mirror of
				https://github.com/python/cpython.git
				synced 2025-10-31 21:51:50 +00:00 
			
		
		
		
	 2b7411df5c
			
		
	
	
		2b7411df5c
		
	
	
	
	
		
			
			svn+ssh://pythondev@svn.python.org/python/trunk ........ r63542 | mark.dickinson | 2008-05-22 20:35:30 -0500 (Thu, 22 May 2008) | 5 lines Issue #2819: Add math.sum, a function that sums a sequence of floats efficiently but with no intermediate loss of precision. Based on Raymond Hettinger's ASPN recipe. Thanks Jean Brouwers for the patch. ........ r63543 | mark.dickinson | 2008-05-22 21:36:48 -0500 (Thu, 22 May 2008) | 2 lines Add tests for math.sum (Issue #2819) ........ r63544 | mark.dickinson | 2008-05-22 22:30:01 -0500 (Thu, 22 May 2008) | 2 lines Better error reporting in test_math.py ........ r63546 | raymond.hettinger | 2008-05-22 23:32:43 -0500 (Thu, 22 May 2008) | 1 line Tweak the comments and formatting. ........ r63553 | mark.dickinson | 2008-05-23 07:07:36 -0500 (Fri, 23 May 2008) | 3 lines Skip math.sum tests on non IEEE 754 platforms, and on IEEE 754 platforms that exhibit the problem described in issue #2937. ........ r63563 | martin.v.loewis | 2008-05-23 10:18:28 -0500 (Fri, 23 May 2008) | 3 lines Issue #1390: Raise ValueError in toxml when an invalid comment would otherwise be produced. ........ r63564 | raymond.hettinger | 2008-05-23 12:21:44 -0500 (Fri, 23 May 2008) | 1 line Issue 2909: show how to name unpacked fields. ........ r63567 | raymond.hettinger | 2008-05-23 12:34:34 -0500 (Fri, 23 May 2008) | 1 line Fix typo ........ r63569 | martin.v.loewis | 2008-05-23 14:33:13 -0500 (Fri, 23 May 2008) | 3 lines Mention that the leaking of variables from list comprehensions is fixed in 3.0. ........ r63576 | martin.v.loewis | 2008-05-24 04:36:45 -0500 (Sat, 24 May 2008) | 3 lines Don't try to get the window size if it was never set before. Fixes the test failure on Solaris. ........
		
			
				
	
	
		
			1055 lines
		
	
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1055 lines
		
	
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Math module -- standard C math library functions, pi and e */
 | |
| 
 | |
| /* Here are some comments from Tim Peters, extracted from the
 | |
|    discussion attached to http://bugs.python.org/issue1640.  They
 | |
|    describe the general aims of the math module with respect to
 | |
|    special values, IEEE-754 floating-point exceptions, and Python
 | |
|    exceptions.
 | |
| 
 | |
| These are the "spirit of 754" rules:
 | |
| 
 | |
| 1. If the mathematical result is a real number, but of magnitude too
 | |
| large to approximate by a machine float, overflow is signaled and the
 | |
| result is an infinity (with the appropriate sign).
 | |
| 
 | |
| 2. If the mathematical result is a real number, but of magnitude too
 | |
| small to approximate by a machine float, underflow is signaled and the
 | |
| result is a zero (with the appropriate sign).
 | |
| 
 | |
| 3. At a singularity (a value x such that the limit of f(y) as y
 | |
| approaches x exists and is an infinity), "divide by zero" is signaled
 | |
| and the result is an infinity (with the appropriate sign).  This is
 | |
| complicated a little by that the left-side and right-side limits may
 | |
| not be the same; e.g., 1/x approaches +inf or -inf as x approaches 0
 | |
| from the positive or negative directions.  In that specific case, the
 | |
| sign of the zero determines the result of 1/0.
 | |
| 
 | |
| 4. At a point where a function has no defined result in the extended
 | |
| reals (i.e., the reals plus an infinity or two), invalid operation is
 | |
| signaled and a NaN is returned.
 | |
| 
 | |
| And these are what Python has historically /tried/ to do (but not
 | |
| always successfully, as platform libm behavior varies a lot):
 | |
| 
 | |
| For #1, raise OverflowError.
 | |
| 
 | |
| For #2, return a zero (with the appropriate sign if that happens by
 | |
| accident ;-)).
 | |
| 
 | |
| For #3 and #4, raise ValueError.  It may have made sense to raise
 | |
| Python's ZeroDivisionError in #3, but historically that's only been
 | |
| raised for division by zero and mod by zero.
 | |
| 
 | |
| */
 | |
| 
 | |
| /*
 | |
|    In general, on an IEEE-754 platform the aim is to follow the C99
 | |
|    standard, including Annex 'F', whenever possible.  Where the
 | |
|    standard recommends raising the 'divide-by-zero' or 'invalid'
 | |
|    floating-point exceptions, Python should raise a ValueError.  Where
 | |
|    the standard recommends raising 'overflow', Python should raise an
 | |
|    OverflowError.  In all other circumstances a value should be
 | |
|    returned.
 | |
|  */
 | |
| 
 | |
| #include "Python.h"
 | |
| #include "longintrepr.h" /* just for SHIFT */
 | |
| 
 | |
| #ifdef _OSF_SOURCE
 | |
| /* OSF1 5.1 doesn't make this available with XOPEN_SOURCE_EXTENDED defined */
 | |
| extern double copysign(double, double);
 | |
| #endif
 | |
| 
 | |
| /* Call is_error when errno != 0, and where x is the result libm
 | |
|  * returned.  is_error will usually set up an exception and return
 | |
|  * true (1), but may return false (0) without setting up an exception.
 | |
|  */
 | |
| static int
 | |
| is_error(double x)
 | |
| {
 | |
| 	int result = 1;	/* presumption of guilt */
 | |
| 	assert(errno);	/* non-zero errno is a precondition for calling */
 | |
| 	if (errno == EDOM)
 | |
| 		PyErr_SetString(PyExc_ValueError, "math domain error");
 | |
| 
 | |
| 	else if (errno == ERANGE) {
 | |
| 		/* ANSI C generally requires libm functions to set ERANGE
 | |
| 		 * on overflow, but also generally *allows* them to set
 | |
| 		 * ERANGE on underflow too.  There's no consistency about
 | |
| 		 * the latter across platforms.
 | |
| 		 * Alas, C99 never requires that errno be set.
