mirror of
				https://github.com/python/cpython.git
				synced 2025-10-31 13:41:24 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			734 lines
		
	
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			734 lines
		
	
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* stringlib: fastsearch implementation */
 | |
| 
 | |
| #define STRINGLIB_FASTSEARCH_H
 | |
| 
 | |
| /* fast search/count implementation, based on a mix between boyer-
 | |
|    moore and horspool, with a few more bells and whistles on the top.
 | |
|    for some more background, see:
 | |
|    https://web.archive.org/web/20201107074620/http://effbot.org/zone/stringlib.htm */
 | |
| 
 | |
| /* note: fastsearch may access s[n], which isn't a problem when using
 | |
|    Python's ordinary string types, but may cause problems if you're
 | |
|    using this code in other contexts.  also, the count mode returns -1
 | |
|    if there cannot possibly be a match in the target string, and 0 if
 | |
|    it has actually checked for matches, but didn't find any.  callers
 | |
|    beware! */
 | |
| 
 | |
| /* If the strings are long enough, use Crochemore and Perrin's Two-Way
 | |
|    algorithm, which has worst-case O(n) runtime and best-case O(n/k).
 | |
|    Also compute a table of shifts to achieve O(n/k) in more cases,
 | |
|    and often (data dependent) deduce larger shifts than pure C&P can
 | |
|    deduce. */
 | |
| 
 | |
| #define FAST_COUNT 0
 | |
| #define FAST_SEARCH 1
 | |
| #define FAST_RSEARCH 2
 | |
| 
 | |
| #if LONG_BIT >= 128
 | |
| #define STRINGLIB_BLOOM_WIDTH 128
 | |
| #elif LONG_BIT >= 64
 | |
| #define STRINGLIB_BLOOM_WIDTH 64
 | |
| #elif LONG_BIT >= 32
 | |
| #define STRINGLIB_BLOOM_WIDTH 32
 | |
| #else
 | |
| #error "LONG_BIT is smaller than 32"
 | |
| #endif
 | |
| 
 | |
| #define STRINGLIB_BLOOM_ADD(mask, ch) \
 | |
|     ((mask |= (1UL << ((ch) & (STRINGLIB_BLOOM_WIDTH -1)))))
 | |
| #define STRINGLIB_BLOOM(mask, ch)     \
 | |
|     ((mask &  (1UL << ((ch) & (STRINGLIB_BLOOM_WIDTH -1)))))
 | |
| 
 | |
| #if STRINGLIB_SIZEOF_CHAR == 1
 | |
| #  define MEMCHR_CUT_OFF 15
 | |
| #else
 | |
| #  define MEMCHR_CUT_OFF 40
 | |
| #endif
 | |
| 
 | |
| Py_LOCAL_INLINE(Py_ssize_t)
 | |
| STRINGLIB(find_char)(const STRINGLIB_CHAR* s, Py_ssize_t n, STRINGLIB_CHAR ch)
 | |
| {
 | |
|     const STRINGLIB_CHAR *p, *e;
 | |
| 
 | |
|     p = s;
 | |
|     e = s + n;
 | |
|     if (n > MEMCHR_CUT_OFF) {
 | |
| #if STRINGLIB_SIZEOF_CHAR == 1
 | |
|         p = memchr(s, ch, n);
 | |
|         if (p != NULL)
 | |
|             return (p - s);
 | |
|         return -1;
 | |
| #else
 | |
|         /* use memchr if we can choose a needle without too many likely
 | |
|            false positives */
 | |
|         const STRINGLIB_CHAR *s1, *e1;
 | |
|         unsigned char needle = ch & 0xff;
 | |
|         /* If looking for a multiple of 256, we'd have too
 | |
|            many false positives looking for the '\0' byte in UCS2
 | |
|            and UCS4 representations. */
 | |
|         if (needle != 0) {
 | |
|             do {
 | |
|                 void *candidate = memchr(p, needle,
 | |
|                                          (e - p) * sizeof(STRINGLIB_CHAR));
 | |
|                 if (candidate == NULL)
 | |
|                     return -1;
 | |
|                 s1 = p;
 | |
|                 p = (const STRINGLIB_CHAR *)
 | |
|                         _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
 | |
|                 if (*p == ch)
 | |
