mirror of
				https://github.com/python/cpython.git
				synced 2025-10-25 02:43:41 +00:00 
			
		
		
		
	 c90e960150
			
		
	
	
		c90e960150
		
	
	
	
	
		
			
			* bpo-30183: Fixes HP-UX cc compilation error in pytime.c
HP-UX does not support the CLOCK_MONOTONIC identifier, and will fail to
compile:
    "Python/pytime.c", line 723: error #2020: identifier
    "CLOCK_MONOTONIC" is undefined
          const clockid_t clk_id = CLOCK_MONOTONIC;
Add a new section for __hpux that calls 'gethrtime()' instead of
'clock_gettime()'.
* bpo-30183: Removes unnecessary return
		
	
			
		
			
				
	
	
		
			840 lines
		
	
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			840 lines
		
	
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include "Python.h"
 | |
| #ifdef MS_WINDOWS
 | |
| #include <windows.h>
 | |
| #endif
 | |
| 
 | |
| #if defined(__APPLE__)
 | |
| #include <mach/mach_time.h>   /* mach_absolute_time(), mach_timebase_info() */
 | |
| #endif
 | |
| 
 | |
| #define _PyTime_check_mul_overflow(a, b) \
 | |
|     (assert(b > 0), \
 | |
|      (_PyTime_t)(a) < _PyTime_MIN / (_PyTime_t)(b) \
 | |
|      || _PyTime_MAX / (_PyTime_t)(b) < (_PyTime_t)(a))
 | |
| 
 | |
| /* To millisecond (10^-3) */
 | |
| #define SEC_TO_MS 1000
 | |
| 
 | |
| /* To microseconds (10^-6) */
 | |
| #define MS_TO_US 1000
 | |
| #define SEC_TO_US (SEC_TO_MS * MS_TO_US)
 | |
| 
 | |
| /* To nanoseconds (10^-9) */
 | |
| #define US_TO_NS 1000
 | |
| #define MS_TO_NS (MS_TO_US * US_TO_NS)
 | |
| #define SEC_TO_NS (SEC_TO_MS * MS_TO_NS)
 | |
| 
 | |
| /* Conversion from nanoseconds */
 | |
| #define NS_TO_MS (1000 * 1000)
 | |
| #define NS_TO_US (1000)
 | |
| 
 | |
| static void
 | |
| error_time_t_overflow(void)
 | |
| {
 | |
|     PyErr_SetString(PyExc_OverflowError,
 | |
|                     "timestamp out of range for platform time_t");
 | |
| }
 | |
| 
 | |
| time_t
 | |
| _PyLong_AsTime_t(PyObject *obj)
 | |
| {
 | |
| #if SIZEOF_TIME_T == SIZEOF_LONG_LONG
 | |
|     long long val;
 | |
|     val = PyLong_AsLongLong(obj);
 | |
| #else
 | |
|     long val;
 | |
|     Py_BUILD_ASSERT(sizeof(time_t) <= sizeof(long));
 | |
|     val = PyLong_AsLong(obj);
 | |
| #endif
 | |
|     if (val == -1 && PyErr_Occurred()) {
 | |
|         if (PyErr_ExceptionMatches(PyExc_OverflowError))
 | |
|             error_time_t_overflow();
 | |
|         return -1;
 | |
|     }
 | |
|     return (time_t)val;
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| _PyLong_FromTime_t(time_t t)
 | |
| {
 | |
| #if SIZEOF_TIME_T == SIZEOF_LONG_LONG
 | |
|     return PyLong_FromLongLong((long long)t);
 | |
| #else
 | |
|     Py_BUILD_ASSERT(sizeof(time_t) <= sizeof(long));
 | |
|     return PyLong_FromLong((long)t);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Round to nearest with ties going to nearest even integer
 | |
|    (_PyTime_ROUND_HALF_EVEN) */
 | |
| static double
 | |
| _PyTime_RoundHalfEven(double x)
 | |
| {
 | |
|     double rounded = round(x);
 | |
|     if (fabs(x-rounded) == 0.5)
 | |
|         /* halfway case: round to even */
 | |
|         rounded = 2.0*round(x/2.0);
 | |
|     return rounded;
 | |
| }
 | |
| 
 | |
| static double
 | |
| _PyTime_Round(double x, _PyTime_round_t round)
 | |
| {
 | |
|     /* volatile avoids optimization changing how numbers are rounded */
