mirror of
				https://github.com/python/cpython.git
				synced 2025-11-04 07:31:38 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			257 lines
		
	
	
	
		
			6.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			257 lines
		
	
	
	
		
			6.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright (c) 2008-2012 Stefan Krah. All rights reserved.
 | 
						|
 *
 | 
						|
 * Redistribution and use in source and binary forms, with or without
 | 
						|
 * modification, are permitted provided that the following conditions
 | 
						|
 * are met:
 | 
						|
 *
 | 
						|
 * 1. Redistributions of source code must retain the above copyright
 | 
						|
 *    notice, this list of conditions and the following disclaimer.
 | 
						|
 *
 | 
						|
 * 2. Redistributions in binary form must reproduce the above copyright
 | 
						|
 *    notice, this list of conditions and the following disclaimer in the
 | 
						|
 *    documentation and/or other materials provided with the distribution.
 | 
						|
 *
 | 
						|
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
 | 
						|
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | 
						|
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | 
						|
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 | 
						|
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | 
						|
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 | 
						|
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | 
						|
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | 
						|
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 | 
						|
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 | 
						|
 * SUCH DAMAGE.
 | 
						|
 */
 | 
						|
 | 
						|
 | 
						|
#include "mpdecimal.h"
 | 
						|
#include <assert.h>
 | 
						|
#include "numbertheory.h"
 | 
						|
#include "sixstep.h"
 | 
						|
#include "transpose.h"
 | 
						|
#include "umodarith.h"
 | 
						|
#include "fourstep.h"
 | 
						|
 | 
						|
 | 
						|
/* Bignum: Cache efficient Matrix Fourier Transform for arrays of the
 | 
						|
   form 3 * 2**n (See literature/matrix-transform.txt). */
 | 
						|
 | 
						|
 | 
						|
#ifndef PPRO
 | 
						|
static inline void
 | 
						|
std_size3_ntt(mpd_uint_t *x1, mpd_uint_t *x2, mpd_uint_t *x3,
 | 
						|
              mpd_uint_t w3table[3], mpd_uint_t umod)
 | 
						|
{
 | 
						|
    mpd_uint_t r1, r2;
 | 
						|
    mpd_uint_t w;
 | 
						|
    mpd_uint_t s, tmp;
 | 
						|
 | 
						|
 | 
						|
    /* k = 0 -> w = 1 */
 | 
						|
    s = *x1;
 | 
						|
    s = addmod(s, *x2, umod);
 | 
						|
    s = addmod(s, *x3, umod);
 | 
						|
 | 
						|
    r1 = s;
 | 
						|
 | 
						|
    /* k = 1 */
 | 
						|
    s = *x1;
 | 
						|
 | 
						|
    w = w3table[1];
 | 
						|
    tmp = MULMOD(*x2, w);
 | 
						|
    s = addmod(s, tmp, umod);
 | 
						|
 | 
						|
    w = w3table[2];
 | 
						|
    tmp = MULMOD(*x3, w);
 | 
						|
    s = addmod(s, tmp, umod);
 | 
						|
 | 
						|
    r2 = s;
 | 
						|
 | 
						|
    /* k = 2 */
 | 
						|
    s = *x1;
 | 
						|
 | 
						|
    w = w3table[2];
 | 
						|
    tmp = MULMOD(*x2, w);
 | 
						|
    s = addmod(s, tmp, umod);
 | 
						|
 | 
						|
    w = w3table[1];
 | 
						|
    tmp = MULMOD(*x3, w);
 | 
						|
    s = addmod(s, tmp, umod);
 | 
						|
 | 
						|
    *x3 = s;
 | 
						|
    *x2 = r2;
 | 
						|
    *x1 = r1;
 | 
						|
}
 | 
						|
#else /* PPRO */
 | 
						|
static inline void
 | 
						|
ppro_size3_ntt(mpd_uint_t *x1, mpd_uint_t *x2, mpd_uint_t *x3, mpd_uint_t w3table[3],
 | 
						|
               mpd_uint_t umod, double *dmod, uint32_t dinvmod[3])
 | 
						|
{
 | 
						|
    mpd_uint_t r1, r2;
 | 
						|
    mpd_uint_t w;
 | 
						|
    mpd_uint_t s, tmp;
 | 
						|
 | 
						|
 | 
						|
    /* k = 0 -> w = 1 */
 | 
						|
    s = *x1;
 | 
						|
    s = addmod(s, *x2, umod);
 | 
						|
    s = addmod(s, *x3, umod);
 | 
						|
 | 
						|
    r1 = s;
 | 
						|
 | 
						|
    /* k = 1 */
 | 
						|
    s = *x1;
 | 
						|
 | 
						|
    w = w3table[1];
 | 
						|
    tmp = ppro_mulmod(*x2, w, dmod, dinvmod);
 | 
						|
    s = addmod(s, tmp, umod);
 | 
						|
 | 
						|
    w = w3table[2];
 | 
						|
    tmp = ppro_mulmod(*x3, w, dmod, dinvmod);
 | 
						|
    s = addmod(s, tmp, umod);
 | 
						|
 | 
						|
    r2 = s;
 | 
						|
 | 
						|
    /* k = 2 */
 | 
						|
    s = *x1;
 | 
						|
 | 
						|
    w = w3table[2];
 | 
						|
    tmp = ppro_mulmod(*x2, w, dmod, dinvmod);
 | 
						|
    s = addmod(s, tmp, umod);
 | 
						|
 | 
						|
    w = w3table[1];
 | 