|                     return (p - s);
 | |
|                 /* False positive */
 | |
|                 p++;
 | |
|                 if (p - s1 > MEMCHR_CUT_OFF)
 | |
|                     continue;
 | |
|                 if (e - p <= MEMCHR_CUT_OFF)
 | |
|                     break;
 | |
|                 e1 = p + MEMCHR_CUT_OFF;
 | |
|                 while (p != e1) {
 | |
|                     if (*p == ch)
 | |
|                         return (p - s);
 | |
|                     p++;
 | |
|                 }
 | |
|             }
 | |
|             while (e - p > MEMCHR_CUT_OFF);
 | |
|         }
 | |
| #endif
 | |
|     }
 | |
|     while (p < e) {
 | |
|         if (*p == ch)
 | |
|             return (p - s);
 | |
|         p++;
 | |
|     }
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| Py_LOCAL_INLINE(Py_ssize_t)
 | |
| STRINGLIB(rfind_char)(const STRINGLIB_CHAR* s, Py_ssize_t n, STRINGLIB_CHAR ch)
 | |
| {
 | |
|     const STRINGLIB_CHAR *p;
 | |
| #ifdef HAVE_MEMRCHR
 | |
|     /* memrchr() is a GNU extension, available since glibc 2.1.91.
 | |
|        it doesn't seem as optimized as memchr(), but is still quite
 | |
|        faster than our hand-written loop below */
 | |
| 
 | |
|     if (n > MEMCHR_CUT_OFF) {
 | |
| #if STRINGLIB_SIZEOF_CHAR == 1
 | |
|         p = memrchr(s, ch, n);
 | |
|         if (p != NULL)
 | |
|             return (p - s);
 | |
|         return -1;
 | |
| #else
 | |
|         /* use memrchr if we can choose a needle without too many likely
 | |
|            false positives */
 | |
|         const STRINGLIB_CHAR *s1;
 | |
|         Py_ssize_t n1;
 | |
|         unsigned char needle = ch & 0xff;
 | |
|         /* If looking for a multiple of 256, we'd have too
 | |
|            many false positives looking for the '\0' byte in UCS2
 | |
|            and UCS4 representations. */
 | |
|         if (needle != 0) {
 | |
|             do {
 | |
|                 void *candidate = memrchr(s, needle,
 | |
|                                           n * sizeof(STRINGLIB_CHAR));
 | |
|                 if (candidate == NULL)
 | |
|                     return -1;
 | |
|                 n1 = n;
 | |
|                 p = (const STRINGLIB_CHAR *)
 | |
|                         _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
 | |
|                 n = p - s;
 | |
|                 if (*p == ch)
 | |
|                     return n;
 | |
|                 /* False positive */
 | |
|                 if (n1 - n > MEMCHR_CUT_OFF)
 | |
|                     continue;
 | |
|                 if (n <= MEMCHR_CUT_OFF)
 | |
|                     break;
 | |
|                 s1 = p - MEMCHR_CUT_OFF;
 | |
|                 while (p > s1) {
 | |
|                     p--;
 | |
|                     if (*p == ch)
 | |
|                         return (p - s);
 | |
|                 }
 | |
|                 n = p - s;
 | |
|             }
 | |
|             while (n > MEMCHR_CUT_OFF);
 | |
|         }
 | |
| #endif
 | |
|     }
 | |
| #endif  /* HAVE_MEMRCHR */
 | |
|     p = s + n;
 | |
|     while (p > s) {
 | |
|         p--;
 | |
|         if (*p == ch)
 | |
|             return (p - s);
 | |
|     }
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| #undef MEMCHR_CUT_OFF
 | |
| 
 | |
| /* Change to a 1 to see logging comments walk through the algorithm. */
 | |
| #if 0 && STRINGLIB_SIZEOF_CHAR == 1
 | |
| # define LOG(...) printf(__VA_ARGS__)
 | |
| # define LOG_STRING(s, n) printf("\"%.*s\"", n, s)
 | |
| #else
 | |
| # define LOG(...)