 | |
| 		 * Here we suppress the underflow errors (libm functions
 | |
| 		 * should return a zero on underflow, and +- HUGE_VAL on
 | |
| 		 * overflow, so testing the result for zero suffices to
 | |
| 		 * distinguish the cases).
 | |
| 		 */
 | |
| 		if (x)
 | |
| 			PyErr_SetString(PyExc_OverflowError,
 | |
| 					"math range error");
 | |
| 		else
 | |
| 			result = 0;
 | |
| 	}
 | |
| 	else
 | |
|                 /* Unexpected math error */
 | |
| 		PyErr_SetFromErrno(PyExc_ValueError);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /*
 | |
|    wrapper for atan2 that deals directly with special cases before
 | |
|    delegating to the platform libm for the remaining cases.  This
 | |
|    is necessary to get consistent behaviour across platforms.
 | |
|    Windows, FreeBSD and alpha Tru64 are amongst platforms that don't
 | |
|    always follow C99.
 | |
| */
 | |
| 
 | |
| static double
 | |
| m_atan2(double y, double x)
 | |
| {
 | |
| 	if (Py_IS_NAN(x) || Py_IS_NAN(y))
 | |
| 		return Py_NAN;
 | |
| 	if (Py_IS_INFINITY(y)) {
 | |
| 		if (Py_IS_INFINITY(x)) {
 | |
| 			if (copysign(1., x) == 1.)
 | |
| 				/* atan2(+-inf, +inf) == +-pi/4 */
 | |
| 				return copysign(0.25*Py_MATH_PI, y);
 | |
| 			else
 | |
| 				/* atan2(+-inf, -inf) == +-pi*3/4 */
 | |
| 				return copysign(0.75*Py_MATH_PI, y);
 | |
| 		}
 | |
| 		/* atan2(+-inf, x) == +-pi/2 for finite x */
 | |
| 		return copysign(0.5*Py_MATH_PI, y);
 | |
| 	}
 | |
| 	if (Py_IS_INFINITY(x) || y == 0.) {
 | |
| 		if (copysign(1., x) == 1.)
 | |
| 			/* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
 | |
| 			return copysign(0., y);
 | |
| 		else
 | |
| 			/* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */
 | |
| 			return copysign(Py_MATH_PI, y);
 | |
| 	}
 | |
| 	return atan2(y, x);
 | |
| }
 | |
| 
 | |
| /*
 | |
|    math_1 is used to wrap a libm function f that takes a double
 | |
|    arguments and returns a double.
 | |
| 
 | |
|    The error reporting follows these rules, which are designed to do
 | |
|    the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
 | |
|    platforms.
 | |
| 
 | |
|    - a NaN result from non-NaN inputs causes ValueError to be raised
 | |
|    - an infinite result from finite inputs causes OverflowError to be
 | |
|      raised if can_overflow is 1, or raises ValueError if can_overflow
 | |
|      is 0.
 | |
|    - if the result is finite and errno == EDOM then ValueError is
 | |
|      raised
 | |
|    - if the result is finite and nonzero and errno == ERANGE then
 | |
|      OverflowError is raised
 | |
| 
 | |
|    The last rule is used to catch overflow on platforms which follow
 | |
|    C89 but for which HUGE_VAL is not an infinity.
 | |
| 
 | |
|    For the majority of one-argument functions these rules are enough
 | |
|    to ensure that Python's functions behave as specified in 'Annex F'
 | |
|    of the C99 standard, with the 'invalid' and 'divide-by-zero'
 | |
|    floating-point exceptions mapping to Python's ValueError and the
 | |
|    'overflow' floating-point exception mapping to OverflowError.
 | |
|    math_1 only works for functions that don't have singularities *and*
 | |
|    the possibility of overflow; fortunately, that covers everything we
 | |
|    care about right now.
 | |
| */
 | |
| 
 | |
| static PyObject *
 | |
| math_1_to_whatever(PyObject *arg, double (*func) (double),
 | |
|                    PyObject *(*from_double_func) (double),
 | |
|                    int can_overflow)
 | |
| {
 | |
| 	double x, r;
 | |
| 	x = PyFloat_AsDouble(arg);
 | |
| 	if (x == -1.0 && PyErr_Occurred())
 | |
| 		return NULL;
 | |
| 	errno = 0;
 | |
| 	PyFPE_START_PROTECT("in math_1", return 0);
 | |
| 	r = (*func)(x);
 | |
| 	PyFPE_END_PROTECT(r);
 | |
| 	if (Py_IS_NAN(r) && !Py_IS_NAN(x)) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 				"math domain error (invalid argument)");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if (Py_IS_INFINITY(r) && Py_IS_FINITE(x)) {
 | |
| 			if (can_overflow)
 | |
| 				PyErr_SetString(PyExc_OverflowError,
 | |
| 					"math range error (overflow)");
 | |
| 			else
 | |
| 				PyErr_SetString(PyExc_ValueError,
 | |
| 					"math domain error (singularity)");
 | |
| 			return NULL;
 | |
| 	}
 | |
| 	if (Py_IS_FINITE(r) && errno && is_error(r))
 | |
| 		/* this branch unnecessary on most platforms */
 | |
| 		return NULL;
 | |
| 
 | |
| 	return (*from_double_func)(r);
 | |
| }
 | |
| 
 | |
| /*
 | |
|    math_2 is used to wrap a libm function f that takes two double
 | |
|    arguments and returns a double.
 | |
| 
 | |
|    The error reporting follows these rules, which are designed to do
 | |
|    the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
 | |
|    platforms.
 | |
| 
 | |
|    - a NaN result from non-NaN inputs causes ValueError to be raised
 | |
|    - an infinite result from finite inputs causes OverflowError to be
 | |
|      raised.
 | |
|    - if the result is finite and errno == EDOM then ValueError is
 | |
|      raised
 | |
|    - if the result is finite and nonzero and errno == ERANGE then
 | |
|      OverflowError is raised
 | |
| 
 | |
|    The last rule is used to catch overflow on platforms which follow
 | |
|    C89 but for which HUGE_VAL is not an infinity.
 | |
| 
 | |
|    For most two-argument functions (copysign, fmod, hypot, atan2)
 | |
|    these rules are enough to ensure that Python's functions behave as
 | |
|    specified in 'Annex F' of the C99 standard, with the 'invalid' and
 | |
|    'divide-by-zero' floating-point exceptions mapping to Python's
 | |
|    ValueError and the 'overflow' floating-point exception mapping to
 | |
|    OverflowError.