 | |
|     volatile double d;
 | |
| 
 | |
|     d = x;
 | |
|     if (round == _PyTime_ROUND_HALF_EVEN)
 | |
|         d = _PyTime_RoundHalfEven(d);
 | |
|     else if (round == _PyTime_ROUND_CEILING)
 | |
|         d = ceil(d);
 | |
|     else
 | |
|         d = floor(d);
 | |
|     return d;
 | |
| }
 | |
| 
 | |
| static int
 | |
| _PyTime_DoubleToDenominator(double d, time_t *sec, long *numerator,
 | |
|                             double denominator, _PyTime_round_t round)
 | |
| {
 | |
|     double intpart, err;
 | |
|     /* volatile avoids optimization changing how numbers are rounded */
 | |
|     volatile double floatpart;
 | |
| 
 | |
|     floatpart = modf(d, &intpart);
 | |
| 
 | |
|     floatpart *= denominator;
 | |
|     floatpart = _PyTime_Round(floatpart, round);
 | |
|     if (floatpart >= denominator) {
 | |
|         floatpart -= denominator;
 | |
|         intpart += 1.0;
 | |
|     }
 | |
|     else if (floatpart < 0) {
 | |
|         floatpart += denominator;
 | |
|         intpart -= 1.0;
 | |
|     }
 | |
|     assert(0.0 <= floatpart && floatpart < denominator);
 | |
| 
 | |
|     *sec = (time_t)intpart;
 | |
|     *numerator = (long)floatpart;
 | |
| 
 | |
|     err = intpart - (double)*sec;
 | |
|     if (err <= -1.0 || err >= 1.0) {
 | |
|         error_time_t_overflow();
 | |
|         return -1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| _PyTime_ObjectToDenominator(PyObject *obj, time_t *sec, long *numerator,
 | |
|                             double denominator, _PyTime_round_t round)
 | |
| {
 | |
|     assert(denominator <= (double)LONG_MAX);
 | |
| 
 | |
|     if (PyFloat_Check(obj)) {
 | |
|         double d = PyFloat_AsDouble(obj);
 | |
|         return _PyTime_DoubleToDenominator(d, sec, numerator,
 | |
|                                            denominator, round);
 | |
|     }
 | |
|     else {
 | |
|         *sec = _PyLong_AsTime_t(obj);
 | |
|         *numerator = 0;
 | |
|         if (*sec == (time_t)-1 && PyErr_Occurred())
 | |
|             return -1;
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| int
 | |
| _PyTime_ObjectToTime_t(PyObject *obj, time_t *sec, _PyTime_round_t round)
 | |
| {
 | |
|     if (PyFloat_Check(obj)) {
 | |
|         double intpart, err;
 | |
|         /* volatile avoids optimization changing how numbers are rounded */
 | |
|         volatile double d;
 | |
| 
 | |
|         d = PyFloat_AsDouble(obj);
 | |
|         d = _PyTime_Round(d, round);
 | |
|         (void)modf(d, &intpart);
 | |
| 
 | |
|         *sec = (time_t)intpart;
 | |
|         err = intpart - (double)*sec;
 | |
|         if (err <= -1.0 || err >= 1.0) {
 | |
|             error_time_t_overflow();
 | |
|             return -1;
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     else {
 | |
|         *sec = _PyLong_AsTime_t(obj);
 | |
|         if (*sec == (time_t)-1 && PyErr_Occurred())
 | |
|             return -1;
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| int
 | |
| _PyTime_ObjectToTimespec(PyObject *obj, time_t *sec, long *nsec,
 | |
|                          _PyTime_round_t round)
 | |
| {
 | |
|     int res;
 | |
|     res = _PyTime_ObjectToDenominator(obj, sec, nsec, 1e9, round);
 | |
|     assert(0 <= *nsec && *nsec < SEC_TO_NS);