 | |
| # define LOG_STRING(s, n)
 | |
| #endif
 | |
| 
 | |
| Py_LOCAL_INLINE(Py_ssize_t)
 | |
| STRINGLIB(_lex_search)(const STRINGLIB_CHAR *needle, Py_ssize_t len_needle,
 | |
|                        Py_ssize_t *return_period, int invert_alphabet)
 | |
| {
 | |
|     /* Do a lexicographic search. Essentially this:
 | |
|            >>> max(needle[i:] for i in range(len(needle)+1))
 | |
|        Also find the period of the right half.   */
 | |
|     Py_ssize_t max_suffix = 0;
 | |
|     Py_ssize_t candidate = 1;
 | |
|     Py_ssize_t k = 0;
 | |
|     // The period of the right half.
 | |
|     Py_ssize_t period = 1;
 | |
| 
 | |
|     while (candidate + k < len_needle) {
 | |
|         // each loop increases candidate + k + max_suffix
 | |
|         STRINGLIB_CHAR a = needle[candidate + k];
 | |
|         STRINGLIB_CHAR b = needle[max_suffix + k];
 | |
|         // check if the suffix at candidate is better than max_suffix
 | |
|         if (invert_alphabet ? (b < a) : (a < b)) {
 | |
|             // Fell short of max_suffix.
 | |
|             // The next k + 1 characters are non-increasing
 | |
|             // from candidate, so they won't start a maximal suffix.
 | |
|             candidate += k + 1;
 | |
|             k = 0;
 | |
|             // We've ruled out any period smaller than what's
 | |
|             // been scanned since max_suffix.
 | |
|             period = candidate - max_suffix;
 | |
|         }
 | |
|         else if (a == b) {
 | |
|             if (k + 1 != period) {
 | |
|                 // Keep scanning the equal strings
 | |
|                 k++;
 | |
|             }
 | |
|             else {
 | |
|                 // Matched a whole period.
 | |
|                 // Start matching the next period.
 | |
|                 candidate += period;
 | |
|                 k = 0;
 | |
|             }
 | |
|         }
 | |
|         else {
 | |
|             // Did better than max_suffix, so replace it.
 | |
|             max_suffix = candidate;
 | |
|             candidate++;
 | |
|             k = 0;
 | |
|             period = 1;
 | |
|         }
 | |
|     }
 | |
|     *return_period = period;
 | |
|     return max_suffix;
 | |
| }
 | |
| 
 | |
| Py_LOCAL_INLINE(Py_ssize_t)
 | |
| STRINGLIB(_factorize)(const STRINGLIB_CHAR *needle,
 | |
|                       Py_ssize_t len_needle,
 | |
|                       Py_ssize_t *return_period)
 | |
| {
 | |
|     /* Do a "critical factorization", making it so that:
 | |
|        >>> needle = (left := needle[:cut]) + (right := needle[cut:])
 | |
|        where the "local period" of the cut is maximal.
 | |
| 
 | |
|        The local period of the cut is the minimal length of a string w
 | |
|        such that (left endswith w or w endswith left)
 | |
|        and (right startswith w or w startswith left).
 | |
| 
 | |
|        The Critical Factorization Theorem says that this maximal local
 | |
|        period is the global period of the string.
 | |
| 
 | |
|        Crochemore and Perrin (1991) show that this cut can be computed
 | |
|        as the later of two cuts: one that gives a lexicographically
 | |
|        maximal right half, and one that gives the same with the
 | |
|        with respect to a reversed alphabet-ordering.
 | |
| 
 | |
|        This is what we want to happen:
 | |
|            >>> x = "GCAGAGAG"
 | |
|            >>> cut, period = factorize(x)
 | |
|            >>> x[:cut], (right := x[cut:])
 | |
|            ('GC', 'AGAGAG')
 | |
|            >>> period  # right half period
 | |
|            2
 | |
|            >>> right[period:] == right[:-period]
 | |
|            True
 | |
| 
 | |
|        This is how the local period lines up in the above example:
 | |
|                 GC | AGAGAG
 | |
|            AGAGAGC = AGAGAGC
 | |
|        The length of this minimal repetition is 7, which is indeed the
 | |
|        period of the original string. */
 | |
| 
 | |
|     Py_ssize_t cut1, period1, cut2, period2, cut, period;
 | |
|     cut1 = STRINGLIB(_lex_search)(needle, len_needle, &period1, 0);
 | |
|     cut2 = STRINGLIB(_lex_search)(needle, len_needle, &period2, 1);
 | |
| 
 | |
|     // Take the later cut.
