mirror of
				https://github.com/python/cpython.git
				synced 2025-10-31 13:41:24 +00:00 
			
		
		
		
	 24f5785fea
			
		
	
	
		24f5785fea
		
	
	
	
	
		
			
			svn+ssh://pythondev@svn.python.org/python/trunk
........
  r75110 | mark.dickinson | 2009-09-28 17:52:40 +0100 (Mon, 28 Sep 2009) | 9 lines
  Style/consistency/nano-optimization nit:  replace occurrences of
    (high_bits << PyLong_SHIFT) + low_bits with
    (high_bits << PyLong_SHIFT) | low_bits
  in Objects/longobject.c.  Motivation:
   - shouldn't unnecessarily mix bit ops with arithmetic ops (style)
   - this pattern should be spelt the same way thoughout (consistency)
   - it's very very very slightly faster: no need to worry about
     carries to the high digit (nano-optimization).
........
		
	
			
		
			
				
	
	
		
			4350 lines
		
	
	
	
		
			110 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4350 lines
		
	
	
	
		
			110 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Long (arbitrary precision) integer object implementation */
 | |
| 
 | |
| /* XXX The functional organization of this file is terrible */
 | |
| 
 | |
| #include "Python.h"
 | |
| #include "longintrepr.h"
 | |
| #include "structseq.h"
 | |
| 
 | |
| #include <float.h>
 | |
| #include <ctype.h>
 | |
| #include <stddef.h>
 | |
| 
 | |
| #ifndef NSMALLPOSINTS
 | |
| #define NSMALLPOSINTS		257
 | |
| #endif
 | |
| #ifndef NSMALLNEGINTS
 | |
| #define NSMALLNEGINTS		5
 | |
| #endif
 | |
| 
 | |
| /* convert a PyLong of size 1, 0 or -1 to an sdigit */
 | |
| #define MEDIUM_VALUE(x) (Py_SIZE(x) < 0 ? -(sdigit)(x)->ob_digit[0] :	\
 | |
| 			 (Py_SIZE(x) == 0 ? (sdigit)0 :			\
 | |
| 			  (sdigit)(x)->ob_digit[0]))
 | |
| #define ABS(x) ((x) < 0 ? -(x) : (x))
 | |
| 
 | |
| #if NSMALLNEGINTS + NSMALLPOSINTS > 0
 | |
| /* Small integers are preallocated in this array so that they
 | |
|    can be shared.
 | |
|    The integers that are preallocated are those in the range
 | |
|    -NSMALLNEGINTS (inclusive) to NSMALLPOSINTS (not inclusive).
 | |
| */
 | |
| static PyLongObject small_ints[NSMALLNEGINTS + NSMALLPOSINTS];
 | |
| #ifdef COUNT_ALLOCS
 | |
| int quick_int_allocs, quick_neg_int_allocs;
 | |
| #endif
 | |
| 
 | |
| static PyObject *
 | |
| get_small_int(sdigit ival)
 | |
| {
 | |
| 	PyObject *v = (PyObject*)(small_ints + ival + NSMALLNEGINTS);
 | |
| 	Py_INCREF(v);
 | |
| #ifdef COUNT_ALLOCS
 | |
| 	if (ival >= 0)
 | |
| 		quick_int_allocs++;
 | |
| 	else
 | |
| 		quick_neg_int_allocs++;
 | |
| #endif
 | |
| 	return v;
 | |
| }
 | |
| #define CHECK_SMALL_INT(ival) \
 | |
| 	do if (-NSMALLNEGINTS <= ival && ival < NSMALLPOSINTS) { \
 | |
| 		return get_small_int((sdigit)ival); \
 | |
| 	} while(0)
 | |
| 
 | |
| static PyLongObject * 
 | |
| maybe_small_long(PyLongObject *v)
 | |
| {
 | |
| 	if (v && ABS(Py_SIZE(v)) <= 1) {
 | |
| 		sdigit ival = MEDIUM_VALUE(v);
 | |
| 		if (-NSMALLNEGINTS <= ival && ival < NSMALLPOSINTS) {
 | |
| 			Py_DECREF(v);
 | |
| 			return (PyLongObject *)get_small_int(ival);
 | |
| 		}
 | |
| 	}
 | |
| 	return v;
 | |
| }
 | |
| #else
 | |
| #define CHECK_SMALL_INT(ival)
 | |
| #define maybe_small_long(val) (val)
 | |
| #endif
 | |
| 
 | |
| /* If a freshly-allocated long is already shared, it must
 | |
|    be a small integer, so negating it must go to PyLong_FromLong */
 | |
| #define NEGATE(x) \
 | |
| 	do if (Py_REFCNT(x) == 1) Py_SIZE(x) = -Py_SIZE(x);  \
 | |
| 	   else { PyObject* tmp=PyLong_FromLong(-MEDIUM_VALUE(x));  \
 | |
| 		   Py_DECREF(x); (x) = (PyLongObject*)tmp; }	   \
 | |
|         while(0)
 | |
| /* For long multiplication, use the O(N**2) school algorithm unless
 | |
|  * both operands contain more than KARATSUBA_CUTOFF digits (this
 | |
|  * being an internal Python long digit, in base BASE).
 | |
|  */
 | |
| #define KARATSUBA_CUTOFF 70
 | |
| #define KARATSUBA_SQUARE_CUTOFF (2 * KARATSUBA_CUTOFF)
 | |
| 
 | |
| /* For exponentiation, use the binary left-to-right algorithm
 | |
|  * unless the exponent contains more than FIVEARY_CUTOFF digits.
 | |
|  * In that case, do 5 bits at a time.  The potential drawback is that
 | |
|  * a table of 2**5 intermediate results is computed.
 | |
|  */
 | |
| #define FIVEARY_CUTOFF 8
 | |
| 
 | |
| #undef MIN
 | |
| #undef MAX
 | |
| #define MAX(x, y) ((x) < (y) ? (y) : (x))
 | |
| #define MIN(x, y) ((x) > (y) ? (y) : (x))
 | |
| 
 | |
| #define SIGCHECK(PyTryBlock) \
 | |
| 	if (--_Py_Ticker < 0) { \
 | |
| 		_Py_Ticker = _Py_CheckInterval; \
 | |
| 		if (PyErr_CheckSignals()) PyTryBlock \
 | |
| 	}
 | |
| 
 | |
| /* forward declaration */
 | |
| static int bits_in_digit(digit d);
 | |
| 
 | |
| /* Normalize (remove leading zeros from) a long int object.
 | |
|    Doesn't attempt to free the storage--in most cases, due to the nature
 | |
|    of the algorithms used, this could save at most be one word anyway. */
 | |
| 
 | |
| static PyLongObject *
 | |
| long_normalize(register PyLongObject *v)
 | |
| {
 | |
| 	Py_ssize_t j = ABS(Py_SIZE(v));
 | |
| 	Py_ssize_t i = j;
 | |
| 
 | |
| 	while (i > 0 && v->ob_digit[i-1] == 0)
 | |
| 		--i;
 | |
| 	if (i != j)
 | |
| 		Py_SIZE(v) = (Py_SIZE(v) < 0) ? -(i) : i;
 | |
| 	return v;
 | |
| }
 | |
| 
 | |
| /* Allocate a new long int object with size digits.
 | |
|    Return NULL and set exception if we run out of memory. */
 | |
| 
 | |
| #define MAX_LONG_DIGITS \
 | |
| 	((PY_SSIZE_T_MAX - offsetof(PyLongObject, ob_digit))/sizeof(digit))
 | |
| 
 | |
| PyLongObject *
 | |
| _PyLong_New(Py_ssize_t size)
 | |
| {
 | |
| 	PyLongObject *result;
 | |
| 	/* Number of bytes needed is: offsetof(PyLongObject, ob_digit) +
 | |
| 	   sizeof(digit)*size.  Previous incarnations of this code used
 | |
| 	   sizeof(PyVarObject) instead of the offsetof, but this risks being
 | |
| 	   incorrect in the presence of padding between the PyVarObject header
 | |
| 	   and the digits. */
 | |
| 	if (size > (Py_ssize_t)MAX_LONG_DIGITS) {
 | |
| 		PyErr_SetString(PyExc_OverflowError,
 | |
| 				"too many digits in integer");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	result = PyObject_MALLOC(offsetof(PyLongObject, ob_digit) +
 | |
| 				 size*sizeof(digit));
 | |
| 	if (!result) {
 | |
| 		PyErr_NoMemory();
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return (PyLongObject*)PyObject_INIT_VAR(result, &PyLong_Type, size);
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| _PyLong_Copy(PyLongObject *src)
 | |
| {
 | |
| 	PyLongObject *result;
 | |
| 	Py_ssize_t i;
 | |
| 
 | |
| 	assert(src != NULL);
 | |
| 	i = Py_SIZE(src);
 | |
| 	if (i < 0)
 | |
| 		i = -(i);
 | |
| 	if (i < 2) {
 | |
| 		sdigit ival = src->ob_digit[0];
 | |
| 		if (Py_SIZE(src) < 0)
 | |
| 			ival = -ival;
 | |
| 		CHECK_SMALL_INT(ival);
 | |
| 	}
 | |
| 	result = _PyLong_New(i);
 | |
| 	if (result != NULL) {
 | |
| 		Py_SIZE(result) = Py_SIZE(src);
 | |
| 		while (--i >= 0)
 | |
| 			result->ob_digit[i] = src->ob_digit[i];
 | |
| 	}
 | |
| 	return (PyObject *)result;
 | |
| }
 | |
| 
 | |
| /* Create a new long int object from a C long int */
 | |
| 
 | |
| PyObject *
 | |
| PyLong_FromLong(long ival)
 | |
| {
 | |
| 	PyLongObject *v;
 | |
| 	unsigned long abs_ival;
 | |
| 	unsigned long t;  /* unsigned so >> doesn't propagate sign bit */
 | |
| 	int ndigits = 0;
 | |
| 	int sign = 1;
 | |
| 
 | |
| 	CHECK_SMALL_INT(ival);
 | |
| 
 | |
| 	if (ival < 0) {
 | |
| 		/* negate: can't write this as abs_ival = -ival since that
 | |
| 		   invokes undefined behaviour when ival is LONG_MIN */
 | |
| 		abs_ival = 0U-(unsigned long)ival;
 | |
| 		sign = -1;
 | |
| 	}
 | |
| 	else {
 | |
| 		abs_ival = (unsigned long)ival;
 | |
| 	}
 | |
| 
 | |
| 	/* Fast path for single-digit ints */
 | |
| 	if (!(abs_ival >> PyLong_SHIFT)) {
 | |
| 		v = _PyLong_New(1);
 | |
| 		if (v) {
 | |
| 			Py_SIZE(v) = sign;
 | |
| 			v->ob_digit[0] = Py_SAFE_DOWNCAST(
 | |
| 				abs_ival, unsigned long, digit);
 | |
| 		}
 | |
| 		return (PyObject*)v;
 | |
| 	}
 | |
| 
 | |
| #if PyLong_SHIFT==15
 | |
| 	/* 2 digits */
 | |
| 	if (!(abs_ival >> 2*PyLong_SHIFT)) {
 | |
| 		v = _PyLong_New(2);
 | |
| 		if (v) {
 | |
| 			Py_SIZE(v) = 2*sign;
 | |
| 			v->ob_digit[0] = Py_SAFE_DOWNCAST(
 | |
| 				abs_ival & PyLong_MASK, unsigned long, digit);
 | |
| 			v->ob_digit[1] = Py_SAFE_DOWNCAST(
 | |
| 			      abs_ival >> PyLong_SHIFT, unsigned long, digit);
 | |
| 		}
 | |
| 		return (PyObject*)v;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/* Larger numbers: loop to determine number of digits */
 | |
| 	t = abs_ival;
 | |
| 	while (t) {
 | |
| 		++ndigits;
 | |
| 		t >>= PyLong_SHIFT;
 | |
| 	}
 | |
| 	v = _PyLong_New(ndigits);
 | |
| 	if (v != NULL) {
 | |
| 		digit *p = v->ob_digit;
 | |
| 		Py_SIZE(v) = ndigits*sign;
 | |
| 		t = abs_ival;
 | |
| 		while (t) {
 | |
| 			*p++ = Py_SAFE_DOWNCAST(
 | |
| 				t & PyLong_MASK, unsigned long, digit);
 | |
| 			t >>= PyLong_SHIFT;
 | |
| 		}
 | |
| 	}
 | |
| 	return (PyObject *)v;
 | |
| }
 | |
| 
 | |
| /* Create a new long int object from a C unsigned long int */
 | |
| 
 | |
| PyObject *
 | |
| PyLong_FromUnsignedLong(unsigned long ival)
 | |
| {
 | |
| 	PyLongObject *v;
 | |
| 	unsigned long t;
 | |
| 	int ndigits = 0;
 | |
| 
 | |
| 	if (ival < PyLong_BASE)
 | |
| 		return PyLong_FromLong(ival);
 | |
| 	/* Count the number of Python digits. */
 | |
| 	t = (unsigned long)ival;
 | |
| 	while (t) {
 | |
| 		++ndigits;
 | |
| 		t >>= PyLong_SHIFT;
 | |
| 	}
 | |
| 	v = _PyLong_New(ndigits);
 | |
| 	if (v != NULL) {
 | |
| 		digit *p = v->ob_digit;
 | |
| 		Py_SIZE(v) = ndigits;
 | |
| 		while (ival) {
 | |
| 			*p++ = (digit)(ival & PyLong_MASK);
 | |
| 			ival >>= PyLong_SHIFT;
 | |
| 		}
 | |
| 	}
 | |
| 	return (PyObject *)v;
 | |
| }
 | |
| 
 | |
| /* Create a new long int object from a C double */
 | |
| 
 | |
| PyObject *
 | |
| PyLong_FromDouble(double dval)
 | |
| {
 | |
| 	PyLongObject *v;
 | |
| 	double frac;
 | |
| 	int i, ndig, expo, neg;
 | |
| 	neg = 0;
 | |
| 	if (Py_IS_INFINITY(dval)) {
 | |
| 		PyErr_SetString(PyExc_OverflowError,
 | |
| 			"cannot convert float infinity to integer");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if (Py_IS_NAN(dval)) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 			"cannot convert float NaN to integer");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if (dval < 0.0) {
 | |
| 		neg = 1;
 | |
| 		dval = -dval;
 | |
| 	}
 | |
| 	frac = frexp(dval, &expo); /* dval = frac*2**expo; 0.0 <= frac < 1.0 */
 | |
| 	if (expo <= 0)
 | |
| 		return PyLong_FromLong(0L);
 | |
| 	ndig = (expo-1) / PyLong_SHIFT + 1; /* Number of 'digits' in result */
 | |
| 	v = _PyLong_New(ndig);
 | |
| 	if (v == NULL)
 | |
| 		return NULL;
 | |
| 	frac = ldexp(frac, (expo-1) % PyLong_SHIFT + 1);
 | |
| 	for (i = ndig; --i >= 0; ) {
 | |
| 		digit bits = (digit)frac;
 | |
| 		v->ob_digit[i] = bits;
 | |
| 		frac = frac - (double)bits;
 | |
| 		frac = ldexp(frac, PyLong_SHIFT);
 | |
| 	}
 | |
| 	if (neg)
 | |
| 		Py_SIZE(v) = -(Py_SIZE(v));
 | |
| 	return (PyObject *)v;
 | |
| }
 | |
| 
 | |
| /* Checking for overflow in PyLong_AsLong is a PITA since C doesn't define
 | |
|  * anything about what happens when a signed integer operation overflows,
 | |
|  * and some compilers think they're doing you a favor by being "clever"
 | |
|  * then.  The bit pattern for the largest postive signed long is
 | |
|  * (unsigned long)LONG_MAX, and for the smallest negative signed long
 | |
|  * it is abs(LONG_MIN), which we could write -(unsigned long)LONG_MIN.
 | |
|  * However, some other compilers warn about applying unary minus to an
 | |
|  * unsigned operand.  Hence the weird "0-".
 | |
|  */
 | |
| #define PY_ABS_LONG_MIN		(0-(unsigned long)LONG_MIN)
 | |
| #define PY_ABS_SSIZE_T_MIN	(0-(size_t)PY_SSIZE_T_MIN)
 | |
| 
 | |
| /* Get a C long int from a long int object.
 | |
|    Returns -1 and sets an error condition if overflow occurs. */
 | |
| 
 | |
| long
 | |
| PyLong_AsLongAndOverflow(PyObject *vv, int *overflow)
 | |
| {
 | |
| 	/* This version by Tim Peters */
 | |
| 	register PyLongObject *v;
 | |
| 	unsigned long x, prev;
 | |
| 	long res;
 | |
| 	Py_ssize_t i;
 | |
| 	int sign;
 | |
| 	int do_decref = 0; /* if nb_int was called */
 | |
| 
 | |
| 	*overflow = 0;
 | |
| 	if (vv == NULL) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	if (!PyLong_Check(vv)) {
 | |
| 		PyNumberMethods *nb;
 | |
| 		if ((nb = vv->ob_type->tp_as_number) == NULL ||
 | |
| 		    nb->nb_int == NULL) {
 | |
| 			PyErr_SetString(PyExc_TypeError, "an integer is required");
 | |
| 			return -1;
 | |
| 		}
 | |
| 		vv = (*nb->nb_int) (vv);
 | |
| 		if (vv == NULL)
 | |
| 			return -1;
 | |
| 		do_decref = 1;
 | |
| 		if (!PyLong_Check(vv)) {
 | |
| 			Py_DECREF(vv);
 | |
| 			PyErr_SetString(PyExc_TypeError,
 | |
| 					"nb_int should return int object");
 | |
| 			return -1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	res = -1;
 | |
| 	v = (PyLongObject *)vv;
 | |
| 	i = Py_SIZE(v);
 | |
| 
 | |
| 	switch (i) {
 | |
| 	case -1:
 | |
| 		res = -(sdigit)v->ob_digit[0];
 | |
| 		break;
 | |
| 	case 0:
 | |
| 		res = 0;
 | |
| 		break;
 | |
| 	case 1:
 | |
| 		res = v->ob_digit[0];
 | |
| 		break;
 | |
| 	default:
 | |
| 		sign = 1;
 | |
| 		x = 0;
 | |
| 		if (i < 0) {
 | |
| 			sign = -1;
 | |
| 			i = -(i);
 | |
| 		}
 | |
| 		while (--i >= 0) {
 | |
| 			prev = x;
 | |
| 			x = (x << PyLong_SHIFT) | v->ob_digit[i];
 | |
| 			if ((x >> PyLong_SHIFT) != prev) {
 | |
| 				*overflow = Py_SIZE(v) > 0 ? 1 : -1;
 | |
| 				goto exit;
 | |
| 			}
 | |
| 		}
 | |
| 		/* Haven't lost any bits, but casting to long requires extra care
 | |
| 		 * (see comment above).
 | |
| 	         */
 | |
| 		if (x <= (unsigned long)LONG_MAX) {
 | |
| 			res = (long)x * sign;
 | |
| 		}
 | |
| 		else if (sign < 0 && x == PY_ABS_LONG_MIN) {
 | |
| 			res = LONG_MIN;
 | |
| 		}
 | |
| 		else {
 | |
| 			*overflow = Py_SIZE(v) > 0 ? 1 : -1;
 | |
| 			/* res is already set to -1 */
 | |
| 		}	
 | |
| 	}
 | |
|  exit:
 | |
| 	if (do_decref) {
 | |
| 		Py_DECREF(vv);
 | |
| 	}
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| long 
 | |
| PyLong_AsLong(PyObject *obj)
 | |
| {
 | |
| 	int overflow;
 | |
| 	long result = PyLong_AsLongAndOverflow(obj, &overflow);
 | |
| 	if (overflow) {
 | |
| 		/* XXX: could be cute and give a different 
 | |
| 		   message for overflow == -1 */
 | |
| 		PyErr_SetString(PyExc_OverflowError,
 | |
| 				"Python int too large to convert to C long");
 | |
| 	}
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /* Get a Py_ssize_t from a long int object.
 | |
|    Returns -1 and sets an error condition if overflow occurs. */
 | |
| 
 | |
| Py_ssize_t
 | |
| PyLong_AsSsize_t(PyObject *vv) {
 | |
| 	register PyLongObject *v;
 | |
| 	size_t x, prev;
 | |
| 	Py_ssize_t i;
 | |
| 	int sign;
 | |
| 
 | |
| 	if (vv == NULL || !PyLong_Check(vv)) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return -1;
 | |
| 	}
 | |
| 	v = (PyLongObject *)vv;
 | |
| 	i = Py_SIZE(v);
 | |
| 	switch (i) {
 | |
| 	case -1: return -(sdigit)v->ob_digit[0];
 | |
| 	case 0: return 0;
 | |
| 	case 1: return v->ob_digit[0];
 | |
| 	}
 | |
| 	sign = 1;
 | |
| 	x = 0;
 | |
| 	if (i < 0) {
 | |
| 		sign = -1;
 | |
| 		i = -(i);
 | |
| 	}
 | |
| 	while (--i >= 0) {
 | |
| 		prev = x;
 | |
| 		x = (x << PyLong_SHIFT) | v->ob_digit[i];
 | |
| 		if ((x >> PyLong_SHIFT) != prev)
 | |
| 			goto overflow;
 | |
| 	}
 | |
| 	/* Haven't lost any bits, but casting to a signed type requires
 | |
| 	 * extra care (see comment above).
 | |
| 	 */
 | |
| 	if (x <= (size_t)PY_SSIZE_T_MAX) {
 | |
| 		return (Py_ssize_t)x * sign;
 | |
| 	}
 | |
| 	else if (sign < 0 && x == PY_ABS_SSIZE_T_MIN) {
 | |
| 		return PY_SSIZE_T_MIN;
 | |
| 	}
 | |
| 	/* else overflow */
 | |
| 
 | |
|  overflow:
 | |
| 	PyErr_SetString(PyExc_OverflowError,
 | |
| 			"Python int too large to convert to C ssize_t");
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /* Get a C unsigned long int from a long int object.
 | |
|    Returns -1 and sets an error condition if overflow occurs. */
 | |
| 
 | |
| unsigned long
 | |
| PyLong_AsUnsignedLong(PyObject *vv)
 | |
| {
 | |
| 	register PyLongObject *v;
 | |
| 	unsigned long x, prev;
 | |
| 	Py_ssize_t i;
 | |
| 
 | |
| 	if (vv == NULL || !PyLong_Check(vv)) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return (unsigned long) -1;
 | |
| 	}
 | |
| 	v = (PyLongObject *)vv;
 | |
| 	i = Py_SIZE(v);
 | |
| 	x = 0;
 | |
| 	if (i < 0) {
 | |
| 		PyErr_SetString(PyExc_OverflowError,
 | |
| 			   "can't convert negative value to unsigned int");
 | |
| 		return (unsigned long) -1;
 | |
| 	}
 | |
| 	switch (i) {
 | |
| 	case 0: return 0;
 | |
| 	case 1: return v->ob_digit[0];
 | |
| 	}
 | |
| 	while (--i >= 0) {
 | |
| 		prev = x;
 | |
| 		x = (x << PyLong_SHIFT) | v->ob_digit[i];
 | |
| 		if ((x >> PyLong_SHIFT) != prev) {
 | |
| 			PyErr_SetString(PyExc_OverflowError,
 | |
| 			 "python int too large to convert to C unsigned long");
 | |
| 			return (unsigned long) -1;
 | |
| 		}
 | |
| 	}
 | |
| 	return x;
 | |
| }
 | |
| 
 | |
| /* Get a C unsigned long int from a long int object.
 | |
|    Returns -1 and sets an error condition if overflow occurs. */
 | |
| 
 | |
| size_t
 | |
| PyLong_AsSize_t(PyObject *vv)
 | |
| {
 | |
| 	register PyLongObject *v;
 | |
| 	size_t x, prev;
 | |
| 	Py_ssize_t i;
 | |
| 
 | |
| 	if (vv == NULL || !PyLong_Check(vv)) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return (unsigned long) -1;
 | |
| 	}
 | |
| 	v = (PyLongObject *)vv;
 | |
| 	i = Py_SIZE(v);
 | |
| 	x = 0;
 | |
| 	if (i < 0) {
 | |
| 		PyErr_SetString(PyExc_OverflowError,
 | |
| 			   "can't convert negative value to size_t");
 | |
| 		return (size_t) -1;
 | |
| 	}
 | |
| 	switch (i) {
 | |
| 	case 0: return 0;
 | |
| 	case 1: return v->ob_digit[0];
 | |
| 	}
 | |
| 	while (--i >= 0) {
 | |
| 		prev = x;
 | |
| 		x = (x << PyLong_SHIFT) | v->ob_digit[i];
 | |
| 		if ((x >> PyLong_SHIFT) != prev) {
 | |
| 			PyErr_SetString(PyExc_OverflowError,
 | |
| 			    "Python int too large to convert to C size_t");
 | |
| 			return (unsigned long) -1;
 | |
| 		}
 | |
| 	}
 | |