 | |
| */
 | |
| 
 | |
| static PyObject *
 | |
| math_1(PyObject *arg, double (*func) (double), int can_overflow)
 | |
| {
 | |
| 	return math_1_to_whatever(arg, func, PyFloat_FromDouble, can_overflow);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| math_1_to_int(PyObject *arg, double (*func) (double), int can_overflow)
 | |
| {
 | |
| 	return math_1_to_whatever(arg, func, PyLong_FromDouble, can_overflow);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| math_2(PyObject *args, double (*func) (double, double), char *funcname)
 | |
| {
 | |
| 	PyObject *ox, *oy;
 | |
| 	double x, y, r;
 | |
| 	if (! PyArg_UnpackTuple(args, funcname, 2, 2, &ox, &oy))
 | |
| 		return NULL;
 | |
| 	x = PyFloat_AsDouble(ox);
 | |
| 	y = PyFloat_AsDouble(oy);
 | |
| 	if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
 | |
| 		return NULL;
 | |
| 	errno = 0;
 | |
| 	PyFPE_START_PROTECT("in math_2", return 0);
 | |
| 	r = (*func)(x, y);
 | |
| 	PyFPE_END_PROTECT(r);
 | |
| 	if (Py_IS_NAN(r)) {
 | |
| 		if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
 | |
| 			errno = EDOM;
 | |
| 		else
 | |
| 			errno = 0;
 | |
| 	}
 | |
| 	else if (Py_IS_INFINITY(r)) {
 | |
| 		if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
 | |
| 			errno = ERANGE;
 | |
| 		else
 | |
| 			errno = 0;
 | |
| 	}
 | |
| 	if (errno && is_error(r))
 | |
| 		return NULL;
 | |
| 	else
 | |
| 		return PyFloat_FromDouble(r);
 | |
| }
 | |
| 
 | |
| #define FUNC1(funcname, func, can_overflow, docstring)			\
 | |
| 	static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
 | |
| 		return math_1(args, func, can_overflow);		    \
 | |
| 	}\
 | |
|         PyDoc_STRVAR(math_##funcname##_doc, docstring);
 | |
| 
 | |
| #define FUNC2(funcname, func, docstring) \
 | |
| 	static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
 | |
| 		return math_2(args, func, #funcname); \
 | |
| 	}\
 | |
|         PyDoc_STRVAR(math_##funcname##_doc, docstring);
 | |
| 
 | |
| FUNC1(acos, acos, 0,
 | |
|       "acos(x)\n\nReturn the arc cosine (measured in radians) of x.")
 | |
| FUNC1(acosh, acosh, 0,
 | |
|       "acosh(x)\n\nReturn the hyperbolic arc cosine (measured in radians) of x.")
 | |
| FUNC1(asin, asin, 0,
 | |
|       "asin(x)\n\nReturn the arc sine (measured in radians) of x.")
 | |
| FUNC1(asinh, asinh, 0,
 | |
|       "asinh(x)\n\nReturn the hyperbolic arc sine (measured in radians) of x.")
 | |
| FUNC1(atan, atan, 0,
 | |
|       "atan(x)\n\nReturn the arc tangent (measured in radians) of x.")
 | |
| FUNC2(atan2, m_atan2,
 | |
|       "atan2(y, x)\n\nReturn the arc tangent (measured in radians) of y/x.\n"
 | |
|       "Unlike atan(y/x), the signs of both x and y are considered.")
 | |
| FUNC1(atanh, atanh, 0,
 | |
|       "atanh(x)\n\nReturn the hyperbolic arc tangent (measured in radians) of x.")
 | |
| 
 | |
| static PyObject * math_ceil(PyObject *self, PyObject *number) {
 | |
| 	static PyObject *ceil_str = NULL;
 | |
| 	PyObject *method;
 | |
| 
 | |
| 	if (ceil_str == NULL) {
 | |
| 		ceil_str = PyUnicode_InternFromString("__ceil__");
 | |
| 		if (ceil_str == NULL)
 | |
| 			return NULL;
 | |
| 	}
 | |
| 
 | |
| 	method = _PyType_Lookup(Py_TYPE(number), ceil_str);
 | |
| 	if (method == NULL)
 | |
| 		return math_1_to_int(number, ceil, 0);
 | |
| 	else
 | |
| 		return PyObject_CallFunction(method, "O", number);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(math_ceil_doc,
 | |
| 	     "ceil(x)\n\nReturn the ceiling of x as an int.\n"
 | |
| 	     "This is the smallest integral value >= x.");
 | |
| 
 | |
| FUNC2(copysign, copysign,
 | |
|       "copysign(x,y)\n\nReturn x with the sign of y.")
 | |
| FUNC1(cos, cos, 0,
 | |
|       "cos(x)\n\nReturn the cosine of x (measured in radians).")
 | |
| FUNC1(cosh, cosh, 1,
 | |
|       "cosh(x)\n\nReturn the hyperbolic cosine of x.")
 | |
| FUNC1(exp, exp, 1,
 | |
|       "exp(x)\n\nReturn e raised to the power of x.")
 | |
| FUNC1(fabs, fabs, 0,
 | |
|       "fabs(x)\n\nReturn the absolute value of the float x.")
 | |
| 
 | |
| static PyObject * math_floor(PyObject *self, PyObject *number) {
 | |
| 	static PyObject *floor_str = NULL;
 | |
| 	PyObject *method;
 | |
| 
 | |
| 	if (floor_str == NULL) {
 | |
| 		floor_str = PyUnicode_InternFromString("__floor__");
 | |
| 		if (floor_str == NULL)
 | |
| 			return NULL;
 | |
| 	}
 | |
| 
 | |
| 	method = _PyType_Lookup(Py_TYPE(number), floor_str);
 | |
| 	if (method == NULL)
 | |
|         	return math_1_to_int(number, floor, 0);
 | |
| 	else
 | |
| 		return PyObject_CallFunction(method, "O", number);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(math_floor_doc,
 | |
| 	     "floor(x)\n\nReturn the floor of x as an int.\n"
 | |
| 	     "This is the largest integral value <= x.");
 | |
| 
 | |
| FUNC1(log1p, log1p, 1,
 | |
|       "log1p(x)\n\nReturn the natural logarithm of 1+x (base e).\n\
 | |
|       The result is computed in a way which is accurate for x near zero.")
 | |
| FUNC1(sin, sin, 0,
 | |
|       "sin(x)\n\nReturn the sine of x (measured in radians).")