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| int
 | |
| _PyTime_ObjectToTimeval(PyObject *obj, time_t *sec, long *usec,
 | |
|                         _PyTime_round_t round)
 | |
| {
 | |
|     int res;
 | |
|     res = _PyTime_ObjectToDenominator(obj, sec, usec, 1e6, round);
 | |
|     assert(0 <= *usec && *usec < SEC_TO_US);
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| static void
 | |
| _PyTime_overflow(void)
 | |
| {
 | |
|     PyErr_SetString(PyExc_OverflowError,
 | |
|                     "timestamp too large to convert to C _PyTime_t");
 | |
| }
 | |
| 
 | |
| _PyTime_t
 | |
| _PyTime_FromSeconds(int seconds)
 | |
| {
 | |
|     _PyTime_t t;
 | |
|     t = (_PyTime_t)seconds;
 | |
|     /* ensure that integer overflow cannot happen, int type should have 32
 | |
|        bits, whereas _PyTime_t type has at least 64 bits (SEC_TO_MS takes 30
 | |
|        bits). */
 | |
|     Py_BUILD_ASSERT(INT_MAX <= _PyTime_MAX / SEC_TO_NS);
 | |
|     Py_BUILD_ASSERT(INT_MIN >= _PyTime_MIN / SEC_TO_NS);
 | |
|     assert((t >= 0 && t <= _PyTime_MAX / SEC_TO_NS)
 | |
|            || (t < 0 && t >= _PyTime_MIN / SEC_TO_NS));
 | |
|     t *= SEC_TO_NS;
 | |
|     return t;
 | |
| }
 | |
| 
 | |
| _PyTime_t
 | |
| _PyTime_FromNanoseconds(long long ns)
 | |
| {
 | |
|     _PyTime_t t;
 | |
|     Py_BUILD_ASSERT(sizeof(long long) <= sizeof(_PyTime_t));
 | |
|     t = Py_SAFE_DOWNCAST(ns, long long, _PyTime_t);
 | |
|     return t;
 | |
| }
 | |
| 
 | |
| #ifdef HAVE_CLOCK_GETTIME
 | |
| static int
 | |
| _PyTime_FromTimespec(_PyTime_t *tp, struct timespec *ts, int raise)
 | |
| {
 | |
|     _PyTime_t t;
 | |
|     int res = 0;
 | |
| 
 | |
|     Py_BUILD_ASSERT(sizeof(ts->tv_sec) <= sizeof(_PyTime_t));
 | |
|     t = (_PyTime_t)ts->tv_sec;
 | |
| 
 | |
|     if (_PyTime_check_mul_overflow(t, SEC_TO_NS)) {
 | |
|         if (raise)
 | |
|             _PyTime_overflow();
 | |
|         res = -1;
 | |
|     }
 | |
|     t = t * SEC_TO_NS;
 | |
| 
 | |
|     t += ts->tv_nsec;
 | |
| 
 | |
|     *tp = t;
 | |
|     return res;
 | |
| }
 | |
| #elif !defined(MS_WINDOWS)
 | |
| static int
 | |
| _PyTime_FromTimeval(_PyTime_t *tp, struct timeval *tv, int raise)
 | |
| {
 | |
|     _PyTime_t t;
 | |
|     int res = 0;
 | |
| 
 | |
|     Py_BUILD_ASSERT(sizeof(tv->tv_sec) <= sizeof(_PyTime_t));
 | |
|     t = (_PyTime_t)tv->tv_sec;
 | |
| 
 | |
|     if (_PyTime_check_mul_overflow(t, SEC_TO_NS)) {
 | |
|         if (raise)
 | |
|             _PyTime_overflow();
 | |
|         res = -1;
 | |
|     }
 | |
|     t = t * SEC_TO_NS;
 | |
| 
 | |
|     t += (_PyTime_t)tv->tv_usec * US_TO_NS;
 | |
| 
 | |
|     *tp = t;
 | |
|     return res;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int
 | |
| _PyTime_FromFloatObject(_PyTime_t *t, double value, _PyTime_round_t round,
 | |
|                         long unit_to_ns)
 | |
| {
 | |
|     double err;
 | |
|     /* volatile avoids optimization changing how numbers are rounded */
 | |
|     volatile double d;
 | |
| 
 | |
|     /* convert to a number of nanoseconds */
 | |
|     d = value;
 | |
|     d *= (double)unit_to_ns;
 | |
|     d = _PyTime_Round(d, round);
 | |
| 
 | |
|     *t = (_PyTime_t)d;
 | |
|     err = d - (double)*t;
 | |
|     if (fabs(err) >= 1.0) {
 | |
