | 
						|
    }
 | 
						|
    np = (PyListObject *) list_new_prealloc(size);
 | 
						|
    if (np == NULL) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    src = a->ob_item;
 | 
						|
    dest = np->ob_item;
 | 
						|
    for (i = 0; i < Py_SIZE(a); i++) {
 | 
						|
        PyObject *v = src[i];
 | 
						|
        Py_INCREF(v);
 | 
						|
        dest[i] = v;
 | 
						|
    }
 | 
						|
    src = b->ob_item;
 | 
						|
    dest = np->ob_item + Py_SIZE(a);
 | 
						|
    for (i = 0; i < Py_SIZE(b); i++) {
 | 
						|
        PyObject *v = src[i];
 | 
						|
        Py_INCREF(v);
 | 
						|
        dest[i] = v;
 | 
						|
    }
 | 
						|
    Py_SET_SIZE(np, size);
 | 
						|
    return (PyObject *)np;
 | 
						|
#undef b
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_repeat(PyListObject *a, Py_ssize_t n)
 | 
						|
{
 | 
						|
    Py_ssize_t size;
 | 
						|
    PyListObject *np;
 | 
						|
    if (n < 0)
 | 
						|
        n = 0;
 | 
						|
    if (n > 0 && Py_SIZE(a) > PY_SSIZE_T_MAX / n)
 | 
						|
        return PyErr_NoMemory();
 | 
						|
    size = Py_SIZE(a) * n;
 | 
						|
    if (size == 0)
 | 
						|
        return PyList_New(0);
 | 
						|
    np = (PyListObject *) list_new_prealloc(size);
 | 
						|
    if (np == NULL)
 | 
						|
        return NULL;
 | 
						|
    PyObject **dest = np->ob_item;
 | 
						|
    PyObject **dest_end = dest + size;
 | 
						|
    if (Py_SIZE(a) == 1) {
 | 
						|
        PyObject *elem = a->ob_item[0];
 | 
						|
        Py_SET_REFCNT(elem, Py_REFCNT(elem) + n);
 | 
						|
#ifdef Py_REF_DEBUG
 | 
						|
        _Py_RefTotal += n;
 | 
						|
#endif
 | 
						|
        while (dest < dest_end) {
 | 
						|
            *dest++ = elem;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        PyObject **src = a->ob_item;
 | 
						|
        PyObject **src_end = src + Py_SIZE(a);
 | 
						|
        while (src < src_end) {
 | 
						|
            Py_SET_REFCNT(*src, Py_REFCNT(*src) + n);
 | 
						|
#ifdef Py_REF_DEBUG
 | 
						|
            _Py_RefTotal += n;
 | 
						|
#endif
 | 
						|
            *dest++ = *src++;
 | 
						|
        }
 | 
						|
        // Now src chases after dest in the same buffer
 | 
						|
        src = np->ob_item;
 | 
						|
        while (dest < dest_end) {
 | 
						|
            *dest++ = *src++;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    Py_SET_SIZE(np, size);
 | 
						|
    return (PyObject *) np;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
_list_clear(PyListObject *a)
 | 
						|
{
 | 
						|
    Py_ssize_t i;
 | 
						|
    PyObject **item = a->ob_item;
 | 
						|
    if (item != NULL) {
 | 
						|
        /* Because XDECREF can recursively invoke operations on
 | 
						|
           this list, we make it empty first. */
 | 
						|
        i = Py_SIZE(a);
 | 
						|
        Py_SET_SIZE(a, 0);
 | 
						|
        a->ob_item = NULL;
 | 
						|
        a->allocated = 0;
 | 
						|
        while (--i >= 0) {
 | 
						|
            Py_XDECREF(item[i]);
 | 
						|
        }
 | 
						|
        PyMem_Free(item);
 | 
						|
    }
 | 
						|
    /* Never fails; the return value can be ignored.
 | 
						|
       Note that there is no guarantee that the list is actually empty
 | 
						|
       at this point, because XDECREF may have populated it again! */
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* a[ilow:ihigh] = v if v != NULL.
 | 
						|
 * del a[ilow:ihigh] if v == NULL.
 | 
						|
 *
 | 
						|
 * Special speed gimmick:  when v is NULL and ihigh - ilow <= 8, it's
 | 
						|
 * guaranteed the call cannot fail.
 | 
						|
 */
 | 
						|
static int
 | 
						|
list_ass_slice(PyListObject *a, Py_ssize_t ilow, Py_ssize_t ihigh, PyObject *v)
 | 
						|
{
 | 
						|
    /* Because [X]DECREF can recursively invoke list operations on
 | 
						|
       this list, we must postpone all [X]DECREF activity until
 | 
						|
       after the list is back in its canonical shape.  Therefore
 | 
						|
       we must allocate an additional array, 'recycle', into which
 | 
						|
       we temporarily copy the items that are deleted from the
 | 
						|
       list. :-( */
 | 
						|
    PyObject *recycle_on_stack[8];
 | 
						|
    PyObject **recycle = recycle_on_stack; /* will allocate more if needed */
 | 
						|
    PyObject **item;
 | 
						|
    PyObject **vitem = NULL;
 | 
						|
    PyObject *v_as_SF = NULL; /* PySequence_Fast(v) */
 | 
						|
    Py_ssize_t n; /* # of elements in replacement list */
 | 
						|
    Py_ssize_t norig; /* # of elements in list getting replaced */
 | 
						|
    Py_ssize_t d; /* Change in size */
 | 
						|
    Py_ssize_t k;
 | 
						|
    size_t s;
 | 
						|
    int result = -1;            /* guilty until proved innocent */
 | 
						|
#define b ((PyListObject *)v)
 | 
						|
    if (v == NULL)
 | 
						|
        n = 0;
 | 
						|
    else {
 | 
						|
        if (a == b) {
 | 
						|
            /* Special case "a[i:j] = a" -- copy b first */
 | 
						|
            v = list_slice(b, 0, Py_SIZE(b));
 | 
						|
            if (v == NULL)
 | 
						|
                return result;
 | 
						|
            result = list_ass_slice(a, ilow, ihigh, v);
 | 
						|
            Py_DECREF(v);
 | 
						|
            return result;
 | 
						|
        }
 | 
						|
        v_as_SF = PySequence_Fast(v, "can only assign an iterable");
 | 
						|
        if(v_as_SF == NULL)
 | 
						|
            goto Error;
 | 
						|
        n = PySequence_Fast_GET_SIZE(v_as_SF);
 | 
						|
        vitem = PySequence_Fast_ITEMS(v_as_SF);
 | 
						|
    }
 | 
						|
    if (ilow < 0)
 | 
						|
        ilow = 0;
 | 
						|
    else if (ilow > Py_SIZE(a))
 | 
						|
        ilow = Py_SIZE(a);
 | 
						|
 | 
						|
    if (ihigh < ilow)
 | 
						|
        ihigh = ilow;
 | 
						|
    else if (ihigh > Py_SIZE(a))
 | 
						|
        ihigh = Py_SIZE(a);
 | 
						|
 | 
						|
    norig = ihigh - ilow;
 | 
						|
    assert(norig >= 0);
 | 
						|
    d = n - norig;
 | 
						|
    if (Py_SIZE(a) + d == 0) {
 | 
						|
        Py_XDECREF(v_as_SF);
 | 
						|
        return _list_clear(a);
 | 
						|
    }
 | 
						|
    item = a->ob_item;
 | 
						|
    /* recycle the items that we are about to remove */
 | 
						|
    s = norig * sizeof(PyObject *);
 | 
						|
    /* If norig == 0, item might be NULL, in which case we may not memcpy from it. */
 | 
						|
    if (s) {
 | 
						|
        if (s > sizeof(recycle_on_stack)) {
 | 
						|
            recycle = (PyObject **)PyMem_Malloc(s);
 | 
						|
            if (recycle == NULL) {
 | 
						|
                PyErr_NoMemory();
 | 
						|
                goto Error;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        memcpy(recycle, &item[ilow], s);
 | 
						|
    }
 | 
						|
 | 
						|
    if (d < 0) { /* Delete -d items */
 | 
						|
        Py_ssize_t tail;
 | 
						|
        tail = (Py_SIZE(a) - ihigh) * sizeof(PyObject *);
 | 
						|
        memmove(&item[ihigh+d], &item[ihigh], tail);
 | 
						|
        if (list_resize(a, Py_SIZE(a) + d) < 0) {
 | 
						|
            memmove(&item[ihigh], &item[ihigh+d], tail);
 | 
						|
            memcpy(&item[ilow], recycle, s);
 | 
						|
            goto Error;
 | 
						|
        }
 | 
						|
        item = a->ob_item;
 | 
						|
    }
 | 
						|
    else if (d > 0) { /* Insert d items */
 | 
						|
        k = Py_SIZE(a);
 | 
						|
        if (list_resize(a, k+d) < 0)
 | 
						|
            goto Error;
 | 
						|
        item = a->ob_item;
 | 
						|
        memmove(&item[ihigh+d], &item[ihigh],
 | 
						|
            (k - ihigh)*sizeof(PyObject *));
 | 
						|
    }
 | 
						|
    for (k = 0; k < n; k++, ilow++) {
 | 
						|
        PyObject *w = vitem[k];
 | 
						|
        Py_XINCREF(w);
 | 
						|
        item[ilow] = w;
 | 
						|
    }
 | 
						|
    for (k = norig - 1; k >= 0; --k)
 | 
						|
        Py_XDECREF(recycle[k]);
 | 
						|
    result = 0;
 | 
						|
 Error:
 | 
						|
    if (recycle != recycle_on_stack)
 | 
						|
        PyMem_Free(recycle);
 | 
						|
    Py_XDECREF(v_as_SF);
 | 
						|
    return result;
 | 
						|
#undef b
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
PyList_SetSlice(PyObject *a, Py_ssize_t ilow, Py_ssize_t ihigh, PyObject *v)
 | 
						|
{
 | 
						|
    if (!PyList_Check(a)) {
 | 
						|
        PyErr_BadInternalCall();
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    return list_ass_slice((PyListObject *)a, ilow, ihigh, v);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_inplace_repeat(PyListObject *self, Py_ssize_t n)
 | 
						|
{
 | 
						|
    PyObject **items;
 | 
						|
    Py_ssize_t size, i, j, p;
 | 
						|
 | 
						|
 | 
						|
    size = PyList_GET_SIZE(self);
 | 
						|
    if (size == 0 || n == 1) {
 | 
						|
        Py_INCREF(self);
 | 
						|
        return (PyObject *)self;
 | 
						|
    }
 | 
						|
 | 
						|
    if (n < 1) {
 | 
						|
        (void)_list_clear(self);
 | 
						|
        Py_INCREF(self);
 | 
						|
        return (PyObject *)self;
 | 
						|
    }
 | 
						|
 | 
						|
    if (size > PY_SSIZE_T_MAX / n) {
 | 
						|
        return PyErr_NoMemory();
 | 
						|
    }
 | 
						|
 | 
						|
    if (list_resize(self, size*n) < 0)
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    p = size;
 | 
						|
    items = self->ob_item;
 | 
						|
    for (i = 1; i < n; i++) { /* Start counting at 1, not 0 */
 | 
						|
        for (j = 0; j < size; j++) {
 | 
						|
            PyObject *o = items[j];
 | 
						|
            Py_INCREF(o);
 | 
						|
            items[p++] = o;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    Py_INCREF(self);
 | 
						|
    return (PyObject *)self;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
list_ass_item(PyListObject *a, Py_ssize_t i, PyObject *v)
 | 
						|
{
 | 
						|
    if (!valid_index(i, Py_SIZE(a))) {
 | 
						|
        PyErr_SetString(PyExc_IndexError,
 | 
						|
                        "list assignment index out of range");
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    if (v == NULL)
 | 
						|
        return list_ass_slice(a, i, i+1, v);
 | 
						|
    Py_INCREF(v);
 | 
						|
    Py_SETREF(a->ob_item[i], v);
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
list.insert
 | 
						|
 | 
						|
    index: Py_ssize_t
 | 
						|
    object: object
 | 
						|
    /
 | 
						|
 | 
						|
Insert object before index.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_insert_impl(PyListObject *self, Py_ssize_t index, PyObject *object)
 | 
						|
/*[clinic end generated code: output=7f35e32f60c8cb78 input=858514cf894c7eab]*/
 | 
						|
{
 | 
						|
    if (ins1(self, index, object) == 0)
 | 
						|
        Py_RETURN_NONE;
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
list.clear
 | 
						|
 | 
						|
Remove all items from list.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_clear_impl(PyListObject *self)
 | 
						|
/*[clinic end generated code: output=67a1896c01f74362 input=ca3c1646856742f6]*/
 | 
						|
{
 | 
						|
    _list_clear(self);
 | 
						|
    Py_RETURN_NONE;
 | 
						|
}
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
list.copy
 | 
						|
 | 
						|
Return a shallow copy of the list.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_copy_impl(PyListObject *self)
 | 
						|
/*[clinic end generated code: output=ec6b72d6209d418e input=6453ab159e84771f]*/
 | 
						|
{
 | 
						|
    return list_slice(self, 0, Py_SIZE(self));
 | 
						|
}
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
list.append
 | 
						|
 | 
						|
     object: object
 | 
						|
     /
 | 
						|
 | 
						|
Append object to the end of the list.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_append(PyListObject *self, PyObject *object)
 | 
						|
/*[clinic end generated code: output=7c096003a29c0eae input=43a3fe48a7066e91]*/
 | 
						|
{
 | 
						|
    if (app1(self, object) == 0)
 | 
						|
        Py_RETURN_NONE;
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
list.extend
 | 
						|
 | 
						|
     iterable: object
 | 
						|
     /
 | 
						|
 | 
						|
Extend list by appending elements from the iterable.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_extend(PyListObject *self, PyObject *iterable)
 | 
						|
/*[clinic end generated code: output=630fb3bca0c8e789 input=9ec5ba3a81be3a4d]*/
 | 
						|
{
 | 
						|
    PyObject *it;      /* iter(v) */
 | 
						|
    Py_ssize_t m;                  /* size of self */
 | 
						|
    Py_ssize_t n;                  /* guess for size of iterable */
 | 
						|
    Py_ssize_t mn;                 /* m + n */
 | 
						|
    Py_ssize_t i;
 | 
						|
    PyObject *(*iternext)(PyObject *);
 | 
						|
 | 
						|
    /* Special cases:
 | 
						|
       1) lists and tuples which can use PySequence_Fast ops
 | 
						|
       2) extending self to self requires making a copy first
 | 
						|
    */
 | 
						|
    if (PyList_CheckExact(iterable) || PyTuple_CheckExact(iterable) ||
 | 
						|
                (PyObject *)self == iterable) {
 | 
						|
        PyObject **src, **dest;
 | 
						|
        iterable = PySequence_Fast(iterable, "argument must be iterable");
 | 
						|
        if (!iterable)
 | 
						|
            return NULL;
 | 
						|
        n = PySequence_Fast_GET_SIZE(iterable);
 | 
						|
        if (n == 0) {
 | 
						|
            /* short circuit when iterable is empty */
 | 
						|
            Py_DECREF(iterable);
 | 
						|
            Py_RETURN_NONE;
 | 
						|
        }
 | 
						|
        m = Py_SIZE(self);
 | 
						|
        /* It should not be possible to allocate a list large enough to cause
 | 
						|
        an overflow on any relevant platform */
 | 
						|
        assert(m < PY_SSIZE_T_MAX - n);
 | 
						|
        if (list_resize(self, m + n) < 0) {
 | 
						|
            Py_DECREF(iterable);
 | 
						|
            return NULL;
 | 
						|
        }
 | 
						|
        /* note that we may still have self == iterable here for the
 | 
						|
         * situation a.extend(a), but the following code works
 | 
						|
         * in that case too.  Just make sure to resize self
 | 
						|
         * before calling PySequence_Fast_ITEMS.
 | 
						|
         */
 | 
						|
        /* populate the end of self with iterable's items */
 | 
						|
        src = PySequence_Fast_ITEMS(iterable);
 | 
						|
        dest = self->ob_item + m;
 | 
						|
        for (i = 0; i < n; i++) {
 | 
						|
            PyObject *o = src[i];
 | 
						|
            Py_INCREF(o);
 | 
						|
            dest[i] = o;
 | 
						|
        }
 | 
						|
        Py_DECREF(iterable);
 | 
						|
        Py_RETURN_NONE;
 | 
						|
    }
 | 
						|
 | 
						|
    it = PyObject_GetIter(iterable);
 | 
						|
    if (it == NULL)
 | 
						|
        return NULL;
 | 
						|
    iternext = *Py_TYPE(it)->tp_iternext;
 | 
						|
 | 
						|
    /* Guess a result list size. */
 | 
						|
    n = PyObject_LengthHint(iterable, 8);
 | 
						|
    if (n < 0) {
 | 
						|
        Py_DECREF(it);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    m = Py_SIZE(self);
 | 
						|
    if (m > PY_SSIZE_T_MAX - n) {
 | 
						|
        /* m + n overflowed; on the chance that n lied, and there really
 | 
						|
         * is enough room, ignore it.  If n was telling the truth, we'll
 | 
						|
         * eventually run out of memory during the loop.