| 	return x;
 | |
| }
 | |
| 
 | |
| /* Get a C unsigned long int from a long int object, ignoring the high bits.
 | |
|    Returns -1 and sets an error condition if an error occurs. */
 | |
| 
 | |
| static unsigned long
 | |
| _PyLong_AsUnsignedLongMask(PyObject *vv)
 | |
| {
 | |
| 	register PyLongObject *v;
 | |
| 	unsigned long x;
 | |
| 	Py_ssize_t i;
 | |
| 	int sign;
 | |
| 
 | |
| 	if (vv == NULL || !PyLong_Check(vv)) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return (unsigned long) -1;
 | |
| 	}
 | |
| 	v = (PyLongObject *)vv;
 | |
| 	i = Py_SIZE(v);
 | |
| 	switch (i) {
 | |
| 	case 0: return 0;
 | |
| 	case 1: return v->ob_digit[0];
 | |
| 	}
 | |
| 	sign = 1;
 | |
| 	x = 0;
 | |
| 	if (i < 0) {
 | |
| 		sign = -1;
 | |
| 		i = -i;
 | |
| 	}
 | |
| 	while (--i >= 0) {
 | |
| 		x = (x << PyLong_SHIFT) | v->ob_digit[i];
 | |
| 	}
 | |
| 	return x * sign;
 | |
| }
 | |
| 
 | |
| unsigned long
 | |
| PyLong_AsUnsignedLongMask(register PyObject *op)
 | |
| {
 | |
| 	PyNumberMethods *nb;
 | |
| 	PyLongObject *lo;
 | |
| 	unsigned long val;
 | |
| 
 | |
| 	if (op && PyLong_Check(op))
 | |
| 		return _PyLong_AsUnsignedLongMask(op);
 | |
| 
 | |
| 	if (op == NULL || (nb = op->ob_type->tp_as_number) == NULL ||
 | |
| 	    nb->nb_int == NULL) {
 | |
| 		PyErr_SetString(PyExc_TypeError, "an integer is required");
 | |
| 		return (unsigned long)-1;
 | |
| 	}
 | |
| 
 | |
| 	lo = (PyLongObject*) (*nb->nb_int) (op);
 | |
| 	if (lo == NULL)
 | |
| 		return (unsigned long)-1;
 | |
| 	if (PyLong_Check(lo)) {
 | |
| 		val = _PyLong_AsUnsignedLongMask((PyObject *)lo);
 | |
| 		Py_DECREF(lo);
 | |
| 		if (PyErr_Occurred())
 | |
| 			return (unsigned long)-1;
 | |
| 		return val;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		Py_DECREF(lo);
 | |
| 		PyErr_SetString(PyExc_TypeError,
 | |
| 				"nb_int should return int object");
 | |
| 		return (unsigned long)-1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int
 | |
| _PyLong_Sign(PyObject *vv)
 | |
| {
 | |
| 	PyLongObject *v = (PyLongObject *)vv;
 | |
| 
 | |
| 	assert(v != NULL);
 | |
| 	assert(PyLong_Check(v));
 | |
| 
 | |
| 	return Py_SIZE(v) == 0 ? 0 : (Py_SIZE(v) < 0 ? -1 : 1);
 | |
| }
 | |
| 
 | |
| size_t
 | |
| _PyLong_NumBits(PyObject *vv)
 | |
| {
 | |
| 	PyLongObject *v = (PyLongObject *)vv;
 | |
| 	size_t result = 0;
 | |
| 	Py_ssize_t ndigits;
 | |
| 
 | |
| 	assert(v != NULL);
 | |
| 	assert(PyLong_Check(v));
 | |
| 	ndigits = ABS(Py_SIZE(v));
 | |
| 	assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0);
 | |
| 	if (ndigits > 0) {
 | |
| 		digit msd = v->ob_digit[ndigits - 1];
 | |
| 
 | |
| 		result = (ndigits - 1) * PyLong_SHIFT;
 | |
| 		if (result / PyLong_SHIFT != (size_t)(ndigits - 1))
 | |
| 			goto Overflow;
 | |
| 		do {
 | |
| 			++result;
 | |
| 			if (result == 0)
 | |
| 				goto Overflow;
 | |
| 			msd >>= 1;
 | |
| 		} while (msd);
 | |
| 	}
 | |
| 	return result;
 | |
| 
 | |
| Overflow:
 | |
| 	PyErr_SetString(PyExc_OverflowError, "int has too many bits "
 | |
| 			"to express in a platform size_t");
 | |
| 	return (size_t)-1;
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| _PyLong_FromByteArray(const unsigned char* bytes, size_t n,
 | |
| 		      int little_endian, int is_signed)
 | |
| {
 | |
| 	const unsigned char* pstartbyte;/* LSB of bytes */
 | |
| 	int incr;			/* direction to move pstartbyte */
 | |
| 	const unsigned char* pendbyte;	/* MSB of bytes */
 | |
| 	size_t numsignificantbytes;	/* number of bytes that matter */
 | |
| 	Py_ssize_t ndigits;		/* number of Python long digits */
 | |
| 	PyLongObject* v;		/* result */
 | |
| 	Py_ssize_t idigit = 0;		/* next free index in v->ob_digit */
 | |
| 
 | |
| 	if (n == 0)
 | |
| 		return PyLong_FromLong(0L);
 | |
| 
 | |
| 	if (little_endian) {
 | |
| 		pstartbyte = bytes;
 | |
| 		pendbyte = bytes + n - 1;
 | |
| 		incr = 1;
 | |
| 	}
 | |
| 	else {
 | |
| 		pstartbyte = bytes + n - 1;
 | |
| 		pendbyte = bytes;
 | |
| 		incr = -1;
 | |
| 	}
 | |
| 
 | |
| 	if (is_signed)
 | |
| 		is_signed = *pendbyte >= 0x80;
 | |
| 
 | |
| 	/* Compute numsignificantbytes.  This consists of finding the most
 | |
| 	   significant byte.  Leading 0 bytes are insignficant if the number
 | |
| 	   is positive, and leading 0xff bytes if negative. */
 | |
| 	{
 | |
| 		size_t i;
 | |
| 		const unsigned char* p = pendbyte;
 | |
| 		const int pincr = -incr;  /* search MSB to LSB */
 | |
| 		const unsigned char insignficant = is_signed ? 0xff : 0x00;
 | |
| 
 | |
| 		for (i = 0; i < n; ++i, p += pincr) {
 | |
| 			if (*p != insignficant)
 | |
| 				break;
 | |
| 		}
 | |
| 		numsignificantbytes = n - i;
 | |
| 		/* 2's-comp is a bit tricky here, e.g. 0xff00 == -0x0100, so
 | |
| 		   actually has 2 significant bytes.  OTOH, 0xff0001 ==
 | |
| 		   -0x00ffff, so we wouldn't *need* to bump it there; but we
 | |
| 		   do for 0xffff = -0x0001.  To be safe without bothering to
 | |
| 		   check every case, bump it regardless. */
 | |
| 		if (is_signed && numsignificantbytes < n)
 | |
| 			++numsignificantbytes;
 | |
| 	}
 | |
| 
 | |
| 	/* How many Python long digits do we need?  We have
 | |
| 	   8*numsignificantbytes bits, and each Python long digit has
 | |
| 	   PyLong_SHIFT bits, so it's the ceiling of the quotient. */
 | |
| 	/* catch overflow before it happens */
 | |
| 	if (numsignificantbytes > (PY_SSIZE_T_MAX - PyLong_SHIFT) / 8) {
 | |
| 		PyErr_SetString(PyExc_OverflowError,
 | |
| 				"byte array too long to convert to int");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	ndigits = (numsignificantbytes * 8 + PyLong_SHIFT - 1) / PyLong_SHIFT;
 | |
| 	v = _PyLong_New(ndigits);
 | |
| 	if (v == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* Copy the bits over.  The tricky parts are computing 2's-comp on
 | |
| 	   the fly for signed numbers, and dealing with the mismatch between
 | |
| 	   8-bit bytes and (probably) 15-bit Python digits.*/
 | |
| 	{
 | |
| 		size_t i;
 | |
| 		twodigits carry = 1;		/* for 2's-comp calculation */
 | |
| 		twodigits accum = 0;		/* sliding register */
 | |
| 		unsigned int accumbits = 0; 	/* number of bits in accum */
 | |
| 		const unsigned char* p = pstartbyte;
 | |
| 
 | |
| 		for (i = 0; i < numsignificantbytes; ++i, p += incr) {
 | |
| 			twodigits thisbyte = *p;
 | |
| 			/* Compute correction for 2's comp, if needed. */
 | |
| 			if (is_signed) {
 | |
| 				thisbyte = (0xff ^ thisbyte) + carry;
 | |
| 				carry = thisbyte >> 8;
 | |
| 				thisbyte &= 0xff;
 | |
| 			}
 | |
| 			/* Because we're going LSB to MSB, thisbyte is
 | |
| 			   more significant than what's already in accum,
 | |
| 			   so needs to be prepended to accum. */
 | |
| 			accum |= (twodigits)thisbyte << accumbits;
 | |
| 			accumbits += 8;
 | |
| 			if (accumbits >= PyLong_SHIFT) {
 | |
| 				/* There's enough to fill a Python digit. */
 | |
| 				assert(idigit < ndigits);
 | |
| 				v->ob_digit[idigit] = (digit)(accum &
 | |
| 							      PyLong_MASK);
 | |
| 				++idigit;
 | |
| 				accum >>= PyLong_SHIFT;
 | |
| 				accumbits -= PyLong_SHIFT;
 | |
| 				assert(accumbits < PyLong_SHIFT);
 | |
| 			}
 | |
| 		}
 | |
| 		assert(accumbits < PyLong_SHIFT);
 | |
| 		if (accumbits) {
 | |
| 			assert(idigit < ndigits);
 | |
| 			v->ob_digit[idigit] = (digit)accum;
 | |
| 			++idigit;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	Py_SIZE(v) = is_signed ? -idigit : idigit;
 | |
| 	return (PyObject *)long_normalize(v);
 | |
| }
 | |
| 
 | |
| int
 | |
| _PyLong_AsByteArray(PyLongObject* v,
 | |
| 		    unsigned char* bytes, size_t n,
 | |
| 		    int little_endian, int is_signed)
 | |
| {
 | |
| 	Py_ssize_t i;		/* index into v->ob_digit */
 | |
| 	Py_ssize_t ndigits;		/* |v->ob_size| */
 | |
| 	twodigits accum;	/* sliding register */
 | |
| 	unsigned int accumbits; /* # bits in accum */
 | |
| 	int do_twos_comp;	/* store 2's-comp?  is_signed and v < 0 */
 | |
| 	digit carry;		/* for computing 2's-comp */
 | |
| 	size_t j;		/* # bytes filled */
 | |
| 	unsigned char* p;	/* pointer to next byte in bytes */
 | |
| 	int pincr;		/* direction to move p */
 | |
| 
 | |
| 	assert(v != NULL && PyLong_Check(v));
 | |
| 
 | |
| 	if (Py_SIZE(v) < 0) {
 | |
| 		ndigits = -(Py_SIZE(v));
 | |
| 		if (!is_signed) {
 | |
| 			PyErr_SetString(PyExc_OverflowError,
 | |
| 				"can't convert negative int to unsigned");
 | |
| 			return -1;
 | |
| 		}
 | |
| 		do_twos_comp = 1;
 | |
| 	}
 | |
| 	else {
 | |
| 		ndigits = Py_SIZE(v);
 | |
| 		do_twos_comp = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (little_endian) {
 | |
| 		p = bytes;
 | |
| 		pincr = 1;
 | |
| 	}
 | |
| 	else {
 | |
| 		p = bytes + n - 1;
 | |
| 		pincr = -1;
 | |
| 	}
 | |
| 
 | |
| 	/* Copy over all the Python digits.
 | |
| 	   It's crucial that every Python digit except for the MSD contribute
 | |
| 	   exactly PyLong_SHIFT bits to the total, so first assert that the long is
 | |
| 	   normalized. */
 | |
| 	assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0);
 | |
| 	j = 0;
 | |
| 	accum = 0;
 | |
| 	accumbits = 0;
 | |
| 	carry = do_twos_comp ? 1 : 0;
 | |
| 	for (i = 0; i < ndigits; ++i) {
 | |
| 		digit thisdigit = v->ob_digit[i];
 | |
| 		if (do_twos_comp) {
 | |
| 			thisdigit = (thisdigit ^ PyLong_MASK) + carry;
 | |
| 			carry = thisdigit >> PyLong_SHIFT;
 | |
| 			thisdigit &= PyLong_MASK;
 | |
| 		}
 | |
| 		/* Because we're going LSB to MSB, thisdigit is more
 | |
| 		   significant than what's already in accum, so needs to be
 | |
| 		   prepended to accum. */
 | |
| 		accum |= (twodigits)thisdigit << accumbits;
 | |
| 
 | |
| 		/* The most-significant digit may be (probably is) at least
 | |
| 		   partly empty. */
 | |
| 		if (i == ndigits - 1) {
 | |
| 			/* Count # of sign bits -- they needn't be stored,
 | |
| 			 * although for signed conversion we need later to
 | |
| 			 * make sure at least one sign bit gets stored. */
 | |
| 			digit s = do_twos_comp ? thisdigit ^ PyLong_MASK :
 | |
| 				                thisdigit;
 | |
| 			while (s != 0) {
 | |
| 				s >>= 1;
 | |
| 				accumbits++;
 | |
| 			}
 | |
| 		}
 | |
| 		else
 | |
| 			accumbits += PyLong_SHIFT;
 | |
| 
 | |
| 		/* Store as many bytes as possible. */
 | |
| 		while (accumbits >= 8) {
 | |
| 			if (j >= n)
 | |
| 				goto Overflow;
 | |
| 			++j;
 | |
| 			*p = (unsigned char)(accum & 0xff);
 | |
| 			p += pincr;
 | |
| 			accumbits -= 8;
 | |
| 			accum >>= 8;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Store the straggler (if any). */
 | |
| 	assert(accumbits < 8);
 | |
| 	assert(carry == 0);  /* else do_twos_comp and *every* digit was 0 */
 | |
| 	if (accumbits > 0) {
 | |
| 		if (j >= n)
 | |
| 			goto Overflow;
 | |
| 		++j;
 | |
| 		if (do_twos_comp) {
 | |
| 			/* Fill leading bits of the byte with sign bits
 | |
| 			   (appropriately pretending that the long had an
 | |
| 			   infinite supply of sign bits). */
 | |
| 			accum |= (~(twodigits)0) << accumbits;
 | |
| 		}
 | |
| 		*p = (unsigned char)(accum & 0xff);
 | |
| 		p += pincr;
 | |
| 	}
 | |
| 	else if (j == n && n > 0 && is_signed) {
 | |
| 		/* The main loop filled the byte array exactly, so the code
 | |
| 		   just above didn't get to ensure there's a sign bit, and the
 | |
| 		   loop below wouldn't add one either.  Make sure a sign bit
 | |
| 		   exists. */
 | |
| 		unsigned char msb = *(p - pincr);
 | |
| 		int sign_bit_set = msb >= 0x80;
 | |
| 		assert(accumbits == 0);
 | |
| 		if (sign_bit_set == do_twos_comp)
 | |
| 			return 0;
 | |
| 		else
 | |
| 			goto Overflow;
 | |
| 	}
 | |
| 
 | |
| 	/* Fill remaining bytes with copies of the sign bit. */
 | |
| 	{
 | |
| 		unsigned char signbyte = do_twos_comp ? 0xffU : 0U;
 | |
| 		for ( ; j < n; ++j, p += pincr)
 | |
| 			*p = signbyte;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| Overflow:
 | |
| 	PyErr_SetString(PyExc_OverflowError, "int too big to convert");
 | |
| 	return -1;
 | |
| 
 | |
| }
 | |
| 
 | |
| double
 | |
| _PyLong_AsScaledDouble(PyObject *vv, int *exponent)
 | |
| {
 | |
| /* NBITS_WANTED should be > the number of bits in a double's precision,
 | |
|    but small enough so that 2**NBITS_WANTED is within the normal double
 | |
|    range.  nbitsneeded is set to 1 less than that because the most-significant
 | |
|    Python digit contains at least 1 significant bit, but we don't want to
 | |
|    bother counting them (catering to the worst case cheaply).
 | |
| 
 | |
|    57 is one more than VAX-D double precision; I (Tim) don't know of a double
 | |
|    format with more precision than that; it's 1 larger so that we add in at
 | |
|    least one round bit to stand in for the ignored least-significant bits.
 | |
| */
 | |
| #define NBITS_WANTED 57
 | |
| 	PyLongObject *v;
 | |
| 	double x;
 | |
| 	const double multiplier = (double)(1L << PyLong_SHIFT);
 | |
| 	Py_ssize_t i;
 | |
| 	int sign;
 | |
| 	int nbitsneeded;
 | |
| 
 | |
| 	if (vv == NULL || !PyLong_Check(vv)) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return -1;
 | |
| 	}
 | |
| 	v = (PyLongObject *)vv;
 | |
| 	i = Py_SIZE(v);
 | |
| 	sign = 1;
 | |
| 	if (i < 0) {
 | |
| 		sign = -1;
 | |
| 		i = -(i);
 | |
| 	}
 | |
| 	else if (i == 0) {
 | |
| 		*exponent = 0;
 | |
| 		return 0.0;
 | |
| 	}
 | |
| 	--i;
 | |
| 	x = (double)v->ob_digit[i];
 | |
| 	nbitsneeded = NBITS_WANTED - 1;
 | |
| 	/* Invariant:  i Python digits remain unaccounted for. */
 | |
| 	while (i > 0 && nbitsneeded > 0) {
 | |
| 		--i;
 | |
| 		x = x * multiplier + (double)v->ob_digit[i];
 | |
| 		nbitsneeded -= PyLong_SHIFT;
 | |
| 	}
 | |
| 	/* There are i digits we didn't shift in.  Pretending they're all
 | |
| 	   zeroes, the true value is x * 2**(i*PyLong_SHIFT). */
 | |
| 	*exponent = i;
 | |
| 	assert(x > 0.0);
 | |
| 	return x * sign;
 | |
| #undef NBITS_WANTED
 | |
| }
 | |
| 
 | |
| /* Get a C double from a long int object.  Rounds to the nearest double,
 | |
|    using the round-half-to-even rule in the case of a tie. */
 | |
| 
 | |
| double
 | |
| PyLong_AsDouble(PyObject *vv)
 | |
| {
 | |
| 	PyLongObject *v = (PyLongObject *)vv;
 | |
| 	Py_ssize_t rnd_digit, rnd_bit, m, n;
 | |
| 	digit lsb, *d;
 | |
| 	int round_up = 0;
 | |
| 	double x;
 | |
| 
 | |
| 	if (vv == NULL || !PyLong_Check(vv)) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return -1.0;
 | |
| 	}
 | |
| 
 | |
| 	/* Notes on the method: for simplicity, assume v is positive and >=
 | |
| 	   2**DBL_MANT_DIG. (For negative v we just ignore the sign until the
 | |
| 	   end; for small v no rounding is necessary.)  Write n for the number
 | |
| 	   of bits in v, so that 2**(n-1) <= v < 2**n, and n > DBL_MANT_DIG.
 | |
| 
 | |
| 	   Some terminology: the *rounding bit* of v is the 1st bit of v that
 | |
| 	   will be rounded away (bit n - DBL_MANT_DIG - 1); the *parity bit*
 | |
| 	   is the bit immediately above.  The round-half-to-even rule says
 | |
| 	   that we round up if the rounding bit is set, unless v is exactly
 | |
| 	   halfway between two floats and the parity bit is zero.
 | |
| 
 | |
| 	   Write d[0] ... d[m] for the digits of v, least to most significant.
 | |
| 	   Let rnd_bit be the index of the rounding bit, and rnd_digit the
 | |
| 	   index of the PyLong digit containing the rounding bit.  Then the
 | |
| 	   bits of the digit d[rnd_digit] look something like:
 | |
| 
 | |
| 	              rounding bit
 | |
| 	                  |
 | |
| 	                  v
 | |
| 	      msb -> sssssrttttttttt <- lsb
 | |
| 	                 ^
 | |
| 	                 |
 | |
| 	              parity bit
 | |
| 
 | |
| 	   where 's' represents a 'significant bit' that will be included in
 | |
| 	   the mantissa of the result, 'r' is the rounding bit, and 't'
 | |
| 	   represents a 'trailing bit' following the rounding bit.  Note that
 | |
| 	   if the rounding bit is at the top of d[rnd_digit] then the parity
 | |
| 	   bit will be the lsb of d[rnd_digit+1].  If we set
 | |
| 
 | |
| 	      lsb = 1 << (rnd_bit % PyLong_SHIFT)
 | |
| 
 | |
| 	   then d[rnd_digit] & (PyLong_BASE - 2*lsb) selects just the
 | |
| 	   significant bits of d[rnd_digit], d[rnd_digit] & (lsb-1) gets the
 | |
| 	   trailing bits, and d[rnd_digit] & lsb gives the rounding bit.
 | |
| 
 | |
| 	   We initialize the double x to the integer given by digits
 | |
| 	   d[rnd_digit:m-1], but with the rounding bit and trailing bits of
 | |
| 	   d[rnd_digit] masked out.  So the value of x comes from the top
 | |
| 	   DBL_MANT_DIG bits of v, multiplied by 2*lsb.  Note that in the loop
 | |
| 	   that produces x, all floating-point operations are exact (assuming
 | |
| 	   that FLT_RADIX==2).  Now if we're rounding down, the value we want
 | |
| 	   to return is simply
 | |
| 
 | |
| 	      x * 2**(PyLong_SHIFT * rnd_digit).
 | |
| 
 | |
| 	   and if we're rounding up, it's
 | |
| 
 | |
| 	      (x + 2*lsb) * 2**(PyLong_SHIFT * rnd_digit).
 | |
| 
 | |
| 	   Under the round-half-to-even rule, we round up if, and only
 | |
| 	   if, the rounding bit is set *and* at least one of the
 | |
| 	   following three conditions is satisfied:
 | |
| 
 | |
| 	      (1) the parity bit is set, or
 | |
| 	      (2) at least one of the trailing bits of d[rnd_digit] is set, or
 | |
| 	      (3) at least one of the digits d[i], 0 <= i < rnd_digit
 | |
| 	         is nonzero.
 | |
| 
 | |
| 	   Finally, we have to worry about overflow.  If v >= 2**DBL_MAX_EXP,
 | |
| 	   or equivalently n > DBL_MAX_EXP, then overflow occurs.  If v <
 | |
| 	   2**DBL_MAX_EXP then we're usually safe, but there's a corner case
 | |
| 	   to consider: if v is very close to 2**DBL_MAX_EXP then it's
 | |
| 	   possible that v is rounded up to exactly 2**DBL_MAX_EXP, and then
 | |
| 	   again overflow occurs.
 | |
| 	*/
 | |
| 
 | |
| 	if (Py_SIZE(v) == 0)
 | |
| 		return 0.0;
 | |
| 	m = ABS(Py_SIZE(v)) - 1;
 | |
| 	d = v->ob_digit;
 | |
| 	assert(d[m]);  /* v should be normalized */
 | |
| 
 | |
| 	/* fast path for case where 0 < abs(v) < 2**DBL_MANT_DIG */
 | |
| 	if (m < DBL_MANT_DIG / PyLong_SHIFT ||
 | |
| 	    (m == DBL_MANT_DIG / PyLong_SHIFT &&
 | |
| 	     d[m] < (digit)1 << DBL_MANT_DIG%PyLong_SHIFT)) {
 | |