|         _PyTime_overflow();
 | |
|         return -1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| _PyTime_FromObject(_PyTime_t *t, PyObject *obj, _PyTime_round_t round,
 | |
|                    long unit_to_ns)
 | |
| {
 | |
|     if (PyFloat_Check(obj)) {
 | |
|         double d;
 | |
|         d = PyFloat_AsDouble(obj);
 | |
|         return _PyTime_FromFloatObject(t, d, round, unit_to_ns);
 | |
|     }
 | |
|     else {
 | |
|         long long sec;
 | |
|         Py_BUILD_ASSERT(sizeof(long long) <= sizeof(_PyTime_t));
 | |
| 
 | |
|         sec = PyLong_AsLongLong(obj);
 | |
|         if (sec == -1 && PyErr_Occurred()) {
 | |
|             if (PyErr_ExceptionMatches(PyExc_OverflowError))
 | |
|                 _PyTime_overflow();
 | |
|             return -1;
 | |
|         }
 | |
| 
 | |
|         if (_PyTime_check_mul_overflow(sec, unit_to_ns)) {
 | |
|             _PyTime_overflow();
 | |
|             return -1;
 | |
|         }
 | |
|         *t = sec * unit_to_ns;
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| int
 | |
| _PyTime_FromSecondsObject(_PyTime_t *t, PyObject *obj, _PyTime_round_t round)
 | |
| {
 | |
|     return _PyTime_FromObject(t, obj, round, SEC_TO_NS);
 | |
| }
 | |
| 
 | |
| int
 | |
| _PyTime_FromMillisecondsObject(_PyTime_t *t, PyObject *obj, _PyTime_round_t round)
 | |
| {
 | |
|     return _PyTime_FromObject(t, obj, round, MS_TO_NS);
 | |
| }
 | |
| 
 | |
| double
 | |
| _PyTime_AsSecondsDouble(_PyTime_t t)
 | |
| {
 | |
|     /* volatile avoids optimization changing how numbers are rounded */
 | |
|     volatile double d;
 | |
| 
 | |
|     if (t % SEC_TO_NS == 0) {
 | |
|         _PyTime_t secs;
 | |
|         /* Divide using integers to avoid rounding issues on the integer part.
 | |
|            1e-9 cannot be stored exactly in IEEE 64-bit. */
 | |
|         secs = t / SEC_TO_NS;
 | |
|         d = (double)secs;
 | |
|     }
 | |
|     else {
 | |
|         d = (double)t;
 | |
|         d /= 1e9;
 | |
|     }
 | |
|     return d;
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| _PyTime_AsNanosecondsObject(_PyTime_t t)
 | |
| {
 | |
|     Py_BUILD_ASSERT(sizeof(long long) >= sizeof(_PyTime_t));
 | |
|     return PyLong_FromLongLong((long long)t);
 | |
| }
 | |
| 
 | |
| static _PyTime_t
 | |
| _PyTime_Divide(const _PyTime_t t, const _PyTime_t k,
 | |
|                const _PyTime_round_t round)
 | |
| {
 | |
|     assert(k > 1);
 | |
|     if (round == _PyTime_ROUND_HALF_EVEN) {
 | |
|         _PyTime_t x, r, abs_r;
 | |
|         x = t / k;
 | |
|         r = t % k;
 | |
|         abs_r = Py_ABS(r);
 | |
|         if (abs_r > k / 2 || (abs_r == k / 2 && (Py_ABS(x) & 1))) {
 | |
|             if (t >= 0)
 | |
|                 x++;
 | |
|             else
 | |
|                 x--;
 | |
|         }
 | |
|         return x;
 | |
|     }
 | |
|     else if (round == _PyTime_ROUND_CEILING) {
 | |
|         if (t >= 0)
 | |
|             return (t + k - 1) / k;
 | |
|         else
 | |
|             return t / k;
 | |
|     }
 | |
|     else {
 | |
|         if (t >= 0)
 | |
|             return t / k;
 | |
|         else
 | |
|             return (t - (k - 1)) / k;
 | |
|     }
 | |
| }
 | |
| 
 | |
| _PyTime_t
 | |
| _PyTime_AsMilliseconds(_PyTime_t t, _PyTime_round_t round)