 | |
| FUNC1(sinh, sinh, 1,
 | |
|       "sinh(x)\n\nReturn the hyperbolic sine of x.")
 | |
| FUNC1(sqrt, sqrt, 0,
 | |
|       "sqrt(x)\n\nReturn the square root of x.")
 | |
| FUNC1(tan, tan, 0,
 | |
|       "tan(x)\n\nReturn the tangent of x (measured in radians).")
 | |
| FUNC1(tanh, tanh, 0,
 | |
|       "tanh(x)\n\nReturn the hyperbolic tangent of x.")
 | |
| 
 | |
| /* Precision summation function as msum() by Raymond Hettinger in
 | |
|    <http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090>,
 | |
|    enhanced with the exact partials sum and roundoff from Mark
 | |
|    Dickinson's post at <http://bugs.python.org/file10357/msum4.py>.
 | |
|    See those links for more details, proofs and other references.
 | |
| 
 | |
|    Note 1: IEEE 754R floating point semantics are assumed,
 | |
|    but the current implementation does not re-establish special
 | |
|    value semantics across iterations (i.e. handling -Inf + Inf).
 | |
| 
 | |
|    Note 2:  No provision is made for intermediate overflow handling;
 | |
|    therefore, sum([1e+308, 1e-308, 1e+308]) returns result 1e+308 while
 | |
|    sum([1e+308, 1e+308, 1e-308]) raises an OverflowError due to the
 | |
|    overflow of the first partial sum.
 | |
| 
 | |
|    Note 3: Aggressively optimizing compilers can potentially eliminate the
 | |
|    residual values needed for accurate summation. For instance, the statements
 | |
|    "hi = x + y; lo = y - (hi - x);" could be mis-transformed to
 | |
|    "hi = x + y; lo = 0.0;" which defeats the computation of residuals.
 | |
| 
 | |
|    Note 4: A similar implementation is in Modules/cmathmodule.c.
 | |
|    Be sure to update both when making changes.
 | |
| 
 | |
|    Note 5: The signature of math.sum() differs from __builtin__.sum()
 | |
|    because the start argument doesn't make sense in the context of
 | |
|    accurate summation.  Since the partials table is collapsed before
 | |
|    returning a result, sum(seq2, start=sum(seq1)) may not equal the
 | |
|    accurate result returned by sum(itertools.chain(seq1, seq2)).
 | |
| */
 | |
| 
 | |
| #define NUM_PARTIALS  32  /* initial partials array size, on stack */
 | |
| 
 | |
| /* Extend the partials array p[] by doubling its size. */
 | |
| static int                          /* non-zero on error */
 | |
| _sum_realloc(double **p_ptr, Py_ssize_t  n,
 | |
|              double  *ps,    Py_ssize_t *m_ptr)
 | |
| {
 | |
| 	void *v = NULL;
 | |
| 	Py_ssize_t m = *m_ptr;
 | |
| 
 | |
| 	m += m;  /* double */
 | |
| 	if (n < m && m < (PY_SSIZE_T_MAX / sizeof(double))) {
 | |
| 		double *p = *p_ptr;
 | |
| 		if (p == ps) {
 | |
| 			v = PyMem_Malloc(sizeof(double) * m);
 | |
| 			if (v != NULL)
 | |
| 				memcpy(v, ps, sizeof(double) * n);
 | |
| 		}
 | |
| 		else
 | |
| 			v = PyMem_Realloc(p, sizeof(double) * m);
 | |
| 	}
 | |
| 	if (v == NULL) {        /* size overflow or no memory */
 | |
| 		PyErr_SetString(PyExc_MemoryError, "math sum partials");
 | |
| 		return 1;
 | |
| 	}
 | |
| 	*p_ptr = (double*) v;
 | |
| 	*m_ptr = m;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Full precision summation of a sequence of floats.
 | |
| 
 | |
|    def msum(iterable):
 | |
|        partials = []  # sorted, non-overlapping partial sums
 | |
|        for x in iterable:
 | |
|            i = 0
 | |
|            for y in partials:
 | |
|                if abs(x) < abs(y):
 | |
|                    x, y = y, x
 | |
|                hi = x + y
 | |
|                lo = y - (hi - x)
 | |
|                if lo:
 | |
|                    partials[i] = lo
 | |
|                    i += 1
 | |
|                x = hi
 | |
|            partials[i:] = [x]
 | |
|        return sum_exact(partials)
 | |
| 
 | |
|    Rounded x+y stored in hi with the roundoff stored in lo.  Together hi+lo
 | |
|    are exactly equal to x+y.  The inner loop applies hi/lo summation to each
 | |
|    partial so that the list of partial sums remains exact.
 | |
| 
 | |
|    Sum_exact() adds the partial sums exactly and correctly rounds the final
 | |
|    result (using the round-half-to-even rule).  The items in partials remain
 | |
|    non-zero, non-special, non-overlapping and strictly increasing in
 | |
|    magnitude, but possibly not all having the same sign.
 | |
| 
 | |
|    Depends on IEEE 754 arithmetic guarantees and half-even rounding.