 | |
|     if (cut1 > cut2) {
 | |
|         period = period1;
 | |
|         cut = cut1;
 | |
|     }
 | |
|     else {
 | |
|         period = period2;
 | |
|         cut = cut2;
 | |
|     }
 | |
| 
 | |
|     LOG("split: "); LOG_STRING(needle, cut);
 | |
|     LOG(" + "); LOG_STRING(needle + cut, len_needle - cut);
 | |
|     LOG("\n");
 | |
| 
 | |
|     *return_period = period;
 | |
|     return cut;
 | |
| }
 | |
| 
 | |
| #define SHIFT_TYPE uint8_t
 | |
| #define NOT_FOUND ((1U<<(8*sizeof(SHIFT_TYPE))) - 1U)
 | |
| #define SHIFT_OVERFLOW (NOT_FOUND - 1U)
 | |
| 
 | |
| #define TABLE_SIZE_BITS 6
 | |
| #define TABLE_SIZE (1U << TABLE_SIZE_BITS)
 | |
| #define TABLE_MASK (TABLE_SIZE - 1U)
 | |
| 
 | |
| typedef struct STRINGLIB(_pre) {
 | |
|     const STRINGLIB_CHAR *needle;
 | |
|     Py_ssize_t len_needle;
 | |
|     Py_ssize_t cut;
 | |
|     Py_ssize_t period;
 | |
|     int is_periodic;
 | |
|     SHIFT_TYPE table[TABLE_SIZE];
 | |
| } STRINGLIB(prework);
 | |
| 
 | |
| 
 | |
| Py_LOCAL_INLINE(void)
 | |
| STRINGLIB(_preprocess)(const STRINGLIB_CHAR *needle, Py_ssize_t len_needle,
 | |
|                        STRINGLIB(prework) *p)
 | |
| {
 | |
|     p->needle = needle;
 | |
|     p->len_needle = len_needle;
 | |
|     p->cut = STRINGLIB(_factorize)(needle, len_needle, &(p->period));
 | |
|     assert(p->period + p->cut <= len_needle);
 | |
|     p->is_periodic = (0 == memcmp(needle,
 | |
|                                   needle + p->period,
 | |
|                                   p->cut * STRINGLIB_SIZEOF_CHAR));
 | |
|     if (p->is_periodic) {
 | |
|         assert(p->cut <= len_needle/2);
 | |
|         assert(p->cut < p->period);
 | |
|     }
 | |
|     else {
 | |
|         // A lower bound on the period
 | |
|         p->period = Py_MAX(p->cut, len_needle - p->cut) + 1;
 | |
|     }
 | |
|     // Now fill up a table
 | |
|     memset(&(p->table[0]), 0xff, TABLE_SIZE*sizeof(SHIFT_TYPE));
 | |
|     assert(p->table[0] == NOT_FOUND);
 | |
|     assert(p->table[TABLE_MASK] == NOT_FOUND);
 | |
|     for (Py_ssize_t i = 0; i < len_needle; i++) {
 | |
|         Py_ssize_t shift = len_needle - i;
 | |
|         if (shift > SHIFT_OVERFLOW) {
 | |
|             shift = SHIFT_OVERFLOW;
 | |
|         }
 | |
|         p->table[needle[i] & TABLE_MASK] = Py_SAFE_DOWNCAST(shift,
 | |
|                                                             Py_ssize_t,
 | |
|                                                             SHIFT_TYPE);
 | |
|     }
 | |
| }
 | |
| 
 | |
| Py_LOCAL_INLINE(Py_ssize_t)
 | |
| STRINGLIB(_two_way)(const STRINGLIB_CHAR *haystack, Py_ssize_t len_haystack,
 | |
|                     STRINGLIB(prework) *p)
 | |
| {
 | |
|     // Crochemore and Perrin's (1991) Two-Way algorithm.