 | 
						|
         */
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        mn = m + n;
 | 
						|
        /* Make room. */
 | 
						|
        if (list_resize(self, mn) < 0)
 | 
						|
            goto error;
 | 
						|
        /* Make the list sane again. */
 | 
						|
        Py_SET_SIZE(self, m);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Run iterator to exhaustion. */
 | 
						|
    for (;;) {
 | 
						|
        PyObject *item = iternext(it);
 | 
						|
        if (item == NULL) {
 | 
						|
            if (PyErr_Occurred()) {
 | 
						|
                if (PyErr_ExceptionMatches(PyExc_StopIteration))
 | 
						|
                    PyErr_Clear();
 | 
						|
                else
 | 
						|
                    goto error;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        if (Py_SIZE(self) < self->allocated) {
 | 
						|
            /* steals ref */
 | 
						|
            PyList_SET_ITEM(self, Py_SIZE(self), item);
 | 
						|
            Py_SET_SIZE(self, Py_SIZE(self) + 1);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            int status = app1(self, item);
 | 
						|
            Py_DECREF(item);  /* append creates a new ref */
 | 
						|
            if (status < 0)
 | 
						|
                goto error;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Cut back result list if initial guess was too large. */
 | 
						|
    if (Py_SIZE(self) < self->allocated) {
 | 
						|
        if (list_resize(self, Py_SIZE(self)) < 0)
 | 
						|
            goto error;
 | 
						|
    }
 | 
						|
 | 
						|
    Py_DECREF(it);
 | 
						|
    Py_RETURN_NONE;
 | 
						|
 | 
						|
  error:
 | 
						|
    Py_DECREF(it);
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
PyObject *
 | 
						|
_PyList_Extend(PyListObject *self, PyObject *iterable)
 | 
						|
{
 | 
						|
    return list_extend(self, iterable);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_inplace_concat(PyListObject *self, PyObject *other)
 | 
						|
{
 | 
						|
    PyObject *result;
 | 
						|
 | 
						|
    result = list_extend(self, other);
 | 
						|
    if (result == NULL)
 | 
						|
        return result;
 | 
						|
    Py_DECREF(result);
 | 
						|
    Py_INCREF(self);
 | 
						|
    return (PyObject *)self;
 | 
						|
}
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
list.pop
 | 
						|
 | 
						|
    index: Py_ssize_t = -1
 | 
						|
    /
 | 
						|
 | 
						|
Remove and return item at index (default last).
 | 
						|
 | 
						|
Raises IndexError if list is empty or index is out of range.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_pop_impl(PyListObject *self, Py_ssize_t index)
 | 
						|
/*[clinic end generated code: output=6bd69dcb3f17eca8 input=b83675976f329e6f]*/
 | 
						|
{
 | 
						|
    PyObject *v;
 | 
						|
    int status;
 | 
						|
 | 
						|
    if (Py_SIZE(self) == 0) {
 | 
						|
        /* Special-case most common failure cause */
 | 
						|
        PyErr_SetString(PyExc_IndexError, "pop from empty list");
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    if (index < 0)
 | 
						|
        index += Py_SIZE(self);
 | 
						|
    if (!valid_index(index, Py_SIZE(self))) {
 | 
						|
        PyErr_SetString(PyExc_IndexError, "pop index out of range");
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    v = self->ob_item[index];
 | 
						|
    if (index == Py_SIZE(self) - 1) {
 | 
						|
        status = list_resize(self, Py_SIZE(self) - 1);
 | 
						|
        if (status >= 0)
 | 
						|
            return v; /* and v now owns the reference the list had */
 | 
						|
        else
 | 
						|
            return NULL;
 | 
						|
    }
 | 
						|
    Py_INCREF(v);
 | 
						|
    status = list_ass_slice(self, index, index+1, (PyObject *)NULL);
 | 
						|
    if (status < 0) {
 | 
						|
        Py_DECREF(v);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    return v;
 | 
						|
}
 | 
						|
 | 
						|
/* Reverse a slice of a list in place, from lo up to (exclusive) hi. */
 | 
						|
static void
 | 
						|
reverse_slice(PyObject **lo, PyObject **hi)
 | 
						|
{
 | 
						|
    assert(lo && hi);
 | 
						|
 | 
						|
    --hi;
 | 
						|
    while (lo < hi) {
 | 
						|
        PyObject *t = *lo;
 | 
						|
        *lo = *hi;
 | 
						|
        *hi = t;
 | 
						|
        ++lo;
 | 
						|
        --hi;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Lots of code for an adaptive, stable, natural mergesort.  There are many
 | 
						|
 * pieces to this algorithm; read listsort.txt for overviews and details.
 | 
						|
 */
 | 
						|
 | 
						|
/* A sortslice contains a pointer to an array of keys and a pointer to
 | 
						|
 * an array of corresponding values.  In other words, keys[i]
 | 
						|
 * corresponds with values[i].  If values == NULL, then the keys are
 | 
						|
 * also the values.
 | 
						|
 *
 | 
						|
 * Several convenience routines are provided here, so that keys and
 | 
						|
 * values are always moved in sync.
 | 
						|
 */
 | 
						|
 | 
						|
typedef struct {
 | 
						|
    PyObject **keys;
 | 
						|
    PyObject **values;
 | 
						|
} sortslice;
 | 
						|
 | 
						|
Py_LOCAL_INLINE(void)
 | 
						|
sortslice_copy(sortslice *s1, Py_ssize_t i, sortslice *s2, Py_ssize_t j)
 | 
						|
{
 | 
						|
    s1->keys[i] = s2->keys[j];
 | 
						|
    if (s1->values != NULL)
 | 
						|
        s1->values[i] = s2->values[j];
 | 
						|
}
 | 
						|
 | 
						|
Py_LOCAL_INLINE(void)
 | 
						|
sortslice_copy_incr(sortslice *dst, sortslice *src)
 | 
						|
{
 | 
						|
    *dst->keys++ = *src->keys++;
 | 
						|
    if (dst->values != NULL)
 | 
						|
        *dst->values++ = *src->values++;
 | 
						|
}
 | 
						|
 | 
						|
Py_LOCAL_INLINE(void)
 | 
						|
sortslice_copy_decr(sortslice *dst, sortslice *src)
 | 
						|
{
 | 
						|
    *dst->keys-- = *src->keys--;
 | 
						|
    if (dst->values != NULL)
 | 
						|
        *dst->values-- = *src->values--;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
Py_LOCAL_INLINE(void)
 | 
						|
sortslice_memcpy(sortslice *s1, Py_ssize_t i, sortslice *s2, Py_ssize_t j,
 | 
						|
                 Py_ssize_t n)
 | 
						|
{
 | 
						|
    memcpy(&s1->keys[i], &s2->keys[j], sizeof(PyObject *) * n);
 | 
						|
    if (s1->values != NULL)
 | 
						|
        memcpy(&s1->values[i], &s2->values[j], sizeof(PyObject *) * n);
 | 
						|
}
 | 
						|
 | 
						|
Py_LOCAL_INLINE(void)
 | 
						|
sortslice_memmove(sortslice *s1, Py_ssize_t i, sortslice *s2, Py_ssize_t j,
 | 
						|
                  Py_ssize_t n)
 | 
						|
{
 | 
						|
    memmove(&s1->keys[i], &s2->keys[j], sizeof(PyObject *) * n);
 | 
						|
    if (s1->values != NULL)
 | 
						|
        memmove(&s1->values[i], &s2->values[j], sizeof(PyObject *) * n);
 | 
						|
}
 | 
						|
 | 
						|
Py_LOCAL_INLINE(void)
 | 
						|
sortslice_advance(sortslice *slice, Py_ssize_t n)
 | 
						|
{
 | 
						|
    slice->keys += n;
 | 
						|
    if (slice->values != NULL)
 | 
						|
        slice->values += n;
 | 
						|
}
 | 
						|
 | 
						|
/* Comparison function: ms->key_compare, which is set at run-time in
 | 
						|
 * listsort_impl to optimize for various special cases.
 | 
						|
 * Returns -1 on error, 1 if x < y, 0 if x >= y.
 | 
						|
 */
 | 
						|
 | 
						|
#define ISLT(X, Y) (*(ms->key_compare))(X, Y, ms)
 | 
						|
 | 
						|
/* Compare X to Y via "<".  Goto "fail" if the comparison raises an
 | 
						|
   error.  Else "k" is set to true iff X<Y, and an "if (k)" block is
 | 
						|
   started.  It makes more sense in context <wink>.  X and Y are PyObject*s.
 | 
						|
*/
 | 
						|
#define IFLT(X, Y) if ((k = ISLT(X, Y)) < 0) goto fail;  \
 | 
						|
           if (k)
 | 
						|
 | 
						|
/* The maximum number of entries in a MergeState's pending-runs stack.
 | 
						|
 * For a list with n elements, this needs at most floor(log2(n)) + 1 entries
 | 
						|
 * even if we didn't force runs to a minimal length.  So the number of bits
 | 
						|
 * in a Py_ssize_t is plenty large enough for all cases.
 | 
						|
 */
 | 
						|
#define MAX_MERGE_PENDING (SIZEOF_SIZE_T * 8)
 | 
						|
 | 
						|
/* When we get into galloping mode, we stay there until both runs win less
 | 
						|
 * often than MIN_GALLOP consecutive times.  See listsort.txt for more info.
 | 
						|
 */
 | 
						|
#define MIN_GALLOP 7
 | 
						|
 | 
						|
/* Avoid malloc for small temp arrays. */
 | 
						|
#define MERGESTATE_TEMP_SIZE 256
 | 
						|
 | 
						|
/* One MergeState exists on the stack per invocation of mergesort.  It's just
 | 
						|
 * a convenient way to pass state around among the helper functions.
 | 
						|
 */
 | 
						|
struct s_slice {
 | 
						|
    sortslice base;
 | 
						|
    Py_ssize_t len;   /* length of run */
 | 
						|
    int power; /* node "level" for powersort merge strategy */
 | 
						|
};
 | 
						|
 | 
						|
typedef struct s_MergeState MergeState;
 | 
						|
struct s_MergeState {
 | 
						|
    /* This controls when we get *into* galloping mode.  It's initialized
 | 
						|
     * to MIN_GALLOP.  merge_lo and merge_hi tend to nudge it higher for
 | 
						|
     * random data, and lower for highly structured data.
 | 
						|
     */
 | 
						|
    Py_ssize_t min_gallop;
 | 
						|
 | 
						|
    Py_ssize_t listlen;     /* len(input_list) - read only */
 | 
						|
    PyObject **basekeys;    /* base address of keys array - read only */
 | 
						|
 | 
						|
    /* 'a' is temp storage to help with merges.  It contains room for
 | 
						|
     * alloced entries.
 | 
						|
     */
 | 
						|
    sortslice a;        /* may point to temparray below */
 | 
						|
    Py_ssize_t alloced;
 | 
						|
 | 
						|
    /* A stack of n pending runs yet to be merged.  Run #i starts at
 | 
						|
     * address base[i] and extends for len[i] elements.  It's always
 | 
						|
     * true (so long as the indices are in bounds) that
 | 
						|
     *
 | 
						|
     *     pending[i].base + pending[i].len == pending[i+1].base
 | 
						|
     *
 | 
						|
     * so we could cut the storage for this, but it's a minor amount,
 | 
						|
     * and keeping all the info explicit simplifies the code.
 | 
						|
     */
 | 
						|
    int n;
 | 
						|
    struct s_slice pending[MAX_MERGE_PENDING];
 | 
						|
 | 
						|
    /* 'a' points to this when possible, rather than muck with malloc. */
 | 
						|
    PyObject *temparray[MERGESTATE_TEMP_SIZE];
 | 
						|
 | 
						|
    /* This is the function we will use to compare two keys,
 | 
						|
     * even when none of our special cases apply and we have to use
 | 
						|
     * safe_object_compare. */
 | 
						|
    int (*key_compare)(PyObject *, PyObject *, MergeState *);
 | 
						|
 | 
						|
    /* This function is used by unsafe_object_compare to optimize comparisons
 | 
						|
     * when we know our list is type-homogeneous but we can't assume anything else.
 | 
						|
     * In the pre-sort check it is set equal to Py_TYPE(key)->tp_richcompare */
 | 
						|
    PyObject *(*key_richcompare)(PyObject *, PyObject *, int);
 | 
						|
 | 
						|
    /* This function is used by unsafe_tuple_compare to compare the first elements
 | 
						|
     * of tuples. It may be set to safe_object_compare, but the idea is that hopefully
 | 
						|
     * we can assume more, and use one of the special-case compares. */
 | 
						|
    int (*tuple_elem_compare)(PyObject *, PyObject *, MergeState *);
 | 
						|
 | 
						|
    /* Used by unsafe_tuple_compare to record whether the very first tuple
 | 
						|
     * elements resolved the last comparison attempt. If so, next time a
 | 
						|
     * method that may avoid PyObject_RichCompareBool() entirely is tried.
 | 
						|
     * 0 for false, 1 for true.
 | 
						|
     */
 | 
						|
    int first_tuple_items_resolved_it;
 | 
						|
};
 | 
						|
 | 
						|
/* binarysort is the best method for sorting small arrays: it does
 | 
						|
   few compares, but can do data movement quadratic in the number of
 | 
						|
   elements.
 | 
						|
   [lo, hi) is a contiguous slice of a list, and is sorted via
 | 
						|
   binary insertion.  This sort is stable.
 | 
						|
   On entry, must have lo <= start <= hi, and that [lo, start) is already
 | 
						|
   sorted (pass start == lo if you don't know!).
 | 
						|
   If islt() complains return -1, else 0.
 | 
						|
   Even in case of error, the output slice will be some permutation of
 | 
						|
   the input (nothing is lost or duplicated).
 | 
						|
*/
 | 
						|
static int
 | 
						|
binarysort(MergeState *ms, sortslice lo, PyObject **hi, PyObject **start)
 | 
						|
{
 | 
						|
    Py_ssize_t k;
 | 
						|
    PyObject **l, **p, **r;
 | 
						|
    PyObject *pivot;
 | 
						|
 | 
						|
    assert(lo.keys <= start && start <= hi);
 | 
						|
    /* assert [lo, start) is sorted */
 | 
						|
    if (lo.keys == start)
 | 
						|
        ++start;
 | 
						|
    for (; start < hi; ++start) {
 | 
						|
        /* set l to where *start belongs */
 | 
						|
        l = lo.keys;
 | 
						|
        r = start;
 | 
						|
        pivot = *r;
 | 
						|
        /* Invariants:
 | 
						|
         * pivot >= all in [lo, l).
 | 
						|
         * pivot  < all in [r, start).
 | 
						|
         * The second is vacuously true at the start.
 | 
						|
         */
 | 
						|
        assert(l < r);
 | 
						|
        do {
 | 
						|
            p = l + ((r - l) >> 1);
 | 
						|
            IFLT(pivot, *p)
 | 
						|
                r = p;
 | 
						|
            else
 | 
						|
                l = p+1;
 | 
						|
        } while (l < r);
 | 
						|
        assert(l == r);
 | 
						|
        /* The invariants still hold, so pivot >= all in [lo, l) and
 | 
						|
           pivot < all in [l, start), so pivot belongs at l.  Note
 | 
						|
           that if there are elements equal to pivot, l points to the
 | 
						|
           first slot after them -- that's why this sort is stable.
 | 
						|
           Slide over to make room.
 | 
						|
           Caution: using memmove is much slower under MSVC 5;
 | 
						|
           we're not usually moving many slots. */
 | 
						|
        for (p = start; p > l; --p)
 | 
						|
            *p = *(p-1);
 | 
						|
        *l = pivot;
 | 
						|
        if (lo.values != NULL) {
 | 
						|
            Py_ssize_t offset = lo.values - lo.keys;
 | 
						|
            p = start + offset;
 | 
						|
            pivot = *p;
 | 
						|
            l += offset;
 | 
						|
            for (p = start + offset; p > l; --p)
 | 
						|
                *p = *(p-1);
 | 
						|
            *l = pivot;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
 | 
						|
 fail:
 | 
						|
    return -1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
Return the length of the run beginning at lo, in the slice [lo, hi).  lo < hi
 | 
						|
is required on entry.  "A run" is the longest ascending sequence, with
 | 
						|
 | 
						|
    lo[0] <= lo[1] <= lo[2] <= ...
 | 
						|
 | 
						|
or the longest descending sequence, with
 | 
						|
 | 
						|
    lo[0] > lo[1] > lo[2] > ...
 | 
						|
 | 
						|
Boolean *descending is set to 0 in the former case, or to 1 in the latter.