 | |
| */
 | |
| 
 | |
| static PyObject*
 | |
| math_sum(PyObject *self, PyObject *seq)
 | |
| {
 | |
| 	PyObject *item, *iter, *sum = NULL;
 | |
| 	Py_ssize_t i, j, n = 0, m = NUM_PARTIALS;
 | |
| 	double x, y, hi, lo=0.0, ps[NUM_PARTIALS], *p = ps;
 | |
| 
 | |
| 	iter = PyObject_GetIter(seq);
 | |
| 	if (iter == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	PyFPE_START_PROTECT("sum", Py_DECREF(iter); return NULL)
 | |
| 
 | |
| 	for(;;) {           /* for x in iterable */
 | |
| 		assert(0 <= n && n <= m);
 | |
| 		assert((m == NUM_PARTIALS && p == ps) ||
 | |
| 		       (m >  NUM_PARTIALS && p != NULL));
 | |
| 
 | |
| 		item = PyIter_Next(iter);
 | |
| 		if (item == NULL) {
 | |
| 			if (PyErr_Occurred())
 | |
| 				goto _sum_error;
 | |
| 			break;
 | |
| 		}
 | |
| 		x = PyFloat_AsDouble(item);
 | |
| 		Py_DECREF(item);
 | |
| 		if (PyErr_Occurred())
 | |
| 			goto _sum_error;
 | |
| 
 | |
| 		for (i = j = 0; j < n; j++) {       /* for y in partials */
 | |
| 			y = p[j];
 | |
| 			hi = x + y;
 | |
| 			lo = fabs(x) < fabs(y)
 | |
| 			   ? x - (hi - y)
 | |
| 			   : y - (hi - x);
 | |
| 			if (lo != 0.0)
 | |
| 				p[i++] = lo;
 | |
| 			x = hi;
 | |
| 		}
 | |
| 		
 | |
| 		n = i;                              /* ps[i:] = [x] */                   
 | |
| 		if (x != 0.0) {
 | |
| 			/* If non-finite, reset partials, effectively
 | |
| 			   adding subsequent items without roundoff
 | |
| 			   and yielding correct non-finite results,
 | |
| 			   provided IEEE 754 rules are observed */
 | |
| 			if (! Py_IS_FINITE(x))
 | |
| 				n = 0;
 | |
| 			else if (n >= m && _sum_realloc(&p, n, ps, &m))
 | |
| 				goto _sum_error;
 | |
| 			p[n++] = x;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (n > 0) {
 | |
| 		hi = p[--n];
 | |
| 		if (Py_IS_FINITE(hi)) {
 | |
| 			/* sum_exact(ps, hi) from the top, stop when the sum becomes inexact. */
 | |
| 			while (n > 0) {
 | |
| 				x = p[--n];
 | |
| 				y = hi;
 | |
| 				hi = x + y;
 | |
| 				assert(fabs(x) < fabs(y));
 | |
| 				lo = x - (hi - y);
 | |
| 				if (lo != 0.0)
 | |
| 					break;
 | |
| 			}
 | |
| 			/* Little dance to allow half-even rounding across multiple partials.
 | |
|                            Needed so that sum([1e-16, 1, 1e16]) will round-up to two instead
 | |
|                            of down to zero (the 1e16 makes the 1 slightly closer to two). */
 | |
| 			if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) ||
 | |
| 			              (lo > 0.0 && p[n-1] > 0.0))) {
 | |
| 				y = lo * 2.0;
 | |
| 				x = hi + y;
 | |
| 				if (y == (x - hi))
 | |
| 					hi = x;
 | |
| 			}
 | |
| 		}
 | |
| 		else {  /* raise corresponding error */
 | |
| 			errno = Py_IS_NAN(hi) ? EDOM : ERANGE;
 | |
| 			if (is_error(hi))
 | |
| 				goto _sum_error;
 | |
| 		}
 | |
| 	}
 | |
| 	else  /* default */
 | |
| 		hi = 0.0;
 | |
| 	sum = PyFloat_FromDouble(hi);
 | |
| 
 | |
| _sum_error:
 | |
| 	PyFPE_END_PROTECT(hi)
 | |
| 	Py_DECREF(iter);
 | |
| 	if (p != ps)
 | |
| 		PyMem_Free(p);
 | |
| 	return sum;
 | |
| }
 | |
| 
 | |
| #undef NUM_PARTIALS
 | |
| 
 | |
| PyDoc_STRVAR(math_sum_doc,
 | |
| "sum(iterable)\n\n\
 | |
| Return an accurate floating point sum of values in the iterable.\n\
 | |
| Assumes IEEE-754 floating point arithmetic.");
 | |
| 
 | |
| static PyObject *
 | |
| math_trunc(PyObject *self, PyObject *number)
 | |
| {
 | |
| 	static PyObject *trunc_str = NULL;
 | |
| 	PyObject *trunc;
 | |
| 
 | |
| 	if (Py_TYPE(number)->tp_dict == NULL) {
 | |
| 		if (PyType_Ready(Py_TYPE(number)) < 0)
 | |
| 			return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (trunc_str == NULL) {
 | |
| 		trunc_str = PyUnicode_InternFromString("__trunc__");
 | |
| 		if (trunc_str == NULL)
 | |
| 			return NULL;
 | |
| 	}
 | |
| 
 | |
| 	trunc = _PyType_Lookup(Py_TYPE(number), trunc_str);
 | |
| 	if (trunc == NULL) {
 | |
| 		PyErr_Format(PyExc_TypeError,
 | |
| 			     "type %.100s doesn't define __trunc__ method",
 | |
| 			     Py_TYPE(number)->tp_name);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return PyObject_CallFunctionObjArgs(trunc, number, NULL);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(math_trunc_doc,
 | |
| "trunc(x:Real) -> Integral\n"
 | |
| "\n"
 | |
| "Truncates x to the nearest Integral toward 0. Uses the __trunc__ magic method.");
 | |
| 
 | |
| static PyObject *
 | |
| math_frexp(PyObject *self, PyObject *arg)
 | |
| {
 | |
| 	int i;
 | |
| 	double x = PyFloat_AsDouble(arg);
 | |
| 	if (x == -1.0 && PyErr_Occurred())
 | |
| 		return NULL;
 | |
| 	/* deal with special cases directly, to sidestep platform
 | |
| 	   differences */
 | |
| 	if (Py_IS_NAN(x) || Py_IS_INFINITY(x) || !x) {
 | |
| 		i = 0;
 | |
| 	}
 | |
| 	else {
 | |
| 		PyFPE_START_PROTECT("in math_frexp", return 0);
 | |
| 		x = frexp(x, &i);
 | |
| 		PyFPE_END_PROTECT(x);
 | |
| 	}
 | |
| 	return Py_BuildValue("(di)", x, i);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(math_frexp_doc,
 | |
| "frexp(x)\n"
 | |
| "\n"
 | |
| "Return the mantissa and exponent of x, as pair (m, e).\n"
 | |
| "m is a float and e is an int, such that x = m * 2.**e.\n"
 | |
| "If x is 0, m and e are both 0.  Else 0.5 <= abs(m) < 1.0.");
 | |
| 
 | |
| static PyObject *
 | |
| math_ldexp(PyObject *self, PyObject *args)
 | |
| {
 | |
| 	double x, r;
 | |
| 	PyObject *oexp;
 | |
| 	long exp;
 | |
| 	if (! PyArg_ParseTuple(args, "dO:ldexp", &x, &oexp))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (PyLong_Check(oexp)) {
 | |
| 		/* on overflow, replace exponent with either LONG_MAX
 | |
| 		   or LONG_MIN, depending on the sign. */
 | |
| 		exp = PyLong_AsLong(oexp);
 | |
| 		if (exp == -1 && PyErr_Occurred()) {
 | |
| 			if (PyErr_ExceptionMatches(PyExc_OverflowError)) {
 | |
| 				if (Py_SIZE(oexp) < 0) {
 | |