 | |
| {
 | |
|     return _PyTime_Divide(t, NS_TO_MS, round);
 | |
| }
 | |
| 
 | |
| _PyTime_t
 | |
| _PyTime_AsMicroseconds(_PyTime_t t, _PyTime_round_t round)
 | |
| {
 | |
|     return _PyTime_Divide(t, NS_TO_US, round);
 | |
| }
 | |
| 
 | |
| static int
 | |
| _PyTime_AsTimeval_impl(_PyTime_t t, _PyTime_t *p_secs, int *p_us,
 | |
|                        _PyTime_round_t round)
 | |
| {
 | |
|     _PyTime_t secs, ns;
 | |
|     int usec;
 | |
|     int res = 0;
 | |
| 
 | |
|     secs = t / SEC_TO_NS;
 | |
|     ns = t % SEC_TO_NS;
 | |
| 
 | |
|     usec = (int)_PyTime_Divide(ns, US_TO_NS, round);
 | |
|     if (usec < 0) {
 | |
|         usec += SEC_TO_US;
 | |
|         if (secs != _PyTime_MIN)
 | |
|             secs -= 1;
 | |
|         else
 | |
|             res = -1;
 | |
|     }
 | |
|     else if (usec >= SEC_TO_US) {
 | |
|         usec -= SEC_TO_US;
 | |
|         if (secs != _PyTime_MAX)
 | |
|             secs += 1;
 | |
|         else
 | |
|             res = -1;
 | |
|     }
 | |
|     assert(0 <= usec && usec < SEC_TO_US);
 | |
| 
 | |
|     *p_secs = secs;
 | |
|     *p_us = usec;
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| static int
 | |
| _PyTime_AsTimevalStruct_impl(_PyTime_t t, struct timeval *tv,
 | |
|                              _PyTime_round_t round, int raise)
 | |
| {
 | |
|     _PyTime_t secs, secs2;
 | |
|     int us;
 | |
|     int res;
 | |
| 
 | |
|     res = _PyTime_AsTimeval_impl(t, &secs, &us, round);
 | |
| 
 | |
| #ifdef MS_WINDOWS
 | |
|     tv->tv_sec = (long)secs;
 | |
| #else
 | |
|     tv->tv_sec = secs;
 | |
| #endif
 | |
|     tv->tv_usec = us;
 | |
| 
 | |
|     secs2 = (_PyTime_t)tv->tv_sec;
 | |
|     if (res < 0 || secs2 != secs) {
 | |
|         if (raise)
 | |
|             error_time_t_overflow();
 | |
|         return -1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int
 | |
| _PyTime_AsTimeval(_PyTime_t t, struct timeval *tv, _PyTime_round_t round)
 | |
| {
 | |
|     return _PyTime_AsTimevalStruct_impl(t, tv, round, 1);
 | |
| }
 | |
| 
 | |
| int
 | |
| _PyTime_AsTimeval_noraise(_PyTime_t t, struct timeval *tv, _PyTime_round_t round)
 | |
| {
 | |
|     return _PyTime_AsTimevalStruct_impl(t, tv, round, 0);
 | |
| }
 | |
| 
 | |
| int
 | |
| _PyTime_AsTimevalTime_t(_PyTime_t t, time_t *p_secs, int *us,
 | |
|                         _PyTime_round_t round)
 | |
| {
 | |
|     _PyTime_t secs;
 | |
|     int res;
 | |
| 
 | |
|     res = _PyTime_AsTimeval_impl(t, &secs, us, round);
 | |
| 
 | |
|     *p_secs = secs;
 | |
| 
 | |
|     if (res < 0 || (_PyTime_t)*p_secs != secs) {
 | |
|         error_time_t_overflow();
 | |
|         return -1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| #if defined(HAVE_CLOCK_GETTIME) || defined(HAVE_KQUEUE)
 | |
| int
 | |
| _PyTime_AsTimespec(_PyTime_t t, struct timespec *ts)
 | |
| {
 | |
|     _PyTime_t secs, nsec;
 | |
| 
 | |
|     secs = t / SEC_TO_NS;
 | |
|     nsec = t % SEC_TO_NS;
 | |
|     if (nsec < 0) {
 | |
|         nsec += SEC_TO_NS;
 | |
|         secs -= 1;
 | |
|     }
 | |
|     ts->tv_sec = (time_t)secs;
 | |
|     assert(0 <= nsec && nsec < SEC_TO_NS);
 | |
|     ts->tv_nsec = nsec;
 | |
| 
 | |
|     if ((_PyTime_t)ts->tv_sec != secs) {
 | |
|         error_time_t_overflow();