 | 
						|
For its intended use in a stable mergesort, the strictness of the defn of
 | 
						|
"descending" is needed so that the caller can safely reverse a descending
 | 
						|
sequence without violating stability (strict > ensures there are no equal
 | 
						|
elements to get out of order).
 | 
						|
 | 
						|
Returns -1 in case of error.
 | 
						|
*/
 | 
						|
static Py_ssize_t
 | 
						|
count_run(MergeState *ms, PyObject **lo, PyObject **hi, int *descending)
 | 
						|
{
 | 
						|
    Py_ssize_t k;
 | 
						|
    Py_ssize_t n;
 | 
						|
 | 
						|
    assert(lo < hi);
 | 
						|
    *descending = 0;
 | 
						|
    ++lo;
 | 
						|
    if (lo == hi)
 | 
						|
        return 1;
 | 
						|
 | 
						|
    n = 2;
 | 
						|
    IFLT(*lo, *(lo-1)) {
 | 
						|
        *descending = 1;
 | 
						|
        for (lo = lo+1; lo < hi; ++lo, ++n) {
 | 
						|
            IFLT(*lo, *(lo-1))
 | 
						|
                ;
 | 
						|
            else
 | 
						|
                break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        for (lo = lo+1; lo < hi; ++lo, ++n) {
 | 
						|
            IFLT(*lo, *(lo-1))
 | 
						|
                break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return n;
 | 
						|
fail:
 | 
						|
    return -1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
Locate the proper position of key in a sorted vector; if the vector contains
 | 
						|
an element equal to key, return the position immediately to the left of
 | 
						|
the leftmost equal element.  [gallop_right() does the same except returns
 | 
						|
the position to the right of the rightmost equal element (if any).]
 | 
						|
 | 
						|
"a" is a sorted vector with n elements, starting at a[0].  n must be > 0.
 | 
						|
 | 
						|
"hint" is an index at which to begin the search, 0 <= hint < n.  The closer
 | 
						|
hint is to the final result, the faster this runs.
 | 
						|
 | 
						|
The return value is the int k in 0..n such that
 | 
						|
 | 
						|
    a[k-1] < key <= a[k]
 | 
						|
 | 
						|
pretending that *(a-1) is minus infinity and a[n] is plus infinity.  IOW,
 | 
						|
key belongs at index k; or, IOW, the first k elements of a should precede
 | 
						|
key, and the last n-k should follow key.
 | 
						|
 | 
						|
Returns -1 on error.  See listsort.txt for info on the method.
 | 
						|
*/
 | 
						|
static Py_ssize_t
 | 
						|
gallop_left(MergeState *ms, PyObject *key, PyObject **a, Py_ssize_t n, Py_ssize_t hint)
 | 
						|
{
 | 
						|
    Py_ssize_t ofs;
 | 
						|
    Py_ssize_t lastofs;
 | 
						|
    Py_ssize_t k;
 | 
						|
 | 
						|
    assert(key && a && n > 0 && hint >= 0 && hint < n);
 | 
						|
 | 
						|
    a += hint;
 | 
						|
    lastofs = 0;
 | 
						|
    ofs = 1;
 | 
						|
    IFLT(*a, key) {
 | 
						|
        /* a[hint] < key -- gallop right, until
 | 
						|
         * a[hint + lastofs] < key <= a[hint + ofs]
 | 
						|
         */
 | 
						|
        const Py_ssize_t maxofs = n - hint;             /* &a[n-1] is highest */
 | 
						|
        while (ofs < maxofs) {
 | 
						|
            IFLT(a[ofs], key) {
 | 
						|
                lastofs = ofs;
 | 
						|
                assert(ofs <= (PY_SSIZE_T_MAX - 1) / 2);
 | 
						|
                ofs = (ofs << 1) + 1;
 | 
						|
            }
 | 
						|
            else                /* key <= a[hint + ofs] */
 | 
						|
                break;
 | 
						|
        }
 | 
						|
        if (ofs > maxofs)
 | 
						|
            ofs = maxofs;
 | 
						|
        /* Translate back to offsets relative to &a[0]. */
 | 
						|
        lastofs += hint;
 | 
						|
        ofs += hint;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        /* key <= a[hint] -- gallop left, until
 | 
						|
         * a[hint - ofs] < key <= a[hint - lastofs]
 | 
						|
         */
 | 
						|
        const Py_ssize_t maxofs = hint + 1;             /* &a[0] is lowest */
 | 
						|
        while (ofs < maxofs) {
 | 
						|
            IFLT(*(a-ofs), key)
 | 
						|
                break;
 | 
						|
            /* key <= a[hint - ofs] */
 | 
						|
            lastofs = ofs;
 | 
						|
            assert(ofs <= (PY_SSIZE_T_MAX - 1) / 2);
 | 
						|
            ofs = (ofs << 1) + 1;
 | 
						|
        }
 | 
						|
        if (ofs > maxofs)
 | 
						|
            ofs = maxofs;
 | 
						|
        /* Translate back to positive offsets relative to &a[0]. */
 | 
						|
        k = lastofs;
 | 
						|
        lastofs = hint - ofs;
 | 
						|
        ofs = hint - k;
 | 
						|
    }
 | 
						|
    a -= hint;
 | 
						|
 | 
						|
    assert(-1 <= lastofs && lastofs < ofs && ofs <= n);
 | 
						|
    /* Now a[lastofs] < key <= a[ofs], so key belongs somewhere to the
 | 
						|
     * right of lastofs but no farther right than ofs.  Do a binary
 | 
						|
     * search, with invariant a[lastofs-1] < key <= a[ofs].
 | 
						|
     */
 | 
						|
    ++lastofs;
 | 
						|
    while (lastofs < ofs) {
 | 
						|
        Py_ssize_t m = lastofs + ((ofs - lastofs) >> 1);
 | 
						|
 | 
						|
        IFLT(a[m], key)
 | 
						|
            lastofs = m+1;              /* a[m] < key */
 | 
						|
        else
 | 
						|
            ofs = m;                    /* key <= a[m] */
 | 
						|
    }
 | 
						|
    assert(lastofs == ofs);             /* so a[ofs-1] < key <= a[ofs] */
 | 
						|
    return ofs;
 | 
						|
 | 
						|
fail:
 | 
						|
    return -1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
Exactly like gallop_left(), except that if key already exists in a[0:n],
 | 
						|
finds the position immediately to the right of the rightmost equal value.
 | 
						|
 | 
						|
The return value is the int k in 0..n such that
 | 
						|
 | 
						|
    a[k-1] <= key < a[k]
 | 
						|
 | 
						|
or -1 if error.
 | 
						|
 | 
						|
The code duplication is massive, but this is enough different given that
 | 
						|
we're sticking to "<" comparisons that it's much harder to follow if
 | 
						|
written as one routine with yet another "left or right?" flag.
 | 
						|
*/
 | 
						|
static Py_ssize_t
 | 
						|
gallop_right(MergeState *ms, PyObject *key, PyObject **a, Py_ssize_t n, Py_ssize_t hint)
 | 
						|
{
 | 
						|
    Py_ssize_t ofs;
 | 
						|
    Py_ssize_t lastofs;
 | 
						|
    Py_ssize_t k;
 | 
						|
 | 
						|
    assert(key && a && n > 0 && hint >= 0 && hint < n);
 | 
						|
 | 
						|
    a += hint;
 | 
						|
    lastofs = 0;
 | 
						|
    ofs = 1;
 | 
						|
    IFLT(key, *a) {
 | 
						|
        /* key < a[hint] -- gallop left, until
 | 
						|
         * a[hint - ofs] <= key < a[hint - lastofs]
 | 
						|
         */
 | 
						|
        const Py_ssize_t maxofs = hint + 1;             /* &a[0] is lowest */
 | 
						|
        while (ofs < maxofs) {
 | 
						|
            IFLT(key, *(a-ofs)) {
 | 
						|
                lastofs = ofs;
 | 
						|
                assert(ofs <= (PY_SSIZE_T_MAX - 1) / 2);
 | 
						|
                ofs = (ofs << 1) + 1;
 | 
						|
            }
 | 
						|
            else                /* a[hint - ofs] <= key */
 | 
						|
                break;
 | 
						|
        }
 | 
						|
        if (ofs > maxofs)
 | 
						|
            ofs = maxofs;
 | 
						|
        /* Translate back to positive offsets relative to &a[0]. */
 | 
						|
        k = lastofs;
 | 
						|
        lastofs = hint - ofs;
 | 
						|
        ofs = hint - k;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        /* a[hint] <= key -- gallop right, until
 | 
						|
         * a[hint + lastofs] <= key < a[hint + ofs]
 | 
						|
        */
 | 
						|
        const Py_ssize_t maxofs = n - hint;             /* &a[n-1] is highest */
 | 
						|
        while (ofs < maxofs) {
 | 
						|
            IFLT(key, a[ofs])
 | 
						|
                break;
 | 
						|
            /* a[hint + ofs] <= key */
 | 
						|
            lastofs = ofs;
 | 
						|
            assert(ofs <= (PY_SSIZE_T_MAX - 1) / 2);
 | 
						|
            ofs = (ofs << 1) + 1;
 | 
						|
        }
 | 
						|
        if (ofs > maxofs)
 | 
						|
            ofs = maxofs;
 | 
						|
        /* Translate back to offsets relative to &a[0]. */
 | 
						|
        lastofs += hint;
 | 
						|
        ofs += hint;
 | 
						|
    }
 | 
						|
    a -= hint;
 | 
						|
 | 
						|
    assert(-1 <= lastofs && lastofs < ofs && ofs <= n);
 | 
						|
    /* Now a[lastofs] <= key < a[ofs], so key belongs somewhere to the
 | 
						|
     * right of lastofs but no farther right than ofs.  Do a binary
 | 
						|
     * search, with invariant a[lastofs-1] <= key < a[ofs].
 | 
						|
     */
 | 
						|
    ++lastofs;
 | 
						|
    while (lastofs < ofs) {
 | 
						|
        Py_ssize_t m = lastofs + ((ofs - lastofs) >> 1);
 | 
						|
 | 
						|
        IFLT(key, a[m])
 | 
						|
            ofs = m;                    /* key < a[m] */
 | 
						|
        else
 | 
						|
            lastofs = m+1;              /* a[m] <= key */
 | 
						|
    }
 | 
						|
    assert(lastofs == ofs);             /* so a[ofs-1] <= key < a[ofs] */
 | 
						|
    return ofs;
 | 
						|
 | 
						|
fail:
 | 
						|
    return -1;
 | 
						|
}
 | 
						|
 | 
						|
/* Conceptually a MergeState's constructor. */
 | 
						|
static void
 | 
						|
merge_init(MergeState *ms, Py_ssize_t list_size, int has_keyfunc,
 | 
						|
           sortslice *lo)
 | 
						|
{
 | 
						|
    assert(ms != NULL);
 | 
						|
    if (has_keyfunc) {
 | 
						|
        /* The temporary space for merging will need at most half the list
 | 
						|
         * size rounded up.  Use the minimum possible space so we can use the
 | 
						|
         * rest of temparray for other things.  In particular, if there is
 | 
						|
         * enough extra space, listsort() will use it to store the keys.
 | 
						|
         */
 | 
						|
        ms->alloced = (list_size + 1) / 2;
 | 
						|
 | 
						|
        /* ms->alloced describes how many keys will be stored at
 | 
						|
           ms->temparray, but we also need to store the values.  Hence,
 | 
						|
           ms->alloced is capped at half of MERGESTATE_TEMP_SIZE. */
 | 
						|
        if (MERGESTATE_TEMP_SIZE / 2 < ms->alloced)
 | 
						|
            ms->alloced = MERGESTATE_TEMP_SIZE / 2;
 | 
						|
        ms->a.values = &ms->temparray[ms->alloced];
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        ms->alloced = MERGESTATE_TEMP_SIZE;
 | 
						|
        ms->a.values = NULL;
 | 
						|
    }
 | 
						|
    ms->a.keys = ms->temparray;
 | 
						|
    ms->n = 0;
 | 
						|
    ms->min_gallop = MIN_GALLOP;
 | 
						|
    ms->listlen = list_size;
 | 
						|
    ms->basekeys = lo->keys;
 | 
						|
}
 | 
						|
 | 
						|
/* Free all the temp memory owned by the MergeState.  This must be called
 | 
						|
 * when you're done with a MergeState, and may be called before then if
 | 
						|
 * you want to free the temp memory early.
 | 
						|
 */
 | 
						|
static void
 | 
						|
merge_freemem(MergeState *ms)
 | 
						|
{
 | 
						|
    assert(ms != NULL);
 | 
						|
    if (ms->a.keys != ms->temparray)
 | 
						|
        PyMem_Free(ms->a.keys);
 | 
						|
}
 | 
						|
 | 
						|
/* Ensure enough temp memory for 'need' array slots is available.
 | 
						|
 * Returns 0 on success and -1 if the memory can't be gotten.
 | 
						|
 */
 | 
						|
static int
 | 
						|
merge_getmem(MergeState *ms, Py_ssize_t need)
 | 
						|
{
 | 
						|
    int multiplier;
 | 
						|
 | 
						|
    assert(ms != NULL);
 | 
						|
    if (need <= ms->alloced)
 | 
						|
        return 0;
 | 
						|
 | 
						|
    multiplier = ms->a.values != NULL ? 2 : 1;
 | 
						|
 | 
						|
    /* Don't realloc!  That can cost cycles to copy the old data, but
 | 
						|
     * we don't care what's in the block.
 | 
						|
     */
 | 
						|
    merge_freemem(ms);
 | 
						|
    if ((size_t)need > PY_SSIZE_T_MAX / sizeof(PyObject *) / multiplier) {
 | 
						|
        PyErr_NoMemory();
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    ms->a.keys = (PyObject **)PyMem_Malloc(multiplier * need
 | 
						|
                                          * sizeof(PyObject *));
 | 
						|
    if (ms->a.keys != NULL) {
 | 
						|
        ms->alloced = need;
 | 
						|
        if (ms->a.values != NULL)
 | 
						|
            ms->a.values = &ms->a.keys[need];
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    PyErr_NoMemory();
 | 
						|
    return -1;
 | 
						|
}
 | 
						|
#define MERGE_GETMEM(MS, NEED) ((NEED) <= (MS)->alloced ? 0 :   \
 | 
						|
                                merge_getmem(MS, NEED))
 | 
						|
 | 
						|
/* Merge the na elements starting at ssa with the nb elements starting at
 | 
						|
 * ssb.keys = ssa.keys + na in a stable way, in-place.  na and nb must be > 0.
 | 
						|
 * Must also have that ssa.keys[na-1] belongs at the end of the merge, and
 | 
						|
 * should have na <= nb.  See listsort.txt for more info.  Return 0 if
 | 
						|
 * successful, -1 if error.
 | 
						|
 */
 | 
						|
static Py_ssize_t
 | 
						|
merge_lo(MergeState *ms, sortslice ssa, Py_ssize_t na,
 | 
						|
         sortslice ssb, Py_ssize_t nb)
 | 
						|
{
 | 
						|
    Py_ssize_t k;
 | 
						|
    sortslice dest;
 | 
						|
    int result = -1;            /* guilty until proved innocent */
 | 
						|
    Py_ssize_t min_gallop;
 | 
						|
 | 
						|
    assert(ms && ssa.keys && ssb.keys && na > 0 && nb > 0);
 | 
						|
    assert(ssa.keys + na == ssb.keys);
 | 
						|
    if (MERGE_GETMEM(ms, na) < 0)
 | 
						|
        return -1;
 | 
						|
    sortslice_memcpy(&ms->a, 0, &ssa, 0, na);
 | 
						|
    dest = ssa;
 | 
						|
    ssa = ms->a;
 | 
						|
 | 
						|
    sortslice_copy_incr(&dest, &ssb);
 | 
						|
    --nb;
 | 
						|
    if (nb == 0)
 | 
						|
        goto Succeed;
 | 
						|
    if (na == 1)
 | 
						|
        goto CopyB;
 | 
						|
 | 
						|
    min_gallop = ms->min_gallop;
 | 
						|
    for (;;) {
 | 
						|
        Py_ssize_t acount = 0;          /* # of times A won in a row */
 | 
						|
        Py_ssize_t bcount = 0;          /* # of times B won in a row */
 | 
						|
 | 
						|
        /* Do the straightforward thing until (if ever) one run
 | 
						|
         * appears to win consistently.
 | 
						|
         */
 | 
						|
        for (;;) {
 | 
						|
            assert(na > 1 && nb > 0);
 | 
						|
            k = ISLT(ssb.keys[0], ssa.keys[0]);
 | 
						|
            if (k) {
 | 
						|
                if (k < 0)
 | 
						|
                    goto Fail;
 | 
						|
                sortslice_copy_incr(&dest, &ssb);
 | 
						|
                ++bcount;
 | 
						|
                acount = 0;
 | 
						|
                --nb;
 | 
						|
                if (nb == 0)
 | 
						|
                    goto Succeed;
 | 
						|
                if (bcount >= min_gallop)
 | 
						|
                    break;
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                sortslice_copy_incr(&dest, &ssa);
 | 
						|
                ++acount;
 | 
						|
                bcount = 0;
 | 
						|
                --na;
 | 
						|
                if (na == 1)
 | 
						|
                    goto CopyB;
 | 
						|
                if (acount >= min_gallop)
 | 
						|
                    break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        /* One run is winning so consistently that galloping may
 | 
						|
         * be a huge win.  So try that, and continue galloping until
 | 
						|
         * (if ever) neither run appears to be winning consistently
 | 
						|
         * anymore.