| 		x = d[m];
 | |
| 		while (--m >= 0)
 | |
| 			x = x*PyLong_BASE + d[m];
 | |
| 		return Py_SIZE(v) < 0 ? -x : x;
 | |
| 	}
 | |
| 
 | |
| 	/* if m is huge then overflow immediately; otherwise, compute the
 | |
| 	   number of bits n in v.  The condition below implies n (= #bits) >=
 | |
| 	   m * PyLong_SHIFT + 1 > DBL_MAX_EXP, hence v >= 2**DBL_MAX_EXP. */
 | |
| 	if (m > (DBL_MAX_EXP-1)/PyLong_SHIFT)
 | |
| 		goto overflow;
 | |
| 	n = m * PyLong_SHIFT + bits_in_digit(d[m]);
 | |
| 	if (n > DBL_MAX_EXP)
 | |
| 		goto overflow;
 | |
| 
 | |
| 	/* find location of rounding bit */
 | |
| 	assert(n > DBL_MANT_DIG); /* dealt with |v| < 2**DBL_MANT_DIG above */
 | |
| 	rnd_bit = n - DBL_MANT_DIG - 1;
 | |
| 	rnd_digit = rnd_bit/PyLong_SHIFT;
 | |
| 	lsb = (digit)1 << (rnd_bit%PyLong_SHIFT);
 | |
| 
 | |
| 	/* Get top DBL_MANT_DIG bits of v.  Assumes PyLong_SHIFT <
 | |
| 	   DBL_MANT_DIG, so we'll need bits from at least 2 digits of v. */
 | |
| 	x = d[m];
 | |
| 	assert(m > rnd_digit);
 | |
| 	while (--m > rnd_digit)
 | |
| 		x = x*PyLong_BASE + d[m];
 | |
| 	x = x*PyLong_BASE + (d[m] & (PyLong_BASE-2*lsb));
 | |
| 
 | |
| 	/* decide whether to round up, using round-half-to-even */
 | |
| 	assert(m == rnd_digit);
 | |
| 	if (d[m] & lsb) { /* if (rounding bit is set) */
 | |
| 		digit parity_bit;
 | |
| 		if (lsb == PyLong_BASE/2)
 | |
| 			parity_bit = d[m+1] & 1;
 | |
| 		else
 | |
| 			parity_bit = d[m] & 2*lsb;
 | |
| 		if (parity_bit)
 | |
| 			round_up = 1;
 | |
| 		else if (d[m] & (lsb-1))
 | |
| 			round_up = 1;
 | |
| 		else {
 | |
| 			while (--m >= 0) {
 | |
| 				if (d[m]) {
 | |
| 					round_up = 1;
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* and round up if necessary */
 | |
| 	if (round_up) {
 | |
| 		x += 2*lsb;
 | |
| 		if (n == DBL_MAX_EXP &&
 | |
| 		    x == ldexp((double)(2*lsb), DBL_MANT_DIG)) {
 | |
| 			/* overflow corner case */
 | |
| 			goto overflow;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* shift, adjust for sign, and return */
 | |
| 	x = ldexp(x, rnd_digit*PyLong_SHIFT);
 | |
| 	return Py_SIZE(v) < 0 ? -x : x;
 | |
| 
 | |
|   overflow:
 | |
| 	PyErr_SetString(PyExc_OverflowError,
 | |
| 		"Python int too large to convert to C double");
 | |
| 	return -1.0;
 | |
| }
 | |
| 
 | |
| /* Create a new long (or int) object from a C pointer */
 | |
| 
 | |
| PyObject *
 | |
| PyLong_FromVoidPtr(void *p)
 | |
| {
 | |
| #ifndef HAVE_LONG_LONG
 | |
| #   error "PyLong_FromVoidPtr: sizeof(void*) > sizeof(long), but no long long"
 | |
| #endif
 | |
| #if SIZEOF_LONG_LONG < SIZEOF_VOID_P
 | |
| #   error "PyLong_FromVoidPtr: sizeof(PY_LONG_LONG) < sizeof(void*)"
 | |
| #endif
 | |
| 	/* special-case null pointer */
 | |
| 	if (!p)
 | |
| 		return PyLong_FromLong(0);
 | |
| 	return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG)(Py_uintptr_t)p);
 | |
| 
 | |
| }
 | |
| 
 | |
| /* Get a C pointer from a long object (or an int object in some cases) */
 | |
| 
 | |
| void *
 | |
| PyLong_AsVoidPtr(PyObject *vv)
 | |
| {
 | |
| 	/* This function will allow int or long objects. If vv is neither,
 | |
| 	   then the PyLong_AsLong*() functions will raise the exception:
 | |
| 	   PyExc_SystemError, "bad argument to internal function"
 | |
| 	*/
 | |
| #if SIZEOF_VOID_P <= SIZEOF_LONG
 | |
| 	long x;
 | |
| 
 | |
| 	if (PyLong_Check(vv) && _PyLong_Sign(vv) < 0)
 | |
| 		x = PyLong_AsLong(vv);
 | |
| 	else
 | |
| 		x = PyLong_AsUnsignedLong(vv);
 | |
| #else
 | |
| 
 | |
| #ifndef HAVE_LONG_LONG
 | |
| #   error "PyLong_AsVoidPtr: sizeof(void*) > sizeof(long), but no long long"
 | |
| #endif
 | |
| #if SIZEOF_LONG_LONG < SIZEOF_VOID_P
 | |
| #   error "PyLong_AsVoidPtr: sizeof(PY_LONG_LONG) < sizeof(void*)"
 | |
| #endif
 | |
| 	PY_LONG_LONG x;
 | |
| 
 | |
| 	if (PyLong_Check(vv) && _PyLong_Sign(vv) < 0)
 | |
| 		x = PyLong_AsLongLong(vv);
 | |
| 	else
 | |
| 		x = PyLong_AsUnsignedLongLong(vv);
 | |
| 
 | |
| #endif /* SIZEOF_VOID_P <= SIZEOF_LONG */
 | |
| 
 | |
| 	if (x == -1 && PyErr_Occurred())
 | |
| 		return NULL;
 | |
| 	return (void *)x;
 | |
| }
 | |
| 
 | |
| #ifdef HAVE_LONG_LONG
 | |
| 
 | |
| /* Initial PY_LONG_LONG support by Chris Herborth (chrish@qnx.com), later
 | |
|  * rewritten to use the newer PyLong_{As,From}ByteArray API.
 | |
|  */
 | |
| 
 | |
| #define IS_LITTLE_ENDIAN (int)*(unsigned char*)&one
 | |
| 
 | |
| /* Create a new long int object from a C PY_LONG_LONG int. */
 | |
| 
 | |
| PyObject *
 | |
| PyLong_FromLongLong(PY_LONG_LONG ival)
 | |
| {
 | |
| 	PyLongObject *v;
 | |
| 	unsigned PY_LONG_LONG abs_ival;
 | |
| 	unsigned PY_LONG_LONG t;  /* unsigned so >> doesn't propagate sign bit */
 | |
| 	int ndigits = 0;
 | |
| 	int negative = 0;
 | |
| 
 | |
| 	CHECK_SMALL_INT(ival);
 | |
| 	if (ival < 0) {
 | |
| 		/* avoid signed overflow on negation;  see comments
 | |
| 		   in PyLong_FromLong above. */
 | |
| 		abs_ival = (unsigned PY_LONG_LONG)(-1-ival) + 1;
 | |
| 		negative = 1;
 | |
| 	}
 | |
| 	else {
 | |
| 		abs_ival = (unsigned PY_LONG_LONG)ival;
 | |
| 	}
 | |
| 
 | |
| 	/* Count the number of Python digits.
 | |
| 	   We used to pick 5 ("big enough for anything"), but that's a
 | |
| 	   waste of time and space given that 5*15 = 75 bits are rarely
 | |
| 	   needed. */
 | |
| 	t = abs_ival;
 | |
| 	while (t) {
 | |
| 		++ndigits;
 | |
| 		t >>= PyLong_SHIFT;
 | |
| 	}
 | |
| 	v = _PyLong_New(ndigits);
 | |
| 	if (v != NULL) {
 | |
| 		digit *p = v->ob_digit;
 | |
| 		Py_SIZE(v) = negative ? -ndigits : ndigits;
 | |
| 		t = abs_ival;
 | |
| 		while (t) {
 | |
| 			*p++ = (digit)(t & PyLong_MASK);
 | |
| 			t >>= PyLong_SHIFT;
 | |
| 		}
 | |
| 	}
 | |
| 	return (PyObject *)v;
 | |
| }
 | |
| 
 | |
| /* Create a new long int object from a C unsigned PY_LONG_LONG int. */
 | |
| 
 | |
| PyObject *
 | |
| PyLong_FromUnsignedLongLong(unsigned PY_LONG_LONG ival)
 | |
| {
 | |
| 	PyLongObject *v;
 | |
| 	unsigned PY_LONG_LONG t;
 | |
| 	int ndigits = 0;
 | |
| 
 | |
| 	if (ival < PyLong_BASE)
 | |
| 		return PyLong_FromLong((long)ival);
 | |
| 	/* Count the number of Python digits. */
 | |
| 	t = (unsigned PY_LONG_LONG)ival;
 | |
| 	while (t) {
 | |
| 		++ndigits;
 | |
| 		t >>= PyLong_SHIFT;
 | |
| 	}
 | |
| 	v = _PyLong_New(ndigits);
 | |
| 	if (v != NULL) {
 | |
| 		digit *p = v->ob_digit;
 | |
| 		Py_SIZE(v) = ndigits;
 | |
| 		while (ival) {
 | |
| 			*p++ = (digit)(ival & PyLong_MASK);
 | |
| 			ival >>= PyLong_SHIFT;
 | |
| 		}
 | |
| 	}
 | |
| 	return (PyObject *)v;
 | |
| }
 | |
| 
 | |
| /* Create a new long int object from a C Py_ssize_t. */
 | |
| 
 | |
| PyObject *
 | |
| PyLong_FromSsize_t(Py_ssize_t ival)
 | |
| {
 | |
| 	PyLongObject *v;
 | |
| 	size_t abs_ival;
 | |
| 	size_t t;  /* unsigned so >> doesn't propagate sign bit */
 | |
| 	int ndigits = 0;
 | |
| 	int negative = 0;
 | |
| 
 | |
| 	CHECK_SMALL_INT(ival);
 | |
| 	if (ival < 0) {
 | |
| 		/* avoid signed overflow when ival = SIZE_T_MIN */
 | |
| 		abs_ival = (size_t)(-1-ival)+1;
 | |
| 		negative = 1;
 | |
| 	}
 | |
| 	else {
 | |
| 		abs_ival = (size_t)ival;
 | |
| 	}
 | |
| 
 | |
| 	/* Count the number of Python digits. */
 | |
| 	t = abs_ival;
 | |
| 	while (t) {
 | |
| 		++ndigits;
 | |
| 		t >>= PyLong_SHIFT;
 | |
| 	}
 | |
| 	v = _PyLong_New(ndigits);
 | |
| 	if (v != NULL) {
 | |
| 		digit *p = v->ob_digit;
 | |
| 		Py_SIZE(v) = negative ? -ndigits : ndigits;
 | |
| 		t = abs_ival;
 | |
| 		while (t) {
 | |
| 			*p++ = (digit)(t & PyLong_MASK);
 | |
| 			t >>= PyLong_SHIFT;
 | |
| 		}
 | |
| 	}
 | |
| 	return (PyObject *)v;
 | |
| }
 | |
| 
 | |
| /* Create a new long int object from a C size_t. */
 | |
| 
 | |
| PyObject *
 | |
| PyLong_FromSize_t(size_t ival)
 | |
| {
 | |
| 	PyLongObject *v;
 | |
| 	size_t t;
 | |
| 	int ndigits = 0;
 | |
| 
 | |
| 	if (ival < PyLong_BASE)
 | |
| 		return PyLong_FromLong(ival);
 | |
| 	/* Count the number of Python digits. */
 | |
| 	t = ival;
 | |
| 	while (t) {
 | |
| 		++ndigits;
 | |
| 		t >>= PyLong_SHIFT;
 | |
| 	}
 | |
| 	v = _PyLong_New(ndigits);
 | |
| 	if (v != NULL) {
 | |
| 		digit *p = v->ob_digit;
 | |
| 		Py_SIZE(v) = ndigits;
 | |
| 		while (ival) {
 | |
| 			*p++ = (digit)(ival & PyLong_MASK);
 | |
| 			ival >>= PyLong_SHIFT;
 | |
| 		}
 | |
| 	}
 | |
| 	return (PyObject *)v;
 | |
| }
 | |
| 
 | |
| /* Get a C PY_LONG_LONG int from a long int object.
 | |
|    Return -1 and set an error if overflow occurs. */
 | |
| 
 | |
| PY_LONG_LONG
 | |
| PyLong_AsLongLong(PyObject *vv)
 | |
| {
 | |
| 	PyLongObject *v;
 | |
| 	PY_LONG_LONG bytes;
 | |
| 	int one = 1;
 | |
| 	int res;
 | |
| 
 | |
| 	if (vv == NULL) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return -1;
 | |
| 	}
 | |
| 	if (!PyLong_Check(vv)) {
 | |
| 		PyNumberMethods *nb;
 | |
| 		PyObject *io;
 | |
| 		if ((nb = vv->ob_type->tp_as_number) == NULL ||
 | |
| 		    nb->nb_int == NULL) {
 | |
| 			PyErr_SetString(PyExc_TypeError, "an integer is required");
 | |
| 			return -1;
 | |
| 		}
 | |
| 		io = (*nb->nb_int) (vv);
 | |
| 		if (io == NULL)
 | |
| 			return -1;
 | |
| 		if (PyLong_Check(io)) {
 | |
| 			bytes = PyLong_AsLongLong(io);
 | |
| 			Py_DECREF(io);
 | |
| 			return bytes;
 | |
| 		}
 | |
| 		Py_DECREF(io);
 | |
| 		PyErr_SetString(PyExc_TypeError, "integer conversion failed");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	v = (PyLongObject*)vv;
 | |
| 	switch(Py_SIZE(v)) {
 | |
| 	case -1: return -(sdigit)v->ob_digit[0];
 | |
| 	case 0: return 0;
 | |
| 	case 1: return v->ob_digit[0];
 | |
| 	}
 | |
| 	res = _PyLong_AsByteArray(
 | |
| 			(PyLongObject *)vv, (unsigned char *)&bytes,
 | |
| 			SIZEOF_LONG_LONG, IS_LITTLE_ENDIAN, 1);
 | |
| 
 | |
| 	/* Plan 9 can't handle PY_LONG_LONG in ? : expressions */
 | |
| 	if (res < 0)
 | |
| 		return (PY_LONG_LONG)-1;
 | |
| 	else
 | |
| 		return bytes;
 | |
| }
 | |
| 
 | |
| /* Get a C unsigned PY_LONG_LONG int from a long int object.
 | |
|    Return -1 and set an error if overflow occurs. */
 | |
| 
 | |
| unsigned PY_LONG_LONG
 | |
| PyLong_AsUnsignedLongLong(PyObject *vv)
 | |
| {
 | |
| 	PyLongObject *v;
 | |
| 	unsigned PY_LONG_LONG bytes;
 | |
| 	int one = 1;
 | |
| 	int res;
 | |
| 
 | |
| 	if (vv == NULL || !PyLong_Check(vv)) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return (unsigned PY_LONG_LONG)-1;
 | |
| 	}
 | |
| 
 | |
| 	v = (PyLongObject*)vv;
 | |
| 	switch(Py_SIZE(v)) {
 | |
| 	case 0: return 0;
 | |
| 	case 1: return v->ob_digit[0];
 | |
| 	}
 | |
| 
 | |
| 	res = _PyLong_AsByteArray(
 | |
| 			(PyLongObject *)vv, (unsigned char *)&bytes,
 | |
| 			SIZEOF_LONG_LONG, IS_LITTLE_ENDIAN, 0);
 | |
| 
 | |
| 	/* Plan 9 can't handle PY_LONG_LONG in ? : expressions */
 | |
| 	if (res < 0)
 | |
| 		return (unsigned PY_LONG_LONG)res;
 | |
| 	else
 | |
| 		return bytes;
 | |
| }
 | |
| 
 | |
| /* Get a C unsigned long int from a long int object, ignoring the high bits.
 | |
|    Returns -1 and sets an error condition if an error occurs. */
 | |
| 
 | |
| static unsigned PY_LONG_LONG
 | |
| _PyLong_AsUnsignedLongLongMask(PyObject *vv)
 | |
| {
 | |
| 	register PyLongObject *v;
 | |
| 	unsigned PY_LONG_LONG x;
 | |
| 	Py_ssize_t i;
 | |
| 	int sign;
 | |
| 
 | |
| 	if (vv == NULL || !PyLong_Check(vv)) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return (unsigned long) -1;
 | |
| 	}
 | |
| 	v = (PyLongObject *)vv;
 | |
| 	switch(Py_SIZE(v)) {
 | |
| 	case 0: return 0;
 | |
| 	case 1: return v->ob_digit[0];
 | |
| 	}
 | |
| 	i = Py_SIZE(v);
 | |
| 	sign = 1;
 | |
| 	x = 0;
 | |
| 	if (i < 0) {
 | |
| 		sign = -1;
 | |
| 		i = -i;
 | |
| 	}
 | |
| 	while (--i >= 0) {
 | |
| 		x = (x << PyLong_SHIFT) | v->ob_digit[i];
 | |
| 	}
 | |
| 	return x * sign;
 | |
| }
 | |
| 
 | |
| unsigned PY_LONG_LONG
 | |
| PyLong_AsUnsignedLongLongMask(register PyObject *op)
 | |
| {
 | |
| 	PyNumberMethods *nb;
 | |
| 	PyLongObject *lo;
 | |
| 	unsigned PY_LONG_LONG val;
 | |
| 
 | |
| 	if (op && PyLong_Check(op))
 | |
| 		return _PyLong_AsUnsignedLongLongMask(op);
 | |
| 
 | |
| 	if (op == NULL || (nb = op->ob_type->tp_as_number) == NULL ||
 | |
| 	    nb->nb_int == NULL) {
 | |
| 		PyErr_SetString(PyExc_TypeError, "an integer is required");
 | |
| 		return (unsigned PY_LONG_LONG)-1;
 | |
| 	}
 | |
| 
 | |
| 	lo = (PyLongObject*) (*nb->nb_int) (op);
 | |
| 	if (lo == NULL)
 | |
| 		return (unsigned PY_LONG_LONG)-1;
 | |
| 	if (PyLong_Check(lo)) {
 | |
| 		val = _PyLong_AsUnsignedLongLongMask((PyObject *)lo);
 | |
| 		Py_DECREF(lo);
 | |
| 		if (PyErr_Occurred())
 | |
| 			return (unsigned PY_LONG_LONG)-1;
 | |
| 		return val;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		Py_DECREF(lo);
 | |
| 		PyErr_SetString(PyExc_TypeError,
 | |
| 				"nb_int should return int object");
 | |
| 		return (unsigned PY_LONG_LONG)-1;
 | |
| 	}
 | |
| }
 | |
| #undef IS_LITTLE_ENDIAN
 | |
| 
 | |
| #endif /* HAVE_LONG_LONG */
 | |
| 
 | |
| #define CHECK_BINOP(v,w) \
 | |
| 	if (!PyLong_Check(v) || !PyLong_Check(w)) { \
 | |
| 		Py_INCREF(Py_NotImplemented); \
 | |
| 		return Py_NotImplemented; \
 | |
| 	}
 | |
| 
 | |
| /* bits_in_digit(d) returns the unique integer k such that 2**(k-1) <= d <
 | |
|    2**k if d is nonzero, else 0. */
 | |
| 
 | |
| static const unsigned char BitLengthTable[32] = {
 | |
| 	0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
 | |
| 	5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
 | |
| };
 | |
| 
 | |
| static int
 | |
| bits_in_digit(digit d)
 | |
| {
 | |
| 	int d_bits = 0;
 | |
| 	while (d >= 32) {
 | |
| 		d_bits += 6;
 | |
| 		d >>= 6;
 | |
| 	}
 | |
| 	d_bits += (int)BitLengthTable[d];
 | |
| 	return d_bits;
 | |
| }
 | |
| 
 | |
| /* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required.  x[0:n]
 | |
|  * is modified in place, by adding y to it.  Carries are propagated as far as
 | |
|  * x[m-1], and the remaining carry (0 or 1) is returned.
 | |
|  */
 | |
| static digit
 | |
| v_iadd(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n)
 | |
| {
 | |
| 	Py_ssize_t i;
 | |
| 	digit carry = 0;
 | |
| 
 | |
| 	assert(m >= n);
 | |
| 	for (i = 0; i < n; ++i) {
 | |
| 		carry += x[i] + y[i];
 | |
| 		x[i] = carry & PyLong_MASK;
 | |
| 		carry >>= PyLong_SHIFT;
 | |
| 		assert((carry & 1) == carry);
 | |
| 	}
 | |
| 	for (; carry && i < m; ++i) {
 | |
| 		carry += x[i];
 | |
| 		x[i] = carry & PyLong_MASK;
 | |
| 		carry >>= PyLong_SHIFT;
 | |
| 		assert((carry & 1) == carry);
 | |
| 	}
 | |
| 	return carry;
 | |
| }
 | |
| 
 | |
| /* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required.  x[0:n]
 | |
|  * is modified in place, by subtracting y from it.  Borrows are propagated as
 | |
|  * far as x[m-1], and the remaining borrow (0 or 1) is returned.
 | |
|  */
 | |
| static digit
 | |
| v_isub(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n)
 | |
| {
 | |
| 	Py_ssize_t i;
 | |
| 	digit borrow = 0;
 | |
| 
 | |
| 	assert(m >= n);
 | |
| 	for (i = 0; i < n; ++i) {
 | |
| 		borrow = x[i] - y[i] - borrow;
 | |
| 		x[i] = borrow & PyLong_MASK;
 | |
| 		borrow >>= PyLong_SHIFT;
 | |
| 		borrow &= 1;	/* keep only 1 sign bit */
 | |
| 	}
 | |
| 	for (; borrow && i < m; ++i) {
 | |
| 		borrow = x[i] - borrow;
 | |
| 		x[i] = borrow & PyLong_MASK;
 | |
| 		borrow >>= PyLong_SHIFT;
 | |
| 		borrow &= 1;
 | |
| 	}
 | |
| 	return borrow;
 | |
| }
 | |
| 
 | |
| /* Shift digit vector a[0:m] d bits left, with 0 <= d < PyLong_SHIFT.  Put
 | |
|  * result in z[0:m], and return the d bits shifted out of the top.
 | |
|  */
 | |
| static digit
 | |
| v_lshift(digit *z, digit *a, Py_ssize_t m, int d)
 | |
| {
 | |
| 	Py_ssize_t i;
 | |
| 	digit carry = 0;
 | |
| 
 | |
| 	assert(0 <= d && d < PyLong_SHIFT);
 | |
| 	for (i=0; i < m; i++) {
 | |
| 		twodigits acc = (twodigits)a[i] << d | carry;
 | |
| 		z[i] = (digit)acc & PyLong_MASK;
 | |
| 		carry = (digit)(acc >> PyLong_SHIFT);
 | |
| 	}
 | |
| 	return carry;
 | |
| }
 | |
| 
 | |
| /* Shift digit vector a[0:m] d bits right, with 0 <= d < PyLong_SHIFT.  Put
 | |
|  * result in z[0:m], and return the d bits shifted out of the bottom.
 | |
|  */
 | |
| static digit
 | |
| v_rshift(digit *z, digit *a, Py_ssize_t m, int d)
 | |
| {
 | |
| 	Py_ssize_t i;
 | |
| 	digit carry = 0;
 | |
| 	digit mask = ((digit)1 << d) - 1U;
 | |
| 
 | |
| 	assert(0 <= d && d < PyLong_SHIFT);
 | |
| 	for (i=m; i-- > 0;) {
 | |
| 		twodigits acc = (twodigits)carry << PyLong_SHIFT | a[i];
 | |
| 		carry = (digit)acc & mask;
 | |
| 		z[i] = (digit)(acc >> d);
 | |
| 	}
 | |
| 	return carry;
 | |
| }
 | |
| 
 | |
| /* Divide long pin, w/ size digits, by non-zero digit n, storing quotient
 | |
|    in pout, and returning the remainder.  pin and pout point at the LSD.
 | |
|    It's OK for pin == pout on entry, which saves oodles of mallocs/frees in
 | |
|    _PyLong_Format, but that should be done with great care since longs are
 | |
|    immutable. */
 | |
| 
 | |
| static digit
 | |
| inplace_divrem1(digit *pout, digit *pin, Py_ssize_t size, digit n)
 | |
| {
 | |
| 	twodigits rem = 0;
 | |
| 
 | |
| 	assert(n > 0 && n <= PyLong_MASK);
 | |
| 	pin += size;
 | |
| 	pout += size;
 | |
| 	while (--size >= 0) {
 | |
| 		digit hi;
 | |
| 		rem = (rem << PyLong_SHIFT) | *--pin;
 | |
| 		*--pout = hi = (digit)(rem / n);
 | |
| 		rem -= (twodigits)hi * n;
 | |
| 	}
 | |
| 	return (digit)rem;
 | |
| }
 | |
| 
 | |
| /* Divide a long integer by a digit, returning both the quotient
 | |
|    (as function result) and the remainder (through *prem).
 | |
|    The sign of a is ignored; n should not be zero. */
 | |
| 
 | |
| static PyLongObject *
 | |
| divrem1(PyLongObject *a, digit n, digit *prem)
 | |
| {
 | |
| 	const Py_ssize_t size = ABS(Py_SIZE(a));
 | |
| 	PyLongObject *z;
 | |
| 
 | |
| 	assert(n > 0 && n <= PyLong_MASK);
 | |
| 	z = _PyLong_New(size);
 | |
| 	if (z == NULL)
 | |
| 		return NULL;
 | |
| 	*prem = inplace_divrem1(z->ob_digit, a->ob_digit, size, n);
 | |
| 	return long_normalize(z);
 | |
| }
 | |
| 
 | |
| /* Convert a long integer to a base 10 string.  Returns a new non-shared
 | |
|    string.  (Return value is non-shared so that callers can modify the
 | |
|    returned value if necessary.) */
 | |
| 
 | |