 | |
|     // See http://www-igm.univ-mlv.fr/~lecroq/string/node26.html#SECTION00260
 | |
|     Py_ssize_t len_needle = p->len_needle;
 | |
|     Py_ssize_t cut = p->cut;
 | |
|     Py_ssize_t period = p->period;
 | |
|     const STRINGLIB_CHAR *needle = p->needle;
 | |
|     const STRINGLIB_CHAR *window = haystack;
 | |
|     const STRINGLIB_CHAR *last_window = haystack + len_haystack - len_needle;
 | |
|     SHIFT_TYPE *table = p->table;
 | |
|     LOG("===== Two-way: \"%s\" in \"%s\". =====\n", needle, haystack);
 | |
| 
 | |
|     if (p->is_periodic) {
 | |
|         LOG("Needle is periodic.\n");
 | |
|         Py_ssize_t memory = 0;
 | |
|       periodicwindowloop:
 | |
|         while (window <= last_window) {
 | |
|             Py_ssize_t i = Py_MAX(cut, memory);
 | |
| 
 | |
|             // Visualize the line-up:
 | |
|             LOG("> "); LOG_STRING(haystack, len_haystack);
 | |
|             LOG("\n> "); LOG("%*s", window - haystack, "");
 | |
|             LOG_STRING(needle, len_needle);
 | |
|             LOG("\n> "); LOG("%*s", window - haystack + i, "");
 | |
|             LOG(" ^ <-- cut\n");
 | |
| 
 | |
|             if (window[i] != needle[i]) {
 | |
|                 // Sunday's trick: if we're going to jump, we might
 | |
|                 // as well jump to line up the character *after* the
 | |
|                 // current window.
 | |
|                 STRINGLIB_CHAR first_outside = window[len_needle];
 | |
|                 SHIFT_TYPE shift = table[first_outside & TABLE_MASK];
 | |
|                 if (shift == NOT_FOUND) {
 | |
|                     LOG("\"%c\" not found. Skipping entirely.\n",
 | |
|                         first_outside);
 | |
|                     window += len_needle + 1;
 | |
|                 }
 | |
|                 else {
 | |
|                     LOG("Shifting to line up \"%c\".\n", first_outside);
 | |
|                     Py_ssize_t memory_shift = i - cut + 1;
 | |
|                     window += Py_MAX(shift, memory_shift);
 | |
|                 }
 | |
|                 memory = 0;
 | |
|                 goto periodicwindowloop;
 | |
|             }
 | |
|             for (i = i + 1; i < len_needle; i++) {
 | |
|                 if (needle[i] != window[i]) {
 | |
|                     LOG("Right half does not match. Jump ahead by %d.\n",
 | |
|                         i - cut + 1);
 | |
|                     window += i - cut + 1;
 | |
|                     memory = 0;
 | |
|                     goto periodicwindowloop;
 | |
|                 }
 | |
|             }
 | |
|             for (i = memory; i < cut; i++) {
 | |
|                 if (needle[i] != window[i]) {
 | |
|                     LOG("Left half does not match. Jump ahead by period %d.\n",
 | |
|                         period);
 | |
|                     window += period;
 | |
|                     memory = len_needle - period;
 | |
|                     goto periodicwindowloop;
 | |
|                 }
 | |
|             }
 | |
|             LOG("Left half matches. Returning %d.\n",
 | |
|                 window - haystack);
 | |
|             return window - haystack;
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         LOG("Needle is not periodic.\n");
 | |
|         assert(cut < len_needle);
 | |
|         STRINGLIB_CHAR needle_cut = needle[cut];
 | |
|       windowloop:
 | |
|         while (window <= last_window) {
 | |
| 
 | |
|             // Visualize the line-up:
 | |
|             LOG("> "); LOG_STRING(haystack, len_haystack);
 | |
|             LOG("\n> "); LOG("%*s", window - haystack, "");
 | |
|             LOG_STRING(needle, len_needle);
 | |
|             LOG("\n> "); LOG("%*s", window - haystack + cut, "");
 | |
|             LOG(" ^ <-- cut\n");
 | |
| 
 | |
|             if (window[cut] != needle_cut) {
 | |
|                 // Sunday's trick: if we're going to jump, we might
 | |
|                 // as well jump to line up the character *after* the
 | |
|                 // current window.