 | 
						|
         */
 | 
						|
        ++min_gallop;
 | 
						|
        do {
 | 
						|
            assert(na > 1 && nb > 0);
 | 
						|
            min_gallop -= min_gallop > 1;
 | 
						|
            ms->min_gallop = min_gallop;
 | 
						|
            k = gallop_right(ms, ssb.keys[0], ssa.keys, na, 0);
 | 
						|
            acount = k;
 | 
						|
            if (k) {
 | 
						|
                if (k < 0)
 | 
						|
                    goto Fail;
 | 
						|
                sortslice_memcpy(&dest, 0, &ssa, 0, k);
 | 
						|
                sortslice_advance(&dest, k);
 | 
						|
                sortslice_advance(&ssa, k);
 | 
						|
                na -= k;
 | 
						|
                if (na == 1)
 | 
						|
                    goto CopyB;
 | 
						|
                /* na==0 is impossible now if the comparison
 | 
						|
                 * function is consistent, but we can't assume
 | 
						|
                 * that it is.
 | 
						|
                 */
 | 
						|
                if (na == 0)
 | 
						|
                    goto Succeed;
 | 
						|
            }
 | 
						|
            sortslice_copy_incr(&dest, &ssb);
 | 
						|
            --nb;
 | 
						|
            if (nb == 0)
 | 
						|
                goto Succeed;
 | 
						|
 | 
						|
            k = gallop_left(ms, ssa.keys[0], ssb.keys, nb, 0);
 | 
						|
            bcount = k;
 | 
						|
            if (k) {
 | 
						|
                if (k < 0)
 | 
						|
                    goto Fail;
 | 
						|
                sortslice_memmove(&dest, 0, &ssb, 0, k);
 | 
						|
                sortslice_advance(&dest, k);
 | 
						|
                sortslice_advance(&ssb, k);
 | 
						|
                nb -= k;
 | 
						|
                if (nb == 0)
 | 
						|
                    goto Succeed;
 | 
						|
            }
 | 
						|
            sortslice_copy_incr(&dest, &ssa);
 | 
						|
            --na;
 | 
						|
            if (na == 1)
 | 
						|
                goto CopyB;
 | 
						|
        } while (acount >= MIN_GALLOP || bcount >= MIN_GALLOP);
 | 
						|
        ++min_gallop;           /* penalize it for leaving galloping mode */
 | 
						|
        ms->min_gallop = min_gallop;
 | 
						|
    }
 | 
						|
Succeed:
 | 
						|
    result = 0;
 | 
						|
Fail:
 | 
						|
    if (na)
 | 
						|
        sortslice_memcpy(&dest, 0, &ssa, 0, na);
 | 
						|
    return result;
 | 
						|
CopyB:
 | 
						|
    assert(na == 1 && nb > 0);
 | 
						|
    /* The last element of ssa belongs at the end of the merge. */
 | 
						|
    sortslice_memmove(&dest, 0, &ssb, 0, nb);
 | 
						|
    sortslice_copy(&dest, nb, &ssa, 0);
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Merge the na elements starting at pa with the nb elements starting at
 | 
						|
 * ssb.keys = ssa.keys + na in a stable way, in-place.  na and nb must be > 0.
 | 
						|
 * Must also have that ssa.keys[na-1] belongs at the end of the merge, and
 | 
						|
 * should have na >= nb.  See listsort.txt for more info.  Return 0 if
 | 
						|
 * successful, -1 if error.
 | 
						|
 */
 | 
						|
static Py_ssize_t
 | 
						|
merge_hi(MergeState *ms, sortslice ssa, Py_ssize_t na,
 | 
						|
         sortslice ssb, Py_ssize_t nb)
 | 
						|
{
 | 
						|
    Py_ssize_t k;
 | 
						|
    sortslice dest, basea, baseb;
 | 
						|
    int result = -1;            /* guilty until proved innocent */
 | 
						|
    Py_ssize_t min_gallop;
 | 
						|
 | 
						|
    assert(ms && ssa.keys && ssb.keys && na > 0 && nb > 0);
 | 
						|
    assert(ssa.keys + na == ssb.keys);
 | 
						|
    if (MERGE_GETMEM(ms, nb) < 0)
 | 
						|
        return -1;
 | 
						|
    dest = ssb;
 | 
						|
    sortslice_advance(&dest, nb-1);
 | 
						|
    sortslice_memcpy(&ms->a, 0, &ssb, 0, nb);
 | 
						|
    basea = ssa;
 | 
						|
    baseb = ms->a;
 | 
						|
    ssb.keys = ms->a.keys + nb - 1;
 | 
						|
    if (ssb.values != NULL)
 | 
						|
        ssb.values = ms->a.values + nb - 1;
 | 
						|
    sortslice_advance(&ssa, na - 1);
 | 
						|
 | 
						|
    sortslice_copy_decr(&dest, &ssa);
 | 
						|
    --na;
 | 
						|
    if (na == 0)
 | 
						|
        goto Succeed;
 | 
						|
    if (nb == 1)
 | 
						|
        goto CopyA;
 | 
						|
 | 
						|
    min_gallop = ms->min_gallop;
 | 
						|
    for (;;) {
 | 
						|
        Py_ssize_t acount = 0;          /* # of times A won in a row */
 | 
						|
        Py_ssize_t bcount = 0;          /* # of times B won in a row */
 | 
						|
 | 
						|
        /* Do the straightforward thing until (if ever) one run
 | 
						|
         * appears to win consistently.
 | 
						|
         */
 | 
						|
        for (;;) {
 | 
						|
            assert(na > 0 && nb > 1);
 | 
						|
            k = ISLT(ssb.keys[0], ssa.keys[0]);
 | 
						|
            if (k) {
 | 
						|
                if (k < 0)
 | 
						|
                    goto Fail;
 | 
						|
                sortslice_copy_decr(&dest, &ssa);
 | 
						|
                ++acount;
 | 
						|
                bcount = 0;
 | 
						|
                --na;
 | 
						|
                if (na == 0)
 | 
						|
                    goto Succeed;
 | 
						|
                if (acount >= min_gallop)
 | 
						|
                    break;
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                sortslice_copy_decr(&dest, &ssb);
 | 
						|
                ++bcount;
 | 
						|
                acount = 0;
 | 
						|
                --nb;
 | 
						|
                if (nb == 1)
 | 
						|
                    goto CopyA;
 | 
						|
                if (bcount >= min_gallop)
 | 
						|
                    break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        /* One run is winning so consistently that galloping may
 | 
						|
         * be a huge win.  So try that, and continue galloping until
 | 
						|
         * (if ever) neither run appears to be winning consistently
 | 
						|
         * anymore.
 | 
						|
         */
 | 
						|
        ++min_gallop;
 | 
						|
        do {
 | 
						|
            assert(na > 0 && nb > 1);
 | 
						|
            min_gallop -= min_gallop > 1;
 | 
						|
            ms->min_gallop = min_gallop;
 | 
						|
            k = gallop_right(ms, ssb.keys[0], basea.keys, na, na-1);
 | 
						|
            if (k < 0)
 | 
						|
                goto Fail;
 | 
						|
            k = na - k;
 | 
						|
            acount = k;
 | 
						|
            if (k) {
 | 
						|
                sortslice_advance(&dest, -k);
 | 
						|
                sortslice_advance(&ssa, -k);
 | 
						|
                sortslice_memmove(&dest, 1, &ssa, 1, k);
 | 
						|
                na -= k;
 | 
						|
                if (na == 0)
 | 
						|
                    goto Succeed;
 | 
						|
            }
 | 
						|
            sortslice_copy_decr(&dest, &ssb);
 | 
						|
            --nb;
 | 
						|
            if (nb == 1)
 | 
						|
                goto CopyA;
 | 
						|
 | 
						|
            k = gallop_left(ms, ssa.keys[0], baseb.keys, nb, nb-1);
 | 
						|
            if (k < 0)
 | 
						|
                goto Fail;
 | 
						|
            k = nb - k;
 | 
						|
            bcount = k;
 | 
						|
            if (k) {
 | 
						|
                sortslice_advance(&dest, -k);
 | 
						|
                sortslice_advance(&ssb, -k);
 | 
						|
                sortslice_memcpy(&dest, 1, &ssb, 1, k);
 | 
						|
                nb -= k;
 | 
						|
                if (nb == 1)
 | 
						|
                    goto CopyA;
 | 
						|
                /* nb==0 is impossible now if the comparison
 | 
						|
                 * function is consistent, but we can't assume
 | 
						|
                 * that it is.
 | 
						|
                 */
 | 
						|
                if (nb == 0)
 | 
						|
                    goto Succeed;
 | 
						|
            }
 | 
						|
            sortslice_copy_decr(&dest, &ssa);
 | 
						|
            --na;
 | 
						|
            if (na == 0)
 | 
						|
                goto Succeed;
 | 
						|
        } while (acount >= MIN_GALLOP || bcount >= MIN_GALLOP);
 | 
						|
        ++min_gallop;           /* penalize it for leaving galloping mode */
 | 
						|
        ms->min_gallop = min_gallop;
 | 
						|
    }
 | 
						|
Succeed:
 | 
						|
    result = 0;
 | 
						|
Fail:
 | 
						|
    if (nb)
 | 
						|
        sortslice_memcpy(&dest, -(nb-1), &baseb, 0, nb);
 | 
						|
    return result;
 | 
						|
CopyA:
 | 
						|
    assert(nb == 1 && na > 0);
 | 
						|
    /* The first element of ssb belongs at the front of the merge. */
 | 
						|
    sortslice_memmove(&dest, 1-na, &ssa, 1-na, na);
 | 
						|
    sortslice_advance(&dest, -na);
 | 
						|
    sortslice_advance(&ssa, -na);
 | 
						|
    sortslice_copy(&dest, 0, &ssb, 0);
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Merge the two runs at stack indices i and i+1.
 | 
						|
 * Returns 0 on success, -1 on error.
 | 
						|
 */
 | 
						|
static Py_ssize_t
 | 
						|
merge_at(MergeState *ms, Py_ssize_t i)
 | 
						|
{
 | 
						|
    sortslice ssa, ssb;
 | 
						|
    Py_ssize_t na, nb;
 | 
						|
    Py_ssize_t k;
 | 
						|
 | 
						|
    assert(ms != NULL);
 | 
						|
    assert(ms->n >= 2);
 | 
						|
    assert(i >= 0);
 | 
						|
    assert(i == ms->n - 2 || i == ms->n - 3);
 | 
						|
 | 
						|
    ssa = ms->pending[i].base;
 | 
						|
    na = ms->pending[i].len;
 | 
						|
    ssb = ms->pending[i+1].base;
 | 
						|
    nb = ms->pending[i+1].len;
 | 
						|
    assert(na > 0 && nb > 0);
 | 
						|
    assert(ssa.keys + na == ssb.keys);
 | 
						|
 | 
						|
    /* Record the length of the combined runs; if i is the 3rd-last
 | 
						|
     * run now, also slide over the last run (which isn't involved
 | 
						|
     * in this merge).  The current run i+1 goes away in any case.
 | 
						|
     */
 | 
						|
    ms->pending[i].len = na + nb;
 | 
						|
    if (i == ms->n - 3)
 | 
						|
        ms->pending[i+1] = ms->pending[i+2];
 | 
						|
    --ms->n;
 | 
						|
 | 
						|
    /* Where does b start in a?  Elements in a before that can be
 | 
						|
     * ignored (already in place).
 | 
						|
     */
 | 
						|
    k = gallop_right(ms, *ssb.keys, ssa.keys, na, 0);
 | 
						|
    if (k < 0)
 | 
						|
        return -1;
 | 
						|
    sortslice_advance(&ssa, k);
 | 
						|
    na -= k;
 | 
						|
    if (na == 0)
 | 
						|
        return 0;
 | 
						|
 | 
						|
    /* Where does a end in b?  Elements in b after that can be
 | 
						|
     * ignored (already in place).
 | 
						|
     */
 | 
						|
    nb = gallop_left(ms, ssa.keys[na-1], ssb.keys, nb, nb-1);
 | 
						|
    if (nb <= 0)
 | 
						|
        return nb;
 | 
						|
 | 
						|
    /* Merge what remains of the runs, using a temp array with
 | 
						|
     * min(na, nb) elements.
 | 
						|
     */
 | 
						|
    if (na <= nb)
 | 
						|
        return merge_lo(ms, ssa, na, ssb, nb);
 | 
						|
    else
 | 
						|
        return merge_hi(ms, ssa, na, ssb, nb);
 | 
						|
}
 | 
						|
 | 
						|
/* Two adjacent runs begin at index s1. The first run has length n1, and
 | 
						|
 * the second run (starting at index s1+n1) has length n2. The list has total
 | 
						|
 * length n.
 | 
						|
 * Compute the "power" of the first run. See listsort.txt for details.
 | 
						|
 */
 | 
						|
static int
 | 
						|
powerloop(Py_ssize_t s1, Py_ssize_t n1, Py_ssize_t n2, Py_ssize_t n)
 | 
						|
{
 | 
						|
    int result = 0;
 | 
						|
    assert(s1 >= 0);
 | 
						|
    assert(n1 > 0 && n2 > 0);
 | 
						|
    assert(s1 + n1 + n2 <= n);
 | 
						|
    /* midpoints a and b:
 | 
						|
     * a = s1 + n1/2
 | 
						|
     * b = s1 + n1 + n2/2 = a + (n1 + n2)/2
 | 
						|
     *
 | 
						|
     * Those may not be integers, though, because of the "/2". So we work with
 | 
						|
     * 2*a and 2*b instead, which are necessarily integers. It makes no
 | 
						|
     * difference to the outcome, since the bits in the expansion of (2*i)/n
 | 
						|
     * are merely shifted one position from those of i/n.
 | 
						|
     */
 | 
						|
    Py_ssize_t a = 2 * s1 + n1;  /* 2*a */
 | 
						|
    Py_ssize_t b = a + n1 + n2;  /* 2*b */
 | 
						|
    /* Emulate a/n and b/n one bit a time, until bits differ. */
 | 
						|
    for (;;) {
 | 
						|
        ++result;
 | 
						|
        if (a >= n) {  /* both quotient bits are 1 */
 | 
						|
            assert(b >= a);
 | 
						|
            a -= n;
 | 
						|
            b -= n;
 | 
						|
        }
 | 
						|
        else if (b >= n) {  /* a/n bit is 0, b/n bit is 1 */
 | 
						|
            break;
 | 
						|
        } /* else both quotient bits are 0 */
 | 
						|
        assert(a < b && b < n);
 | 
						|
        a <<= 1;
 | 
						|
        b <<= 1;
 | 
						|
    }
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
/* The next run has been identified, of length n2.
 | 
						|
 * If there's already a run on the stack, apply the "powersort" merge strategy:
 | 
						|
 * compute the topmost run's "power" (depth in a conceptual binary merge tree)
 | 
						|
 * and merge adjacent runs on the stack with greater power. See listsort.txt
 | 
						|
 * for more info.
 | 
						|
 *
 | 
						|
 * It's the caller's responsibility to push the new run on the stack when this
 | 
						|
 * returns.
 | 
						|
 *
 | 
						|
 * Returns 0 on success, -1 on error.
 | 
						|
 */
 | 
						|
static int
 | 
						|
found_new_run(MergeState *ms, Py_ssize_t n2)
 | 
						|
{
 | 
						|
    assert(ms);
 | 
						|
    if (ms->n) {
 | 
						|
        assert(ms->n > 0);
 | 
						|
        struct s_slice *p = ms->pending;
 | 
						|
        Py_ssize_t s1 = p[ms->n - 1].base.keys - ms->basekeys; /* start index */
 | 
						|
        Py_ssize_t n1 = p[ms->n - 1].len;
 | 
						|
        int power = powerloop(s1, n1, n2, ms->listlen);
 | 
						|
        while (ms->n > 1 && p[ms->n - 2].power > power) {
 | 
						|
            if (merge_at(ms, ms->n - 2) < 0)
 | 
						|
                return -1;
 | 
						|
        }
 | 
						|
        assert(ms->n < 2 || p[ms->n - 2].power < power);
 | 
						|
        p[ms->n - 1].power = power;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Regardless of invariants, merge all runs on the stack until only one
 | 
						|
 * remains.  This is used at the end of the mergesort.
 | 
						|
 *
 | 
						|
 * Returns 0 on success, -1 on error.