| static PyObject *
 | |
| long_to_decimal_string(PyObject *aa)
 | |
| {
 | |
| 	PyLongObject *scratch, *a;
 | |
| 	PyObject *str;
 | |
| 	Py_ssize_t size, strlen, size_a, i, j;
 | |
| 	digit *pout, *pin, rem, tenpow;
 | |
| 	Py_UNICODE *p;
 | |
| 	int negative;
 | |
| 
 | |
| 	a = (PyLongObject *)aa;
 | |
| 	if (a == NULL || !PyLong_Check(a)) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	size_a = ABS(Py_SIZE(a));
 | |
| 	negative = Py_SIZE(a) < 0;
 | |
| 
 | |
| 	/* quick and dirty upper bound for the number of digits
 | |
| 	   required to express a in base _PyLong_DECIMAL_BASE:
 | |
| 
 | |
| 	     #digits = 1 + floor(log2(a) / log2(_PyLong_DECIMAL_BASE))
 | |
| 
 | |
| 	   But log2(a) < size_a * PyLong_SHIFT, and
 | |
| 	   log2(_PyLong_DECIMAL_BASE) = log2(10) * _PyLong_DECIMAL_SHIFT
 | |
| 				      > 3 * _PyLong_DECIMAL_SHIFT
 | |
| 	*/
 | |
| 	if (size_a > PY_SSIZE_T_MAX / PyLong_SHIFT) {
 | |
| 		PyErr_SetString(PyExc_OverflowError,
 | |
| 				"long is too large to format");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	/* the expression size_a * PyLong_SHIFT is now safe from overflow */
 | |
| 	size = 1 + size_a * PyLong_SHIFT / (3 * _PyLong_DECIMAL_SHIFT);
 | |
| 	scratch = _PyLong_New(size);
 | |
| 	if (scratch == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* convert array of base _PyLong_BASE digits in pin to an array of
 | |
| 	   base _PyLong_DECIMAL_BASE digits in pout, following Knuth (TAOCP,
 | |
| 	   Volume 2 (3rd edn), section 4.4, Method 1b). */
 | |
| 	pin = a->ob_digit;
 | |
| 	pout = scratch->ob_digit;
 | |
| 	size = 0;
 | |
| 	for (i = size_a; --i >= 0; ) {
 | |
| 		digit hi = pin[i];
 | |
| 		for (j = 0; j < size; j++) {
 | |
| 			twodigits z = (twodigits)pout[j] << PyLong_SHIFT | hi;
 | |
| 			hi = (digit)(z / _PyLong_DECIMAL_BASE);
 | |
| 			pout[j] = (digit)(z - (twodigits)hi *
 | |
| 					  _PyLong_DECIMAL_BASE);
 | |
| 		}
 | |
| 		while (hi) {
 | |
| 			pout[size++] = hi % _PyLong_DECIMAL_BASE;
 | |
| 			hi /= _PyLong_DECIMAL_BASE;
 | |
| 		}
 | |
| 		/* check for keyboard interrupt */
 | |
| 		SIGCHECK({
 | |
| 			Py_DECREF(scratch);
 | |
| 			return NULL;
 | |
| 		})
 | |
| 	}
 | |
| 	/* pout should have at least one digit, so that the case when a = 0
 | |
| 	   works correctly */
 | |
| 	if (size == 0)
 | |
| 		pout[size++] = 0;
 | |
| 
 | |
| 	/* calculate exact length of output string, and allocate */
 | |
| 	strlen = negative + 1 + (size - 1) * _PyLong_DECIMAL_SHIFT;
 | |
| 	tenpow = 10;
 | |
| 	rem = pout[size-1];
 | |
| 	while (rem >= tenpow) {
 | |
| 		tenpow *= 10;
 | |
| 		strlen++;
 | |
| 	}
 | |
| 	str = PyUnicode_FromUnicode(NULL, strlen);
 | |
| 	if (str == NULL) {
 | |
| 		Py_DECREF(scratch);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* fill the string right-to-left */
 | |
| 	p = PyUnicode_AS_UNICODE(str) + strlen;
 | |
| 	*p = '\0';
 | |
| 	/* pout[0] through pout[size-2] contribute exactly
 | |
| 	   _PyLong_DECIMAL_SHIFT digits each */
 | |
| 	for (i=0; i < size - 1; i++) {
 | |
| 		rem = pout[i];
 | |
| 		for (j = 0; j < _PyLong_DECIMAL_SHIFT; j++) {
 | |
| 			*--p = '0' + rem % 10;
 | |
| 			rem /= 10;
 | |
| 		}
 | |
| 	}
 | |
| 	/* pout[size-1]: always produce at least one decimal digit */
 | |
| 	rem = pout[i];
 | |
| 	do {
 | |
| 		*--p = '0' + rem % 10;
 | |
| 		rem /= 10;
 | |
| 	} while (rem != 0);
 | |
| 
 | |
| 	/* and sign */
 | |
| 	if (negative)
 | |
| 		*--p = '-';
 | |
| 
 | |
| 	/* check we've counted correctly */
 | |
| 	assert(p == PyUnicode_AS_UNICODE(str));
 | |
| 	Py_DECREF(scratch);
 | |
| 	return (PyObject *)str;
 | |
| }
 | |
| 
 | |
| /* Convert a long int object to a string, using a given conversion base,
 | |
|    which should be one of 2, 8, 10 or 16.  Return a string object.
 | |
|    If base is 2, 8 or 16, add the proper prefix '0b', '0o' or '0x'. */
 | |
| 
 | |
| PyObject *
 | |
| _PyLong_Format(PyObject *aa, int base)
 | |
| {
 | |
| 	register PyLongObject *a = (PyLongObject *)aa;
 | |
| 	PyObject *str;
 | |
| 	Py_ssize_t i, sz;
 | |
| 	Py_ssize_t size_a;
 | |
| 	Py_UNICODE *p, sign = '\0';
 | |
| 	int bits;
 | |
| 
 | |
| 	assert(base == 2 || base == 8 || base == 10 || base == 16);
 | |
| 	if (base == 10)
 | |
| 		return long_to_decimal_string((PyObject *)a);
 | |
| 
 | |
| 	if (a == NULL || !PyLong_Check(a)) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	size_a = ABS(Py_SIZE(a));
 | |
| 
 | |
| 	/* Compute a rough upper bound for the length of the string */
 | |
| 	switch (base) {
 | |
| 	case 16:
 | |
| 		bits = 4;
 | |
| 		break;
 | |
| 	case 8:
 | |
| 		bits = 3;
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		bits = 1;
 | |
| 		break;
 | |
| 	default:
 | |
| 		assert(0); /* shouldn't ever get here */
 | |
| 		bits = 0; /* to silence gcc warning */
 | |
| 	}
 | |
| 	/* compute length of output string: allow 2 characters for prefix and
 | |
| 	   1 for possible '-' sign. */
 | |
| 	if (size_a > (PY_SSIZE_T_MAX - 3) / PyLong_SHIFT) {
 | |
| 		PyErr_SetString(PyExc_OverflowError,
 | |
| 				"int is too large to format");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	/* now size_a * PyLong_SHIFT + 3 <= PY_SSIZE_T_MAX, so the RHS below
 | |
| 	   is safe from overflow */
 | |
| 	sz = 3 + (size_a * PyLong_SHIFT + (bits - 1)) / bits;
 | |
| 	assert(sz >= 0);
 | |
| 	str = PyUnicode_FromUnicode(NULL, sz);
 | |
| 	if (str == NULL)
 | |
| 		return NULL;
 | |
| 	p = PyUnicode_AS_UNICODE(str) + sz;
 | |
| 	*p = '\0';
 | |
| 	if (Py_SIZE(a) < 0)
 | |
| 		sign = '-';
 | |
| 
 | |
| 	if (Py_SIZE(a) == 0) {
 | |
| 		*--p = '0';
 | |
| 	}
 | |
| 	else {
 | |
| 		/* JRH: special case for power-of-2 bases */
 | |
| 		twodigits accum = 0;
 | |
| 		int accumbits = 0;	/* # of bits in accum */
 | |
| 		for (i = 0; i < size_a; ++i) {
 | |
| 			accum |= (twodigits)a->ob_digit[i] << accumbits;
 | |
| 			accumbits += PyLong_SHIFT;
 | |
| 			assert(accumbits >= bits);
 | |
| 			do {
 | |
| 				Py_UNICODE cdigit;
 | |
| 				cdigit = (Py_UNICODE)(accum & (base - 1));
 | |
| 				cdigit += (cdigit < 10) ? '0' : 'a'-10;
 | |
| 				assert(p > PyUnicode_AS_UNICODE(str));
 | |
| 				*--p = cdigit;
 | |
| 				accumbits -= bits;
 | |
| 				accum >>= bits;
 | |
| 			} while (i < size_a-1 ? accumbits >= bits : accum > 0);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (base == 16)
 | |
| 		*--p = 'x';
 | |
| 	else if (base == 8)
 | |
| 		*--p = 'o';
 | |
| 	else /* (base == 2) */
 | |
| 		*--p = 'b';
 | |
| 	*--p = '0';
 | |
| 	if (sign)
 | |
| 		*--p = sign;
 | |
| 	if (p != PyUnicode_AS_UNICODE(str)) {
 | |
| 		Py_UNICODE *q = PyUnicode_AS_UNICODE(str);
 | |
| 		assert(p > q);
 | |
| 		do {
 | |
| 		} while ((*q++ = *p++) != '\0');
 | |
| 		q--;
 | |
| 		if (PyUnicode_Resize(&str,(Py_ssize_t) (q -
 | |
| 						PyUnicode_AS_UNICODE(str)))) {
 | |
| 			Py_DECREF(str);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	return (PyObject *)str;
 | |
| }
 | |
| 
 | |
| /* Table of digit values for 8-bit string -> integer conversion.
 | |
|  * '0' maps to 0, ..., '9' maps to 9.
 | |
|  * 'a' and 'A' map to 10, ..., 'z' and 'Z' map to 35.
 | |
|  * All other indices map to 37.
 | |
|  * Note that when converting a base B string, a char c is a legitimate
 | |
|  * base B digit iff _PyLong_DigitValue[Py_CHARPyLong_MASK(c)] < B.
 | |
|  */
 | |
| unsigned char _PyLong_DigitValue[256] = {
 | |
| 	37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | |
| 	37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | |
| 	37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | |
| 	0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  37, 37, 37, 37, 37, 37,
 | |
| 	37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
 | |
| 	25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37,
 | |
| 	37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
 | |
| 	25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37,
 | |
| 	37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | |
| 	37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | |
| 	37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | |
| 	37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | |
| 	37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | |
| 	37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | |
| 	37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | |
| 	37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | |
| };
 | |
| 
 | |
| /* *str points to the first digit in a string of base `base` digits.  base
 | |
|  * is a power of 2 (2, 4, 8, 16, or 32).  *str is set to point to the first
 | |
|  * non-digit (which may be *str!).  A normalized long is returned.
 | |
|  * The point to this routine is that it takes time linear in the number of
 | |
|  * string characters.
 | |
|  */
 | |
| static PyLongObject *
 | |
| long_from_binary_base(char **str, int base)
 | |
| {
 | |
| 	char *p = *str;
 | |
| 	char *start = p;
 | |
| 	int bits_per_char;
 | |
| 	Py_ssize_t n;
 | |
| 	PyLongObject *z;
 | |
| 	twodigits accum;
 | |
| 	int bits_in_accum;
 | |
| 	digit *pdigit;
 | |
| 
 | |
| 	assert(base >= 2 && base <= 32 && (base & (base - 1)) == 0);
 | |
| 	n = base;
 | |
| 	for (bits_per_char = -1; n; ++bits_per_char)
 | |
| 		n >>= 1;
 | |
| 	/* n <- total # of bits needed, while setting p to end-of-string */
 | |
| 	while (_PyLong_DigitValue[Py_CHARMASK(*p)] < base)
 | |
| 		++p;
 | |
| 	*str = p;
 | |
| 	/* n <- # of Python digits needed, = ceiling(n/PyLong_SHIFT). */
 | |
| 	n = (p - start) * bits_per_char + PyLong_SHIFT - 1;
 | |
| 	if (n / bits_per_char < p - start) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 				"int string too large to convert");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	n = n / PyLong_SHIFT;
 | |
| 	z = _PyLong_New(n);
 | |
| 	if (z == NULL)
 | |
| 		return NULL;
 | |
| 	/* Read string from right, and fill in long from left; i.e.,
 | |
| 	 * from least to most significant in both.
 | |
| 	 */
 | |
| 	accum = 0;
 | |
| 	bits_in_accum = 0;
 | |
| 	pdigit = z->ob_digit;
 | |
| 	while (--p >= start) {
 | |
| 		int k = (int)_PyLong_DigitValue[Py_CHARMASK(*p)];
 | |
| 		assert(k >= 0 && k < base);
 | |
| 		accum |= (twodigits)k << bits_in_accum;
 | |
| 		bits_in_accum += bits_per_char;
 | |
| 		if (bits_in_accum >= PyLong_SHIFT) {
 | |
| 			*pdigit++ = (digit)(accum & PyLong_MASK);
 | |
| 			assert(pdigit - z->ob_digit <= n);
 | |
| 			accum >>= PyLong_SHIFT;
 | |
| 			bits_in_accum -= PyLong_SHIFT;
 | |
| 			assert(bits_in_accum < PyLong_SHIFT);
 | |
| 		}
 | |
| 	}
 | |
| 	if (bits_in_accum) {
 | |
| 		assert(bits_in_accum <= PyLong_SHIFT);
 | |
| 		*pdigit++ = (digit)accum;
 | |
| 		assert(pdigit - z->ob_digit <= n);
 | |
| 	}
 | |
| 	while (pdigit - z->ob_digit < n)
 | |
| 		*pdigit++ = 0;
 | |
| 	return long_normalize(z);
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| PyLong_FromString(char *str, char **pend, int base)
 | |
| {
 | |
| 	int sign = 1, error_if_nonzero = 0;
 | |
| 	char *start, *orig_str = str;
 | |
| 	PyLongObject *z = NULL;
 | |
| 	PyObject *strobj;
 | |
| 	Py_ssize_t slen;
 | |
| 
 | |
| 	if ((base != 0 && base < 2) || base > 36) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 				"int() arg 2 must be >= 2 and <= 36");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	while (*str != '\0' && isspace(Py_CHARMASK(*str)))
 | |
| 		str++;
 | |
| 	if (*str == '+')
 | |
| 		++str;
 | |
| 	else if (*str == '-') {
 | |
| 		++str;
 | |
| 		sign = -1;
 | |
| 	}
 | |
| 	if (base == 0) {
 | |
| 		if (str[0] != '0')
 | |
| 			base = 10;
 | |
| 		else if (str[1] == 'x' || str[1] == 'X')
 | |
| 			base = 16;
 | |
| 		else if (str[1] == 'o' || str[1] == 'O')
 | |
| 			base = 8;
 | |
| 		else if (str[1] == 'b' || str[1] == 'B')
 | |
| 			base = 2;
 | |
| 		else {
 | |
| 			/* "old" (C-style) octal literal, now invalid.
 | |
| 			   it might still be zero though */
 | |
| 			error_if_nonzero = 1;
 | |
| 			base = 10;
 | |
| 		}
 | |
| 	}
 | |
| 	if (str[0] == '0' &&
 | |
| 	    ((base == 16 && (str[1] == 'x' || str[1] == 'X')) ||
 | |
| 	     (base == 8  && (str[1] == 'o' || str[1] == 'O')) ||
 | |
| 	     (base == 2  && (str[1] == 'b' || str[1] == 'B'))))
 | |
| 		str += 2;
 | |
| 
 | |
| 	start = str;
 | |
| 	if ((base & (base - 1)) == 0)
 | |
| 		z = long_from_binary_base(&str, base);
 | |
| 	else {
 | |
| /***
 | |
| Binary bases can be converted in time linear in the number of digits, because
 | |
| Python's representation base is binary.  Other bases (including decimal!) use
 | |
| the simple quadratic-time algorithm below, complicated by some speed tricks.
 | |
| 
 | |
| First some math:  the largest integer that can be expressed in N base-B digits
 | |
| is B**N-1.  Consequently, if we have an N-digit input in base B, the worst-
 | |
| case number of Python digits needed to hold it is the smallest integer n s.t.
 | |
| 
 | |
|     BASE**n-1 >= B**N-1  [or, adding 1 to both sides]
 | |
|     BASE**n >= B**N      [taking logs to base BASE]
 | |
|     n >= log(B**N)/log(BASE) = N * log(B)/log(BASE)
 | |
| 
 | |
| The static array log_base_BASE[base] == log(base)/log(BASE) so we can compute
 | |
| this quickly.  A Python long with that much space is reserved near the start,
 | |
| and the result is computed into it.
 | |
| 
 | |
| The input string is actually treated as being in base base**i (i.e., i digits
 | |
| are processed at a time), where two more static arrays hold:
 | |
| 
 | |
|     convwidth_base[base] = the largest integer i such that base**i <= BASE
 | |
|     convmultmax_base[base] = base ** convwidth_base[base]
 | |
| 
 | |
| The first of these is the largest i such that i consecutive input digits
 | |
| must fit in a single Python digit.  The second is effectively the input
 | |
| base we're really using.
 | |
| 
 | |
| Viewing the input as a sequence <c0, c1, ..., c_n-1> of digits in base
 | |
| convmultmax_base[base], the result is "simply"
 | |
| 
 | |
|    (((c0*B + c1)*B + c2)*B + c3)*B + ... ))) + c_n-1
 | |
| 
 | |
| where B = convmultmax_base[base].
 | |
| 
 | |
| Error analysis:  as above, the number of Python digits `n` needed is worst-
 | |
| case
 | |
| 
 | |
|     n >= N * log(B)/log(BASE)
 | |
| 
 | |
| where `N` is the number of input digits in base `B`.  This is computed via
 | |
| 
 | |
|     size_z = (Py_ssize_t)((scan - str) * log_base_BASE[base]) + 1;
 | |
| 
 | |
| below.  Two numeric concerns are how much space this can waste, and whether
 | |
| the computed result can be too small.  To be concrete, assume BASE = 2**15,
 | |
| which is the default (and it's unlikely anyone changes that).
 | |
| 
 | |
| Waste isn't a problem:  provided the first input digit isn't 0, the difference
 | |
| between the worst-case input with N digits and the smallest input with N
 | |
| digits is about a factor of B, but B is small compared to BASE so at most
 | |
| one allocated Python digit can remain unused on that count.  If
 | |
| N*log(B)/log(BASE) is mathematically an exact integer, then truncating that
 | |
| and adding 1 returns a result 1 larger than necessary.  However, that can't
 | |
| happen:  whenever B is a power of 2, long_from_binary_base() is called
 | |
| instead, and it's impossible for B**i to be an integer power of 2**15 when
 | |
| B is not a power of 2 (i.e., it's impossible for N*log(B)/log(BASE) to be
 | |
| an exact integer when B is not a power of 2, since B**i has a prime factor
 | |
| other than 2 in that case, but (2**15)**j's only prime factor is 2).
 | |
| 
 | |
| The computed result can be too small if the true value of N*log(B)/log(BASE)
 | |
| is a little bit larger than an exact integer, but due to roundoff errors (in
 | |
| computing log(B), log(BASE), their quotient, and/or multiplying that by N)
 | |
| yields a numeric result a little less than that integer.  Unfortunately, "how
 | |
| close can a transcendental function get to an integer over some range?"
 | |
| questions are generally theoretically intractable.  Computer analysis via
 | |
| continued fractions is practical:  expand log(B)/log(BASE) via continued
 | |
| fractions, giving a sequence i/j of "the best" rational approximations.  Then
 | |
| j*log(B)/log(BASE) is approximately equal to (the integer) i.  This shows that
 | |
| we can get very close to being in trouble, but very rarely.  For example,
 | |
| 76573 is a denominator in one of the continued-fraction approximations to
 | |
| log(10)/log(2**15), and indeed:
 | |
| 
 | |
|     >>> log(10)/log(2**15)*76573
 | |
|     16958.000000654003
 | |
| 
 | |
| is very close to an integer.  If we were working with IEEE single-precision,
 | |
| rounding errors could kill us.  Finding worst cases in IEEE double-precision
 | |
| requires better-than-double-precision log() functions, and Tim didn't bother.
 | |
| Instead the code checks to see whether the allocated space is enough as each
 | |
| new Python digit is added, and copies the whole thing to a larger long if not.
 | |
| This should happen extremely rarely, and in fact I don't have a test case
 | |
| that triggers it(!).  Instead the code was tested by artificially allocating
 | |
| just 1 digit at the start, so that the copying code was exercised for every
 | |
| digit beyond the first.
 | |
| ***/
 | |
| 		register twodigits c;	/* current input character */
 | |
| 		Py_ssize_t size_z;
 | |
| 		int i;
 | |
| 		int convwidth;
 | |
| 		twodigits convmultmax, convmult;
 | |
| 		digit *pz, *pzstop;
 | |
| 		char* scan;
 | |
| 
 | |
| 		static double log_base_BASE[37] = {0.0e0,};
 | |
| 		static int convwidth_base[37] = {0,};
 | |
| 		static twodigits convmultmax_base[37] = {0,};
 | |
| 
 | |
| 		if (log_base_BASE[base] == 0.0) {
 | |
| 			twodigits convmax = base;
 | |
| 			int i = 1;
 | |
| 
 | |
| 			log_base_BASE[base] = log((double)base) /
 | |
| 						log((double)PyLong_BASE);
 | |
| 			for (;;) {
 | |
| 				twodigits next = convmax * base;
 | |
| 				if (next > PyLong_BASE)
 | |
| 					break;
 | |
| 				convmax = next;
 | |
| 				++i;
 | |
| 			}
 | |
| 			convmultmax_base[base] = convmax;
 | |
| 			assert(i > 0);
 | |
| 			convwidth_base[base] = i;
 | |
| 		}