 | |
|         return -1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int
 | |
| pygettimeofday(_PyTime_t *tp, _Py_clock_info_t *info, int raise)
 | |
| {
 | |
| #ifdef MS_WINDOWS
 | |
|     FILETIME system_time;
 | |
|     ULARGE_INTEGER large;
 | |
| 
 | |
|     assert(info == NULL || raise);
 | |
| 
 | |
|     GetSystemTimeAsFileTime(&system_time);
 | |
|     large.u.LowPart = system_time.dwLowDateTime;
 | |
|     large.u.HighPart = system_time.dwHighDateTime;
 | |
|     /* 11,644,473,600,000,000,000: number of nanoseconds between
 | |
|        the 1st january 1601 and the 1st january 1970 (369 years + 89 leap
 | |
|        days). */
 | |
|     *tp = large.QuadPart * 100 - 11644473600000000000;
 | |
|     if (info) {
 | |
|         DWORD timeAdjustment, timeIncrement;
 | |
|         BOOL isTimeAdjustmentDisabled, ok;
 | |
| 
 | |
|         info->implementation = "GetSystemTimeAsFileTime()";
 | |
|         info->monotonic = 0;
 | |
|         ok = GetSystemTimeAdjustment(&timeAdjustment, &timeIncrement,
 | |
|                                      &isTimeAdjustmentDisabled);
 | |
|         if (!ok) {
 | |
|             PyErr_SetFromWindowsErr(0);
 | |
|             return -1;
 | |
|         }
 | |
|         info->resolution = timeIncrement * 1e-7;
 | |
|         info->adjustable = 1;
 | |
|     }
 | |
| 
 | |
| #else   /* MS_WINDOWS */
 | |
|     int err;
 | |
| #ifdef HAVE_CLOCK_GETTIME
 | |
|     struct timespec ts;
 | |
| #else
 | |
|     struct timeval tv;
 | |
| #endif
 | |
| 
 | |
|     assert(info == NULL || raise);
 | |
| 
 | |
| #ifdef HAVE_CLOCK_GETTIME
 | |
|     err = clock_gettime(CLOCK_REALTIME, &ts);
 | |
|     if (err) {
 | |
|         if (raise)
 | |
|             PyErr_SetFromErrno(PyExc_OSError);
 | |
|         return -1;
 | |
|     }
 | |
|     if (_PyTime_FromTimespec(tp, &ts, raise) < 0)
 | |
|         return -1;
 | |
| 
 | |
|     if (info) {
 | |
|         struct timespec res;
 | |
|         info->implementation = "clock_gettime(CLOCK_REALTIME)";
 | |
|         info->monotonic = 0;
 | |
|         info->adjustable = 1;
 | |
|         if (clock_getres(CLOCK_REALTIME, &res) == 0)
 | |
|             info->resolution = res.tv_sec + res.tv_nsec * 1e-9;
 | |
|         else
 | |
|             info->resolution = 1e-9;
 | |
|     }
 | |
| #else   /* HAVE_CLOCK_GETTIME */
 | |
| 
 | |
|      /* test gettimeofday() */
 | |
| #ifdef GETTIMEOFDAY_NO_TZ
 | |
|     err = gettimeofday(&tv);
 | |
| #else
 | |
|     err = gettimeofday(&tv, (struct timezone *)NULL);
 | |
| #endif
 | |
|     if (err) {
 | |
|         if (raise)
 | |
|             PyErr_SetFromErrno(PyExc_OSError);
 | |
|         return -1;
 | |
|     }
 | |
|     if (_PyTime_FromTimeval(tp, &tv, raise) < 0)
 | |
|         return -1;
 | |
| 
 | |
|     if (info) {
 | |
|         info->implementation = "gettimeofday()";
 | |
|         info->resolution = 1e-6;
 | |
|         info->monotonic = 0;
 | |
|         info->adjustable = 1;
 | |
|     }
 | |
| #endif   /* !HAVE_CLOCK_GETTIME */
 | |
| #endif   /* !MS_WINDOWS */
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| _PyTime_t
 | |
| _PyTime_GetSystemClock(void)
 | |
| {
 | |
|     _PyTime_t t;
 | |
|     if (pygettimeofday(&t, NULL, 0) < 0) {
 | |
|         /* should not happen, _PyTime_Init() checked the clock at startup */