 | |
|                 STRINGLIB_CHAR first_outside = window[len_needle];
 | |
|                 SHIFT_TYPE shift = table[first_outside & TABLE_MASK];
 | |
|                 if (shift == NOT_FOUND) {
 | |
|                     LOG("\"%c\" not found. Skipping entirely.\n",
 | |
|                         first_outside);
 | |
|                     window += len_needle + 1;
 | |
|                 }
 | |
|                 else {
 | |
|                     LOG("Shifting to line up \"%c\".\n", first_outside);
 | |
|                     window += shift;
 | |
|                 }
 | |
|                 goto windowloop;
 | |
|             }
 | |
|             for (Py_ssize_t i = cut + 1; i < len_needle; i++) {
 | |
|                 if (needle[i] != window[i]) {
 | |
|                     LOG("Right half does not match. Advance by %d.\n",
 | |
|                         i - cut + 1);
 | |
|                     window += i - cut + 1;
 | |
|                     goto windowloop;
 | |
|                 }
 | |
|             }
 | |
|             for (Py_ssize_t i = 0; i < cut; i++) {
 | |
|                 if (needle[i] != window[i]) {
 | |
|                     LOG("Left half does not match. Advance by period %d.\n",
 | |
|                         period);
 | |
|                     window += period;
 | |
|                     goto windowloop;
 | |
|                 }
 | |
|             }
 | |
|             LOG("Left half matches. Returning %d.\n", window - haystack);
 | |
|             return window - haystack;
 | |
|         }
 | |
|     }
 | |
|     LOG("Not found. Returning -1.\n");
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| Py_LOCAL_INLINE(Py_ssize_t)
 | |
| STRINGLIB(_two_way_find)(const STRINGLIB_CHAR *haystack,
 | |
|                          Py_ssize_t len_haystack,
 | |
|                          const STRINGLIB_CHAR *needle,
 | |
|                          Py_ssize_t len_needle)
 | |
| {
 | |
|     LOG("###### Finding \"%s\" in \"%s\".\n", needle, haystack);
 | |
|     STRINGLIB(prework) p;
 | |
|     STRINGLIB(_preprocess)(needle, len_needle, &p);
 | |
|     return STRINGLIB(_two_way)(haystack, len_haystack, &p);
 | |
| }
 | |
| 
 | |
| Py_LOCAL_INLINE(Py_ssize_t)
 | |
| STRINGLIB(_two_way_count)(const STRINGLIB_CHAR *haystack,
 | |
|                           Py_ssize_t len_haystack,
 | |
|                           const STRINGLIB_CHAR *needle,
 | |
|                           Py_ssize_t len_needle,
 | |
|                           Py_ssize_t maxcount)
 | |
| {
 | |
|     LOG("###### Counting \"%s\" in \"%s\".\n", needle, haystack);
 | |
|     STRINGLIB(prework) p;
 | |
|     STRINGLIB(_preprocess)(needle, len_needle, &p);
 | |
|     Py_ssize_t index = 0, count = 0;
 | |
|     while (1) {
 | |
|         Py_ssize_t result;
 | |
|         result = STRINGLIB(_two_way)(haystack + index,
 | |
|                                      len_haystack - index, &p);
 | |
|         if (result == -1) {
 | |
|             return count;
 | |
|         }
 | |
|         count++;
 | |
|         if (count == maxcount) {
 | |
|             return maxcount;
 | |
|         }
 | |
|         index += result + len_needle;
 | |
|     }
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| #undef SHIFT_TYPE
 | |
| #undef NOT_FOUND
 | |
| #undef SHIFT_OVERFLOW
 | |
| #undef TABLE_SIZE_BITS
 | |
| #undef TABLE_SIZE
 | |
| #undef TABLE_MASK
 | |
| 
 | |
| #undef LOG
 | |
| #undef LOG_STRING
 | |
| 
 | |
| Py_LOCAL_INLINE(Py_ssize_t)
 | |
| FASTSEARCH(const STRINGLIB_CHAR* s, Py_ssize_t n,
 | |
|            const STRINGLIB_CHAR* p, Py_ssize_t m,
 | |
|            Py_ssize_t maxcount, int mode)
 | |
| {
 | |
|     unsigned long mask;
 | |
|     Py_ssize_t skip, count = 0;
 | |
|     Py_ssize_t i, j, mlast, w;
 | |
| 
 | |
|     w = n - m;
 | |
| 
 | |
|     if (w < 0 || (mode == FAST_COUNT && maxcount == 0))
 | |
|         return -1;
 | |
| 
 | |
|     /* look for special cases */
 | |
|     if (m <= 1) {
 | |
|         if (m <= 0)
 | |
|             return -1;
 | |