 | |
| 
 | |
| 		/* Find length of the string of numeric characters. */
 | |
| 		scan = str;
 | |
| 		while (_PyLong_DigitValue[Py_CHARMASK(*scan)] < base)
 | |
| 			++scan;
 | |
| 
 | |
| 		/* Create a long object that can contain the largest possible
 | |
| 		 * integer with this base and length.  Note that there's no
 | |
| 		 * need to initialize z->ob_digit -- no slot is read up before
 | |
| 		 * being stored into.
 | |
| 		 */
 | |
| 		size_z = (Py_ssize_t)((scan - str) * log_base_BASE[base]) + 1;
 | |
| 		/* Uncomment next line to test exceedingly rare copy code */
 | |
| 		/* size_z = 1; */
 | |
| 		assert(size_z > 0);
 | |
| 		z = _PyLong_New(size_z);
 | |
| 		if (z == NULL)
 | |
| 			return NULL;
 | |
| 		Py_SIZE(z) = 0;
 | |
| 
 | |
| 		/* `convwidth` consecutive input digits are treated as a single
 | |
| 		 * digit in base `convmultmax`.
 | |
| 		 */
 | |
| 		convwidth = convwidth_base[base];
 | |
| 		convmultmax = convmultmax_base[base];
 | |
| 
 | |
| 		/* Work ;-) */
 | |
| 		while (str < scan) {
 | |
| 			/* grab up to convwidth digits from the input string */
 | |
| 			c = (digit)_PyLong_DigitValue[Py_CHARMASK(*str++)];
 | |
| 			for (i = 1; i < convwidth && str != scan; ++i, ++str) {
 | |
| 				c = (twodigits)(c *  base +
 | |
| 					(int)_PyLong_DigitValue[Py_CHARMASK(*str)]);
 | |
| 				assert(c < PyLong_BASE);
 | |
| 			}
 | |
| 
 | |
| 			convmult = convmultmax;
 | |
| 			/* Calculate the shift only if we couldn't get
 | |
| 			 * convwidth digits.
 | |
| 			 */
 | |
| 			if (i != convwidth) {
 | |
| 				convmult = base;
 | |
| 				for ( ; i > 1; --i)
 | |
| 					convmult *= base;
 | |
| 			}
 | |
| 
 | |
| 			/* Multiply z by convmult, and add c. */
 | |
| 			pz = z->ob_digit;
 | |
| 			pzstop = pz + Py_SIZE(z);
 | |
| 			for (; pz < pzstop; ++pz) {
 | |
| 				c += (twodigits)*pz * convmult;
 | |
| 				*pz = (digit)(c & PyLong_MASK);
 | |
| 				c >>= PyLong_SHIFT;
 | |
| 			}
 | |
| 			/* carry off the current end? */
 | |
| 			if (c) {
 | |
| 				assert(c < PyLong_BASE);
 | |
| 				if (Py_SIZE(z) < size_z) {
 | |
| 					*pz = (digit)c;
 | |
| 					++Py_SIZE(z);
 | |
| 				}
 | |
| 				else {
 | |
| 					PyLongObject *tmp;
 | |
| 					/* Extremely rare.  Get more space. */
 | |
| 					assert(Py_SIZE(z) == size_z);
 | |
| 					tmp = _PyLong_New(size_z + 1);
 | |
| 					if (tmp == NULL) {
 | |
| 						Py_DECREF(z);
 | |
| 						return NULL;
 | |
| 					}
 | |
| 					memcpy(tmp->ob_digit,
 | |
| 					       z->ob_digit,
 | |
| 					       sizeof(digit) * size_z);
 | |
| 					Py_DECREF(z);
 | |
| 					z = tmp;
 | |
| 					z->ob_digit[size_z] = (digit)c;
 | |
| 					++size_z;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	if (z == NULL)
 | |
| 		return NULL;
 | |
| 	if (error_if_nonzero) {
 | |
| 		/* reset the base to 0, else the exception message
 | |
| 		   doesn't make too much sense */
 | |
| 		base = 0;
 | |
| 		if (Py_SIZE(z) != 0)
 | |
| 			goto onError;
 | |
| 		/* there might still be other problems, therefore base
 | |
| 		   remains zero here for the same reason */
 | |
| 	}
 | |
| 	if (str == start)
 | |
| 		goto onError;
 | |
| 	if (sign < 0)
 | |
| 		Py_SIZE(z) = -(Py_SIZE(z));
 | |
| 	while (*str && isspace(Py_CHARMASK(*str)))
 | |
| 		str++;
 | |
| 	if (*str != '\0')
 | |
| 		goto onError;
 | |
| 	if (pend)
 | |
| 		*pend = str;
 | |
| 	long_normalize(z);
 | |
| 	return (PyObject *) maybe_small_long(z);
 | |
| 
 | |
|  onError:
 | |
| 	Py_XDECREF(z);
 | |
| 	slen = strlen(orig_str) < 200 ? strlen(orig_str) : 200;
 | |
| 	strobj = PyUnicode_FromStringAndSize(orig_str, slen);
 | |
| 	if (strobj == NULL)
 | |
| 		return NULL;
 | |
| 	PyErr_Format(PyExc_ValueError,
 | |
| 		     "invalid literal for int() with base %d: %R",
 | |
| 		     base, strobj);
 | |
| 	Py_DECREF(strobj);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| PyLong_FromUnicode(Py_UNICODE *u, Py_ssize_t length, int base)
 | |
| {
 | |
| 	PyObject *result;
 | |
| 	char *buffer = (char *)PyMem_MALLOC(length+1);
 | |
| 
 | |
| 	if (buffer == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (PyUnicode_EncodeDecimal(u, length, buffer, NULL)) {
 | |
| 		PyMem_FREE(buffer);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	result = PyLong_FromString(buffer, NULL, base);
 | |
| 	PyMem_FREE(buffer);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /* forward */
 | |
| static PyLongObject *x_divrem
 | |
| 	(PyLongObject *, PyLongObject *, PyLongObject **);
 | |
| static PyObject *long_long(PyObject *v);
 | |
| 
 | |
| /* Long division with remainder, top-level routine */
 | |
| 
 | |
| static int
 | |
| long_divrem(PyLongObject *a, PyLongObject *b,
 | |
| 	    PyLongObject **pdiv, PyLongObject **prem)
 | |
| {
 | |
| 	Py_ssize_t size_a = ABS(Py_SIZE(a)), size_b = ABS(Py_SIZE(b));
 | |
| 	PyLongObject *z;
 | |
| 
 | |
| 	if (size_b == 0) {
 | |
| 		PyErr_SetString(PyExc_ZeroDivisionError,
 | |
| 				"integer division or modulo by zero");
 | |
| 		return -1;
 | |
| 	}
 | |
| 	if (size_a < size_b ||
 | |
| 	    (size_a == size_b &&
 | |
| 	     a->ob_digit[size_a-1] < b->ob_digit[size_b-1])) {
 | |
| 		/* |a| < |b|. */
 | |
| 		*pdiv = (PyLongObject*)PyLong_FromLong(0);
 | |
| 		if (*pdiv == NULL)
 | |
| 			return -1;
 | |
| 		Py_INCREF(a);
 | |
| 		*prem = (PyLongObject *) a;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (size_b == 1) {
 | |
| 		digit rem = 0;
 | |
| 		z = divrem1(a, b->ob_digit[0], &rem);
 | |
| 		if (z == NULL)
 | |
| 			return -1;
 | |
| 		*prem = (PyLongObject *) PyLong_FromLong((long)rem);
 | |
| 		if (*prem == NULL) {
 | |
| 			Py_DECREF(z);
 | |
| 			return -1;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		z = x_divrem(a, b, prem);
 | |
| 		if (z == NULL)
 | |
| 			return -1;
 | |
| 	}
 | |
| 	/* Set the signs.
 | |
| 	   The quotient z has the sign of a*b;
 | |
| 	   the remainder r has the sign of a,
 | |
| 	   so a = b*z + r. */
 | |
| 	if ((Py_SIZE(a) < 0) != (Py_SIZE(b) < 0))
 | |
| 		NEGATE(z);
 | |
| 	if (Py_SIZE(a) < 0 && Py_SIZE(*prem) != 0)
 | |
| 		NEGATE(*prem);
 | |
| 	*pdiv = maybe_small_long(z);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Unsigned long division with remainder -- the algorithm.  The arguments v1
 | |
|    and w1 should satisfy 2 <= ABS(Py_SIZE(w1)) <= ABS(Py_SIZE(v1)). */
 | |
| 
 | |
| static PyLongObject *
 | |
| x_divrem(PyLongObject *v1, PyLongObject *w1, PyLongObject **prem)
 | |
| {
 | |
| 	PyLongObject *v, *w, *a;
 | |
| 	Py_ssize_t i, k, size_v, size_w;
 | |
| 	int d;
 | |
| 	digit wm1, wm2, carry, q, r, vtop, *v0, *vk, *w0, *ak;
 | |
| 	twodigits vv;
 | |
| 	sdigit zhi;
 | |
| 	stwodigits z;
 | |
| 
 | |
| 	/* We follow Knuth [The Art of Computer Programming, Vol. 2 (3rd
 | |
| 	   edn.), section 4.3.1, Algorithm D], except that we don't explicitly
 | |
| 	   handle the special case when the initial estimate q for a quotient
 | |
| 	   digit is >= PyLong_BASE: the max value for q is PyLong_BASE+1, and
 | |
| 	   that won't overflow a digit. */
 | |
| 
 | |
| 	/* allocate space; w will also be used to hold the final remainder */
 | |
| 	size_v = ABS(Py_SIZE(v1));
 | |
| 	size_w = ABS(Py_SIZE(w1));
 | |
| 	assert(size_v >= size_w && size_w >= 2); /* Assert checks by div() */
 | |
| 	v = _PyLong_New(size_v+1);
 | |
| 	if (v == NULL) {
 | |
| 		*prem = NULL;
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	w = _PyLong_New(size_w);
 | |
| 	if (w == NULL) {
 | |
| 		Py_DECREF(v);
 | |
| 		*prem = NULL;
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* normalize: shift w1 left so that its top digit is >= PyLong_BASE/2.
 | |
| 	   shift v1 left by the same amount.  Results go into w and v. */
 | |
| 	d = PyLong_SHIFT - bits_in_digit(w1->ob_digit[size_w-1]);
 | |
| 	carry = v_lshift(w->ob_digit, w1->ob_digit, size_w, d);
 | |
| 	assert(carry == 0);
 | |
| 	carry = v_lshift(v->ob_digit, v1->ob_digit, size_v, d);
 | |
| 	if (carry != 0 || v->ob_digit[size_v-1] >= w->ob_digit[size_w-1]) {
 | |
| 		v->ob_digit[size_v] = carry;
 | |
| 		size_v++;
 | |
| 	}
 | |
| 
 | |
| 	/* Now v->ob_digit[size_v-1] < w->ob_digit[size_w-1], so quotient has
 | |
| 	   at most (and usually exactly) k = size_v - size_w digits. */
 | |
| 	k = size_v - size_w;
 | |
| 	assert(k >= 0);
 | |
| 	a = _PyLong_New(k);
 | |
| 	if (a == NULL) {
 | |
| 		Py_DECREF(w);
 | |
| 		Py_DECREF(v);
 | |
| 		*prem = NULL;
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	v0 = v->ob_digit;
 | |
| 	w0 = w->ob_digit;
 | |
| 	wm1 = w0[size_w-1];
 | |
| 	wm2 = w0[size_w-2];
 | |
| 	for (vk = v0+k, ak = a->ob_digit + k; vk-- > v0;) {
 | |
| 		/* inner loop: divide vk[0:size_w+1] by w0[0:size_w], giving
 | |
| 		   single-digit quotient q, remainder in vk[0:size_w]. */
 | |
| 
 | |
| 		SIGCHECK({
 | |
| 			Py_DECREF(a);
 | |
| 			Py_DECREF(w);
 | |
| 			Py_DECREF(v);
 | |
| 			*prem = NULL;
 | |
| 			return NULL;
 | |
| 		})
 | |
| 
 | |
| 		/* estimate quotient digit q; may overestimate by 1 (rare) */
 | |
| 		vtop = vk[size_w];
 | |
| 		assert(vtop <= wm1);
 | |
| 		vv = ((twodigits)vtop << PyLong_SHIFT) | vk[size_w-1];
 | |
| 		q = (digit)(vv / wm1);
 | |
| 		r = (digit)(vv - (twodigits)wm1 * q); /* r = vv % wm1 */
 | |
| 		while ((twodigits)wm2 * q > (((twodigits)r << PyLong_SHIFT)
 | |
| 					     | vk[size_w-2])) {
 | |
| 			--q;
 | |
| 			r += wm1;
 | |
| 			if (r >= PyLong_BASE)
 | |
| 				break;
 | |
| 		}
 | |
| 		assert(q <= PyLong_BASE);
 | |
| 
 | |
| 		/* subtract q*w0[0:size_w] from vk[0:size_w+1] */
 | |
| 		zhi = 0;
 | |
| 		for (i = 0; i < size_w; ++i) {
 | |
| 			/* invariants: -PyLong_BASE <= -q <= zhi <= 0;
 | |
| 			   -PyLong_BASE * q <= z < PyLong_BASE */
 | |
| 			z = (sdigit)vk[i] + zhi -
 | |
| 				(stwodigits)q * (stwodigits)w0[i];
 | |
| 			vk[i] = (digit)z & PyLong_MASK;
 | |
| 			zhi = (sdigit)Py_ARITHMETIC_RIGHT_SHIFT(stwodigits,
 | |
| 							z, PyLong_SHIFT);
 | |
| 		}
 | |
| 
 | |
| 		/* add w back if q was too large (this branch taken rarely) */
 | |
| 		assert((sdigit)vtop + zhi == -1 || (sdigit)vtop + zhi == 0);
 | |
| 		if ((sdigit)vtop + zhi < 0) {
 | |
| 			carry = 0;
 | |
| 			for (i = 0; i < size_w; ++i) {
 | |
| 				carry += vk[i] + w0[i];
 | |
| 				vk[i] = carry & PyLong_MASK;
 | |
| 				carry >>= PyLong_SHIFT;
 | |
| 			}
 | |
| 			--q;
 | |
| 		}
 | |
| 
 | |
| 		/* store quotient digit */
 | |
| 		assert(q < PyLong_BASE);
 | |
| 		*--ak = q;
 | |
| 	}
 | |
| 
 | |
| 	/* unshift remainder; we reuse w to store the result */
 | |
| 	carry = v_rshift(w0, v0, size_w, d);
 | |
| 	assert(carry==0);
 | |
| 	Py_DECREF(v);
 | |
| 
 | |
| 	*prem = long_normalize(w);
 | |
| 	return long_normalize(a);
 | |
| }
 | |
| 
 | |
| /* Methods */
 | |
| 
 | |
| static void
 | |
| long_dealloc(PyObject *v)
 | |
| {
 | |
| 	Py_TYPE(v)->tp_free(v);
 | |
| }
 | |
| 
 | |
| static int
 | |
| long_compare(PyLongObject *a, PyLongObject *b)
 | |
| {
 | |
| 	Py_ssize_t sign;
 | |
| 
 | |
| 	if (Py_SIZE(a) != Py_SIZE(b)) {
 | |
| 		if (ABS(Py_SIZE(a)) == 0 && ABS(Py_SIZE(b)) == 0)
 | |
| 			sign = 0;
 | |
| 		else
 | |
| 			sign = Py_SIZE(a) - Py_SIZE(b);
 | |
| 	}
 | |
| 	else {
 | |
| 		Py_ssize_t i = ABS(Py_SIZE(a));
 | |
| 		while (--i >= 0 && a->ob_digit[i] == b->ob_digit[i])
 | |
| 			;
 | |
| 		if (i < 0)
 | |
| 			sign = 0;
 | |
| 		else {
 | |
| 			sign = (sdigit)a->ob_digit[i] - (sdigit)b->ob_digit[i];
 | |
| 			if (Py_SIZE(a) < 0)
 | |
| 				sign = -sign;
 | |
| 		}
 | |
| 	}
 | |
| 	return sign < 0 ? -1 : sign > 0 ? 1 : 0;
 | |
| }
 | |
| 
 | |
| #define TEST_COND(cond) \
 | |
| 	((cond) ? Py_True : Py_False)
 | |
| 
 | |
| static PyObject *
 | |
| long_richcompare(PyObject *self, PyObject *other, int op)
 | |
| {
 | |
| 	int result;
 | |
| 	PyObject *v;
 | |
| 	CHECK_BINOP(self, other);
 | |
| 	if (self == other)
 | |
| 		result = 0;
 | |
| 	else
 | |
| 		result = long_compare((PyLongObject*)self, (PyLongObject*)other);
 | |
| 	/* Convert the return value to a Boolean */
 | |
| 	switch (op) {
 | |
| 	case Py_EQ:
 | |
| 		v = TEST_COND(result == 0);
 | |
| 		break;
 | |
| 	case Py_NE:
 | |
| 		v = TEST_COND(result != 0);
 | |
| 		break;
 | |
| 	case Py_LE:
 | |
| 		v = TEST_COND(result <= 0);
 | |
| 		break;
 | |
| 	case Py_GE:
 | |
| 		v = TEST_COND(result >= 0);
 | |
| 		break;
 | |
| 	case Py_LT:
 | |
| 		v = TEST_COND(result == -1);
 | |
| 		break;
 | |
| 	case Py_GT:
 | |
| 		v = TEST_COND(result == 1);
 | |
| 		break;
 | |
| 	default:
 | |
| 		PyErr_BadArgument();
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	Py_INCREF(v);
 | |
| 	return v;
 | |
| }
 | |
| 
 | |
| static long
 | |
| long_hash(PyLongObject *v)
 | |
| {
 | |
| 	unsigned long x;
 | |
| 	Py_ssize_t i;
 | |
| 	int sign;
 | |
| 
 | |
| 	/* This is designed so that Python ints and longs with the
 | |
| 	   same value hash to the same value, otherwise comparisons
 | |
| 	   of mapping keys will turn out weird */
 | |
| 	i = Py_SIZE(v);
 | |
| 	switch(i) {
 | |
| 	case -1: return v->ob_digit[0]==1 ? -2 : -(sdigit)v->ob_digit[0];
 | |
| 	case 0: return 0;
 | |
| 	case 1: return v->ob_digit[0];
 | |
| 	}
 | |
| 	sign = 1;
 | |
| 	x = 0;
 | |
| 	if (i < 0) {
 | |
| 		sign = -1;
 | |
| 		i = -(i);
 | |
| 	}
 | |
| 	/* The following loop produces a C unsigned long x such that x is
 | |
| 	   congruent to the absolute value of v modulo ULONG_MAX.  The
 | |
| 	   resulting x is nonzero if and only if v is. */
 | |
| 	while (--i >= 0) {
 | |
| 		/* Force a native long #-bits (32 or 64) circular shift */
 | |
| 		x = (x >> (8*SIZEOF_LONG-PyLong_SHIFT)) | (x << PyLong_SHIFT);
 | |
| 		x += v->ob_digit[i];
 | |
| 		/* If the addition above overflowed we compensate by
 | |
| 		   incrementing.  This preserves the value modulo
 | |
| 		   ULONG_MAX. */
 | |
| 		if (x < v->ob_digit[i])
 | |
| 			x++;
 | |
| 	}
 | |
| 	x = x * sign;
 | |
| 	if (x == (unsigned long)-1)
 | |
| 		x = (unsigned long)-2;
 | |
| 	return (long)x;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Add the absolute values of two long integers. */
 | |
| 
 | |
| static PyLongObject *
 | |
| x_add(PyLongObject *a, PyLongObject *b)
 | |
| {
 | |
| 	Py_ssize_t size_a = ABS(Py_SIZE(a)), size_b = ABS(Py_SIZE(b));
 | |
| 	PyLongObject *z;
 | |
| 	Py_ssize_t i;
 | |
| 	digit carry = 0;
 | |
| 
 | |
| 	/* Ensure a is the larger of the two: */
 | |
| 	if (size_a < size_b) {
 | |
| 		{ PyLongObject *temp = a; a = b; b = temp; }
 | |
| 		{ Py_ssize_t size_temp = size_a;
 | |
| 		  size_a = size_b;
 | |
| 		  size_b = size_temp; }
 | |
| 	}
 | |
| 	z = _PyLong_New(size_a+1);
 | |
| 	if (z == NULL)
 | |
| 		return NULL;
 | |
| 	for (i = 0; i < size_b; ++i) {
 | |
| 		carry += a->ob_digit[i] + b->ob_digit[i];
 | |
| 		z->ob_digit[i] = carry & PyLong_MASK;
 | |
| 		carry >>= PyLong_SHIFT;
 | |
| 	}
 | |
| 	for (; i < size_a; ++i) {
 | |
| 		carry += a->ob_digit[i];
 | |
| 		z->ob_digit[i] = carry & PyLong_MASK;
 | |
| 		carry >>= PyLong_SHIFT;
 | |
| 	}
 | |
| 	z->ob_digit[i] = carry;
 | |
| 	return long_normalize(z);
 | |
| }
 | |
| 
 | |
| /* Subtract the absolute values of two integers. */
 | |
| 
 | |
| static PyLongObject *
 | |
| x_sub(PyLongObject *a, PyLongObject *b)
 | |
| {
 | |
| 	Py_ssize_t size_a = ABS(Py_SIZE(a)), size_b = ABS(Py_SIZE(b));
 | |
| 	PyLongObject *z;
 | |
| 	Py_ssize_t i;
 | |
| 	int sign = 1;
 | |
| 	digit borrow = 0;
 | |
| 
 | |
| 	/* Ensure a is the larger of the two: */
 | |
| 	if (size_a < size_b) {
 | |
| 		sign = -1;
 | |
| 		{ PyLongObject *temp = a; a = b; b = temp; }
 | |
| 		{ Py_ssize_t size_temp = size_a;
 | |
| 		  size_a = size_b;
 | |
| 		  size_b = size_temp; }
 | |
| 	}
 | |
| 	else if (size_a == size_b) {
 | |
| 		/* Find highest digit where a and b differ: */
 | |
| 		i = size_a;
 | |
| 		while (--i >= 0 && a->ob_digit[i] == b->ob_digit[i])
 | |
| 			;
 | |
| 		if (i < 0)
 | |
| 			return (PyLongObject *)PyLong_FromLong(0);
 | |
| 		if (a->ob_digit[i] < b->ob_digit[i]) {
 | |
| 			sign = -1;
 | |
| 			{ PyLongObject *temp = a; a = b; b = temp; }
 | |
| 		}
 | |
| 		size_a = size_b = i+1;
 | |
| 	}
 | |
| 	z = _PyLong_New(size_a);
 | |
| 	if (z == NULL)
 | |
| 		return NULL;
 | |
| 	for (i = 0; i < size_b; ++i) {
 | |
| 		/* The following assumes unsigned arithmetic
 | |
| 		   works module 2**N for some N>PyLong_SHIFT. */
 | |
| 		borrow = a->ob_digit[i] - b->ob_digit[i] - borrow;
 | |
| 		z->ob_digit[i] = borrow & PyLong_MASK;
 | |
| 		borrow >>= PyLong_SHIFT;
 | |
| 		borrow &= 1; /* Keep only one sign bit */
 | |
| 	}
 | |
| 	for (; i < size_a; ++i) {
 | |
| 		borrow = a->ob_digit[i] - borrow;
 | |
| 		z->ob_digit[i] = borrow & PyLong_MASK;
 | |
| 		borrow >>= PyLong_SHIFT;
 | |
| 		borrow &= 1; /* Keep only one sign bit */
 | |
| 	}
 | |
| 	assert(borrow == 0);
 | |
| 	if (sign < 0)
 | |
| 		NEGATE(z);
 | |
| 	return long_normalize(z);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_add(PyLongObject *a, PyLongObject *b)
 | |
| {
 | |
| 	PyLongObject *z;
 | |
| 
 | |
| 	CHECK_BINOP(a, b);
 | |
| 
 | |
| 	if (ABS(Py_SIZE(a)) <= 1 && ABS(Py_SIZE(b)) <= 1) {
 | |
| 		PyObject *result = PyLong_FromLong(MEDIUM_VALUE(a) +
 | |
| 						  MEDIUM_VALUE(b));
 | |
| 		return result;
 | |
| 	}
 | |
| 	if (Py_SIZE(a) < 0) {
 | |
| 		if (Py_SIZE(b) < 0) {
 | |
| 			z = x_add(a, b);
 | |
| 			if (z != NULL && Py_SIZE(z) != 0)
 | |
| 				Py_SIZE(z) = -(Py_SIZE(z));
 | |
| 		}
 | |
| 		else
 | |
| 			z = x_sub(b, a);
 | |
| 	}
 | |
| 	else {
 | |
| 		if (Py_SIZE(b) < 0)
 | |
| 			z = x_sub(a, b);
 | |
| 		else
 | |
| 			z = x_add(a, b);
 | |
| 	}
 | |
| 	return (PyObject *)z;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_sub(PyLongObject *a, PyLongObject *b)
 | |
| {
 | |
| 	PyLongObject *z;
 | |
| 
 | |
| 	CHECK_BINOP(a, b);
 | |
| 
 | |
| 	if (ABS(Py_SIZE(a)) <= 1 && ABS(Py_SIZE(b)) <= 1) {
 | |
| 		PyObject* r;
 | |
| 		r = PyLong_FromLong(MEDIUM_VALUE(a)-MEDIUM_VALUE(b));
 | |
| 		return r;
 | |
| 	}
 | |
| 	if (Py_SIZE(a) < 0) {
 | |
| 		if (Py_SIZE(b) < 0)
 | |
| 			z = x_sub(a, b);
 | |
| 		else
 | |
| 			z = x_add(a, b);
 | |
| 		if (z != NULL && Py_SIZE(z) != 0)
 | |
| 			Py_SIZE(z) = -(Py_SIZE(z));
 | |
| 	}
 | |
| 	else {
 | |
| 		if (Py_SIZE(b) < 0)
 | |
| 			z = x_add(a, b);