 | 
						|
 */
 | 
						|
static int
 | 
						|
merge_force_collapse(MergeState *ms)
 | 
						|
{
 | 
						|
    struct s_slice *p = ms->pending;
 | 
						|
 | 
						|
    assert(ms);
 | 
						|
    while (ms->n > 1) {
 | 
						|
        Py_ssize_t n = ms->n - 2;
 | 
						|
        if (n > 0 && p[n-1].len < p[n+1].len)
 | 
						|
            --n;
 | 
						|
        if (merge_at(ms, n) < 0)
 | 
						|
            return -1;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Compute a good value for the minimum run length; natural runs shorter
 | 
						|
 * than this are boosted artificially via binary insertion.
 | 
						|
 *
 | 
						|
 * If n < 64, return n (it's too small to bother with fancy stuff).
 | 
						|
 * Else if n is an exact power of 2, return 32.
 | 
						|
 * Else return an int k, 32 <= k <= 64, such that n/k is close to, but
 | 
						|
 * strictly less than, an exact power of 2.
 | 
						|
 *
 | 
						|
 * See listsort.txt for more info.
 | 
						|
 */
 | 
						|
static Py_ssize_t
 | 
						|
merge_compute_minrun(Py_ssize_t n)
 | 
						|
{
 | 
						|
    Py_ssize_t r = 0;           /* becomes 1 if any 1 bits are shifted off */
 | 
						|
 | 
						|
    assert(n >= 0);
 | 
						|
    while (n >= 64) {
 | 
						|
        r |= n & 1;
 | 
						|
        n >>= 1;
 | 
						|
    }
 | 
						|
    return n + r;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
reverse_sortslice(sortslice *s, Py_ssize_t n)
 | 
						|
{
 | 
						|
    reverse_slice(s->keys, &s->keys[n]);
 | 
						|
    if (s->values != NULL)
 | 
						|
        reverse_slice(s->values, &s->values[n]);
 | 
						|
}
 | 
						|
 | 
						|
/* Here we define custom comparison functions to optimize for the cases one commonly
 | 
						|
 * encounters in practice: homogeneous lists, often of one of the basic types. */
 | 
						|
 | 
						|
/* This struct holds the comparison function and helper functions
 | 
						|
 * selected in the pre-sort check. */
 | 
						|
 | 
						|
/* These are the special case compare functions.
 | 
						|
 * ms->key_compare will always point to one of these: */
 | 
						|
 | 
						|
/* Heterogeneous compare: default, always safe to fall back on. */
 | 
						|
static int
 | 
						|
safe_object_compare(PyObject *v, PyObject *w, MergeState *ms)
 | 
						|
{
 | 
						|
    /* No assumptions necessary! */
 | 
						|
    return PyObject_RichCompareBool(v, w, Py_LT);
 | 
						|
}
 | 
						|
 | 
						|
/* Homogeneous compare: safe for any two comparable objects of the same type.
 | 
						|
 * (ms->key_richcompare is set to ob_type->tp_richcompare in the
 | 
						|
 *  pre-sort check.)
 | 
						|
 */
 | 
						|
static int
 | 
						|
unsafe_object_compare(PyObject *v, PyObject *w, MergeState *ms)
 | 
						|
{
 | 
						|
    PyObject *res_obj; int res;
 | 
						|
 | 
						|
    /* No assumptions, because we check first: */
 | 
						|
    if (Py_TYPE(v)->tp_richcompare != ms->key_richcompare)
 | 
						|
        return PyObject_RichCompareBool(v, w, Py_LT);
 | 
						|
 | 
						|
    assert(ms->key_richcompare != NULL);
 | 
						|
    res_obj = (*(ms->key_richcompare))(v, w, Py_LT);
 | 
						|
 | 
						|
    if (res_obj == Py_NotImplemented) {
 | 
						|
        Py_DECREF(res_obj);
 | 
						|
        return PyObject_RichCompareBool(v, w, Py_LT);
 | 
						|
    }
 | 
						|
    if (res_obj == NULL)
 | 
						|
        return -1;
 | 
						|
 | 
						|
    if (PyBool_Check(res_obj)) {
 | 
						|
        res = (res_obj == Py_True);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        res = PyObject_IsTrue(res_obj);
 | 
						|
    }
 | 
						|
    Py_DECREF(res_obj);
 | 
						|
 | 
						|
    /* Note that we can't assert
 | 
						|
     *     res == PyObject_RichCompareBool(v, w, Py_LT);
 | 
						|
     * because of evil compare functions like this:
 | 
						|
     *     lambda a, b:  int(random.random() * 3) - 1)
 | 
						|
     * (which is actually in test_sort.py) */
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
/* Latin string compare: safe for any two latin (one byte per char) strings. */
 | 
						|
static int
 | 
						|
unsafe_latin_compare(PyObject *v, PyObject *w, MergeState *ms)
 | 
						|
{
 | 
						|
    Py_ssize_t len;
 | 
						|
    int res;
 | 
						|
 | 
						|
    /* Modified from Objects/unicodeobject.c:unicode_compare, assuming: */
 | 
						|
    assert(Py_IS_TYPE(v, &PyUnicode_Type));
 | 
						|
    assert(Py_IS_TYPE(w, &PyUnicode_Type));
 | 
						|
    assert(PyUnicode_KIND(v) == PyUnicode_KIND(w));
 | 
						|
    assert(PyUnicode_KIND(v) == PyUnicode_1BYTE_KIND);
 | 
						|
 | 
						|
    len = Py_MIN(PyUnicode_GET_LENGTH(v), PyUnicode_GET_LENGTH(w));
 | 
						|
    res = memcmp(PyUnicode_DATA(v), PyUnicode_DATA(w), len);
 | 
						|
 | 
						|
    res = (res != 0 ?
 | 
						|
           res < 0 :
 | 
						|
           PyUnicode_GET_LENGTH(v) < PyUnicode_GET_LENGTH(w));
 | 
						|
 | 
						|
    assert(res == PyObject_RichCompareBool(v, w, Py_LT));;
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
/* Bounded int compare: compare any two longs that fit in a single machine word. */
 | 
						|
static int
 | 
						|
unsafe_long_compare(PyObject *v, PyObject *w, MergeState *ms)
 | 
						|
{
 | 
						|
    PyLongObject *vl, *wl; sdigit v0, w0; int res;
 | 
						|
 | 
						|
    /* Modified from Objects/longobject.c:long_compare, assuming: */
 | 
						|
    assert(Py_IS_TYPE(v, &PyLong_Type));
 | 
						|
    assert(Py_IS_TYPE(w, &PyLong_Type));
 | 
						|
    assert(Py_ABS(Py_SIZE(v)) <= 1);
 | 
						|
    assert(Py_ABS(Py_SIZE(w)) <= 1);
 | 
						|
 | 
						|
    vl = (PyLongObject*)v;
 | 
						|
    wl = (PyLongObject*)w;
 | 
						|
 | 
						|
    v0 = Py_SIZE(vl) == 0 ? 0 : (sdigit)vl->ob_digit[0];
 | 
						|
    w0 = Py_SIZE(wl) == 0 ? 0 : (sdigit)wl->ob_digit[0];
 | 
						|
 | 
						|
    if (Py_SIZE(vl) < 0)
 | 
						|
        v0 = -v0;
 | 
						|
    if (Py_SIZE(wl) < 0)
 | 
						|
        w0 = -w0;
 | 
						|
 | 
						|
    res = v0 < w0;
 | 
						|
    assert(res == PyObject_RichCompareBool(v, w, Py_LT));
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
/* Float compare: compare any two floats. */
 | 
						|
static int
 | 
						|
unsafe_float_compare(PyObject *v, PyObject *w, MergeState *ms)
 | 
						|
{
 | 
						|
    int res;
 | 
						|
 | 
						|
    /* Modified from Objects/floatobject.c:float_richcompare, assuming: */
 | 
						|
    assert(Py_IS_TYPE(v, &PyFloat_Type));
 | 
						|
    assert(Py_IS_TYPE(w, &PyFloat_Type));
 | 
						|
 | 
						|
    res = PyFloat_AS_DOUBLE(v) < PyFloat_AS_DOUBLE(w);
 | 
						|
    assert(res == PyObject_RichCompareBool(v, w, Py_LT));
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
/* Tuple compare: compare *any* two tuples, using
 | 
						|
 * ms->tuple_elem_compare to compare the first elements, which is set
 | 
						|
 * using the same pre-sort check as we use for ms->key_compare,
 | 
						|
 * but run on the list [x[0] for x in L]. This allows us to optimize compares
 | 
						|
 * on two levels (as long as [x[0] for x in L] is type-homogeneous.) The idea is
 | 
						|
 * that most tuple compares don't involve x[1:].
 | 
						|
 * However, that may not be right. When it is right, we can win by calling the
 | 
						|
 * relatively cheap ms->tuple_elem_compare on the first pair of elements, to
 | 
						|
 * see whether v[0] < w[0] or w[0] < v[0]. If either are so, we're done.
 | 
						|
 * Else we proceed as in the tuple compare, comparing the remaining pairs via
 | 
						|
 * the probably more expensive PyObject_RichCompareBool(..., Py_EQ) until (if
 | 
						|
 * ever) that says "no, not equal!". Then, if we're still on the first pair,
 | 
						|
 * ms->tuple_elem_compare can resolve it, else PyObject_RichCompareBool(...,
 | 
						|
 * Py_LT) finishes the job.
 | 
						|
 * In any case, ms->first_tuple_items_resolved_it keeps track of whether the
 | 
						|
 * most recent tuple comparison was resolved by the first pair. If so, the
 | 
						|
 * next attempt starts by trying the cheap tests on the first pair again, else
 | 
						|
 * PyObject_RichCompareBool(..., Py_EQ) is used from the start.
 | 
						|
 * There are cases where PyObject_RichCompareBool(..., Py_EQ) is much cheaper!
 | 
						|
 * For example, that can return "almost immediately" if passed the same
 | 
						|
 * object twice (it special-cases object identity for Py_EQ), which can,
 | 
						|
 * potentially, be unboundedly faster than ms->tuple_elem_compare.
 | 
						|
 */
 | 
						|
static int
 | 
						|
unsafe_tuple_compare(PyObject *v, PyObject *w, MergeState *ms)
 | 
						|
{
 | 
						|
    PyTupleObject *vt, *wt;
 | 
						|
    Py_ssize_t i, vlen, wlen;
 | 
						|
    int k;
 | 
						|
 | 
						|
    /* Modified from Objects/tupleobject.c:tuplerichcompare, assuming: */
 | 
						|
    assert(Py_IS_TYPE(v, &PyTuple_Type));
 | 
						|
    assert(Py_IS_TYPE(w, &PyTuple_Type));
 | 
						|
    assert(Py_SIZE(v) > 0);
 | 
						|
    assert(Py_SIZE(w) > 0);
 | 
						|
 | 
						|
    vt = (PyTupleObject *)v;
 | 
						|
    wt = (PyTupleObject *)w;
 | 
						|
    i = 0;
 | 
						|
    if (ms->first_tuple_items_resolved_it) {
 | 
						|
        /* See whether fast compares of the first elements settle it. */
 | 
						|
        k = ms->tuple_elem_compare(vt->ob_item[0], wt->ob_item[0], ms);
 | 
						|
        if (k) /* error, or v < w */
 | 
						|
            return k;
 | 
						|
        k = ms->tuple_elem_compare(wt->ob_item[0], vt->ob_item[0], ms);
 | 
						|
        if (k > 0) /* w < v */
 | 
						|
            return 0;
 | 
						|
        if (k < 0) /* error */
 | 
						|
            return -1;
 | 
						|
        /* We have
 | 
						|
         *     not (v[0] < w[0]) and not (w[0] < v[0])
 | 
						|
         * which implies, for a total order, that the first elements are
 | 
						|
         * equal. So skip them in the loop.
 | 
						|
         */
 | 
						|
        i = 1;
 | 
						|
        ms->first_tuple_items_resolved_it = 0;
 | 
						|
    }
 | 
						|
    /* Now first_tuple_items_resolved_it was 0 on entry, or was forced to 0
 | 
						|
     * at the end of the `if` block just above.
 | 
						|
     */
 | 
						|
    assert(! ms->first_tuple_items_resolved_it);
 | 
						|
 | 
						|
    vlen = Py_SIZE(vt);
 | 
						|
    wlen = Py_SIZE(wt);
 | 
						|
    for (; i < vlen && i < wlen; i++) {
 | 
						|
        k = PyObject_RichCompareBool(vt->ob_item[i], wt->ob_item[i], Py_EQ);
 | 
						|
        if (!k) { /* not equal */
 | 
						|
            if (i) {
 | 
						|
                return PyObject_RichCompareBool(vt->ob_item[i], wt->ob_item[i],
 | 
						|
                                                Py_LT);
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                ms->first_tuple_items_resolved_it = 1;
 | 
						|
                return ms->tuple_elem_compare(vt->ob_item[0], wt->ob_item[0],
 | 
						|
                                              ms);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (k < 0)
 | 
						|
            return -1;
 | 
						|
    }
 | 
						|
    /* all equal until we fell off the end */
 | 
						|
    return vlen < wlen;
 | 
						|
 | 
						|
 }
 | 
						|
 | 
						|
/* An adaptive, stable, natural mergesort.  See listsort.txt.
 | 
						|
 * Returns Py_None on success, NULL on error.  Even in case of error, the
 | 
						|
 * list will be some permutation of its input state (nothing is lost or
 | 
						|
 * duplicated).
 | 
						|
 */
 | 
						|
/*[clinic input]
 | 
						|
list.sort
 | 
						|
 | 
						|
    *
 | 
						|
    key as keyfunc: object = None
 | 
						|
    reverse: bool(accept={int}) = False
 | 
						|
 | 
						|
Sort the list in ascending order and return None.
 | 
						|
 | 
						|
The sort is in-place (i.e. the list itself is modified) and stable (i.e. the
 | 
						|
order of two equal elements is maintained).
 | 
						|
 | 
						|
If a key function is given, apply it once to each list item and sort them,
 | 
						|
ascending or descending, according to their function values.
 | 
						|
 | 
						|
The reverse flag can be set to sort in descending order.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_sort_impl(PyListObject *self, PyObject *keyfunc, int reverse)
 | 
						|
/*[clinic end generated code: output=57b9f9c5e23fbe42 input=cb56cd179a713060]*/
 | 
						|
{
 | 
						|
    MergeState ms;
 | 
						|
    Py_ssize_t nremaining;
 | 
						|
    Py_ssize_t minrun;
 | 
						|
    sortslice lo;
 | 
						|
    Py_ssize_t saved_ob_size, saved_allocated;
 | 
						|
    PyObject **saved_ob_item;
 | 
						|
    PyObject **final_ob_item;
 | 
						|
    PyObject *result = NULL;            /* guilty until proved innocent */
 | 
						|
    Py_ssize_t i;
 | 
						|
    PyObject **keys;
 | 
						|
 | 
						|
    assert(self != NULL);
 | 
						|
    assert(PyList_Check(self));
 | 
						|
    if (keyfunc == Py_None)
 | 
						|
        keyfunc = NULL;
 | 
						|
 | 
						|
    /* The list is temporarily made empty, so that mutations performed
 | 
						|
     * by comparison functions can't affect the slice of memory we're
 | 
						|
     * sorting (allowing mutations during sorting is a core-dump
 | 
						|
     * factory, since ob_item may change).
 | 
						|
     */
 | 
						|
    saved_ob_size = Py_SIZE(self);
 | 
						|
    saved_ob_item = self->ob_item;
 | 
						|
    saved_allocated = self->allocated;
 | 
						|
    Py_SET_SIZE(self, 0);
 | 
						|
    self->ob_item = NULL;
 | 
						|
    self->allocated = -1; /* any operation will reset it to >= 0 */
 | 
						|
 | 
						|
    if (keyfunc == NULL) {
 | 
						|
        keys = NULL;
 | 
						|
        lo.keys = saved_ob_item;
 | 
						|
        lo.values = NULL;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        if (saved_ob_size < MERGESTATE_TEMP_SIZE/2)
 | 
						|
            /* Leverage stack space we allocated but won't otherwise use */
 | 
						|
            keys = &ms.temparray[saved_ob_size+1];
 | 
						|
        else {
 | 
						|
            keys = PyMem_Malloc(sizeof(PyObject *) * saved_ob_size);
 | 
						|
            if (keys == NULL) {
 | 
						|
                PyErr_NoMemory();
 | 
						|
                goto keyfunc_fail;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        for (i = 0; i < saved_ob_size ; i++) {
 | 
						|
            keys[i] = PyObject_CallOneArg(keyfunc, saved_ob_item[i]);
 | 
						|
            if (keys[i] == NULL) {
 | 
						|
                for (i=i-1 ; i>=0 ; i--)
 | 
						|
                    Py_DECREF(keys[i]);
 | 
						|
                if (saved_ob_size >= MERGESTATE_TEMP_SIZE/2)
 | 
						|
                    PyMem_Free(keys);
 | 
						|
                goto keyfunc_fail;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        lo.keys = keys;
 | 
						|
        lo.values = saved_ob_item;
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    /* The pre-sort check: here's where we decide which compare function to use.