|         /* use special case for 1-character strings */
 | |
|         if (mode == FAST_SEARCH)
 | |
|             return STRINGLIB(find_char)(s, n, p[0]);
 | |
|         else if (mode == FAST_RSEARCH)
 | |
|             return STRINGLIB(rfind_char)(s, n, p[0]);
 | |
|         else {  /* FAST_COUNT */
 | |
|             for (i = 0; i < n; i++)
 | |
|                 if (s[i] == p[0]) {
 | |
|                     count++;
 | |
|                     if (count == maxcount)
 | |
|                         return maxcount;
 | |
|                 }
 | |
|             return count;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     mlast = m - 1;
 | |
|     skip = mlast;
 | |
|     mask = 0;
 | |
| 
 | |
|     if (mode != FAST_RSEARCH) {
 | |
|         if (m >= 100 && w >= 2000 && w / m >= 5) {
 | |
|             /* For larger problems where the needle isn't a huge
 | |
|                percentage of the size of the haystack, the relatively
 | |
|                expensive O(m) startup cost of the two-way algorithm
 | |
|                will surely pay off. */
 | |
|             if (mode == FAST_SEARCH) {
 | |
|                 return STRINGLIB(_two_way_find)(s, n, p, m);
 | |
|             }
 | |
|             else {
 | |
|                 return STRINGLIB(_two_way_count)(s, n, p, m, maxcount);
 | |
|             }
 | |
|         }
 | |
|         const STRINGLIB_CHAR *ss = s + m - 1;
 | |
|         const STRINGLIB_CHAR *pp = p + m - 1;
 | |
| 
 | |
|         /* create compressed boyer-moore delta 1 table */
 | |
| 
 | |
|         /* process pattern[:-1] */
 | |
|         for (i = 0; i < mlast; i++) {
 | |
|             STRINGLIB_BLOOM_ADD(mask, p[i]);
 | |
|             if (p[i] == p[mlast]) {
 | |
|                 skip = mlast - i - 1;
 | |
|             }
 | |
|         }
 | |
|         /* process pattern[-1] outside the loop */
 | |
|         STRINGLIB_BLOOM_ADD(mask, p[mlast]);
 | |
| 
 | |
|         if (m >= 100 && w >= 8000) {
 | |
|             /* To ensure that we have good worst-case behavior,
 | |
|                here's an adaptive version of the algorithm, where if
 | |
|                we match O(m) characters without any matches of the
 | |
|                entire needle, then we predict that the startup cost of
 | |
|                the two-way algorithm will probably be worth it. */
 | |
|             Py_ssize_t hits = 0;
 | |
|             for (i = 0; i <= w; i++) {
 | |
|                 if (ss[i] == pp[0]) {
 | |
|                     /* candidate match */
 | |
|                     for (j = 0; j < mlast; j++) {
 | |
|                         if (s[i+j] != p[j]) {
 | |
|                             break;
 | |
|                         }
 | |
|                     }
 | |
|                     if (j == mlast) {
 | |
|                         /* got a match! */
 | |
|                         if (mode != FAST_COUNT) {
 | |
|                             return i;
 | |
|                         }
 | |
|                         count++;
 | |
|                         if (count == maxcount) {
 | |
|                             return maxcount;
 | |
|                         }
 | |
|                         i = i + mlast;
 | |
|                         continue;
 | |
|                     }
 | |
|                     /* miss: check if next character is part of pattern */
 | |
|                     if (!STRINGLIB_BLOOM(mask, ss[i+1])) {
 | |
|                         i = i + m;
 | |
|                     }
 | |
|                     else {
 | |
|                         i = i + skip;
 | |
|                     }
 | |
|                     hits += j + 1;
 | |
|                     if (hits >= m / 4 && i < w - 1000) {
 | |
|                         /* We've done O(m) fruitless comparisons
 | |
|                            anyway, so spend the O(m) cost on the
 | |
|                            setup for the two-way algorithm. */
 | |
|                         Py_ssize_t res;
 | |
|                         if (mode == FAST_COUNT) {
 | |
|                             res = STRINGLIB(_two_way_count)(