 | |
| 		else
 | |
| 			z = x_sub(a, b);
 | |
| 	}
 | |
| 	return (PyObject *)z;
 | |
| }
 | |
| 
 | |
| /* Grade school multiplication, ignoring the signs.
 | |
|  * Returns the absolute value of the product, or NULL if error.
 | |
|  */
 | |
| static PyLongObject *
 | |
| x_mul(PyLongObject *a, PyLongObject *b)
 | |
| {
 | |
| 	PyLongObject *z;
 | |
| 	Py_ssize_t size_a = ABS(Py_SIZE(a));
 | |
| 	Py_ssize_t size_b = ABS(Py_SIZE(b));
 | |
| 	Py_ssize_t i;
 | |
| 
 | |
|      	z = _PyLong_New(size_a + size_b);
 | |
| 	if (z == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	memset(z->ob_digit, 0, Py_SIZE(z) * sizeof(digit));
 | |
| 	if (a == b) {
 | |
| 		/* Efficient squaring per HAC, Algorithm 14.16:
 | |
| 		 * http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf
 | |
| 		 * Gives slightly less than a 2x speedup when a == b,
 | |
| 		 * via exploiting that each entry in the multiplication
 | |
| 		 * pyramid appears twice (except for the size_a squares).
 | |
| 		 */
 | |
| 		for (i = 0; i < size_a; ++i) {
 | |
| 			twodigits carry;
 | |
| 			twodigits f = a->ob_digit[i];
 | |
| 			digit *pz = z->ob_digit + (i << 1);
 | |
| 			digit *pa = a->ob_digit + i + 1;
 | |
| 			digit *paend = a->ob_digit + size_a;
 | |
| 
 | |
| 			SIGCHECK({
 | |
| 				Py_DECREF(z);
 | |
| 				return NULL;
 | |
| 			})
 | |
| 
 | |
| 			carry = *pz + f * f;
 | |
| 			*pz++ = (digit)(carry & PyLong_MASK);
 | |
| 			carry >>= PyLong_SHIFT;
 | |
| 			assert(carry <= PyLong_MASK);
 | |
| 
 | |
| 			/* Now f is added in twice in each column of the
 | |
| 			 * pyramid it appears.  Same as adding f<<1 once.
 | |
| 			 */
 | |
| 			f <<= 1;
 | |
| 			while (pa < paend) {
 | |
| 				carry += *pz + *pa++ * f;
 | |
| 				*pz++ = (digit)(carry & PyLong_MASK);
 | |
| 				carry >>= PyLong_SHIFT;
 | |
| 				assert(carry <= (PyLong_MASK << 1));
 | |
| 			}
 | |
| 			if (carry) {
 | |
| 				carry += *pz;
 | |
| 				*pz++ = (digit)(carry & PyLong_MASK);
 | |
| 				carry >>= PyLong_SHIFT;
 | |
| 			}
 | |
| 			if (carry)
 | |
| 				*pz += (digit)(carry & PyLong_MASK);
 | |
| 			assert((carry >> PyLong_SHIFT) == 0);
 | |
| 		}
 | |
| 	}
 | |
| 	else {	/* a is not the same as b -- gradeschool long mult */
 | |
| 		for (i = 0; i < size_a; ++i) {
 | |
| 			twodigits carry = 0;
 | |
| 			twodigits f = a->ob_digit[i];
 | |
| 			digit *pz = z->ob_digit + i;
 | |
| 			digit *pb = b->ob_digit;
 | |
| 			digit *pbend = b->ob_digit + size_b;
 | |
| 
 | |
| 			SIGCHECK({
 | |
| 				Py_DECREF(z);
 | |
| 				return NULL;
 | |
| 			})
 | |
| 
 | |
| 			while (pb < pbend) {
 | |
| 				carry += *pz + *pb++ * f;
 | |
| 				*pz++ = (digit)(carry & PyLong_MASK);
 | |
| 				carry >>= PyLong_SHIFT;
 | |
| 				assert(carry <= PyLong_MASK);
 | |
| 			}
 | |
| 			if (carry)
 | |
| 				*pz += (digit)(carry & PyLong_MASK);
 | |
| 			assert((carry >> PyLong_SHIFT) == 0);
 | |
| 		}
 | |
| 	}
 | |
| 	return long_normalize(z);
 | |
| }
 | |
| 
 | |
| /* A helper for Karatsuba multiplication (k_mul).
 | |
|    Takes a long "n" and an integer "size" representing the place to
 | |
|    split, and sets low and high such that abs(n) == (high << size) + low,
 | |
|    viewing the shift as being by digits.  The sign bit is ignored, and
 | |
|    the return values are >= 0.
 | |
|    Returns 0 on success, -1 on failure.
 | |
| */
 | |
| static int
 | |
| kmul_split(PyLongObject *n, Py_ssize_t size, PyLongObject **high, PyLongObject **low)
 | |
| {
 | |
| 	PyLongObject *hi, *lo;
 | |
| 	Py_ssize_t size_lo, size_hi;
 | |
| 	const Py_ssize_t size_n = ABS(Py_SIZE(n));
 | |
| 
 | |
| 	size_lo = MIN(size_n, size);
 | |
| 	size_hi = size_n - size_lo;
 | |
| 
 | |
| 	if ((hi = _PyLong_New(size_hi)) == NULL)
 | |
| 		return -1;
 | |
| 	if ((lo = _PyLong_New(size_lo)) == NULL) {
 | |
| 		Py_DECREF(hi);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	memcpy(lo->ob_digit, n->ob_digit, size_lo * sizeof(digit));
 | |
| 	memcpy(hi->ob_digit, n->ob_digit + size_lo, size_hi * sizeof(digit));
 | |
| 
 | |
| 	*high = long_normalize(hi);
 | |
| 	*low = long_normalize(lo);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static PyLongObject *k_lopsided_mul(PyLongObject *a, PyLongObject *b);
 | |
| 
 | |
| /* Karatsuba multiplication.  Ignores the input signs, and returns the
 | |
|  * absolute value of the product (or NULL if error).
 | |
|  * See Knuth Vol. 2 Chapter 4.3.3 (Pp. 294-295).
 | |
|  */
 | |
| static PyLongObject *
 | |
| k_mul(PyLongObject *a, PyLongObject *b)
 | |
| {
 | |
| 	Py_ssize_t asize = ABS(Py_SIZE(a));
 | |
| 	Py_ssize_t bsize = ABS(Py_SIZE(b));
 | |
| 	PyLongObject *ah = NULL;
 | |
| 	PyLongObject *al = NULL;
 | |
| 	PyLongObject *bh = NULL;
 | |
| 	PyLongObject *bl = NULL;
 | |
| 	PyLongObject *ret = NULL;
 | |
| 	PyLongObject *t1, *t2, *t3;
 | |
| 	Py_ssize_t shift;	/* the number of digits we split off */
 | |
| 	Py_ssize_t i;
 | |
| 
 | |
| 	/* (ah*X+al)(bh*X+bl) = ah*bh*X*X + (ah*bl + al*bh)*X + al*bl
 | |
| 	 * Let k = (ah+al)*(bh+bl) = ah*bl + al*bh  + ah*bh + al*bl
 | |
| 	 * Then the original product is
 | |
| 	 *     ah*bh*X*X + (k - ah*bh - al*bl)*X + al*bl
 | |
| 	 * By picking X to be a power of 2, "*X" is just shifting, and it's
 | |
| 	 * been reduced to 3 multiplies on numbers half the size.
 | |
| 	 */
 | |
| 
 | |
| 	/* We want to split based on the larger number; fiddle so that b
 | |
| 	 * is largest.
 | |
| 	 */
 | |
| 	if (asize > bsize) {
 | |
| 		t1 = a;
 | |
| 		a = b;
 | |
| 		b = t1;
 | |
| 
 | |
| 		i = asize;
 | |
| 		asize = bsize;
 | |
| 		bsize = i;
 | |
| 	}
 | |
| 
 | |
| 	/* Use gradeschool math when either number is too small. */
 | |
| 	i = a == b ? KARATSUBA_SQUARE_CUTOFF : KARATSUBA_CUTOFF;
 | |
| 	if (asize <= i) {
 | |
| 		if (asize == 0)
 | |
| 			return (PyLongObject *)PyLong_FromLong(0);
 | |
| 		else
 | |
| 			return x_mul(a, b);
 | |
| 	}
 | |
| 
 | |
| 	/* If a is small compared to b, splitting on b gives a degenerate
 | |
| 	 * case with ah==0, and Karatsuba may be (even much) less efficient
 | |
| 	 * than "grade school" then.  However, we can still win, by viewing
 | |
| 	 * b as a string of "big digits", each of width a->ob_size.  That
 | |
| 	 * leads to a sequence of balanced calls to k_mul.
 | |
| 	 */
 | |
| 	if (2 * asize <= bsize)
 | |
| 		return k_lopsided_mul(a, b);
 | |
| 
 | |
| 	/* Split a & b into hi & lo pieces. */
 | |
| 	shift = bsize >> 1;
 | |
| 	if (kmul_split(a, shift, &ah, &al) < 0) goto fail;
 | |
| 	assert(Py_SIZE(ah) > 0);	/* the split isn't degenerate */
 | |
| 
 | |
| 	if (a == b) {
 | |
| 		bh = ah;
 | |
| 		bl = al;
 | |
| 		Py_INCREF(bh);
 | |
| 		Py_INCREF(bl);
 | |
| 	}
 | |
| 	else if (kmul_split(b, shift, &bh, &bl) < 0) goto fail;
 | |
| 
 | |
| 	/* The plan:
 | |
| 	 * 1. Allocate result space (asize + bsize digits:  that's always
 | |
| 	 *    enough).
 | |
| 	 * 2. Compute ah*bh, and copy into result at 2*shift.
 | |
| 	 * 3. Compute al*bl, and copy into result at 0.  Note that this
 | |
| 	 *    can't overlap with #2.
 | |
| 	 * 4. Subtract al*bl from the result, starting at shift.  This may
 | |
| 	 *    underflow (borrow out of the high digit), but we don't care:
 | |
| 	 *    we're effectively doing unsigned arithmetic mod
 | |
| 	 *    BASE**(sizea + sizeb), and so long as the *final* result fits,
 | |
| 	 *    borrows and carries out of the high digit can be ignored.
 | |
| 	 * 5. Subtract ah*bh from the result, starting at shift.
 | |
| 	 * 6. Compute (ah+al)*(bh+bl), and add it into the result starting
 | |
| 	 *    at shift.
 | |
| 	 */
 | |
| 
 | |
| 	/* 1. Allocate result space. */
 | |
| 	ret = _PyLong_New(asize + bsize);
 | |
| 	if (ret == NULL) goto fail;
 | |
| #ifdef Py_DEBUG
 | |
| 	/* Fill with trash, to catch reference to uninitialized digits. */
 | |
| 	memset(ret->ob_digit, 0xDF, Py_SIZE(ret) * sizeof(digit));
 | |
| #endif
 | |
| 
 | |
| 	/* 2. t1 <- ah*bh, and copy into high digits of result. */
 | |
| 	if ((t1 = k_mul(ah, bh)) == NULL) goto fail;
 | |
| 	assert(Py_SIZE(t1) >= 0);
 | |
| 	assert(2*shift + Py_SIZE(t1) <= Py_SIZE(ret));
 | |
| 	memcpy(ret->ob_digit + 2*shift, t1->ob_digit,
 | |
| 	       Py_SIZE(t1) * sizeof(digit));
 | |
| 
 | |
| 	/* Zero-out the digits higher than the ah*bh copy. */
 | |
| 	i = Py_SIZE(ret) - 2*shift - Py_SIZE(t1);
 | |
| 	if (i)
 | |
| 		memset(ret->ob_digit + 2*shift + Py_SIZE(t1), 0,
 | |
| 		       i * sizeof(digit));
 | |
| 
 | |
| 	/* 3. t2 <- al*bl, and copy into the low digits. */
 | |
| 	if ((t2 = k_mul(al, bl)) == NULL) {
 | |
| 		Py_DECREF(t1);
 | |
| 		goto fail;
 | |
| 	}
 | |
| 	assert(Py_SIZE(t2) >= 0);
 | |
| 	assert(Py_SIZE(t2) <= 2*shift); /* no overlap with high digits */
 | |
| 	memcpy(ret->ob_digit, t2->ob_digit, Py_SIZE(t2) * sizeof(digit));
 | |
| 
 | |
| 	/* Zero out remaining digits. */
 | |
| 	i = 2*shift - Py_SIZE(t2);	/* number of uninitialized digits */
 | |
| 	if (i)
 | |
| 		memset(ret->ob_digit + Py_SIZE(t2), 0, i * sizeof(digit));
 | |
| 
 | |
| 	/* 4 & 5. Subtract ah*bh (t1) and al*bl (t2).  We do al*bl first
 | |
| 	 * because it's fresher in cache.
 | |
| 	 */
 | |
| 	i = Py_SIZE(ret) - shift;  /* # digits after shift */
 | |
| 	(void)v_isub(ret->ob_digit + shift, i, t2->ob_digit, Py_SIZE(t2));
 | |
| 	Py_DECREF(t2);
 | |
| 
 | |
| 	(void)v_isub(ret->ob_digit + shift, i, t1->ob_digit, Py_SIZE(t1));
 | |
| 	Py_DECREF(t1);
 | |
| 
 | |
| 	/* 6. t3 <- (ah+al)(bh+bl), and add into result. */
 | |
| 	if ((t1 = x_add(ah, al)) == NULL) goto fail;
 | |
| 	Py_DECREF(ah);
 | |
| 	Py_DECREF(al);
 | |
| 	ah = al = NULL;
 | |
| 
 | |
| 	if (a == b) {
 | |
| 		t2 = t1;
 | |
| 		Py_INCREF(t2);
 | |
| 	}
 | |
| 	else if ((t2 = x_add(bh, bl)) == NULL) {
 | |
| 		Py_DECREF(t1);
 | |
| 		goto fail;
 | |
| 	}
 | |
| 	Py_DECREF(bh);
 | |
| 	Py_DECREF(bl);
 | |
| 	bh = bl = NULL;
 | |
| 
 | |
| 	t3 = k_mul(t1, t2);
 | |
| 	Py_DECREF(t1);
 | |
| 	Py_DECREF(t2);
 | |
| 	if (t3 == NULL) goto fail;
 | |
| 	assert(Py_SIZE(t3) >= 0);
 | |
| 
 | |
| 	/* Add t3.  It's not obvious why we can't run out of room here.
 | |
| 	 * See the (*) comment after this function.
 | |
| 	 */
 | |
| 	(void)v_iadd(ret->ob_digit + shift, i, t3->ob_digit, Py_SIZE(t3));
 | |
| 	Py_DECREF(t3);
 | |
| 
 | |
| 	return long_normalize(ret);
 | |
| 
 | |
|  fail:
 | |
|  	Py_XDECREF(ret);
 | |
| 	Py_XDECREF(ah);
 | |
| 	Py_XDECREF(al);
 | |
| 	Py_XDECREF(bh);
 | |
| 	Py_XDECREF(bl);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* (*) Why adding t3 can't "run out of room" above.
 | |
| 
 | |
| Let f(x) mean the floor of x and c(x) mean the ceiling of x.  Some facts
 | |
| to start with:
 | |
| 
 | |
| 1. For any integer i, i = c(i/2) + f(i/2).  In particular,
 | |
|    bsize = c(bsize/2) + f(bsize/2).
 | |
| 2. shift = f(bsize/2)
 | |
| 3. asize <= bsize
 | |
| 4. Since we call k_lopsided_mul if asize*2 <= bsize, asize*2 > bsize in this
 | |
|    routine, so asize > bsize/2 >= f(bsize/2) in this routine.
 | |
| 
 | |
| We allocated asize + bsize result digits, and add t3 into them at an offset
 | |
| of shift.  This leaves asize+bsize-shift allocated digit positions for t3
 | |
| to fit into, = (by #1 and #2) asize + f(bsize/2) + c(bsize/2) - f(bsize/2) =
 | |
| asize + c(bsize/2) available digit positions.
 | |
| 
 | |
| bh has c(bsize/2) digits, and bl at most f(size/2) digits.  So bh+hl has
 | |
| at most c(bsize/2) digits + 1 bit.
 | |
| 
 | |
| If asize == bsize, ah has c(bsize/2) digits, else ah has at most f(bsize/2)
 | |
| digits, and al has at most f(bsize/2) digits in any case.  So ah+al has at
 | |
| most (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 1 bit.
 | |
| 
 | |
| The product (ah+al)*(bh+bl) therefore has at most
 | |
| 
 | |
|     c(bsize/2) + (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits
 | |
| 
 | |
| and we have asize + c(bsize/2) available digit positions.  We need to show
 | |
| this is always enough.  An instance of c(bsize/2) cancels out in both, so
 | |
| the question reduces to whether asize digits is enough to hold
 | |
| (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits.  If asize < bsize,
 | |
| then we're asking whether asize digits >= f(bsize/2) digits + 2 bits.  By #4,
 | |
| asize is at least f(bsize/2)+1 digits, so this in turn reduces to whether 1
 | |
| digit is enough to hold 2 bits.  This is so since PyLong_SHIFT=15 >= 2.  If
 | |
| asize == bsize, then we're asking whether bsize digits is enough to hold
 | |
| c(bsize/2) digits + 2 bits, or equivalently (by #1) whether f(bsize/2) digits
 | |
| is enough to hold 2 bits.  This is so if bsize >= 2, which holds because
 | |
| bsize >= KARATSUBA_CUTOFF >= 2.
 | |
| 
 | |
| Note that since there's always enough room for (ah+al)*(bh+bl), and that's
 | |
| clearly >= each of ah*bh and al*bl, there's always enough room to subtract
 | |
| ah*bh and al*bl too.
 | |
| */
 | |
| 
 | |
| /* b has at least twice the digits of a, and a is big enough that Karatsuba
 | |
|  * would pay off *if* the inputs had balanced sizes.  View b as a sequence
 | |
|  * of slices, each with a->ob_size digits, and multiply the slices by a,
 | |
|  * one at a time.  This gives k_mul balanced inputs to work with, and is
 | |
|  * also cache-friendly (we compute one double-width slice of the result
 | |
|  * at a time, then move on, never bactracking except for the helpful
 | |
|  * single-width slice overlap between successive partial sums).
 | |
|  */
 | |
| static PyLongObject *
 | |
| k_lopsided_mul(PyLongObject *a, PyLongObject *b)
 | |
| {
 | |
| 	const Py_ssize_t asize = ABS(Py_SIZE(a));
 | |
| 	Py_ssize_t bsize = ABS(Py_SIZE(b));
 | |
| 	Py_ssize_t nbdone;	/* # of b digits already multiplied */
 | |
| 	PyLongObject *ret;
 | |
| 	PyLongObject *bslice = NULL;
 | |
| 
 | |
| 	assert(asize > KARATSUBA_CUTOFF);
 | |
| 	assert(2 * asize <= bsize);
 | |
| 
 | |
| 	/* Allocate result space, and zero it out. */
 | |
| 	ret = _PyLong_New(asize + bsize);
 | |
| 	if (ret == NULL)
 | |
| 		return NULL;
 | |
| 	memset(ret->ob_digit, 0, Py_SIZE(ret) * sizeof(digit));
 | |
| 
 | |
| 	/* Successive slices of b are copied into bslice. */
 | |
| 	bslice = _PyLong_New(asize);
 | |
| 	if (bslice == NULL)
 | |
| 		goto fail;
 | |
| 
 | |
| 	nbdone = 0;
 | |
| 	while (bsize > 0) {
 | |
| 		PyLongObject *product;
 | |
| 		const Py_ssize_t nbtouse = MIN(bsize, asize);
 | |
| 
 | |
| 		/* Multiply the next slice of b by a. */
 | |
| 		memcpy(bslice->ob_digit, b->ob_digit + nbdone,
 | |
| 		       nbtouse * sizeof(digit));
 | |
| 		Py_SIZE(bslice) = nbtouse;
 | |
| 		product = k_mul(a, bslice);
 | |
| 		if (product == NULL)
 | |
| 			goto fail;
 | |
| 
 | |
| 		/* Add into result. */
 | |
| 		(void)v_iadd(ret->ob_digit + nbdone, Py_SIZE(ret) - nbdone,
 | |
| 			     product->ob_digit, Py_SIZE(product));
 | |
| 		Py_DECREF(product);
 | |
| 
 | |
| 		bsize -= nbtouse;
 | |
| 		nbdone += nbtouse;
 | |
| 	}
 | |
| 
 | |
| 	Py_DECREF(bslice);
 | |
| 	return long_normalize(ret);
 | |
| 
 | |
|  fail:
 | |
| 	Py_DECREF(ret);
 | |
| 	Py_XDECREF(bslice);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_mul(PyLongObject *a, PyLongObject *b)
 | |
| {
 | |
| 	PyLongObject *z;
 | |
| 
 | |
| 	CHECK_BINOP(a, b);
 | |
| 
 | |
| 	/* fast path for single-digit multiplication */
 | |
| 	if (ABS(Py_SIZE(a)) <= 1 && ABS(Py_SIZE(b)) <= 1) {
 | |
| 		stwodigits v = (stwodigits)(MEDIUM_VALUE(a)) * MEDIUM_VALUE(b);
 | |
| #ifdef HAVE_LONG_LONG
 | |
| 		return PyLong_FromLongLong((PY_LONG_LONG)v);
 | |
| #else
 | |
| 		/* if we don't have long long then we're almost certainly
 | |
| 		   using 15-bit digits, so v will fit in a long.  In the
 | |
| 		   unlikely event that we're using 30-bit digits on a platform
 | |
| 		   without long long, a large v will just cause us to fall
 | |
| 		   through to the general multiplication code below. */
 | |
| 		if (v >= LONG_MIN && v <= LONG_MAX)
 | |
| 			return PyLong_FromLong((long)v);
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	z = k_mul(a, b);
 | |
| 	/* Negate if exactly one of the inputs is negative. */
 | |
| 	if (((Py_SIZE(a) ^ Py_SIZE(b)) < 0) && z)
 | |
| 		NEGATE(z);
 | |
| 	return (PyObject *)z;
 | |
| }
 | |
| 
 | |
| /* The / and % operators are now defined in terms of divmod().
 | |
|    The expression a mod b has the value a - b*floor(a/b).
 | |
|    The long_divrem function gives the remainder after division of
 | |
|    |a| by |b|, with the sign of a.  This is also expressed
 | |
|    as a - b*trunc(a/b), if trunc truncates towards zero.
 | |
|    Some examples:
 | |
|    	 a	 b	a rem b		a mod b
 | |
|    	 13	 10	 3		 3
 | |
|    	-13	 10	-3		 7
 | |
|    	 13	-10	 3		-7
 | |
|    	-13	-10	-3		-3
 | |
|    So, to get from rem to mod, we have to add b if a and b
 | |
|    have different signs.  We then subtract one from the 'div'
 | |
|    part of the outcome to keep the invariant intact. */
 | |
| 
 | |
| /* Compute
 | |
|  *     *pdiv, *pmod = divmod(v, w)
 | |
|  * NULL can be passed for pdiv or pmod, in which case that part of
 | |
|  * the result is simply thrown away.  The caller owns a reference to
 | |
|  * each of these it requests (does not pass NULL for).
 | |
|  */
 | |
| static int
 | |
| l_divmod(PyLongObject *v, PyLongObject *w,
 | |
| 	 PyLongObject **pdiv, PyLongObject **pmod)
 | |
| {
 | |
| 	PyLongObject *div, *mod;
 | |
| 
 | |
| 	if (long_divrem(v, w, &div, &mod) < 0)
 | |
| 		return -1;
 | |
| 	if ((Py_SIZE(mod) < 0 && Py_SIZE(w) > 0) ||
 | |
| 	    (Py_SIZE(mod) > 0 && Py_SIZE(w) < 0)) {
 | |
| 		PyLongObject *temp;
 | |
| 		PyLongObject *one;
 | |
| 		temp = (PyLongObject *) long_add(mod, w);
 | |
| 		Py_DECREF(mod);
 | |
| 		mod = temp;
 | |
| 		if (mod == NULL) {
 | |
| 			Py_DECREF(div);
 | |
| 			return -1;
 | |
| 		}
 | |
| 		one = (PyLongObject *) PyLong_FromLong(1L);
 | |
| 		if (one == NULL ||
 | |
| 		    (temp = (PyLongObject *) long_sub(div, one)) == NULL) {
 | |
| 			Py_DECREF(mod);
 | |
| 			Py_DECREF(div);
 | |
| 			Py_XDECREF(one);
 | |
| 			return -1;
 | |
| 		}
 | |
| 		Py_DECREF(one);
 | |
| 		Py_DECREF(div);
 | |
| 		div = temp;
 | |
| 	}
 | |
| 	if (pdiv != NULL)
 | |
| 		*pdiv = div;