 | 
						|
     * How much optimization is safe? We test for homogeneity with respect to
 | 
						|
     * several properties that are expensive to check at compare-time, and
 | 
						|
     * set ms appropriately. */
 | 
						|
    if (saved_ob_size > 1) {
 | 
						|
        /* Assume the first element is representative of the whole list. */
 | 
						|
        int keys_are_in_tuples = (Py_IS_TYPE(lo.keys[0], &PyTuple_Type) &&
 | 
						|
                                  Py_SIZE(lo.keys[0]) > 0);
 | 
						|
 | 
						|
        PyTypeObject* key_type = (keys_are_in_tuples ?
 | 
						|
                                  Py_TYPE(PyTuple_GET_ITEM(lo.keys[0], 0)) :
 | 
						|
                                  Py_TYPE(lo.keys[0]));
 | 
						|
 | 
						|
        int keys_are_all_same_type = 1;
 | 
						|
        int strings_are_latin = 1;
 | 
						|
        int ints_are_bounded = 1;
 | 
						|
 | 
						|
        /* Prove that assumption by checking every key. */
 | 
						|
        for (i=0; i < saved_ob_size; i++) {
 | 
						|
 | 
						|
            if (keys_are_in_tuples &&
 | 
						|
                !(Py_IS_TYPE(lo.keys[i], &PyTuple_Type) && Py_SIZE(lo.keys[i]) != 0)) {
 | 
						|
                keys_are_in_tuples = 0;
 | 
						|
                keys_are_all_same_type = 0;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
 | 
						|
            /* Note: for lists of tuples, key is the first element of the tuple
 | 
						|
             * lo.keys[i], not lo.keys[i] itself! We verify type-homogeneity
 | 
						|
             * for lists of tuples in the if-statement directly above. */
 | 
						|
            PyObject *key = (keys_are_in_tuples ?
 | 
						|
                             PyTuple_GET_ITEM(lo.keys[i], 0) :
 | 
						|
                             lo.keys[i]);
 | 
						|
 | 
						|
            if (!Py_IS_TYPE(key, key_type)) {
 | 
						|
                keys_are_all_same_type = 0;
 | 
						|
                /* If keys are in tuple we must loop over the whole list to make
 | 
						|
                   sure all items are tuples */
 | 
						|
                if (!keys_are_in_tuples) {
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            if (keys_are_all_same_type) {
 | 
						|
                if (key_type == &PyLong_Type &&
 | 
						|
                    ints_are_bounded &&
 | 
						|
                    Py_ABS(Py_SIZE(key)) > 1) {
 | 
						|
 | 
						|
                    ints_are_bounded = 0;
 | 
						|
                }
 | 
						|
                else if (key_type == &PyUnicode_Type &&
 | 
						|
                         strings_are_latin &&
 | 
						|
                         PyUnicode_KIND(key) != PyUnicode_1BYTE_KIND) {
 | 
						|
 | 
						|
                        strings_are_latin = 0;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
        /* Choose the best compare, given what we now know about the keys. */
 | 
						|
        if (keys_are_all_same_type) {
 | 
						|
 | 
						|
            if (key_type == &PyUnicode_Type && strings_are_latin) {
 | 
						|
                ms.key_compare = unsafe_latin_compare;
 | 
						|
            }
 | 
						|
            else if (key_type == &PyLong_Type && ints_are_bounded) {
 | 
						|
                ms.key_compare = unsafe_long_compare;
 | 
						|
            }
 | 
						|
            else if (key_type == &PyFloat_Type) {
 | 
						|
                ms.key_compare = unsafe_float_compare;
 | 
						|
            }
 | 
						|
            else if ((ms.key_richcompare = key_type->tp_richcompare) != NULL) {
 | 
						|
                ms.key_compare = unsafe_object_compare;
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                ms.key_compare = safe_object_compare;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            ms.key_compare = safe_object_compare;
 | 
						|
        }
 | 
						|
 | 
						|
        if (keys_are_in_tuples) {
 | 
						|
            /* Make sure we're not dealing with tuples of tuples
 | 
						|
             * (remember: here, key_type refers list [key[0] for key in keys]) */
 | 
						|
            if (key_type == &PyTuple_Type) {
 | 
						|
                ms.tuple_elem_compare = safe_object_compare;
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                ms.tuple_elem_compare = ms.key_compare;
 | 
						|
            }
 | 
						|
 | 
						|
            ms.key_compare = unsafe_tuple_compare;
 | 
						|
            ms.first_tuple_items_resolved_it = 1; /* be optimistic */
 | 
						|
        }
 | 
						|
    }
 | 
						|
    /* End of pre-sort check: ms is now set properly! */
 | 
						|
 | 
						|
    merge_init(&ms, saved_ob_size, keys != NULL, &lo);
 | 
						|
 | 
						|
    nremaining = saved_ob_size;
 | 
						|
    if (nremaining < 2)
 | 
						|
        goto succeed;
 | 
						|
 | 
						|
    /* Reverse sort stability achieved by initially reversing the list,
 | 
						|
    applying a stable forward sort, then reversing the final result. */
 | 
						|
    if (reverse) {
 | 
						|
        if (keys != NULL)
 | 
						|
            reverse_slice(&keys[0], &keys[saved_ob_size]);
 | 
						|
        reverse_slice(&saved_ob_item[0], &saved_ob_item[saved_ob_size]);
 | 
						|
    }
 | 
						|
 | 
						|
    /* March over the array once, left to right, finding natural runs,
 | 
						|
     * and extending short natural runs to minrun elements.
 | 
						|
     */
 | 
						|
    minrun = merge_compute_minrun(nremaining);
 | 
						|
    do {
 | 
						|
        int descending;
 | 
						|
        Py_ssize_t n;
 | 
						|
 | 
						|
        /* Identify next run. */
 | 
						|
        n = count_run(&ms, lo.keys, lo.keys + nremaining, &descending);
 | 
						|
        if (n < 0)
 | 
						|
            goto fail;
 | 
						|
        if (descending)
 | 
						|
            reverse_sortslice(&lo, n);
 | 
						|
        /* If short, extend to min(minrun, nremaining). */
 | 
						|
        if (n < minrun) {
 | 
						|
            const Py_ssize_t force = nremaining <= minrun ?
 | 
						|
                              nremaining : minrun;
 | 
						|
            if (binarysort(&ms, lo, lo.keys + force, lo.keys + n) < 0)
 | 
						|
                goto fail;
 | 
						|
            n = force;
 | 
						|
        }
 | 
						|
        /* Maybe merge pending runs. */
 | 
						|
        assert(ms.n == 0 || ms.pending[ms.n -1].base.keys +
 | 
						|
                            ms.pending[ms.n-1].len == lo.keys);
 | 
						|
        if (found_new_run(&ms, n) < 0)
 | 
						|
            goto fail;
 | 
						|
        /* Push new run on stack. */
 | 
						|
        assert(ms.n < MAX_MERGE_PENDING);
 | 
						|
        ms.pending[ms.n].base = lo;
 | 
						|
        ms.pending[ms.n].len = n;
 | 
						|
        ++ms.n;
 | 
						|
        /* Advance to find next run. */
 | 
						|
        sortslice_advance(&lo, n);
 | 
						|
        nremaining -= n;
 | 
						|
    } while (nremaining);
 | 
						|
 | 
						|
    if (merge_force_collapse(&ms) < 0)
 | 
						|
        goto fail;
 | 
						|
    assert(ms.n == 1);
 | 
						|
    assert(keys == NULL
 | 
						|
           ? ms.pending[0].base.keys == saved_ob_item
 | 
						|
           : ms.pending[0].base.keys == &keys[0]);
 | 
						|
    assert(ms.pending[0].len == saved_ob_size);
 | 
						|
    lo = ms.pending[0].base;
 | 
						|
 | 
						|
succeed:
 | 
						|
    result = Py_None;
 | 
						|
fail:
 | 
						|
    if (keys != NULL) {
 | 
						|
        for (i = 0; i < saved_ob_size; i++)
 | 
						|
            Py_DECREF(keys[i]);
 | 
						|
        if (saved_ob_size >= MERGESTATE_TEMP_SIZE/2)
 | 
						|
            PyMem_Free(keys);
 | 
						|
    }
 | 
						|
 | 
						|
    if (self->allocated != -1 && result != NULL) {
 | 
						|
        /* The user mucked with the list during the sort,
 | 
						|
         * and we don't already have another error to report.
 | 
						|
         */
 | 
						|
        PyErr_SetString(PyExc_ValueError, "list modified during sort");
 | 
						|
        result = NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    if (reverse && saved_ob_size > 1)
 | 
						|
        reverse_slice(saved_ob_item, saved_ob_item + saved_ob_size);
 | 
						|
 | 
						|
    merge_freemem(&ms);
 | 
						|
 | 
						|
keyfunc_fail:
 | 
						|
    final_ob_item = self->ob_item;
 | 
						|
    i = Py_SIZE(self);
 | 
						|
    Py_SET_SIZE(self, saved_ob_size);
 | 
						|
    self->ob_item = saved_ob_item;
 | 
						|
    self->allocated = saved_allocated;
 | 
						|
    if (final_ob_item != NULL) {
 | 
						|
        /* we cannot use _list_clear() for this because it does not
 | 
						|
           guarantee that the list is really empty when it returns */
 | 
						|
        while (--i >= 0) {
 | 
						|
            Py_XDECREF(final_ob_item[i]);
 | 
						|
        }
 | 
						|
        PyMem_Free(final_ob_item);
 | 
						|
    }
 | 
						|
    Py_XINCREF(result);
 | 
						|
    return result;
 | 
						|
}
 | 
						|
#undef IFLT
 | 
						|
#undef ISLT
 | 
						|
 | 
						|
int
 | 
						|
PyList_Sort(PyObject *v)
 | 
						|
{
 | 
						|
    if (v == NULL || !PyList_Check(v)) {
 | 
						|
        PyErr_BadInternalCall();
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    v = list_sort_impl((PyListObject *)v, NULL, 0);
 | 
						|
    if (v == NULL)
 | 
						|
        return -1;
 | 
						|
    Py_DECREF(v);
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
list.reverse
 | 
						|
 | 
						|
Reverse *IN PLACE*.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_reverse_impl(PyListObject *self)
 | 
						|
/*[clinic end generated code: output=482544fc451abea9 input=eefd4c3ae1bc9887]*/
 | 
						|
{
 | 
						|
    if (Py_SIZE(self) > 1)
 | 
						|
        reverse_slice(self->ob_item, self->ob_item + Py_SIZE(self));
 | 
						|
    Py_RETURN_NONE;
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
PyList_Reverse(PyObject *v)
 | 
						|
{
 | 
						|
    PyListObject *self = (PyListObject *)v;
 | 
						|
 | 
						|
    if (v == NULL || !PyList_Check(v)) {
 | 
						|
        PyErr_BadInternalCall();
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    if (Py_SIZE(self) > 1)
 | 
						|
        reverse_slice(self->ob_item, self->ob_item + Py_SIZE(self));
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyList_AsTuple(PyObject *v)
 | 
						|
{
 | 
						|
    if (v == NULL || !PyList_Check(v)) {
 | 
						|
        PyErr_BadInternalCall();
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    return _PyTuple_FromArray(((PyListObject *)v)->ob_item, Py_SIZE(v));
 | 
						|
}
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
list.index
 | 
						|
 | 
						|
    value: object
 | 
						|
    start: slice_index(accept={int}) = 0
 | 
						|
    stop: slice_index(accept={int}, c_default="PY_SSIZE_T_MAX") = sys.maxsize
 | 
						|
    /
 | 
						|
 | 
						|
Return first index of value.
 | 
						|
 | 
						|
Raises ValueError if the value is not present.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_index_impl(PyListObject *self, PyObject *value, Py_ssize_t start,
 | 
						|
                Py_ssize_t stop)
 | 
						|
/*[clinic end generated code: output=ec51b88787e4e481 input=40ec5826303a0eb1]*/
 | 
						|
{
 | 
						|
    Py_ssize_t i;
 | 
						|
 | 
						|
    if (start < 0) {
 | 
						|
        start += Py_SIZE(self);
 | 
						|
        if (start < 0)
 | 
						|
            start = 0;
 | 
						|
    }
 | 
						|
    if (stop < 0) {
 | 
						|
        stop += Py_SIZE(self);
 | 
						|
        if (stop < 0)
 | 
						|
            stop = 0;
 | 
						|
    }
 | 
						|
    for (i = start; i < stop && i < Py_SIZE(self); i++) {
 | 
						|
        PyObject *obj = self->ob_item[i];
 | 
						|
        Py_INCREF(obj);
 | 
						|
        int cmp = PyObject_RichCompareBool(obj, value, Py_EQ);
 | 
						|
        Py_DECREF(obj);
 | 
						|
        if (cmp > 0)
 | 
						|
            return PyLong_FromSsize_t(i);
 | 
						|
        else if (cmp < 0)
 | 
						|
            return NULL;
 | 
						|
    }
 | 
						|
    PyErr_Format(PyExc_ValueError, "%R is not in list", value);
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
list.count
 | 
						|
 | 
						|
     value: object
 | 
						|
     /
 | 
						|
 | 
						|
Return number of occurrences of value.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_count(PyListObject *self, PyObject *value)
 | 
						|
/*[clinic end generated code: output=b1f5d284205ae714 input=3bdc3a5e6f749565]*/
 | 
						|
{
 | 
						|
    Py_ssize_t count = 0;
 | 
						|
    Py_ssize_t i;
 | 
						|
 | 
						|
    for (i = 0; i < Py_SIZE(self); i++) {
 | 
						|
        PyObject *obj = self->ob_item[i];
 | 
						|
        if (obj == value) {
 | 
						|
           count++;
 | 
						|
           continue;
 | 
						|
        }
 | 
						|
        Py_INCREF(obj);
 | 
						|
        int cmp = PyObject_RichCompareBool(obj, value, Py_EQ);
 | 
						|
        Py_DECREF(obj);
 | 
						|
        if (cmp > 0)
 | 
						|
            count++;
 | 
						|
        else if (cmp < 0)
 | 
						|
            return NULL;
 | 
						|
    }
 | 
						|
    return PyLong_FromSsize_t(count);
 | 
						|
}
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
list.remove
 | 
						|
 | 
						|
     value: object
 | 
						|
     /
 | 
						|
 | 
						|
Remove first occurrence of value.
 | 
						|
 | 
						|
Raises ValueError if the value is not present.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_remove(PyListObject *self, PyObject *value)
 | 
						|
/*[clinic end generated code: output=f087e1951a5e30d1 input=2dc2ba5bb2fb1f82]*/
 | 
						|
{
 | 
						|
    Py_ssize_t i;
 | 
						|
 | 
						|
    for (i = 0; i < Py_SIZE(self); i++) {
 | 
						|
        PyObject *obj = self->ob_item[i];
 | 
						|
        Py_INCREF(obj);
 | 
						|
        int cmp = PyObject_RichCompareBool(obj, value, Py_EQ);
 | 
						|
        Py_DECREF(obj);
 | 
						|
        if (cmp > 0) {
 | 
						|
            if (list_ass_slice(self, i, i+1,
 | 
						|
                               (PyObject *)NULL) == 0)
 | 
						|
                Py_RETURN_NONE;
 | 
						|
            return NULL;
 | 
						|
        }
 | 
						|
        else if (cmp < 0)
 | 
						|
            return NULL;
 | 
						|
    }
 | 
						|
    PyErr_SetString(PyExc_ValueError, "list.remove(x): x not in list");
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
list_traverse(PyListObject *o, visitproc visit, void *arg)
 | 
						|
{
 | 
						|
    Py_ssize_t i;
 | 
						|
 | 
						|
    for (i = Py_SIZE(o); --i >= 0; )
 | 
						|
        Py_VISIT(o->ob_item[i]);
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_richcompare(PyObject *v, PyObject *w, int op)
 | 
						|
{
 | 
						|
    PyListObject *vl, *wl;
 | 
						|
    Py_ssize_t i;
 | 
						|
 | 
						|
    if (!PyList_Check(v) || !PyList_Check(w))
 | 
						|
        Py_RETURN_NOTIMPLEMENTED;
 | 
						|
 | 
						|
    vl = (PyListObject *)v;
 | 
						|
    wl = (PyListObject *)w;
 | 
						|
 | 
						|
    if (Py_SIZE(vl) != Py_SIZE(wl) && (op == Py_EQ || op == Py_NE)) {
 | 
						|
        /* Shortcut: if the lengths differ, the lists differ */
 | 
						|
        if (op == Py_EQ)
 | 
						|
            Py_RETURN_FALSE;
 | 
						|
        else
 | 
						|
            Py_RETURN_TRUE;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Search for the first index where items are different */
 | 
						|
    for (i = 0; i < Py_SIZE(vl) && i < Py_SIZE(wl); i++) {
 | 
						|
        PyObject *vitem = vl->ob_item[i];
 | 
						|
        PyObject *witem = wl->ob_item[i];
 | 
						|
        if (vitem == witem) {
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
 | 
						|
        Py_INCREF(vitem);
 | 
						|
        Py_INCREF(witem);
 | 
						|
        int k = PyObject_RichCompareBool(vitem, witem, Py_EQ);
 | 
						|
        Py_DECREF(vitem);
 | 
						|
        Py_DECREF(witem);
 | 
						|
        if (k < 0)
 | 
						|
            return NULL;
 | 
						|
        if (!k)
 | 
						|
            break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (i >= Py_SIZE(vl) || i >= Py_SIZE(wl)) {
 | 
						|
        /* No more items to compare -- compare sizes */
 | 
						|
        Py_RETURN_RICHCOMPARE(Py_SIZE(vl), Py_SIZE(wl), op);
 | 
						|
    }
 | 
						|
 | 
						|
    /* We have an item that differs -- shortcuts for EQ/NE */
 | 
						|
    if (op == Py_EQ) {
 | 
						|
        Py_RETURN_FALSE;
 | 
						|
    }
 | 
						|
    if (op == Py_NE) {
 | 
						|
        Py_RETURN_TRUE;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Compare the final item again using the proper operator */
 | 
						|
    return PyObject_RichCompare(vl->ob_item[i], wl->ob_item[i], op);
 | 
						|
}
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
list.__init__
 | 
						|
 | 
						|
    iterable: object(c_default="NULL") = ()
 | 
						|
    /
 | 
						|
 | 
						|
Built-in mutable sequence.