 | |
|                                 s+i, n-i, p, m, maxcount-count);
 | |
|                             return count + res;
 | |
|                         }
 | |
|                         else {
 | |
|                             res = STRINGLIB(_two_way_find)(s+i, n-i, p, m);
 | |
|                             if (res == -1) {
 | |
|                                 return -1;
 | |
|                             }
 | |
|                             return i + res;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|                 else {
 | |
|                     /* skip: check if next character is part of pattern */
 | |
|                     if (!STRINGLIB_BLOOM(mask, ss[i+1])) {
 | |
|                         i = i + m;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             if (mode != FAST_COUNT) {
 | |
|                 return -1;
 | |
|             }
 | |
|             return count;
 | |
|         }
 | |
|         /* The standard, non-adaptive version of the algorithm. */
 | |
|         for (i = 0; i <= w; i++) {
 | |
|             /* note: using mlast in the skip path slows things down on x86 */
 | |
|             if (ss[i] == pp[0]) {
 | |
|                 /* candidate match */
 | |
|                 for (j = 0; j < mlast; j++) {
 | |
|                     if (s[i+j] != p[j]) {
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|                 if (j == mlast) {
 | |
|                     /* got a match! */
 | |
|                     if (mode != FAST_COUNT) {
 | |
|                         return i;
 | |
|                     }
 | |
|                     count++;
 | |
|                     if (count == maxcount) {
 | |
|                         return maxcount;
 | |
|                     }
 | |
|                     i = i + mlast;
 | |
|                     continue;
 | |
|                 }
 | |
|                 /* miss: check if next character is part of pattern */
 | |
|                 if (!STRINGLIB_BLOOM(mask, ss[i+1])) {
 | |
|                     i = i + m;
 | |
|                 }
 | |
|                 else {
 | |
|                     i = i + skip;
 | |
|                 }
 | |
|             }
 | |
|             else {
 | |
|                 /* skip: check if next character is part of pattern */
 | |
|                 if (!STRINGLIB_BLOOM(mask, ss[i+1])) {
 | |
|                     i = i + m;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     else {    /* FAST_RSEARCH */
 | |
| 
 | |
|         /* create compressed boyer-moore delta 1 table */
 | |
| 
 | |
|         /* process pattern[0] outside the loop */
 | |
|         STRINGLIB_BLOOM_ADD(mask, p[0]);
 | |
|         /* process pattern[:0:-1] */
 | |
|         for (i = mlast; i > 0; i--) {
 | |
|             STRINGLIB_BLOOM_ADD(mask, p[i]);
 | |
|             if (p[i] == p[0]) {
 | |
|                 skip = i - 1;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         for (i = w; i >= 0; i--) {
 | |
|             if (s[i] == p[0]) {
 | |
|                 /* candidate match */
 | |
|                 for (j = mlast; j > 0; j--) {
 | |
|                     if (s[i+j] != p[j]) {
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|                 if (j == 0) {
 | |
|                     /* got a match! */
 | |
|                     return i;
 | |
|                 }
 | |
|                 /* miss: check if previous character is part of pattern */
 | |
|                 if (i > 0 && !STRINGLIB_BLOOM(mask, s[i-1])) {
 | |
|                     i = i - m;
 | |
|                 }
 | |
|                 else {
 | |
|                     i = i - skip;
 | |
|                 }
 | |
|             }
 | |
|             else {
 | |
|                 /* skip: check if previous character is part of pattern */
 | |
|                 if (i > 0 && !STRINGLIB_BLOOM(mask, s[i-1])) {
 | |
|                     i = i - m;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (mode != FAST_COUNT)
 | |
|         return -1;
 | |
|     return count;
 | |
| }
 | |
| 
 | 