 | |
| 	else
 | |
| 		Py_DECREF(div);
 | |
| 
 | |
| 	if (pmod != NULL)
 | |
| 		*pmod = mod;
 | |
| 	else
 | |
| 		Py_DECREF(mod);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_div(PyObject *a, PyObject *b)
 | |
| {
 | |
| 	PyLongObject *div;
 | |
| 
 | |
| 	CHECK_BINOP(a, b);
 | |
| 	if (l_divmod((PyLongObject*)a, (PyLongObject*)b, &div, NULL) < 0)
 | |
| 		div = NULL;
 | |
| 	return (PyObject *)div;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_true_divide(PyObject *a, PyObject *b)
 | |
| {
 | |
| 	double ad, bd;
 | |
| 	int failed, aexp = -1, bexp = -1;
 | |
| 
 | |
| 	CHECK_BINOP(a, b);
 | |
| 	ad = _PyLong_AsScaledDouble((PyObject *)a, &aexp);
 | |
| 	bd = _PyLong_AsScaledDouble((PyObject *)b, &bexp);
 | |
| 	failed = (ad == -1.0 || bd == -1.0) && PyErr_Occurred();
 | |
| 	if (failed)
 | |
| 		return NULL;
 | |
| 	/* 'aexp' and 'bexp' were initialized to -1 to silence gcc-4.0.x,
 | |
| 	   but should really be set correctly after sucessful calls to
 | |
| 	   _PyLong_AsScaledDouble() */
 | |
| 	assert(aexp >= 0 && bexp >= 0);
 | |
| 
 | |
| 	if (bd == 0.0) {
 | |
| 		PyErr_SetString(PyExc_ZeroDivisionError,
 | |
| 			"int division or modulo by zero");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* True value is very close to ad/bd * 2**(PyLong_SHIFT*(aexp-bexp)) */
 | |
| 	ad /= bd;	/* overflow/underflow impossible here */
 | |
| 	aexp -= bexp;
 | |
| 	if (aexp > INT_MAX / PyLong_SHIFT)
 | |
| 		goto overflow;
 | |
| 	else if (aexp < -(INT_MAX / PyLong_SHIFT))
 | |
| 		return PyFloat_FromDouble(0.0);	/* underflow to 0 */
 | |
| 	errno = 0;
 | |
| 	ad = ldexp(ad, aexp * PyLong_SHIFT);
 | |
| 	if (Py_OVERFLOWED(ad)) /* ignore underflow to 0.0 */
 | |
| 		goto overflow;
 | |
| 	return PyFloat_FromDouble(ad);
 | |
| 
 | |
| overflow:
 | |
| 	PyErr_SetString(PyExc_OverflowError,
 | |
| 		"int/int too large for a float");
 | |
| 	return NULL;
 | |
| 
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_mod(PyObject *a, PyObject *b)
 | |
| {
 | |
| 	PyLongObject *mod;
 | |
| 	
 | |
| 	CHECK_BINOP(a, b);
 | |
| 
 | |
| 	if (l_divmod((PyLongObject*)a, (PyLongObject*)b, NULL, &mod) < 0)
 | |
| 		mod = NULL;
 | |
| 	return (PyObject *)mod;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_divmod(PyObject *a, PyObject *b)
 | |
| {
 | |
| 	PyLongObject *div, *mod;
 | |
| 	PyObject *z;
 | |
| 
 | |
| 	CHECK_BINOP(a, b);
 | |
| 
 | |
| 	if (l_divmod((PyLongObject*)a, (PyLongObject*)b, &div, &mod) < 0) {
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	z = PyTuple_New(2);
 | |
| 	if (z != NULL) {
 | |
| 		PyTuple_SetItem(z, 0, (PyObject *) div);
 | |
| 		PyTuple_SetItem(z, 1, (PyObject *) mod);
 | |
| 	}
 | |
| 	else {
 | |
| 		Py_DECREF(div);
 | |
| 		Py_DECREF(mod);
 | |
| 	}
 | |
| 	return z;
 | |
| }
 | |
| 
 | |
| /* pow(v, w, x) */
 | |
| static PyObject *
 | |
| long_pow(PyObject *v, PyObject *w, PyObject *x)
 | |
| {
 | |
| 	PyLongObject *a, *b, *c; /* a,b,c = v,w,x */
 | |
| 	int negativeOutput = 0;  /* if x<0 return negative output */
 | |
| 
 | |
| 	PyLongObject *z = NULL;  /* accumulated result */
 | |
| 	Py_ssize_t i, j, k;             /* counters */
 | |
| 	PyLongObject *temp = NULL;
 | |
| 
 | |
| 	/* 5-ary values.  If the exponent is large enough, table is
 | |
| 	 * precomputed so that table[i] == a**i % c for i in range(32).
 | |
| 	 */
 | |
| 	PyLongObject *table[32] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
 | |
| 				   0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
 | |
| 
 | |
| 	/* a, b, c = v, w, x */
 | |
| 	CHECK_BINOP(v, w);
 | |
| 	a = (PyLongObject*)v; Py_INCREF(a);
 | |
| 	b = (PyLongObject*)w; Py_INCREF(b);
 | |
| 	if (PyLong_Check(x)) {
 | |
| 		c = (PyLongObject *)x;
 | |
| 		Py_INCREF(x);
 | |
| 	}
 | |
| 	else if (x == Py_None)
 | |
| 		c = NULL;
 | |
| 	else {
 | |
| 		Py_DECREF(a);
 | |
| 		Py_DECREF(b);
 | |
| 		Py_INCREF(Py_NotImplemented);
 | |
| 		return Py_NotImplemented;
 | |
| 	}
 | |
| 
 | |
| 	if (Py_SIZE(b) < 0) {  /* if exponent is negative */
 | |
| 		if (c) {
 | |
| 			PyErr_SetString(PyExc_TypeError, "pow() 2nd argument "
 | |
| 			    "cannot be negative when 3rd argument specified");
 | |
| 			goto Error;
 | |
| 		}
 | |
| 		else {
 | |
| 			/* else return a float.  This works because we know
 | |
| 			   that this calls float_pow() which converts its
 | |
| 			   arguments to double. */
 | |
| 			Py_DECREF(a);
 | |
| 			Py_DECREF(b);
 | |
| 			return PyFloat_Type.tp_as_number->nb_power(v, w, x);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (c) {
 | |
| 		/* if modulus == 0:
 | |
| 		       raise ValueError() */
 | |
| 		if (Py_SIZE(c) == 0) {
 | |
| 			PyErr_SetString(PyExc_ValueError,
 | |
| 					"pow() 3rd argument cannot be 0");
 | |
| 			goto Error;
 | |
| 		}
 | |
| 
 | |
| 		/* if modulus < 0:
 | |
| 		       negativeOutput = True
 | |
| 		       modulus = -modulus */
 | |
| 		if (Py_SIZE(c) < 0) {
 | |
| 			negativeOutput = 1;
 | |
| 			temp = (PyLongObject *)_PyLong_Copy(c);
 | |
| 			if (temp == NULL)
 | |
| 				goto Error;
 | |
| 			Py_DECREF(c);
 | |
| 			c = temp;
 | |
| 			temp = NULL;
 | |
| 			NEGATE(c);
 | |
| 		}
 | |
| 
 | |
| 		/* if modulus == 1:
 | |
| 		       return 0 */
 | |
| 		if ((Py_SIZE(c) == 1) && (c->ob_digit[0] == 1)) {
 | |
| 			z = (PyLongObject *)PyLong_FromLong(0L);
 | |
| 			goto Done;
 | |
| 		}
 | |
| 
 | |
| 		/* if base < 0:
 | |
| 		       base = base % modulus
 | |
| 		   Having the base positive just makes things easier. */
 | |
| 		if (Py_SIZE(a) < 0) {
 | |
| 			if (l_divmod(a, c, NULL, &temp) < 0)
 | |
| 				goto Error;
 | |
| 			Py_DECREF(a);
 | |
| 			a = temp;
 | |
| 			temp = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* At this point a, b, and c are guaranteed non-negative UNLESS
 | |
| 	   c is NULL, in which case a may be negative. */
 | |
| 
 | |
| 	z = (PyLongObject *)PyLong_FromLong(1L);
 | |
| 	if (z == NULL)
 | |
| 		goto Error;
 | |
| 
 | |
| 	/* Perform a modular reduction, X = X % c, but leave X alone if c
 | |
| 	 * is NULL.
 | |
| 	 */
 | |
| #define REDUCE(X)					\
 | |
| 	if (c != NULL) {				\
 | |
| 		if (l_divmod(X, c, NULL, &temp) < 0)	\
 | |
| 			goto Error;			\
 | |
| 		Py_XDECREF(X);				\
 | |
| 		X = temp;				\
 | |
| 		temp = NULL;				\
 | |
| 	}
 | |
| 
 | |
| 	/* Multiply two values, then reduce the result:
 | |
| 	   result = X*Y % c.  If c is NULL, skip the mod. */
 | |
| #define MULT(X, Y, result)				\
 | |
| {							\
 | |
| 	temp = (PyLongObject *)long_mul(X, Y);		\
 | |
| 	if (temp == NULL)				\
 | |
| 		goto Error;				\
 | |
| 	Py_XDECREF(result);				\
 | |
| 	result = temp;					\
 | |
| 	temp = NULL;					\
 | |
| 	REDUCE(result)					\
 | |
| }
 | |
| 
 | |
| 	if (Py_SIZE(b) <= FIVEARY_CUTOFF) {
 | |
| 		/* Left-to-right binary exponentiation (HAC Algorithm 14.79) */
 | |
| 		/* http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf    */
 | |
| 		for (i = Py_SIZE(b) - 1; i >= 0; --i) {
 | |
| 			digit bi = b->ob_digit[i];
 | |
| 
 | |
| 			for (j = (digit)1 << (PyLong_SHIFT-1); j != 0; j >>= 1) {
 | |
| 				MULT(z, z, z)
 | |
| 				if (bi & j)
 | |
| 					MULT(z, a, z)
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		/* Left-to-right 5-ary exponentiation (HAC Algorithm 14.82) */
 | |
| 		Py_INCREF(z);	/* still holds 1L */
 | |
| 		table[0] = z;
 | |
| 		for (i = 1; i < 32; ++i)
 | |
| 			MULT(table[i-1], a, table[i])
 | |
| 
 | |
| 		for (i = Py_SIZE(b) - 1; i >= 0; --i) {
 | |
| 			const digit bi = b->ob_digit[i];
 | |
| 
 | |
| 			for (j = PyLong_SHIFT - 5; j >= 0; j -= 5) {
 | |
| 				const int index = (bi >> j) & 0x1f;
 | |
| 				for (k = 0; k < 5; ++k)
 | |
| 					MULT(z, z, z)
 | |
| 				if (index)
 | |
| 					MULT(z, table[index], z)
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (negativeOutput && (Py_SIZE(z) != 0)) {
 | |
| 		temp = (PyLongObject *)long_sub(z, c);
 | |
| 		if (temp == NULL)
 | |
| 			goto Error;
 | |
| 		Py_DECREF(z);
 | |
| 		z = temp;
 | |
| 		temp = NULL;
 | |
| 	}
 | |
| 	goto Done;
 | |
| 
 | |
|  Error:
 | |
|  	if (z != NULL) {
 | |
|  		Py_DECREF(z);
 | |
|  		z = NULL;
 | |
|  	}
 | |
| 	/* fall through */
 | |
|  Done:
 | |
| 	if (Py_SIZE(b) > FIVEARY_CUTOFF) {
 | |
| 		for (i = 0; i < 32; ++i)
 | |
| 			Py_XDECREF(table[i]);
 | |
| 	}
 | |
| 	Py_DECREF(a);
 | |
| 	Py_DECREF(b);
 | |
| 	Py_XDECREF(c);
 | |
| 	Py_XDECREF(temp);
 | |
| 	return (PyObject *)z;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_invert(PyLongObject *v)
 | |
| {
 | |
| 	/* Implement ~x as -(x+1) */
 | |
| 	PyLongObject *x;
 | |
| 	PyLongObject *w;
 | |
| 	if (ABS(Py_SIZE(v)) <=1)
 | |
| 		return PyLong_FromLong(-(MEDIUM_VALUE(v)+1));
 | |
| 	w = (PyLongObject *)PyLong_FromLong(1L);
 | |
| 	if (w == NULL)
 | |
| 		return NULL;
 | |
| 	x = (PyLongObject *) long_add(v, w);
 | |
| 	Py_DECREF(w);
 | |
| 	if (x == NULL)
 | |
| 		return NULL;
 | |
| 	Py_SIZE(x) = -(Py_SIZE(x));
 | |
| 	return (PyObject *)maybe_small_long(x);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_neg(PyLongObject *v)
 | |
| {
 | |
| 	PyLongObject *z;
 | |
| 	if (ABS(Py_SIZE(v)) <= 1)
 | |
| 		return PyLong_FromLong(-MEDIUM_VALUE(v));
 | |
| 	z = (PyLongObject *)_PyLong_Copy(v);
 | |
| 	if (z != NULL)
 | |
| 		Py_SIZE(z) = -(Py_SIZE(v));
 | |
| 	return (PyObject *)z;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_abs(PyLongObject *v)
 | |
| {
 | |
| 	if (Py_SIZE(v) < 0)
 | |
| 		return long_neg(v);
 | |
| 	else
 | |
| 		return long_long((PyObject *)v);
 | |
| }
 | |
| 
 | |
| static int
 | |
| long_bool(PyLongObject *v)
 | |
| {
 | |
| 	return ABS(Py_SIZE(v)) != 0;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_rshift(PyLongObject *a, PyLongObject *b)
 | |
| {
 | |
| 	PyLongObject *z = NULL;
 | |
| 	long shiftby;
 | |
| 	Py_ssize_t newsize, wordshift, loshift, hishift, i, j;
 | |
| 	digit lomask, himask;
 | |
| 
 | |
| 	CHECK_BINOP(a, b);
 | |
| 
 | |
| 	if (Py_SIZE(a) < 0) {
 | |
| 		/* Right shifting negative numbers is harder */
 | |
| 		PyLongObject *a1, *a2;
 | |
| 		a1 = (PyLongObject *) long_invert(a);
 | |
| 		if (a1 == NULL)
 | |
| 			goto rshift_error;
 | |
| 		a2 = (PyLongObject *) long_rshift(a1, b);
 | |
| 		Py_DECREF(a1);
 | |
| 		if (a2 == NULL)
 | |
| 			goto rshift_error;
 | |
| 		z = (PyLongObject *) long_invert(a2);
 | |
| 		Py_DECREF(a2);
 | |
| 	}
 | |
| 	else {
 | |
| 
 | |
| 		shiftby = PyLong_AsLong((PyObject *)b);
 | |
| 		if (shiftby == -1L && PyErr_Occurred())
 | |
| 			goto rshift_error;
 | |
| 		if (shiftby < 0) {
 | |
| 			PyErr_SetString(PyExc_ValueError,
 | |
| 					"negative shift count");
 | |
| 			goto rshift_error;
 | |
| 		}
 | |
| 		wordshift = shiftby / PyLong_SHIFT;
 | |
| 		newsize = ABS(Py_SIZE(a)) - wordshift;
 | |
| 		if (newsize <= 0)
 | |
| 		        return PyLong_FromLong(0);
 | |
| 		loshift = shiftby % PyLong_SHIFT;
 | |
| 		hishift = PyLong_SHIFT - loshift;
 | |
| 		lomask = ((digit)1 << hishift) - 1;
 | |
| 		himask = PyLong_MASK ^ lomask;
 | |
| 		z = _PyLong_New(newsize);
 | |
| 		if (z == NULL)
 | |
| 			goto rshift_error;
 | |
| 		if (Py_SIZE(a) < 0)
 | |
| 			Py_SIZE(z) = -(Py_SIZE(z));
 | |
| 		for (i = 0, j = wordshift; i < newsize; i++, j++) {
 | |
| 			z->ob_digit[i] = (a->ob_digit[j] >> loshift) & lomask;
 | |
| 			if (i+1 < newsize)
 | |
| 				z->ob_digit[i] |=
 | |
| 				  (a->ob_digit[j+1] << hishift) & himask;
 | |
| 		}
 | |
| 		z = long_normalize(z);
 | |
| 	}
 | |
| rshift_error:
 | |
| 	return (PyObject *) maybe_small_long(z);
 | |
| 
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_lshift(PyObject *v, PyObject *w)
 | |
| {
 | |
| 	/* This version due to Tim Peters */
 | |
| 	PyLongObject *a = (PyLongObject*)v;
 | |
| 	PyLongObject *b = (PyLongObject*)w;
 | |
| 	PyLongObject *z = NULL;
 | |
| 	long shiftby;
 | |
| 	Py_ssize_t oldsize, newsize, wordshift, remshift, i, j;
 | |
| 	twodigits accum;
 | |
| 
 | |
| 	CHECK_BINOP(a, b);
 | |
| 
 | |
| 	shiftby = PyLong_AsLong((PyObject *)b);
 | |
| 	if (shiftby == -1L && PyErr_Occurred())
 | |
| 		goto lshift_error;
 | |
| 	if (shiftby < 0) {
 | |
| 		PyErr_SetString(PyExc_ValueError, "negative shift count");
 | |
| 		goto lshift_error;
 | |
| 	}
 | |
| 	if ((long)(int)shiftby != shiftby) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 				"outrageous left shift count");
 | |
| 		goto lshift_error;
 | |
| 	}
 | |
| 	/* wordshift, remshift = divmod(shiftby, PyLong_SHIFT) */
 | |
| 	wordshift = (int)shiftby / PyLong_SHIFT;
 | |
| 	remshift  = (int)shiftby - wordshift * PyLong_SHIFT;
 | |
| 
 | |
| 	oldsize = ABS(Py_SIZE(a));
 | |
| 	newsize = oldsize + wordshift;
 | |
| 	if (remshift)
 | |
| 		++newsize;
 | |
| 	z = _PyLong_New(newsize);
 | |
| 	if (z == NULL)
 | |
| 		goto lshift_error;
 | |
| 	if (Py_SIZE(a) < 0)
 | |
| 		NEGATE(z);
 | |
| 	for (i = 0; i < wordshift; i++)
 | |
| 		z->ob_digit[i] = 0;
 | |
| 	accum = 0;
 | |
| 	for (i = wordshift, j = 0; j < oldsize; i++, j++) {
 | |
| 		accum |= (twodigits)a->ob_digit[j] << remshift;
 | |
| 		z->ob_digit[i] = (digit)(accum & PyLong_MASK);
 | |
| 		accum >>= PyLong_SHIFT;
 | |
| 	}
 | |
| 	if (remshift)
 | |
| 		z->ob_digit[newsize-1] = (digit)accum;
 | |
| 	else
 | |
| 		assert(!accum);
 | |
| 	z = long_normalize(z);
 | |
| lshift_error:
 | |
| 	return (PyObject *) maybe_small_long(z);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Bitwise and/xor/or operations */
 | |
| 
 | |
| static PyObject *
 | |
| long_bitwise(PyLongObject *a,
 | |
| 	     int op,  /* '&', '|', '^' */
 | |
| 	     PyLongObject *b)
 | |
| {
 | |
| 	digit maska, maskb; /* 0 or PyLong_MASK */
 | |
| 	int negz;
 | |
| 	Py_ssize_t size_a, size_b, size_z, i;
 | |
| 	PyLongObject *z;
 | |
| 	digit diga, digb;
 | |
| 	PyObject *v;
 | |
| 
 | |
| 	if (Py_SIZE(a) < 0) {
 | |
| 		a = (PyLongObject *) long_invert(a);
 | |
| 		if (a == NULL)
 | |
| 			return NULL;
 | |
| 		maska = PyLong_MASK;
 | |
| 	}
 | |
| 	else {
 | |
| 		Py_INCREF(a);
 | |
| 		maska = 0;
 | |
| 	}
 | |
| 	if (Py_SIZE(b) < 0) {
 | |
| 		b = (PyLongObject *) long_invert(b);
 | |
| 		if (b == NULL) {
 | |
| 			Py_DECREF(a);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		maskb = PyLong_MASK;
 | |
| 	}
 | |
| 	else {
 | |
| 		Py_INCREF(b);
 | |
| 		maskb = 0;
 | |
| 	}
 | |
| 
 | |
| 	negz = 0;
 | |
| 	switch (op) {
 | |
| 	case '^':
 | |
| 		if (maska != maskb) {
 | |
| 			maska ^= PyLong_MASK;
 | |
| 			negz = -1;
 | |
| 		}
 | |
| 		break;
 | |
| 	case '&':
 | |
| 		if (maska && maskb) {
 | |
| 			op = '|';
 | |
| 			maska ^= PyLong_MASK;
 | |
| 			maskb ^= PyLong_MASK;
 | |
| 			negz = -1;
 | |
| 		}
 | |
| 		break;
 | |
| 	case '|':
 | |
| 		if (maska || maskb) {
 | |
| 			op = '&';
 | |
| 			maska ^= PyLong_MASK;
 | |
| 			maskb ^= PyLong_MASK;
 | |
| 			negz = -1;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* JRH: The original logic here was to allocate the result value (z)
 | |
| 	   as the longer of the two operands.  However, there are some cases
 | |
| 	   where the result is guaranteed to be shorter than that: AND of two
 | |
| 	   positives, OR of two negatives: use the shorter number.  AND with
 | |
| 	   mixed signs: use the positive number.  OR with mixed signs: use the
 | |
| 	   negative number.  After the transformations above, op will be '&'
 | |
| 	   iff one of these cases applies, and mask will be non-0 for operands
 | |
| 	   whose length should be ignored.
 | |
| 	*/
 | |
| 
 | |
| 	size_a = Py_SIZE(a);
 | |
| 	size_b = Py_SIZE(b);
 | |
| 	size_z = op == '&'
 | |
| 		? (maska
 | |
| 		   ? size_b
 | |
| 		   : (maskb ? size_a : MIN(size_a, size_b)))
 | |
| 		: MAX(size_a, size_b);
 | |
| 	z = _PyLong_New(size_z);
 | |
| 	if (z == NULL) {
 | |
| 		Py_DECREF(a);
 | |
| 		Py_DECREF(b);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < size_z; ++i) {
 | |
| 		diga = (i < size_a ? a->ob_digit[i] : 0) ^ maska;
 | |
| 		digb = (i < size_b ? b->ob_digit[i] : 0) ^ maskb;
 | |
| 		switch (op) {
 | |
| 		case '&': z->ob_digit[i] = diga & digb; break;
 | |
| 		case '|': z->ob_digit[i] = diga | digb; break;
 | |
| 		case '^': z->ob_digit[i] = diga ^ digb; break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	Py_DECREF(a);
 | |
| 	Py_DECREF(b);
 | |
| 	z = long_normalize(z);
 | |
| 	if (negz == 0)
 | |
| 		return (PyObject *) maybe_small_long(z);
 | |
| 	v = long_invert(z);
 | |
| 	Py_DECREF(z);
 | |
| 	return v;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_and(PyObject *a, PyObject *b)
 | |
| {
 | |
| 	PyObject *c;
 | |
| 	CHECK_BINOP(a, b);
 | |
| 	c = long_bitwise((PyLongObject*)a, '&', (PyLongObject*)b);
 | |
| 	return c;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_xor(PyObject *a, PyObject *b)
 | |
| {
 | |
| 	PyObject *c;
 | |
| 	CHECK_BINOP(a, b);
 | |
| 	c = long_bitwise((PyLongObject*)a, '^', (PyLongObject*)b);
 | |
| 	return c;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_or(PyObject *a, PyObject *b)
 | |
| {
 | |
| 	PyObject *c;
 | |
| 	CHECK_BINOP(a, b);
 | |
| 	c = long_bitwise((PyLongObject*)a, '|', (PyLongObject*)b);
 | |
| 	return c;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_long(PyObject *v)
 | |
| {
 | |
| 	if (PyLong_CheckExact(v))
 | |
| 		Py_INCREF(v);
 | |
| 	else
 | |
| 		v = _PyLong_Copy((PyLongObject *)v);
 | |
| 	return v;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_float(PyObject *v)
 | |
| {
 | |
| 	double result;
 | |
| 	result = PyLong_AsDouble(v);
 | |
| 	if (result == -1.0 && PyErr_Occurred())
 | |
| 		return NULL;
 | |
| 	return PyFloat_FromDouble(result);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds);
 | |
| 
 | |
| static PyObject *
 | |
| long_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
 | |
| {
 | |
| 	PyObject *x = NULL;
 | |
| 	int base = -909;		     /* unlikely! */
 | |
| 	static char *kwlist[] = {"x", "base", 0};
 | |
| 
 | |
| 	if (type != &PyLong_Type)
 | |
| 		return long_subtype_new(type, args, kwds); /* Wimp out */
 | |
| 	if (!PyArg_ParseTupleAndKeywords(args, kwds, "|Oi:int", kwlist,
 | |
| 					 &x, &base))
 | |
| 		return NULL;
 | |
| 	if (x == NULL)
 | |
| 		return PyLong_FromLong(0L);
 | |
| 	if (base == -909)
 | |
| 		return PyNumber_Long(x);
 | |