 | |
|         assert(0);
 | |
| 
 | |
|         /* use a fixed value instead of a random value from the stack */
 | |
|         t = 0;
 | |
|     }
 | |
|     return t;
 | |
| }
 | |
| 
 | |
| int
 | |
| _PyTime_GetSystemClockWithInfo(_PyTime_t *t, _Py_clock_info_t *info)
 | |
| {
 | |
|     return pygettimeofday(t, info, 1);
 | |
| }
 | |
| 
 | |
| static int
 | |
| pymonotonic(_PyTime_t *tp, _Py_clock_info_t *info, int raise)
 | |
| {
 | |
| #if defined(MS_WINDOWS)
 | |
|     ULONGLONG ticks;
 | |
|     _PyTime_t t;
 | |
| 
 | |
|     assert(info == NULL || raise);
 | |
| 
 | |
|     ticks = GetTickCount64();
 | |
|     Py_BUILD_ASSERT(sizeof(ticks) <= sizeof(_PyTime_t));
 | |
|     t = (_PyTime_t)ticks;
 | |
| 
 | |
|     if (_PyTime_check_mul_overflow(t, MS_TO_NS)) {
 | |
|         if (raise) {
 | |
|             _PyTime_overflow();
 | |
|             return -1;
 | |
|         }
 | |
|         /* Hello, time traveler! */
 | |
|         assert(0);
 | |
|     }
 | |
|     *tp = t * MS_TO_NS;
 | |
| 
 | |
|     if (info) {
 | |
|         DWORD timeAdjustment, timeIncrement;
 | |
|         BOOL isTimeAdjustmentDisabled, ok;
 | |
|         info->implementation = "GetTickCount64()";
 | |
|         info->monotonic = 1;
 | |
|         ok = GetSystemTimeAdjustment(&timeAdjustment, &timeIncrement,
 | |
|                                      &isTimeAdjustmentDisabled);
 | |
|         if (!ok) {
 | |
|             PyErr_SetFromWindowsErr(0);
 | |
|             return -1;
 | |
|         }
 | |
|         info->resolution = timeIncrement * 1e-7;
 | |
|         info->adjustable = 0;
 | |
|     }
 | |
| 
 | |
| #elif defined(__APPLE__)
 | |
|     static mach_timebase_info_data_t timebase;
 | |
|     uint64_t time;
 | |
| 
 | |
|     if (timebase.denom == 0) {
 | |
|         /* According to the Technical Q&A QA1398, mach_timebase_info() cannot
 | |
|            fail: https://developer.apple.com/library/mac/#qa/qa1398/ */
 | |
|         (void)mach_timebase_info(&timebase);
 | |
|     }
 | |
| 
 | |
|     time = mach_absolute_time();
 | |
| 
 | |
|     /* apply timebase factor */
 | |
|     time *= timebase.numer;
 | |
|     time /= timebase.denom;
 | |
| 
 | |
|     *tp = time;
 | |
| 
 | |
|     if (info) {
 | |
|         info->implementation = "mach_absolute_time()";
 | |
|         info->resolution = (double)timebase.numer / timebase.denom * 1e-9;
 | |
|         info->monotonic = 1;
 | |
|         info->adjustable = 0;
 | |
|     }
 | |
| 
 | |
| #elif defined(__hpux)
 | |
|     hrtime_t time;
 | |
| 
 | |
|     time = gethrtime();
 | |
|     if (time == -1) {
 | |
|         if (raise) {
 | |
|             PyErr_SetFromErrno(PyExc_OSError);
 | |
|         }
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     *tp = time;
 | |
| 
 | |
|     if (info) {
 | |
|         info->implementation = "gethrtime()";
 | |
|         info->resolution = 1e-9;
 | |
|         info->monotonic = 1;
 | |
|         info->adjustable = 0;
 | |
|     }
 | |
| 
 | |
| #else
 | |
|     struct timespec ts;
 | |
| #ifdef CLOCK_HIGHRES
 | |
|     const clockid_t clk_id = CLOCK_HIGHRES;
 | |
|     const char *implementation = "clock_gettime(CLOCK_HIGHRES)";
 | |
| #else
 | |
|     const clockid_t clk_id = CLOCK_MONOTONIC;
 | |