| 					exp = LONG_MIN;
 | |
| 				}
 | |
| 				else {
 | |
| 					exp = LONG_MAX;
 | |
| 				}
 | |
| 				PyErr_Clear();
 | |
| 			}
 | |
| 			else {
 | |
| 				/* propagate any unexpected exception */
 | |
| 				return NULL;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		PyErr_SetString(PyExc_TypeError,
 | |
| 				"Expected an int or long as second argument "
 | |
| 				"to ldexp.");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (x == 0. || !Py_IS_FINITE(x)) {
 | |
| 		/* NaNs, zeros and infinities are returned unchanged */
 | |
| 		r = x;
 | |
| 		errno = 0;
 | |
| 	} else if (exp > INT_MAX) {
 | |
| 		/* overflow */
 | |
| 		r = copysign(Py_HUGE_VAL, x);
 | |
| 		errno = ERANGE;
 | |
| 	} else if (exp < INT_MIN) {
 | |
| 		/* underflow to +-0 */
 | |
| 		r = copysign(0., x);
 | |
| 		errno = 0;
 | |
| 	} else {
 | |
| 		errno = 0;
 | |
| 		PyFPE_START_PROTECT("in math_ldexp", return 0);
 | |
| 		r = ldexp(x, (int)exp);
 | |
| 		PyFPE_END_PROTECT(r);
 | |
| 		if (Py_IS_INFINITY(r))
 | |
| 			errno = ERANGE;
 | |
| 	}
 | |
| 
 | |
| 	if (errno && is_error(r))
 | |
| 		return NULL;
 | |
| 	return PyFloat_FromDouble(r);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(math_ldexp_doc,
 | |
| "ldexp(x, i) -> x * (2**i)");
 | |
| 
 | |
| static PyObject *
 | |
| math_modf(PyObject *self, PyObject *arg)
 | |
| {
 | |
| 	double y, x = PyFloat_AsDouble(arg);
 | |
| 	if (x == -1.0 && PyErr_Occurred())
 | |
| 		return NULL;
 | |
| 	/* some platforms don't do the right thing for NaNs and
 | |
| 	   infinities, so we take care of special cases directly. */
 | |
| 	if (!Py_IS_FINITE(x)) {
 | |
| 		if (Py_IS_INFINITY(x))
 | |
| 			return Py_BuildValue("(dd)", copysign(0., x), x);
 | |
| 		else if (Py_IS_NAN(x))
 | |
| 			return Py_BuildValue("(dd)", x, x);
 | |
| 	}          
 | |
| 
 | |
| 	errno = 0;
 | |
| 	PyFPE_START_PROTECT("in math_modf", return 0);
 | |
| 	x = modf(x, &y);
 | |
| 	PyFPE_END_PROTECT(x);
 | |
| 	return Py_BuildValue("(dd)", x, y);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(math_modf_doc,
 | |
| "modf(x)\n"
 | |
| "\n"
 | |
| "Return the fractional and integer parts of x.  Both results carry the sign\n"
 | |
| "of x.  The integer part is returned as a real.");
 | |
| 
 | |
| /* A decent logarithm is easy to compute even for huge longs, but libm can't
 | |
|    do that by itself -- loghelper can.  func is log or log10, and name is
 | |
|    "log" or "log10".  Note that overflow isn't possible:  a long can contain
 | |
|    no more than INT_MAX * SHIFT bits, so has value certainly less than
 | |
|    2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is
 | |
|    small enough to fit in an IEEE single.  log and log10 are even smaller.
 | |
| */
 | |
| 
 | |
| static PyObject*
 | |
| loghelper(PyObject* arg, double (*func)(double), char *funcname)
 | |
| {
 | |
| 	/* If it is long, do it ourselves. */
 | |
| 	if (PyLong_Check(arg)) {
 | |
| 		double x;
 | |
| 		int e;
 | |
| 		x = _PyLong_AsScaledDouble(arg, &e);
 | |
| 		if (x <= 0.0) {
 | |
| 			PyErr_SetString(PyExc_ValueError,
 | |
| 					"math domain error");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		/* Value is ~= x * 2**(e*PyLong_SHIFT), so the log ~=
 | |
| 		   log(x) + log(2) * e * PyLong_SHIFT.
 | |
| 		   CAUTION:  e*PyLong_SHIFT may overflow using int arithmetic,
 | |
| 		   so force use of double. */
 | |
| 		x = func(x) + (e * (double)PyLong_SHIFT) * func(2.0);
 | |
| 		return PyFloat_FromDouble(x);
 | |
| 	}
 | |
| 
 | |
| 	/* Else let libm handle it by itself. */
 | |
| 	return math_1(arg, func, 0);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| math_log(PyObject *self, PyObject *args)
 | |
| {
 | |
| 	PyObject *arg;
 | |
| 	PyObject *base = NULL;
 | |
| 	PyObject *num, *den;
 | |
| 	PyObject *ans;
 | |
| 
 | |
| 	if (!PyArg_UnpackTuple(args, "log", 1, 2, &arg, &base))
 | |
| 		return NULL;
 | |
| 
 | |
| 	num = loghelper(arg, log, "log");
 | |
| 	if (num == NULL || base == NULL)
 | |
| 		return num;
 | |
| 
 | |
| 	den = loghelper(base, log, "log");
 | |
| 	if (den == NULL) {
 | |
| 		Py_DECREF(num);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	ans = PyNumber_TrueDivide(num, den);
 | |
| 	Py_DECREF(num);
 | |
| 	Py_DECREF(den);
 | |
| 	return ans;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(math_log_doc,
 | |
| "log(x[, base]) -> the logarithm of x to the given base.\n\
 | |
| If the base not specified, returns the natural logarithm (base e) of x.");
 | |
| 
 | |
| static PyObject *
 | |
| math_log10(PyObject *self, PyObject *arg)
 | |
| {
 | |
| 	return loghelper(arg, log10, "log10");
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(math_log10_doc,
 | |
| "log10(x) -> the base 10 logarithm of x.");
 | |
| 
 | |
| static PyObject *
 | |
| math_fmod(PyObject *self, PyObject *args)
 | |
| {
 | |
| 	PyObject *ox, *oy;
 | |
| 	double r, x, y;
 | |
| 	if (! PyArg_UnpackTuple(args, "fmod", 2, 2, &ox, &oy))
 | |
| 		return NULL;
 | |
| 	x = PyFloat_AsDouble(ox);
 | |
| 	y = PyFloat_AsDouble(oy);
 | |
| 	if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
 | |
| 		return NULL;
 | |
| 	/* fmod(x, +/-Inf) returns x for finite x. */
 | |
| 	if (Py_IS_INFINITY(y) && Py_IS_FINITE(x))
 | |
| 		return PyFloat_FromDouble(x);
 | |
| 	errno = 0;
 | |
| 	PyFPE_START_PROTECT("in math_fmod", return 0);
 | |
| 	r = fmod(x, y);
 | |
| 	PyFPE_END_PROTECT(r);
 | |
| 	if (Py_IS_NAN(r)) {
 | |
| 		if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
 | |
| 			errno = EDOM;
 | |
| 		else
 | |
| 			errno = 0;
 | |
| 	}
 | |
| 	if (errno && is_error(r))
 | |
| 		return NULL;
 | |
| 	else
 | |
| 		return PyFloat_FromDouble(r);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(math_fmod_doc,
 | |
| "fmod(x,y)\n\nReturn fmod(x, y), according to platform C."