| 	else if (PyUnicode_Check(x))
 | |
| 		return PyLong_FromUnicode(PyUnicode_AS_UNICODE(x),
 | |
| 					  PyUnicode_GET_SIZE(x),
 | |
| 					  base);
 | |
| 	else if (PyByteArray_Check(x) || PyBytes_Check(x)) {
 | |
| 		/* Since PyLong_FromString doesn't have a length parameter,
 | |
| 		 * check here for possible NULs in the string. */
 | |
| 		char *string;
 | |
| 		Py_ssize_t size = Py_SIZE(x);
 | |
| 		if (PyByteArray_Check(x))
 | |
| 			string = PyByteArray_AS_STRING(x);
 | |
| 		else
 | |
| 			string = PyBytes_AS_STRING(x);
 | |
| 		if (strlen(string) != (size_t)size) {
 | |
| 			/* We only see this if there's a null byte in x,
 | |
| 			   x is a bytes or buffer, *and* a base is given. */
 | |
| 			PyErr_Format(PyExc_ValueError,
 | |
| 			    "invalid literal for int() with base %d: %R",
 | |
| 			    base, x);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		return PyLong_FromString(string, NULL, base);
 | |
| 	}
 | |
| 	else {
 | |
| 		PyErr_SetString(PyExc_TypeError,
 | |
| 			"int() can't convert non-string with explicit base");
 | |
| 		return NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Wimpy, slow approach to tp_new calls for subtypes of long:
 | |
|    first create a regular long from whatever arguments we got,
 | |
|    then allocate a subtype instance and initialize it from
 | |
|    the regular long.  The regular long is then thrown away.
 | |
| */
 | |
| static PyObject *
 | |
| long_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
 | |
| {
 | |
| 	PyLongObject *tmp, *newobj;
 | |
| 	Py_ssize_t i, n;
 | |
| 
 | |
| 	assert(PyType_IsSubtype(type, &PyLong_Type));
 | |
| 	tmp = (PyLongObject *)long_new(&PyLong_Type, args, kwds);
 | |
| 	if (tmp == NULL)
 | |
| 		return NULL;
 | |
| 	assert(PyLong_CheckExact(tmp));
 | |
| 	n = Py_SIZE(tmp);
 | |
| 	if (n < 0)
 | |
| 		n = -n;
 | |
| 	newobj = (PyLongObject *)type->tp_alloc(type, n);
 | |
| 	if (newobj == NULL) {
 | |
| 		Py_DECREF(tmp);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	assert(PyLong_Check(newobj));
 | |
| 	Py_SIZE(newobj) = Py_SIZE(tmp);
 | |
| 	for (i = 0; i < n; i++)
 | |
| 		newobj->ob_digit[i] = tmp->ob_digit[i];
 | |
| 	Py_DECREF(tmp);
 | |
| 	return (PyObject *)newobj;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_getnewargs(PyLongObject *v)
 | |
| {
 | |
| 	return Py_BuildValue("(N)", _PyLong_Copy(v));
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_get0(PyLongObject *v, void *context) {
 | |
| 	return PyLong_FromLong(0L);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_get1(PyLongObject *v, void *context) {
 | |
| 	return PyLong_FromLong(1L);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long__format__(PyObject *self, PyObject *args)
 | |
| {
 | |
| 	PyObject *format_spec;
 | |
| 
 | |
| 	if (!PyArg_ParseTuple(args, "U:__format__", &format_spec))
 | |
| 		return NULL;
 | |
| 	return _PyLong_FormatAdvanced(self,
 | |
| 				      PyUnicode_AS_UNICODE(format_spec),
 | |
| 				      PyUnicode_GET_SIZE(format_spec));
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_round(PyObject *self, PyObject *args)
 | |
| {
 | |
| 	PyObject *o_ndigits=NULL, *temp;
 | |
| 	PyLongObject *pow=NULL, *q=NULL, *r=NULL, *ndigits=NULL, *one;
 | |
| 	int errcode;
 | |
| 	digit q_mod_4;
 | |
| 
 | |
| 	/* Notes on the algorithm: to round to the nearest 10**n (n positive),
 | |
| 	   the straightforward method is:
 | |
| 
 | |
| 	      (1) divide by 10**n
 | |
| 	      (2) round to nearest integer (round to even in case of tie)
 | |
| 	      (3) multiply result by 10**n.
 | |
| 
 | |
| 	   But the rounding step involves examining the fractional part of the
 | |
| 	   quotient to see whether it's greater than 0.5 or not.  Since we
 | |
| 	   want to do the whole calculation in integer arithmetic, it's
 | |
| 	   simpler to do:
 | |
| 
 | |
| 	      (1) divide by (10**n)/2
 | |
| 	      (2) round to nearest multiple of 2 (multiple of 4 in case of tie)
 | |
| 	      (3) multiply result by (10**n)/2.
 | |
| 
 | |
| 	   Then all we need to know about the fractional part of the quotient
 | |
| 	   arising in step (2) is whether it's zero or not.
 | |
| 
 | |
| 	   Doing both a multiplication and division is wasteful, and is easily
 | |
| 	   avoided if we just figure out how much to adjust the original input
 | |
| 	   by to do the rounding.
 | |
| 
 | |
| 	   Here's the whole algorithm expressed in Python.
 | |
| 
 | |
| 	    def round(self, ndigits = None):
 | |
| 	        """round(int, int) -> int"""
 | |
| 	        if ndigits is None or ndigits >= 0:
 | |
| 	            return self
 | |
| 	        pow = 10**-ndigits >> 1
 | |
| 	        q, r = divmod(self, pow)
 | |
| 	        self -= r
 | |
| 	        if (q & 1 != 0):
 | |
| 	            if (q & 2 == r == 0):
 | |
| 	                self -= pow
 | |
| 	            else:
 | |
| 	                self += pow
 | |
| 	        return self
 | |
| 
 | |
| 	*/
 | |
| 	if (!PyArg_ParseTuple(args, "|O", &o_ndigits))
 | |
| 		return NULL;
 | |
| 	if (o_ndigits == NULL)
 | |
| 		return long_long(self);
 | |
| 
 | |
| 	ndigits = (PyLongObject *)PyNumber_Index(o_ndigits);
 | |
| 	if (ndigits == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (Py_SIZE(ndigits) >= 0) {
 | |
| 		Py_DECREF(ndigits);
 | |
| 		return long_long(self);
 | |
| 	}
 | |
| 
 | |
| 	Py_INCREF(self); /* to keep refcounting simple */
 | |
| 	/* we now own references to self, ndigits */
 | |
| 
 | |
| 	/* pow = 10 ** -ndigits >> 1 */
 | |
| 	pow = (PyLongObject *)PyLong_FromLong(10L);
 | |
| 	if (pow == NULL)
 | |
| 		goto error;
 | |
| 	temp = long_neg(ndigits);
 | |
| 	Py_DECREF(ndigits);
 | |
| 	ndigits = (PyLongObject *)temp;
 | |
| 	if (ndigits == NULL)
 | |
| 		goto error;
 | |
| 	temp = long_pow((PyObject *)pow, (PyObject *)ndigits, Py_None);
 | |
| 	Py_DECREF(pow);
 | |
| 	pow = (PyLongObject *)temp;
 | |
| 	if (pow == NULL)
 | |
| 		goto error;
 | |
| 	assert(PyLong_Check(pow)); /* check long_pow returned a long */
 | |
| 	one = (PyLongObject *)PyLong_FromLong(1L);
 | |
| 	if (one == NULL)
 | |
| 		goto error;
 | |
| 	temp = long_rshift(pow, one);
 | |
| 	Py_DECREF(one);
 | |
| 	Py_DECREF(pow);
 | |
| 	pow = (PyLongObject *)temp;
 | |
| 	if (pow == NULL)
 | |
| 		goto error;
 | |
| 
 | |
| 	/* q, r = divmod(self, pow) */
 | |
| 	errcode = l_divmod((PyLongObject *)self, pow, &q, &r);
 | |
| 	if (errcode == -1)
 | |
| 		goto error;
 | |
| 
 | |
| 	/* self -= r */
 | |
| 	temp = long_sub((PyLongObject *)self, r);
 | |
| 	Py_DECREF(self);
 | |
| 	self = temp;
 | |
| 	if (self == NULL)
 | |
| 		goto error;
 | |
| 
 | |
| 	/* get value of quotient modulo 4 */
 | |
| 	if (Py_SIZE(q) == 0)
 | |
| 		q_mod_4 = 0;
 | |
| 	else if (Py_SIZE(q) > 0)
 | |
| 		q_mod_4 = q->ob_digit[0] & 3;
 | |
| 	else
 | |
| 		q_mod_4 = (PyLong_BASE-q->ob_digit[0]) & 3;
 | |
| 
 | |
| 	if ((q_mod_4 & 1) == 1) {
 | |
| 		/* q is odd; round self up or down by adding or subtracting pow */
 | |
| 		if (q_mod_4 == 1 && Py_SIZE(r) == 0)
 | |
| 			temp = (PyObject *)long_sub((PyLongObject *)self, pow);
 | |
| 		else
 | |
| 			temp = (PyObject *)long_add((PyLongObject *)self, pow);
 | |
| 		Py_DECREF(self);
 | |
| 		self = temp;
 | |
| 		if (self == NULL)
 | |
| 			goto error;
 | |
| 	}
 | |
| 	Py_DECREF(q);
 | |
| 	Py_DECREF(r);
 | |
| 	Py_DECREF(pow);
 | |
| 	Py_DECREF(ndigits);
 | |
| 	return self;
 | |
| 
 | |
|   error:
 | |
| 	Py_XDECREF(q);
 | |
| 	Py_XDECREF(r);
 | |
| 	Py_XDECREF(pow);
 | |
| 	Py_XDECREF(self);
 | |
| 	Py_XDECREF(ndigits);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_sizeof(PyLongObject *v)
 | |
| {
 | |
| 	Py_ssize_t res;
 | |
| 
 | |
| 	res = offsetof(PyLongObject, ob_digit) + ABS(Py_SIZE(v))*sizeof(digit);
 | |
| 	return PyLong_FromSsize_t(res);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_bit_length(PyLongObject *v)
 | |
| {
 | |
| 	PyLongObject *result, *x, *y;
 | |
| 	Py_ssize_t ndigits, msd_bits = 0;
 | |
| 	digit msd;
 | |
| 
 | |
| 	assert(v != NULL);
 | |
| 	assert(PyLong_Check(v));
 | |
| 
 | |
| 	ndigits = ABS(Py_SIZE(v));
 | |
| 	if (ndigits == 0)
 | |
| 		return PyLong_FromLong(0);
 | |
| 
 | |
| 	msd = v->ob_digit[ndigits-1];
 | |
| 	while (msd >= 32) {
 | |
| 		msd_bits += 6;
 | |
| 		msd >>= 6;
 | |
| 	}
 | |
| 	msd_bits += (long)(BitLengthTable[msd]);
 | |
| 
 | |
| 	if (ndigits <= PY_SSIZE_T_MAX/PyLong_SHIFT)
 | |
| 		return PyLong_FromSsize_t((ndigits-1)*PyLong_SHIFT + msd_bits);
 | |
| 
 | |
| 	/* expression above may overflow; use Python integers instead */
 | |
| 	result = (PyLongObject *)PyLong_FromSsize_t(ndigits - 1);
 | |
| 	if (result == NULL)
 | |
| 		return NULL;
 | |
| 	x = (PyLongObject *)PyLong_FromLong(PyLong_SHIFT);
 | |
| 	if (x == NULL)
 | |
| 		goto error;
 | |
| 	y = (PyLongObject *)long_mul(result, x);
 | |
| 	Py_DECREF(x);
 | |
| 	if (y == NULL)
 | |
| 		goto error;
 | |
| 	Py_DECREF(result);
 | |
| 	result = y;
 | |
| 
 | |
| 	x = (PyLongObject *)PyLong_FromLong(msd_bits);
 | |
| 	if (x == NULL)
 | |
| 		goto error;
 | |
| 	y = (PyLongObject *)long_add(result, x);
 | |
| 	Py_DECREF(x);
 | |
| 	if (y == NULL)
 | |
| 		goto error;
 | |
| 	Py_DECREF(result);
 | |
| 	result = y;
 | |
| 
 | |
| 	return (PyObject *)result;
 | |
| 
 | |
| error:
 | |
| 	Py_DECREF(result);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(long_bit_length_doc,
 | |
| "int.bit_length() -> int\n\
 | |
| \n\
 | |
| Number of bits necessary to represent self in binary.\n\
 | |
| >>> bin(37)\n\
 | |
| '0b100101'\n\
 | |
| >>> (37).bit_length()\n\
 | |
| 6");
 | |
| 
 | |
| #if 0
 | |
| static PyObject *
 | |
| long_is_finite(PyObject *v)
 | |
| {
 | |
| 	Py_RETURN_TRUE;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static PyMethodDef long_methods[] = {
 | |
| 	{"conjugate",	(PyCFunction)long_long,	METH_NOARGS,
 | |
| 	 "Returns self, the complex conjugate of any int."},
 | |
| 	{"bit_length",	(PyCFunction)long_bit_length, METH_NOARGS,
 | |
| 	 long_bit_length_doc},
 | |
| #if 0
 | |
| 	{"is_finite",	(PyCFunction)long_is_finite,	METH_NOARGS,
 | |
| 	 "Returns always True."},
 | |
| #endif
 | |
| 	{"__trunc__",	(PyCFunction)long_long,	METH_NOARGS,
 | |
|          "Truncating an Integral returns itself."},
 | |
| 	{"__floor__",	(PyCFunction)long_long,	METH_NOARGS,
 | |
|          "Flooring an Integral returns itself."},
 | |
| 	{"__ceil__",	(PyCFunction)long_long,	METH_NOARGS,
 | |
|          "Ceiling of an Integral returns itself."},
 | |
| 	{"__round__",	(PyCFunction)long_round, METH_VARARGS,
 | |
| 	 "Rounding an Integral returns itself.\n"
 | |
| 	 "Rounding with an ndigits argument also returns an integer."},
 | |
| 	{"__getnewargs__",	(PyCFunction)long_getnewargs,	METH_NOARGS},
 | |
|         {"__format__", (PyCFunction)long__format__, METH_VARARGS},
 | |
| 	{"__sizeof__",	(PyCFunction)long_sizeof, METH_NOARGS,
 | |
| 	 "Returns size in memory, in bytes"},
 | |
| 	{NULL,		NULL}		/* sentinel */
 | |
| };
 | |
| 
 | |
| static PyGetSetDef long_getset[] = {
 | |
|     {"real",
 | |
|      (getter)long_long, (setter)NULL,
 | |
|      "the real part of a complex number",
 | |
|      NULL},
 | |
|     {"imag",
 | |
|      (getter)long_get0, (setter)NULL,
 | |
|      "the imaginary part of a complex number",
 | |
|      NULL},
 | |
|     {"numerator",
 | |
|      (getter)long_long, (setter)NULL,
 | |
|      "the numerator of a rational number in lowest terms",
 | |
|      NULL},
 | |
|     {"denominator",
 | |
|      (getter)long_get1, (setter)NULL,
 | |
|      "the denominator of a rational number in lowest terms",
 | |
|      NULL},
 | |
|     {NULL}  /* Sentinel */
 | |
| };
 | |
| 
 | |
| PyDoc_STRVAR(long_doc,
 | |
| "int(x[, base]) -> integer\n\
 | |
| \n\
 | |
| Convert a string or number to an integer, if possible.  A floating\n\
 | |
| point argument will be truncated towards zero (this does not include a\n\
 | |
| string representation of a floating point number!)  When converting a\n\
 | |
| string, use the optional base.  It is an error to supply a base when\n\
 | |
| converting a non-string.");
 | |
| 
 | |
| static PyNumberMethods long_as_number = {
 | |
| 	(binaryfunc)	long_add,	/*nb_add*/
 | |
| 	(binaryfunc)	long_sub,	/*nb_subtract*/
 | |
| 	(binaryfunc)	long_mul,	/*nb_multiply*/
 | |
| 			long_mod,	/*nb_remainder*/
 | |
| 			long_divmod,	/*nb_divmod*/
 | |
| 			long_pow,	/*nb_power*/
 | |
| 	(unaryfunc) 	long_neg,	/*nb_negative*/
 | |
| 	(unaryfunc) 	long_long,	/*tp_positive*/
 | |
| 	(unaryfunc) 	long_abs,	/*tp_absolute*/
 | |
| 	(inquiry)	long_bool,	/*tp_bool*/
 | |
| 	(unaryfunc)	long_invert,	/*nb_invert*/
 | |
| 			long_lshift,	/*nb_lshift*/
 | |
| 	(binaryfunc)	long_rshift,	/*nb_rshift*/
 | |
| 			long_and,	/*nb_and*/
 | |
| 			long_xor,	/*nb_xor*/
 | |
| 			long_or,	/*nb_or*/
 | |
| 			long_long,	/*nb_int*/
 | |
| 	0,				/*nb_reserved*/
 | |
| 			long_float,	/*nb_float*/
 | |
| 	0,				/* nb_inplace_add */
 | |
| 	0,				/* nb_inplace_subtract */
 | |
| 	0,				/* nb_inplace_multiply */
 | |
| 	0,				/* nb_inplace_remainder */
 | |
| 	0,				/* nb_inplace_power */
 | |
| 	0,				/* nb_inplace_lshift */
 | |
| 	0,				/* nb_inplace_rshift */
 | |
| 	0,				/* nb_inplace_and */
 | |
| 	0,				/* nb_inplace_xor */
 | |
| 	0,				/* nb_inplace_or */
 | |
| 	long_div,			/* nb_floor_divide */
 | |
| 	long_true_divide,		/* nb_true_divide */
 | |
| 	0,				/* nb_inplace_floor_divide */
 | |
| 	0,				/* nb_inplace_true_divide */
 | |
| 	long_long,			/* nb_index */
 | |
| };
 | |
| 
 | |
| PyTypeObject PyLong_Type = {
 | |
| 	PyVarObject_HEAD_INIT(&PyType_Type, 0)
 | |
| 	"int",					/* tp_name */
 | |
| 	offsetof(PyLongObject, ob_digit),	/* tp_basicsize */
 | |
| 	sizeof(digit),				/* tp_itemsize */
 | |
| 	long_dealloc,				/* tp_dealloc */
 | |
| 	0,					/* tp_print */
 | |
| 	0,					/* tp_getattr */
 | |
| 	0,					/* tp_setattr */
 | |
| 	0,					/* tp_reserved */
 | |
| 	long_to_decimal_string,			/* tp_repr */
 | |
| 	&long_as_number,			/* tp_as_number */
 | |
| 	0,					/* tp_as_sequence */
 | |
| 	0,					/* tp_as_mapping */
 | |
| 	(hashfunc)long_hash,			/* tp_hash */
 | |
| 	0,					/* tp_call */
 | |
| 	long_to_decimal_string,			/* tp_str */
 | |
| 	PyObject_GenericGetAttr,		/* tp_getattro */
 | |
| 	0,					/* tp_setattro */
 | |
| 	0,					/* tp_as_buffer */
 | |
| 	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE |
 | |
| 		Py_TPFLAGS_LONG_SUBCLASS,	/* tp_flags */
 | |
| 	long_doc,				/* tp_doc */
 | |
| 	0,					/* tp_traverse */
 | |
| 	0,					/* tp_clear */
 | |
| 	long_richcompare,			/* tp_richcompare */
 | |
| 	0,					/* tp_weaklistoffset */
 | |
| 	0,					/* tp_iter */
 | |
| 	0,					/* tp_iternext */
 | |
| 	long_methods,				/* tp_methods */
 | |
| 	0,					/* tp_members */
 | |
| 	long_getset,				/* tp_getset */
 | |
| 	0,					/* tp_base */
 | |
| 	0,					/* tp_dict */
 | |
| 	0,					/* tp_descr_get */
 | |
| 	0,					/* tp_descr_set */
 | |
| 	0,					/* tp_dictoffset */
 | |
| 	0,					/* tp_init */
 | |
| 	0,					/* tp_alloc */
 | |
| 	long_new,				/* tp_new */
 | |
| 	PyObject_Del,				/* tp_free */
 | |
| };
 | |
| 
 | |
| static PyTypeObject Int_InfoType;
 | |
| 
 | |
| PyDoc_STRVAR(int_info__doc__,
 | |
| "sys.int_info\n\
 | |
| \n\
 | |
| A struct sequence that holds information about Python's\n\
 | |
| internal representation of integers.  The attributes are read only.");
 | |
| 
 | |
| static PyStructSequence_Field int_info_fields[] = {
 | |
| 	{"bits_per_digit", "size of a digit in bits"},
 | |
| 	{"sizeof_digit", "size in bytes of the C type used to "
 | |
| 	                 "represent a digit"},
 | |
| 	{NULL, NULL}
 | |
| };
 | |
| 
 | |
| static PyStructSequence_Desc int_info_desc = {
 | |
| 	"sys.int_info",   /* name */
 | |
| 	int_info__doc__,  /* doc */
 | |
| 	int_info_fields,  /* fields */
 | |
| 	2                 /* number of fields */
 | |
| };
 | |
| 
 | |
| PyObject *
 | |
| PyLong_GetInfo(void)
 | |
| {
 | |
| 	PyObject* int_info;
 | |
| 	int field = 0;
 | |
| 	int_info = PyStructSequence_New(&Int_InfoType);
 | |
| 	if (int_info == NULL)
 | |
| 		return NULL;
 | |
| 	PyStructSequence_SET_ITEM(int_info, field++,
 | |
| 				  PyLong_FromLong(PyLong_SHIFT));
 | |
| 	PyStructSequence_SET_ITEM(int_info, field++,
 | |
| 				  PyLong_FromLong(sizeof(digit)));
 | |
| 	if (PyErr_Occurred()) {
 | |
| 		Py_CLEAR(int_info);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return int_info;
 | |
| }
 | |
| 
 | |
| int
 | |
| _PyLong_Init(void)
 | |
| {
 | |
| #if NSMALLNEGINTS + NSMALLPOSINTS > 0
 | |
| 	int ival, size;
 | |
| 	PyLongObject *v = small_ints;
 | |
| 
 | |
| 	for (ival = -NSMALLNEGINTS; ival <  NSMALLPOSINTS; ival++, v++) {
 | |
| 		size = (ival < 0) ? -1 : ((ival == 0) ? 0 : 1);
 | |
| 		if (Py_TYPE(v) == &PyLong_Type) {
 | |
| 			/* The element is already initialized, most likely
 | |
| 			 * the Python interpreter was initialized before.
 | |
| 			 */
 | |
| 			Py_ssize_t refcnt;
 | |
| 			PyObject* op = (PyObject*)v;
 | |
| 
 | |
| 			refcnt = Py_REFCNT(op) < 0 ? 0 : Py_REFCNT(op);
 | |
| 			_Py_NewReference(op);
 | |
| 			/* _Py_NewReference sets the ref count to 1 but
 | |
| 			 * the ref count might be larger. Set the refcnt
 | |
| 			 * to the original refcnt + 1 */	 
 | |
| 			Py_REFCNT(op) = refcnt + 1;
 | |
| 			assert(Py_SIZE(op) == size);
 | |
| 			assert(v->ob_digit[0] == abs(ival));
 | |
| 		}
 | |
| 		else {
 | |
| 			PyObject_INIT(v, &PyLong_Type);
 | |
| 		}
 | |
| 		Py_SIZE(v) = size;
 | |
| 		v->ob_digit[0] = abs(ival);
 | |
| 	}
 | |
| #endif
 | |
| 	/* initialize int_info */
 | |
| 	if (Int_InfoType.tp_name == 0)
 | |
| 		PyStructSequence_InitType(&Int_InfoType, &int_info_desc);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| void
 | |
| PyLong_Fini(void)
 | |
| {
 | |
| 	/* Integers are currently statically allocated. Py_DECREF is not
 | |
| 	   needed, but Python must forget about the reference or multiple
 | |
| 	   reinitializations will fail. */
 | |
| #if NSMALLNEGINTS + NSMALLPOSINTS > 0
 | |
| 	int i;
 | |
| 	PyLongObject *v = small_ints;
 | |
| 	for (i = 0; i < NSMALLNEGINTS + NSMALLPOSINTS; i++, v++) {
 | |
| 		_Py_DEC_REFTOTAL;
 | |
| 		_Py_ForgetReference((PyObject*)v);
 | |
| 	}
 | |
| #endif
 | |
| }
 |