|     const char *implementation = "clock_gettime(CLOCK_MONOTONIC)";
 | |
| #endif
 | |
| 
 | |
|     assert(info == NULL || raise);
 | |
| 
 | |
|     if (clock_gettime(clk_id, &ts) != 0) {
 | |
|         if (raise) {
 | |
|             PyErr_SetFromErrno(PyExc_OSError);
 | |
|             return -1;
 | |
|         }
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (info) {
 | |
|         struct timespec res;
 | |
|         info->monotonic = 1;
 | |
|         info->implementation = implementation;
 | |
|         info->adjustable = 0;
 | |
|         if (clock_getres(clk_id, &res) != 0) {
 | |
|             PyErr_SetFromErrno(PyExc_OSError);
 | |
|             return -1;
 | |
|         }
 | |
|         info->resolution = res.tv_sec + res.tv_nsec * 1e-9;
 | |
|     }
 | |
|     if (_PyTime_FromTimespec(tp, &ts, raise) < 0)
 | |
|         return -1;
 | |
| #endif
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| _PyTime_t
 | |
| _PyTime_GetMonotonicClock(void)
 | |
| {
 | |
|     _PyTime_t t;
 | |
|     if (pymonotonic(&t, NULL, 0) < 0) {
 | |
|         /* should not happen, _PyTime_Init() checked that monotonic clock at
 | |
|            startup */
 | |
|         assert(0);
 | |
| 
 | |
|         /* use a fixed value instead of a random value from the stack */
 | |
|         t = 0;
 | |
|     }
 | |
|     return t;
 | |
| }
 | |
| 
 | |
| int
 | |
| _PyTime_GetMonotonicClockWithInfo(_PyTime_t *tp, _Py_clock_info_t *info)
 | |
| {
 | |
|     return pymonotonic(tp, info, 1);
 | |
| }
 | |
| 
 | |
| int
 | |
| _PyTime_Init(void)
 | |
| {
 | |
|     _PyTime_t t;
 | |
| 
 | |
|     /* ensure that the system clock works */
 | |
|     if (_PyTime_GetSystemClockWithInfo(&t, NULL) < 0)
 | |
|         return -1;
 | |
| 
 | |
|     /* ensure that the operating system provides a monotonic clock */
 | |
|     if (_PyTime_GetMonotonicClockWithInfo(&t, NULL) < 0)
 | |
|         return -1;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int
 | |
| _PyTime_localtime(time_t t, struct tm *tm)
 | |
| {
 | |
| #ifdef MS_WINDOWS
 | |
|     int error;
 | |
| 
 | |
|     error = localtime_s(tm, &t);
 | |
|     if (error != 0) {
 | |
|         errno = error;
 | |
|         PyErr_SetFromErrno(PyExc_OSError);
 | |
|         return -1;
 | |
|     }
 | |
|     return 0;
 | |
| #else /* !MS_WINDOWS */
 | |
|     if (localtime_r(&t, tm) == NULL) {
 | |
| #ifdef EINVAL
 | |
|         if (errno == 0)
 | |
|             errno = EINVAL;
 | |
| #endif
 | |
|         PyErr_SetFromErrno(PyExc_OSError);
 | |
|         return -1;
 | |
|     }
 | |
|     return 0;
 | |
| #endif /* MS_WINDOWS */
 | |
| }
 | |
| 
 | |
| int
 | |
| _PyTime_gmtime(time_t t, struct tm *tm)
 | |
| {
 | |
| #ifdef MS_WINDOWS
 | |
|     int error;
 | |
| 
 | |
|     error = gmtime_s(tm, &t);
 | |
|     if (error != 0) {
 | |
|         errno = error;
 | |
|         PyErr_SetFromErrno(PyExc_OSError);
 | |
|         return -1;
 | |
|     }
 | |
|     return 0;
 | |
| #else /* !MS_WINDOWS */
 | |
|     if (gmtime_r(&t, tm) == NULL) {
 | |
| #ifdef EINVAL
 | |
|         if (errno == 0)
 | |
|             errno = EINVAL;
 | |
| #endif
 | |
|         PyErr_SetFromErrno(PyExc_OSError);
 | |
|         return -1;
 | |
|     }
 | |
|     return 0;
 | |
| #endif /* MS_WINDOWS */
 | |
| }
 |