 | |
| "  x % y may differ.");
 | |
| 
 | |
| static PyObject *
 | |
| math_hypot(PyObject *self, PyObject *args)
 | |
| {
 | |
| 	PyObject *ox, *oy;
 | |
| 	double r, x, y;
 | |
| 	if (! PyArg_UnpackTuple(args, "hypot", 2, 2, &ox, &oy))
 | |
| 		return NULL;
 | |
| 	x = PyFloat_AsDouble(ox);
 | |
| 	y = PyFloat_AsDouble(oy);
 | |
| 	if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
 | |
| 		return NULL;
 | |
| 	/* hypot(x, +/-Inf) returns Inf, even if x is a NaN. */
 | |
| 	if (Py_IS_INFINITY(x))
 | |
| 		return PyFloat_FromDouble(fabs(x));
 | |
| 	if (Py_IS_INFINITY(y))
 | |
| 		return PyFloat_FromDouble(fabs(y));
 | |
| 	errno = 0;
 | |
| 	PyFPE_START_PROTECT("in math_hypot", return 0);
 | |
| 	r = hypot(x, y);
 | |
| 	PyFPE_END_PROTECT(r);
 | |
| 	if (Py_IS_NAN(r)) {
 | |
| 		if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
 | |
| 			errno = EDOM;
 | |
| 		else
 | |
| 			errno = 0;
 | |
| 	}
 | |
| 	else if (Py_IS_INFINITY(r)) {
 | |
| 		if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
 | |
| 			errno = ERANGE;
 | |
| 		else
 | |
| 			errno = 0;
 | |
| 	}
 | |
| 	if (errno && is_error(r))
 | |
| 		return NULL;
 | |
| 	else
 | |
| 		return PyFloat_FromDouble(r);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(math_hypot_doc,
 | |
| "hypot(x,y)\n\nReturn the Euclidean distance, sqrt(x*x + y*y).");
 | |
| 
 | |
| /* pow can't use math_2, but needs its own wrapper: the problem is
 | |
|    that an infinite result can arise either as a result of overflow
 | |
|    (in which case OverflowError should be raised) or as a result of
 | |
|    e.g. 0.**-5. (for which ValueError needs to be raised.)
 | |
| */
 | |
| 
 | |
| static PyObject *
 | |
| math_pow(PyObject *self, PyObject *args)
 | |
| {
 | |
| 	PyObject *ox, *oy;
 | |
| 	double r, x, y;
 | |
| 	int odd_y;
 | |
| 
 | |
| 	if (! PyArg_UnpackTuple(args, "pow", 2, 2, &ox, &oy))
 | |
| 		return NULL;
 | |
| 	x = PyFloat_AsDouble(ox);
 | |
| 	y = PyFloat_AsDouble(oy);
 | |
| 	if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* deal directly with IEEE specials, to cope with problems on various
 | |
| 	   platforms whose semantics don't exactly match C99 */
 | |
| 	r = 0.; /* silence compiler warning */
 | |
| 	if (!Py_IS_FINITE(x) || !Py_IS_FINITE(y)) {
 | |
| 		errno = 0;
 | |
| 		if (Py_IS_NAN(x))
 | |
| 			r = y == 0. ? 1. : x; /* NaN**0 = 1 */
 | |
| 		else if (Py_IS_NAN(y))
 | |
| 			r = x == 1. ? 1. : y; /* 1**NaN = 1 */
 | |
| 		else if (Py_IS_INFINITY(x)) {
 | |
| 			odd_y = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0;
 | |
| 			if (y > 0.)
 | |
| 				r = odd_y ? x : fabs(x);
 | |
| 			else if (y == 0.)
 | |
| 				r = 1.;
 | |
| 			else /* y < 0. */
 | |
| 				r = odd_y ? copysign(0., x) : 0.;
 | |
| 		}
 | |
| 		else if (Py_IS_INFINITY(y)) {
 | |
| 			if (fabs(x) == 1.0)
 | |
| 				r = 1.;
 | |
| 			else if (y > 0. && fabs(x) > 1.0)
 | |
| 				r = y;
 | |
| 			else if (y < 0. && fabs(x) < 1.0) {
 | |
| 				r = -y; /* result is +inf */
 | |
| 				if (x == 0.) /* 0**-inf: divide-by-zero */
 | |
| 					errno = EDOM;
 | |
| 			}
 | |
| 			else
 | |
| 				r = 0.;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		/* let libm handle finite**finite */
 | |
| 		errno = 0;
 | |
| 		PyFPE_START_PROTECT("in math_pow", return 0);
 | |
| 		r = pow(x, y);
 | |
| 		PyFPE_END_PROTECT(r);
 | |
| 		/* a NaN result should arise only from (-ve)**(finite
 | |
| 		   non-integer); in this case we want to raise ValueError. */
 | |
| 		if (!Py_IS_FINITE(r)) {
 | |
| 			if (Py_IS_NAN(r)) {
 | |
| 				errno = EDOM;
 | |
| 			}
 | |
| 			/* 
 | |
| 			   an infinite result here arises either from:
 | |
| 			   (A) (+/-0.)**negative (-> divide-by-zero)
 | |
| 			   (B) overflow of x**y with x and y finite
 | |
| 			*/
 | |
| 			else if (Py_IS_INFINITY(r)) {
 | |
| 				if (x == 0.)