 | 
						|
 | 
						|
If no argument is given, the constructor creates a new empty list.
 | 
						|
The argument must be an iterable if specified.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static int
 | 
						|
list___init___impl(PyListObject *self, PyObject *iterable)
 | 
						|
/*[clinic end generated code: output=0f3c21379d01de48 input=b3f3fe7206af8f6b]*/
 | 
						|
{
 | 
						|
    /* Verify list invariants established by PyType_GenericAlloc() */
 | 
						|
    assert(0 <= Py_SIZE(self));
 | 
						|
    assert(Py_SIZE(self) <= self->allocated || self->allocated == -1);
 | 
						|
    assert(self->ob_item != NULL ||
 | 
						|
           self->allocated == 0 || self->allocated == -1);
 | 
						|
 | 
						|
    /* Empty previous contents */
 | 
						|
    if (self->ob_item != NULL) {
 | 
						|
        (void)_list_clear(self);
 | 
						|
    }
 | 
						|
    if (iterable != NULL) {
 | 
						|
        if (_PyObject_HasLen(iterable)) {
 | 
						|
            Py_ssize_t iter_len = PyObject_Size(iterable);
 | 
						|
            if (iter_len == -1) {
 | 
						|
                if (!PyErr_ExceptionMatches(PyExc_TypeError)) {
 | 
						|
                    return -1;
 | 
						|
                }
 | 
						|
                PyErr_Clear();
 | 
						|
            }
 | 
						|
            if (iter_len > 0 && self->ob_item == NULL
 | 
						|
                && list_preallocate_exact(self, iter_len)) {
 | 
						|
                return -1;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        PyObject *rv = list_extend(self, iterable);
 | 
						|
        if (rv == NULL)
 | 
						|
            return -1;
 | 
						|
        Py_DECREF(rv);
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_vectorcall(PyObject *type, PyObject * const*args,
 | 
						|
                size_t nargsf, PyObject *kwnames)
 | 
						|
{
 | 
						|
    if (!_PyArg_NoKwnames("list", kwnames)) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    Py_ssize_t nargs = PyVectorcall_NARGS(nargsf);
 | 
						|
    if (!_PyArg_CheckPositional("list", nargs, 0, 1)) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    PyObject *list = PyType_GenericAlloc(_PyType_CAST(type), 0);
 | 
						|
    if (list == NULL) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    if (nargs) {
 | 
						|
        if (list___init___impl((PyListObject *)list, args[0])) {
 | 
						|
            Py_DECREF(list);
 | 
						|
            return NULL;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return list;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
list.__sizeof__
 | 
						|
 | 
						|
Return the size of the list in memory, in bytes.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list___sizeof___impl(PyListObject *self)
 | 
						|
/*[clinic end generated code: output=3417541f95f9a53e input=b8030a5d5ce8a187]*/
 | 
						|
{
 | 
						|
    Py_ssize_t res;
 | 
						|
 | 
						|
    res = _PyObject_SIZE(Py_TYPE(self)) + self->allocated * sizeof(void*);
 | 
						|
    return PyLong_FromSsize_t(res);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *list_iter(PyObject *seq);
 | 
						|
static PyObject *list_subscript(PyListObject*, PyObject*);
 | 
						|
 | 
						|
static PyMethodDef list_methods[] = {
 | 
						|
    {"__getitem__", (PyCFunction)list_subscript, METH_O|METH_COEXIST, "x.__getitem__(y) <==> x[y]"},
 | 
						|
    LIST___REVERSED___METHODDEF
 | 
						|
    LIST___SIZEOF___METHODDEF
 | 
						|
    LIST_CLEAR_METHODDEF
 | 
						|
    LIST_COPY_METHODDEF
 | 
						|
    LIST_APPEND_METHODDEF
 | 
						|
    LIST_INSERT_METHODDEF
 | 
						|
    LIST_EXTEND_METHODDEF
 | 
						|
    LIST_POP_METHODDEF
 | 
						|
    LIST_REMOVE_METHODDEF
 | 
						|
    LIST_INDEX_METHODDEF
 | 
						|
    LIST_COUNT_METHODDEF
 | 
						|
    LIST_REVERSE_METHODDEF
 | 
						|
    LIST_SORT_METHODDEF
 | 
						|
    {"__class_getitem__", Py_GenericAlias, METH_O|METH_CLASS, PyDoc_STR("See PEP 585")},
 | 
						|
    {NULL,              NULL}           /* sentinel */
 | 
						|
};
 | 
						|
 | 
						|
static PySequenceMethods list_as_sequence = {
 | 
						|
    (lenfunc)list_length,                       /* sq_length */
 | 
						|
    (binaryfunc)list_concat,                    /* sq_concat */
 | 
						|
    (ssizeargfunc)list_repeat,                  /* sq_repeat */
 | 
						|
    (ssizeargfunc)list_item,                    /* sq_item */
 | 
						|
    0,                                          /* sq_slice */
 | 
						|
    (ssizeobjargproc)list_ass_item,             /* sq_ass_item */
 | 
						|
    0,                                          /* sq_ass_slice */
 | 
						|
    (objobjproc)list_contains,                  /* sq_contains */
 | 
						|
    (binaryfunc)list_inplace_concat,            /* sq_inplace_concat */
 | 
						|
    (ssizeargfunc)list_inplace_repeat,          /* sq_inplace_repeat */
 | 
						|
};
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_subscript(PyListObject* self, PyObject* item)
 | 
						|
{
 | 
						|
    if (_PyIndex_Check(item)) {
 | 
						|
        Py_ssize_t i;
 | 
						|
        i = PyNumber_AsSsize_t(item, PyExc_IndexError);
 | 
						|
        if (i == -1 && PyErr_Occurred())
 | 
						|
            return NULL;
 | 
						|
        if (i < 0)
 | 
						|
            i += PyList_GET_SIZE(self);
 | 
						|
        return list_item(self, i);
 | 
						|
    }
 | 
						|
    else if (PySlice_Check(item)) {
 | 
						|
        Py_ssize_t start, stop, step, slicelength, i;
 | 
						|
        size_t cur;
 | 
						|
        PyObject* result;
 | 
						|
        PyObject* it;
 | 
						|
        PyObject **src, **dest;
 | 
						|
 | 
						|
        if (PySlice_Unpack(item, &start, &stop, &step) < 0) {
 | 
						|
            return NULL;
 | 
						|
        }
 | 
						|
        slicelength = PySlice_AdjustIndices(Py_SIZE(self), &start, &stop,
 | 
						|
                                            step);
 | 
						|
 | 
						|
        if (slicelength <= 0) {
 | 
						|
            return PyList_New(0);
 | 
						|
        }
 | 
						|
        else if (step == 1) {
 | 
						|
            return list_slice(self, start, stop);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            result = list_new_prealloc(slicelength);
 | 
						|
            if (!result) return NULL;
 | 
						|
 | 
						|
            src = self->ob_item;
 | 
						|
            dest = ((PyListObject *)result)->ob_item;
 | 
						|
            for (cur = start, i = 0; i < slicelength;
 | 
						|
                 cur += (size_t)step, i++) {
 | 
						|
                it = src[cur];
 | 
						|
                Py_INCREF(it);
 | 
						|
                dest[i] = it;
 | 
						|
            }
 | 
						|
            Py_SET_SIZE(result, slicelength);
 | 
						|
            return result;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        PyErr_Format(PyExc_TypeError,
 | 
						|
                     "list indices must be integers or slices, not %.200s",
 | 
						|
                     Py_TYPE(item)->tp_name);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
list_ass_subscript(PyListObject* self, PyObject* item, PyObject* value)
 | 
						|
{
 | 
						|
    if (_PyIndex_Check(item)) {
 | 
						|
        Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError);
 | 
						|
        if (i == -1 && PyErr_Occurred())
 | 
						|
            return -1;
 | 
						|
        if (i < 0)
 | 
						|
            i += PyList_GET_SIZE(self);
 | 
						|
        return list_ass_item(self, i, value);
 | 
						|
    }
 | 
						|
    else if (PySlice_Check(item)) {
 | 
						|
        Py_ssize_t start, stop, step, slicelength;
 | 
						|
 | 
						|
        if (PySlice_Unpack(item, &start, &stop, &step) < 0) {
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        slicelength = PySlice_AdjustIndices(Py_SIZE(self), &start, &stop,
 | 
						|
                                            step);
 | 
						|
 | 
						|
        if (step == 1)
 | 
						|
            return list_ass_slice(self, start, stop, value);
 | 
						|
 | 
						|
        /* Make sure s[5:2] = [..] inserts at the right place:
 | 
						|
           before 5, not before 2. */
 | 
						|
        if ((step < 0 && start < stop) ||
 | 
						|
            (step > 0 && start > stop))
 | 
						|
            stop = start;
 | 
						|
 | 
						|
        if (value == NULL) {
 | 
						|
            /* delete slice */
 | 
						|
            PyObject **garbage;
 | 
						|
            size_t cur;
 | 
						|
            Py_ssize_t i;
 | 
						|
            int res;
 | 
						|
 | 
						|
            if (slicelength <= 0)
 | 
						|
                return 0;
 | 
						|
 | 
						|
            if (step < 0) {
 | 
						|
                stop = start + 1;
 | 
						|
                start = stop + step*(slicelength - 1) - 1;
 | 
						|
                step = -step;
 | 
						|
            }
 | 
						|
 | 
						|
            garbage = (PyObject**)
 | 
						|
                PyMem_Malloc(slicelength*sizeof(PyObject*));
 | 
						|
            if (!garbage) {
 | 
						|
                PyErr_NoMemory();
 | 
						|
                return -1;
 | 
						|
            }
 | 
						|
 | 
						|
            /* drawing pictures might help understand these for
 | 
						|
               loops. Basically, we memmove the parts of the
 | 
						|
               list that are *not* part of the slice: step-1
 | 
						|
               items for each item that is part of the slice,
 | 
						|
               and then tail end of the list that was not
 | 
						|
               covered by the slice */
 | 
						|
            for (cur = start, i = 0;
 | 
						|
                 cur < (size_t)stop;
 | 
						|
                 cur += step, i++) {
 | 
						|
                Py_ssize_t lim = step - 1;
 | 
						|
 | 
						|
                garbage[i] = PyList_GET_ITEM(self, cur);
 | 
						|
 | 
						|
                if (cur + step >= (size_t)Py_SIZE(self)) {
 | 
						|
                    lim = Py_SIZE(self) - cur - 1;
 | 
						|
                }
 | 
						|
 | 
						|
                memmove(self->ob_item + cur - i,
 | 
						|
                    self->ob_item + cur + 1,
 | 
						|
                    lim * sizeof(PyObject *));
 | 
						|
            }
 | 
						|
            cur = start + (size_t)slicelength * step;
 | 
						|
            if (cur < (size_t)Py_SIZE(self)) {
 | 
						|
                memmove(self->ob_item + cur - slicelength,
 | 
						|
                    self->ob_item + cur,
 | 
						|
                    (Py_SIZE(self) - cur) *
 | 
						|
                     sizeof(PyObject *));
 | 
						|
            }
 | 
						|
 | 
						|
            Py_SET_SIZE(self, Py_SIZE(self) - slicelength);
 | 
						|
            res = list_resize(self, Py_SIZE(self));
 | 
						|
 | 
						|
            for (i = 0; i < slicelength; i++) {
 | 
						|
                Py_DECREF(garbage[i]);
 | 
						|
            }
 | 
						|
            PyMem_Free(garbage);
 | 
						|
 | 
						|
            return res;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            /* assign slice */
 | 
						|
            PyObject *ins, *seq;
 | 
						|
            PyObject **garbage, **seqitems, **selfitems;
 | 
						|
            Py_ssize_t i;
 | 
						|
            size_t cur;
 | 
						|
 | 
						|
            /* protect against a[::-1] = a */
 | 
						|
            if (self == (PyListObject*)value) {
 | 
						|
                seq = list_slice((PyListObject*)value, 0,
 | 
						|
                                   PyList_GET_SIZE(value));
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                seq = PySequence_Fast(value,
 | 
						|
                                      "must assign iterable "
 | 
						|
                                      "to extended slice");
 | 
						|
            }
 | 
						|
            if (!seq)
 | 
						|
                return -1;
 | 
						|
 | 
						|
            if (PySequence_Fast_GET_SIZE(seq) != slicelength) {
 | 
						|
                PyErr_Format(PyExc_ValueError,
 | 
						|
                    "attempt to assign sequence of "
 | 
						|
                    "size %zd to extended slice of "
 | 
						|
                    "size %zd",
 | 
						|
                         PySequence_Fast_GET_SIZE(seq),
 | 
						|
                         slicelength);
 | 
						|
                Py_DECREF(seq);
 | 
						|
                return -1;
 | 
						|
            }
 | 
						|
 | 
						|
            if (!slicelength) {
 | 
						|
                Py_DECREF(seq);
 | 
						|
                return 0;
 | 
						|
            }
 | 
						|
 | 
						|
            garbage = (PyObject**)
 | 
						|
                PyMem_Malloc(slicelength*sizeof(PyObject*));
 | 
						|
            if (!garbage) {
 | 
						|
                Py_DECREF(seq);
 | 
						|
                PyErr_NoMemory();
 | 
						|
                return -1;
 | 
						|
            }
 | 
						|
 | 
						|
            selfitems = self->ob_item;
 | 
						|
            seqitems = PySequence_Fast_ITEMS(seq);
 | 
						|
            for (cur = start, i = 0; i < slicelength;
 | 
						|
                 cur += (size_t)step, i++) {
 | 
						|
                garbage[i] = selfitems[cur];
 | 
						|
                ins = seqitems[i];
 | 
						|
                Py_INCREF(ins);
 | 
						|
                selfitems[cur] = ins;
 | 
						|
            }
 | 
						|
 | 
						|
            for (i = 0; i < slicelength; i++) {
 | 
						|
                Py_DECREF(garbage[i]);
 | 
						|
            }
 | 
						|
 | 
						|
            PyMem_Free(garbage);
 | 
						|
            Py_DECREF(seq);
 | 
						|
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        PyErr_Format(PyExc_TypeError,
 | 
						|
                     "list indices must be integers or slices, not %.200s",
 | 
						|
                     Py_TYPE(item)->tp_name);
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static PyMappingMethods list_as_mapping = {
 | 
						|
    (lenfunc)list_length,
 | 
						|
    (binaryfunc)list_subscript,
 | 
						|
    (objobjargproc)list_ass_subscript
 | 
						|
};
 | 
						|
 | 
						|
PyTypeObject PyList_Type = {
 | 
						|
    PyVarObject_HEAD_INIT(&PyType_Type, 0)
 | 
						|
    "list",
 | 
						|
    sizeof(PyListObject),
 | 
						|
    0,
 | 
						|
    (destructor)list_dealloc,                   /* tp_dealloc */
 | 
						|
    0,                                          /* tp_vectorcall_offset */
 | 
						|
    0,                                          /* tp_getattr */
 | 
						|
    0,                                          /* tp_setattr */
 | 
						|
    0,                                          /* tp_as_async */
 | 
						|
    (reprfunc)list_repr,                        /* tp_repr */
 | 
						|
    0,                                          /* tp_as_number */
 | 
						|
    &list_as_sequence,                          /* tp_as_sequence */
 | 
						|
    &list_as_mapping,                           /* tp_as_mapping */
 | 
						|
    PyObject_HashNotImplemented,                /* tp_hash */
 | 
						|
    0,                                          /* tp_call */
 | 
						|
    0,                                          /* tp_str */
 | 
						|
    PyObject_GenericGetAttr,                    /* tp_getattro */
 | 
						|
    0,                                          /* tp_setattro */
 | 
						|
    0,                                          /* tp_as_buffer */
 | 
						|
    Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC |
 | 
						|
        Py_TPFLAGS_BASETYPE | Py_TPFLAGS_LIST_SUBCLASS |
 | 
						|
        _Py_TPFLAGS_MATCH_SELF | Py_TPFLAGS_SEQUENCE,  /* tp_flags */
 | 
						|
    list___init____doc__,                       /* tp_doc */
 | 
						|
    (traverseproc)list_traverse,                /* tp_traverse */