						|
    tmp = ppro_mulmod(*x3, w, dmod, dinvmod);
 | 
						|
    s = addmod(s, tmp, umod);
 | 
						|
 | 
						|
    *x3 = s;
 | 
						|
    *x2 = r2;
 | 
						|
    *x1 = r1;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
/* forward transform, sign = -1; transform length = 3 * 2**n */
 | 
						|
int
 | 
						|
four_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum)
 | 
						|
{
 | 
						|
    mpd_size_t R = 3; /* number of rows */
 | 
						|
    mpd_size_t C = n / 3; /* number of columns */
 | 
						|
    mpd_uint_t w3table[3];
 | 
						|
    mpd_uint_t kernel, w0, w1, wstep;
 | 
						|
    mpd_uint_t *s, *p0, *p1, *p2;
 | 
						|
    mpd_uint_t umod;
 | 
						|
#ifdef PPRO
 | 
						|
    double dmod;
 | 
						|
    uint32_t dinvmod[3];
 | 
						|
#endif
 | 
						|
    mpd_size_t i, k;
 | 
						|
 | 
						|
 | 
						|
    assert(n >= 48);
 | 
						|
    assert(n <= 3*MPD_MAXTRANSFORM_2N);
 | 
						|
 | 
						|
 | 
						|
    /* Length R transform on the columns. */
 | 
						|
    SETMODULUS(modnum);
 | 
						|
    _mpd_init_w3table(w3table, -1, modnum);
 | 
						|
    for (p0=a, p1=p0+C, p2=p0+2*C; p0<a+C; p0++,p1++,p2++) {
 | 
						|
 | 
						|
        SIZE3_NTT(p0, p1, p2, w3table);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */
 | 
						|
    kernel = _mpd_getkernel(n, -1, modnum);
 | 
						|
    for (i = 1; i < R; i++) {
 | 
						|
        w0 = 1;                  /* r**(i*0): initial value for k=0 */
 | 
						|
        w1 = POWMOD(kernel, i);  /* r**(i*1): initial value for k=1 */
 | 
						|
        wstep = MULMOD(w1, w1);  /* r**(2*i) */
 | 
						|
        for (k = 0; k < C-1; k += 2) {
 | 
						|
            mpd_uint_t x0 = a[i*C+k];
 | 
						|
            mpd_uint_t x1 = a[i*C+k+1];
 | 
						|
            MULMOD2(&x0, w0, &x1, w1);
 | 
						|
            MULMOD2C(&w0, &w1, wstep);  /* r**(i*(k+2)) = r**(i*k) * r**(2*i) */
 | 
						|
            a[i*C+k] = x0;
 | 
						|
            a[i*C+k+1] = x1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Length C transform on the rows. */
 | 
						|
    for (s = a; s < a+n; s += C) {
 | 
						|
        if (!six_step_fnt(s, C, modnum)) {
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
#if 0
 | 
						|
    /* An unordered transform is sufficient for convolution. */
 | 
						|
    /* Transpose the matrix. */
 | 
						|
    transpose_3xpow2(a, R, C);
 | 
						|
#endif
 | 
						|
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
 | 
						|
/* backward transform, sign = 1; transform length = 3 * 2**n */
 | 
						|
int
 | 
						|
inv_four_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum)
 | 
						|
{
 | 
						|
    mpd_size_t R = 3; /* number of rows */
 | 
						|
    mpd_size_t C = n / 3; /* number of columns */
 | 
						|
    mpd_uint_t w3table[3];
 | 
						|
    mpd_uint_t kernel, w0, w1, wstep;
 | 
						|
    mpd_uint_t *s, *p0, *p1, *p2;
 | 
						|
    mpd_uint_t umod;
 | 
						|
#ifdef PPRO
 | 
						|
    double dmod;
 | 
						|
    uint32_t dinvmod[3];
 | 
						|
#endif
 | 
						|
    mpd_size_t i, k;
 | 
						|
 | 
						|
 | 
						|
    assert(n >= 48);
 | 
						|
    assert(n <= 3*MPD_MAXTRANSFORM_2N);
 | 
						|
 | 
						|
 | 
						|
#if 0
 | 
						|
    /* An unordered transform is sufficient for convolution. */
 | 
						|
    /* Transpose the matrix, producing an R*C matrix. */
 | 
						|
    transpose_3xpow2(a, C, R);
 | 
						|
#endif
 | 
						|
 | 
						|
    /* Length C transform on the rows. */
 | 
						|
    for (s = a; s < a+n; s += C) {
 | 
						|
        if (!inv_six_step_fnt(s, C, modnum)) {
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */
 | 
						|
    SETMODULUS(modnum);
 | 
						|
    kernel = _mpd_getkernel(n, 1, modnum);
 | 
						|
    for (i = 1; i < R; i++) {
 | 
						|
        w0 = 1;
 | 
						|
        w1 = POWMOD(kernel, i);
 | 
						|
        wstep = MULMOD(w1, w1);
 | 
						|
        for (k = 0; k < C; k += 2) {
 | 
						|
            mpd_uint_t x0 = a[i*C+k];
 | 
						|
            mpd_uint_t x1 = a[i*C+k+1];
 | 
						|
            MULMOD2(&x0, w0, &x1, w1);
 | 
						|
            MULMOD2C(&w0, &w1, wstep);
 | 
						|
            a[i*C+k] = x0;
 | 
						|
            a[i*C+k+1] = x1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Length R transform on the columns. */
 | 
						|
    _mpd_init_w3table(w3table, 1, modnum);
 | 
						|
    for (p0=a, p1=p0+C, p2=p0+2*C; p0<a+C; p0++,p1++,p2++) {
 | 
						|
 | 
						|
        SIZE3_NTT(p0, p1, p2, w3table);
 | 
						|
    }
 | 
						|
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
 | 
						|
 |