 | |
| 					errno = EDOM;
 | |
| 				else
 | |
| 					errno = ERANGE;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (errno && is_error(r))
 | |
| 		return NULL;
 | |
| 	else
 | |
| 		return PyFloat_FromDouble(r);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(math_pow_doc,
 | |
| "pow(x,y)\n\nReturn x**y (x to the power of y).");
 | |
| 
 | |
| static const double degToRad = Py_MATH_PI / 180.0;
 | |
| static const double radToDeg = 180.0 / Py_MATH_PI;
 | |
| 
 | |
| static PyObject *
 | |
| math_degrees(PyObject *self, PyObject *arg)
 | |
| {
 | |
| 	double x = PyFloat_AsDouble(arg);
 | |
| 	if (x == -1.0 && PyErr_Occurred())
 | |
| 		return NULL;
 | |
| 	return PyFloat_FromDouble(x * radToDeg);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(math_degrees_doc,
 | |
| "degrees(x) -> converts angle x from radians to degrees");
 | |
| 
 | |
| static PyObject *
 | |
| math_radians(PyObject *self, PyObject *arg)
 | |
| {
 | |
| 	double x = PyFloat_AsDouble(arg);
 | |
| 	if (x == -1.0 && PyErr_Occurred())
 | |
| 		return NULL;
 | |
| 	return PyFloat_FromDouble(x * degToRad);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(math_radians_doc,
 | |
| "radians(x) -> converts angle x from degrees to radians");
 | |
| 
 | |
| static PyObject *
 | |
| math_isnan(PyObject *self, PyObject *arg)
 | |
| {
 | |
| 	double x = PyFloat_AsDouble(arg);
 | |
| 	if (x == -1.0 && PyErr_Occurred())
 | |
| 		return NULL;
 | |
| 	return PyBool_FromLong((long)Py_IS_NAN(x));
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(math_isnan_doc,
 | |
| "isnan(x) -> bool\n\
 | |
| Checks if float x is not a number (NaN)");
 | |
| 
 | |
| static PyObject *
 | |
| math_isinf(PyObject *self, PyObject *arg)
 | |
| {
 | |
| 	double x = PyFloat_AsDouble(arg);
 | |
| 	if (x == -1.0 && PyErr_Occurred())
 | |
| 		return NULL;
 | |
| 	return PyBool_FromLong((long)Py_IS_INFINITY(x));
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(math_isinf_doc,
 | |
| "isinf(x) -> bool\n\
 | |
| Checks if float x is infinite (positive or negative)");
 | |
| 
 | |
| static PyMethodDef math_methods[] = {
 | |
| 	{"acos",	math_acos,	METH_O,		math_acos_doc},
 | |
| 	{"acosh",	math_acosh,	METH_O,		math_acosh_doc},
 | |
| 	{"asin",	math_asin,	METH_O,		math_asin_doc},
 | |
| 	{"asinh",	math_asinh,	METH_O,		math_asinh_doc},
 | |
| 	{"atan",	math_atan,	METH_O,		math_atan_doc},
 | |
| 	{"atan2",	math_atan2,	METH_VARARGS,	math_atan2_doc},
 | |
| 	{"atanh",	math_atanh,	METH_O,		math_atanh_doc},
 | |
| 	{"ceil",	math_ceil,	METH_O,		math_ceil_doc},
 | |
| 	{"copysign",	math_copysign,	METH_VARARGS,	math_copysign_doc},
 | |
| 	{"cos",		math_cos,	METH_O,		math_cos_doc},
 | |
| 	{"cosh",	math_cosh,	METH_O,		math_cosh_doc},
 | |
| 	{"degrees",	math_degrees,	METH_O,		math_degrees_doc},
 | |
| 	{"exp",		math_exp,	METH_O,		math_exp_doc},
 | |
| 	{"fabs",	math_fabs,	METH_O,		math_fabs_doc},
 | |
| 	{"floor",	math_floor,	METH_O,		math_floor_doc},
 | |
| 	{"fmod",	math_fmod,	METH_VARARGS,	math_fmod_doc},
 | |
| 	{"frexp",	math_frexp,	METH_O,		math_frexp_doc},
 | |
| 	{"hypot",	math_hypot,	METH_VARARGS,	math_hypot_doc},
 | |
| 	{"isinf",	math_isinf,	METH_O,		math_isinf_doc},
 | |
| 	{"isnan",	math_isnan,	METH_O,		math_isnan_doc},
 | |
| 	{"ldexp",	math_ldexp,	METH_VARARGS,	math_ldexp_doc},
 | |
| 	{"log",		math_log,	METH_VARARGS,	math_log_doc},
 | |
| 	{"log1p",	math_log1p,	METH_O,		math_log1p_doc},
 | |
| 	{"log10",	math_log10,	METH_O,		math_log10_doc},
 | |
| 	{"modf",	math_modf,	METH_O,		math_modf_doc},
 | |
| 	{"pow",		math_pow,	METH_VARARGS,	math_pow_doc},
 | |
| 	{"radians",	math_radians,	METH_O,		math_radians_doc},
 | |
| 	{"sin",		math_sin,	METH_O,		math_sin_doc},
 | |
| 	{"sinh",	math_sinh,	METH_O,		math_sinh_doc},
 | |
| 	{"sqrt",	math_sqrt,	METH_O,		math_sqrt_doc},
 | |
| 	{"sum",		math_sum,	METH_O,		math_sum_doc},
 | |
| 	{"tan",		math_tan,	METH_O,		math_tan_doc},
 | |
| 	{"tanh",	math_tanh,	METH_O,		math_tanh_doc},
 | |
|  	{"trunc",	math_trunc,	METH_O,		math_trunc_doc},
 | |
| 	{NULL,		NULL}		/* sentinel */
 | |
| };
 | |
| 
 | |
| 
 | |
| PyDoc_STRVAR(module_doc,
 | |
| "This module is always available.  It provides access to the\n"
 | |
| "mathematical functions defined by the C standard.");
 | |
| 
 | |
| PyMODINIT_FUNC
 | |
| initmath(void)
 | |
| {
 | |
| 	PyObject *m;
 | |
| 
 | |
| 	m = Py_InitModule3("math", math_methods, module_doc);
 | |
| 	if (m == NULL)
 | |
| 		goto finally;
 | |
| 
 | |
| 	PyModule_AddObject(m, "pi", PyFloat_FromDouble(Py_MATH_PI));
 | |
| 	PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E));
 | |
| 
 | |
|     finally:
 | |
| 	return;
 | |
| }
 |