 | 
						|
    (inquiry)_list_clear,                       /* tp_clear */
 | 
						|
    list_richcompare,                           /* tp_richcompare */
 | 
						|
    0,                                          /* tp_weaklistoffset */
 | 
						|
    list_iter,                                  /* tp_iter */
 | 
						|
    0,                                          /* tp_iternext */
 | 
						|
    list_methods,                               /* tp_methods */
 | 
						|
    0,                                          /* tp_members */
 | 
						|
    0,                                          /* tp_getset */
 | 
						|
    0,                                          /* tp_base */
 | 
						|
    0,                                          /* tp_dict */
 | 
						|
    0,                                          /* tp_descr_get */
 | 
						|
    0,                                          /* tp_descr_set */
 | 
						|
    0,                                          /* tp_dictoffset */
 | 
						|
    (initproc)list___init__,                    /* tp_init */
 | 
						|
    PyType_GenericAlloc,                        /* tp_alloc */
 | 
						|
    PyType_GenericNew,                          /* tp_new */
 | 
						|
    PyObject_GC_Del,                            /* tp_free */
 | 
						|
    .tp_vectorcall = list_vectorcall,
 | 
						|
};
 | 
						|
 | 
						|
/*********************** List Iterator **************************/
 | 
						|
 | 
						|
typedef struct {
 | 
						|
    PyObject_HEAD
 | 
						|
    Py_ssize_t it_index;
 | 
						|
    PyListObject *it_seq; /* Set to NULL when iterator is exhausted */
 | 
						|
} listiterobject;
 | 
						|
 | 
						|
static void listiter_dealloc(listiterobject *);
 | 
						|
static int listiter_traverse(listiterobject *, visitproc, void *);
 | 
						|
static PyObject *listiter_next(listiterobject *);
 | 
						|
static PyObject *listiter_len(listiterobject *, PyObject *);
 | 
						|
static PyObject *listiter_reduce_general(void *_it, int forward);
 | 
						|
static PyObject *listiter_reduce(listiterobject *, PyObject *);
 | 
						|
static PyObject *listiter_setstate(listiterobject *, PyObject *state);
 | 
						|
 | 
						|
PyDoc_STRVAR(length_hint_doc, "Private method returning an estimate of len(list(it)).");
 | 
						|
PyDoc_STRVAR(reduce_doc, "Return state information for pickling.");
 | 
						|
PyDoc_STRVAR(setstate_doc, "Set state information for unpickling.");
 | 
						|
 | 
						|
static PyMethodDef listiter_methods[] = {
 | 
						|
    {"__length_hint__", (PyCFunction)listiter_len, METH_NOARGS, length_hint_doc},
 | 
						|
    {"__reduce__", (PyCFunction)listiter_reduce, METH_NOARGS, reduce_doc},
 | 
						|
    {"__setstate__", (PyCFunction)listiter_setstate, METH_O, setstate_doc},
 | 
						|
    {NULL,              NULL}           /* sentinel */
 | 
						|
};
 | 
						|
 | 
						|
PyTypeObject PyListIter_Type = {
 | 
						|
    PyVarObject_HEAD_INIT(&PyType_Type, 0)
 | 
						|
    "list_iterator",                            /* tp_name */
 | 
						|
    sizeof(listiterobject),                     /* tp_basicsize */
 | 
						|
    0,                                          /* tp_itemsize */
 | 
						|
    /* methods */
 | 
						|
    (destructor)listiter_dealloc,               /* tp_dealloc */
 | 
						|
    0,                                          /* tp_vectorcall_offset */
 | 
						|
    0,                                          /* tp_getattr */
 | 
						|
    0,                                          /* tp_setattr */
 | 
						|
    0,                                          /* tp_as_async */
 | 
						|
    0,                                          /* tp_repr */
 | 
						|
    0,                                          /* tp_as_number */
 | 
						|
    0,                                          /* tp_as_sequence */
 | 
						|
    0,                                          /* tp_as_mapping */
 | 
						|
    0,                                          /* tp_hash */
 | 
						|
    0,                                          /* tp_call */
 | 
						|
    0,                                          /* tp_str */
 | 
						|
    PyObject_GenericGetAttr,                    /* tp_getattro */
 | 
						|
    0,                                          /* tp_setattro */
 | 
						|
    0,                                          /* tp_as_buffer */
 | 
						|
    Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
 | 
						|
    0,                                          /* tp_doc */
 | 
						|
    (traverseproc)listiter_traverse,            /* tp_traverse */
 | 
						|
    0,                                          /* tp_clear */
 | 
						|
    0,                                          /* tp_richcompare */
 | 
						|
    0,                                          /* tp_weaklistoffset */
 | 
						|
    PyObject_SelfIter,                          /* tp_iter */
 | 
						|
    (iternextfunc)listiter_next,                /* tp_iternext */
 | 
						|
    listiter_methods,                           /* tp_methods */
 | 
						|
    0,                                          /* tp_members */
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_iter(PyObject *seq)
 | 
						|
{
 | 
						|
    listiterobject *it;
 | 
						|
 | 
						|
    if (!PyList_Check(seq)) {
 | 
						|
        PyErr_BadInternalCall();
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    it = PyObject_GC_New(listiterobject, &PyListIter_Type);
 | 
						|
    if (it == NULL)
 | 
						|
        return NULL;
 | 
						|
    it->it_index = 0;
 | 
						|
    Py_INCREF(seq);
 | 
						|
    it->it_seq = (PyListObject *)seq;
 | 
						|
    _PyObject_GC_TRACK(it);
 | 
						|
    return (PyObject *)it;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
listiter_dealloc(listiterobject *it)
 | 
						|
{
 | 
						|
    _PyObject_GC_UNTRACK(it);
 | 
						|
    Py_XDECREF(it->it_seq);
 | 
						|
    PyObject_GC_Del(it);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
listiter_traverse(listiterobject *it, visitproc visit, void *arg)
 | 
						|
{
 | 
						|
    Py_VISIT(it->it_seq);
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
listiter_next(listiterobject *it)
 | 
						|
{
 | 
						|
    PyListObject *seq;
 | 
						|
    PyObject *item;
 | 
						|
 | 
						|
    assert(it != NULL);
 | 
						|
    seq = it->it_seq;
 | 
						|
    if (seq == NULL)
 | 
						|
        return NULL;
 | 
						|
    assert(PyList_Check(seq));
 | 
						|
 | 
						|
    if (it->it_index < PyList_GET_SIZE(seq)) {
 | 
						|
        item = PyList_GET_ITEM(seq, it->it_index);
 | 
						|
        ++it->it_index;
 | 
						|
        Py_INCREF(item);
 | 
						|
        return item;
 | 
						|
    }
 | 
						|
 | 
						|
    it->it_seq = NULL;
 | 
						|
    Py_DECREF(seq);
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
listiter_len(listiterobject *it, PyObject *Py_UNUSED(ignored))
 | 
						|
{
 | 
						|
    Py_ssize_t len;
 | 
						|
    if (it->it_seq) {
 | 
						|
        len = PyList_GET_SIZE(it->it_seq) - it->it_index;
 | 
						|
        if (len >= 0)
 | 
						|
            return PyLong_FromSsize_t(len);
 | 
						|
    }
 | 
						|
    return PyLong_FromLong(0);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
listiter_reduce(listiterobject *it, PyObject *Py_UNUSED(ignored))
 | 
						|
{
 | 
						|
    return listiter_reduce_general(it, 1);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
listiter_setstate(listiterobject *it, PyObject *state)
 | 
						|
{
 | 
						|
    Py_ssize_t index = PyLong_AsSsize_t(state);
 | 
						|
    if (index == -1 && PyErr_Occurred())
 | 
						|
        return NULL;
 | 
						|
    if (it->it_seq != NULL) {
 | 
						|
        if (index < 0)
 | 
						|
            index = 0;
 | 
						|
        else if (index > PyList_GET_SIZE(it->it_seq))
 | 
						|
            index = PyList_GET_SIZE(it->it_seq); /* iterator exhausted */
 | 
						|
        it->it_index = index;
 | 
						|
    }
 | 
						|
    Py_RETURN_NONE;
 | 
						|
}
 | 
						|
 | 
						|
/*********************** List Reverse Iterator **************************/
 | 
						|
 | 
						|
typedef struct {
 | 
						|
    PyObject_HEAD
 | 
						|
    Py_ssize_t it_index;
 | 
						|
    PyListObject *it_seq; /* Set to NULL when iterator is exhausted */
 | 
						|
} listreviterobject;
 | 
						|
 | 
						|
static void listreviter_dealloc(listreviterobject *);
 | 
						|
static int listreviter_traverse(listreviterobject *, visitproc, void *);
 | 
						|
static PyObject *listreviter_next(listreviterobject *);
 | 
						|
static PyObject *listreviter_len(listreviterobject *, PyObject *);
 | 
						|
static PyObject *listreviter_reduce(listreviterobject *, PyObject *);
 | 
						|
static PyObject *listreviter_setstate(listreviterobject *, PyObject *);
 | 
						|
 | 
						|
static PyMethodDef listreviter_methods[] = {
 | 
						|
    {"__length_hint__", (PyCFunction)listreviter_len, METH_NOARGS, length_hint_doc},
 | 
						|
    {"__reduce__", (PyCFunction)listreviter_reduce, METH_NOARGS, reduce_doc},
 | 
						|
    {"__setstate__", (PyCFunction)listreviter_setstate, METH_O, setstate_doc},
 | 
						|
    {NULL,              NULL}           /* sentinel */
 | 
						|
};
 | 
						|
 | 
						|
PyTypeObject PyListRevIter_Type = {
 | 
						|
    PyVarObject_HEAD_INIT(&PyType_Type, 0)
 | 
						|
    "list_reverseiterator",                     /* tp_name */
 | 
						|
    sizeof(listreviterobject),                  /* tp_basicsize */
 | 
						|
    0,                                          /* tp_itemsize */
 | 
						|
    /* methods */
 | 
						|
    (destructor)listreviter_dealloc,            /* tp_dealloc */
 | 
						|
    0,                                          /* tp_vectorcall_offset */
 | 
						|
    0,                                          /* tp_getattr */
 | 
						|
    0,                                          /* tp_setattr */
 | 
						|
    0,                                          /* tp_as_async */
 | 
						|
    0,                                          /* tp_repr */
 | 
						|
    0,                                          /* tp_as_number */
 | 
						|
    0,                                          /* tp_as_sequence */
 | 
						|
    0,                                          /* tp_as_mapping */
 | 
						|
    0,                                          /* tp_hash */
 | 
						|
    0,                                          /* tp_call */
 | 
						|
    0,                                          /* tp_str */
 | 
						|
    PyObject_GenericGetAttr,                    /* tp_getattro */
 | 
						|
    0,                                          /* tp_setattro */
 | 
						|
    0,                                          /* tp_as_buffer */
 | 
						|
    Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
 | 
						|
    0,                                          /* tp_doc */
 | 
						|
    (traverseproc)listreviter_traverse,         /* tp_traverse */
 | 
						|
    0,                                          /* tp_clear */
 | 
						|
    0,                                          /* tp_richcompare */
 | 
						|
    0,                                          /* tp_weaklistoffset */
 | 
						|
    PyObject_SelfIter,                          /* tp_iter */
 | 
						|
    (iternextfunc)listreviter_next,             /* tp_iternext */
 | 
						|
    listreviter_methods,                /* tp_methods */
 | 
						|
    0,
 | 
						|
};
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
list.__reversed__
 | 
						|
 | 
						|
Return a reverse iterator over the list.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list___reversed___impl(PyListObject *self)
 | 
						|
/*[clinic end generated code: output=b166f073208c888c input=eadb6e17f8a6a280]*/
 | 
						|
{
 | 
						|
    listreviterobject *it;
 | 
						|
 | 
						|
    it = PyObject_GC_New(listreviterobject, &PyListRevIter_Type);
 | 
						|
    if (it == NULL)
 | 
						|
        return NULL;
 | 
						|
    assert(PyList_Check(self));
 | 
						|
    it->it_index = PyList_GET_SIZE(self) - 1;
 | 
						|
    Py_INCREF(self);
 | 
						|
    it->it_seq = self;
 | 
						|
    PyObject_GC_Track(it);
 | 
						|
    return (PyObject *)it;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
listreviter_dealloc(listreviterobject *it)
 | 
						|
{
 | 
						|
    PyObject_GC_UnTrack(it);
 | 
						|
    Py_XDECREF(it->it_seq);
 | 
						|
    PyObject_GC_Del(it);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
listreviter_traverse(listreviterobject *it, visitproc visit, void *arg)
 | 
						|
{
 | 
						|
    Py_VISIT(it->it_seq);
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
listreviter_next(listreviterobject *it)
 | 
						|
{
 | 
						|
    PyObject *item;
 | 
						|
    Py_ssize_t index;
 | 
						|
    PyListObject *seq;
 | 
						|
 | 
						|
    assert(it != NULL);
 | 
						|
    seq = it->it_seq;
 | 
						|
    if (seq == NULL) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    assert(PyList_Check(seq));
 | 
						|
 | 
						|
    index = it->it_index;
 | 
						|
    if (index>=0 && index < PyList_GET_SIZE(seq)) {
 | 
						|
        item = PyList_GET_ITEM(seq, index);
 | 
						|
        it->it_index--;
 | 
						|
        Py_INCREF(item);
 | 
						|
        return item;
 | 
						|
    }
 | 
						|
    it->it_index = -1;
 | 
						|
    it->it_seq = NULL;
 | 
						|
    Py_DECREF(seq);
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
listreviter_len(listreviterobject *it, PyObject *Py_UNUSED(ignored))
 | 
						|
{
 | 
						|
    Py_ssize_t len = it->it_index + 1;
 | 
						|
    if (it->it_seq == NULL || PyList_GET_SIZE(it->it_seq) < len)
 | 
						|
        len = 0;
 | 
						|
    return PyLong_FromSsize_t(len);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
listreviter_reduce(listreviterobject *it, PyObject *Py_UNUSED(ignored))
 | 
						|
{
 | 
						|
    return listiter_reduce_general(it, 0);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
listreviter_setstate(listreviterobject *it, PyObject *state)
 | 
						|
{
 | 
						|
    Py_ssize_t index = PyLong_AsSsize_t(state);
 | 
						|
    if (index == -1 && PyErr_Occurred())
 | 
						|
        return NULL;
 | 
						|
    if (it->it_seq != NULL) {
 | 
						|
        if (index < -1)
 | 
						|
            index = -1;
 | 
						|
        else if (index > PyList_GET_SIZE(it->it_seq) - 1)
 | 
						|
            index = PyList_GET_SIZE(it->it_seq) - 1;
 | 
						|
        it->it_index = index;
 | 
						|
    }
 | 
						|
    Py_RETURN_NONE;
 | 
						|
}
 | 
						|
 | 
						|
/* common pickling support */
 | 
						|
 | 
						|
static PyObject *
 | 
						|
listiter_reduce_general(void *_it, int forward)
 | 
						|
{
 | 
						|
    PyObject *list;
 | 
						|
 | 
						|
    /* the objects are not the same, index is of different types! */
 | 
						|
    if (forward) {
 | 
						|
        listiterobject *it = (listiterobject *)_it;
 | 
						|
        if (it->it_seq) {
 | 
						|
            return Py_BuildValue("N(O)n", _PyEval_GetBuiltin(&_Py_ID(iter)),
 | 
						|
                                 it->it_seq, it->it_index);
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        listreviterobject *it = (listreviterobject *)_it;
 | 
						|
        if (it->it_seq) {
 | 
						|
            return Py_BuildValue("N(O)n", _PyEval_GetBuiltin(&_Py_ID(reversed)),
 | 
						|
                                 it->it_seq, it->it_index);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    /* empty iterator, create an empty list */
 | 
						|
    list = PyList_New(0);
 | 
						|
    if (list == NULL)
 | 
						|
        return NULL;
 | 
						|
    return Py_BuildValue("N(N)", _PyEval_GetBuiltin(&_Py_ID(iter)), list);
 | 
						|
}
 |