mirror of
				https://github.com/python/cpython.git
				synced 2025-11-03 07:01:21 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1326 lines
		
	
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1326 lines
		
	
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
 | 
						|
/* Complex object implementation */
 | 
						|
 | 
						|
/* Borrows heavily from floatobject.c */
 | 
						|
 | 
						|
/* Submitted by Jim Hugunin */
 | 
						|
 | 
						|
#include "Python.h"
 | 
						|
#include "structmember.h"
 | 
						|
 | 
						|
#ifndef WITHOUT_COMPLEX
 | 
						|
 | 
						|
/* Precisions used by repr() and str(), respectively.
 | 
						|
 | 
						|
   The repr() precision (17 significant decimal digits) is the minimal number
 | 
						|
   that is guaranteed to have enough precision so that if the number is read
 | 
						|
   back in the exact same binary value is recreated.  This is true for IEEE
 | 
						|
   floating point by design, and also happens to work for all other modern
 | 
						|
   hardware.
 | 
						|
 | 
						|
   The str() precision is chosen so that in most cases, the rounding noise
 | 
						|
   created by various operations is suppressed, while giving plenty of
 | 
						|
   precision for practical use.
 | 
						|
*/
 | 
						|
 | 
						|
#define PREC_REPR	17
 | 
						|
#define PREC_STR	12
 | 
						|
 | 
						|
/* elementary operations on complex numbers */
 | 
						|
 | 
						|
static Py_complex c_1 = {1., 0.};
 | 
						|
 | 
						|
Py_complex
 | 
						|
c_sum(Py_complex a, Py_complex b)
 | 
						|
{
 | 
						|
	Py_complex r;
 | 
						|
	r.real = a.real + b.real;
 | 
						|
	r.imag = a.imag + b.imag;
 | 
						|
	return r;
 | 
						|
}
 | 
						|
 | 
						|
Py_complex
 | 
						|
c_diff(Py_complex a, Py_complex b)
 | 
						|
{
 | 
						|
	Py_complex r;
 | 
						|
	r.real = a.real - b.real;
 | 
						|
	r.imag = a.imag - b.imag;
 | 
						|
	return r;
 | 
						|
}
 | 
						|
 | 
						|
Py_complex
 | 
						|
c_neg(Py_complex a)
 | 
						|
{
 | 
						|
	Py_complex r;
 | 
						|
	r.real = -a.real;
 | 
						|
	r.imag = -a.imag;
 | 
						|
	return r;
 | 
						|
}
 | 
						|
 | 
						|
Py_complex
 | 
						|
c_prod(Py_complex a, Py_complex b)
 | 
						|
{
 | 
						|
	Py_complex r;
 | 
						|
	r.real = a.real*b.real - a.imag*b.imag;
 | 
						|
	r.imag = a.real*b.imag + a.imag*b.real;
 | 
						|
	return r;
 | 
						|
}
 | 
						|
 | 
						|
Py_complex
 | 
						|
c_quot(Py_complex a, Py_complex b)
 | 
						|
{
 | 
						|
	/******************************************************************
 | 
						|
	This was the original algorithm.  It's grossly prone to spurious
 | 
						|
	overflow and underflow errors.  It also merrily divides by 0 despite
 | 
						|
	checking for that(!).  The code still serves a doc purpose here, as
 | 
						|
	the algorithm following is a simple by-cases transformation of this
 | 
						|
	one:
 | 
						|
 | 
						|
	Py_complex r;
 | 
						|
	double d = b.real*b.real + b.imag*b.imag;
 | 
						|
	if (d == 0.)
 | 
						|
		errno = EDOM;
 | 
						|
	r.real = (a.real*b.real + a.imag*b.imag)/d;
 | 
						|
	r.imag = (a.imag*b.real - a.real*b.imag)/d;
 | 
						|
	return r;
 | 
						|
	******************************************************************/
 | 
						|
 | 
						|
	/* This algorithm is better, and is pretty obvious:  first divide the
 | 
						|
	 * numerators and denominator by whichever of {b.real, b.imag} has
 | 
						|
	 * larger magnitude.  The earliest reference I found was to CACM
 | 
						|
	 * Algorithm 116 (Complex Division, Robert L. Smith, Stanford
 | 
						|
	 * University).  As usual, though, we're still ignoring all IEEE
 | 
						|
	 * endcases.
 | 
						|
	 */
 | 
						|
	 Py_complex r;	/* the result */
 | 
						|
 	 const double abs_breal = b.real < 0 ? -b.real : b.real;
 | 
						|
	 const double abs_bimag = b.imag < 0 ? -b.imag : b.imag;
 | 
						|
 | 
						|
	 if (abs_breal >= abs_bimag) {
 | 
						|
 		/* divide tops and bottom by b.real */
 | 
						|
	 	if (abs_breal == 0.0) {
 | 
						|
	 		errno = EDOM;
 | 
						|
	 		r.real = r.imag = 0.0;
 | 
						|
	 	}
 | 
						|
	 	else {
 | 
						|
	 		const double ratio = b.imag / b.real;
 | 
						|
	 		const double denom = b.real + b.imag * ratio;
 | 
						|
	 		r.real = (a.real + a.imag * ratio) / denom;
 | 
						|
	 		r.imag = (a.imag - a.real * ratio) / denom;
 | 
						|
	 	}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		/* divide tops and bottom by b.imag */
 | 
						|
		const double ratio = b.real / b.imag;
 | 
						|
		const double denom = b.real * ratio + b.imag;
 | 
						|
		assert(b.imag != 0.0);
 | 
						|
		r.real = (a.real * ratio + a.imag) / denom;
 | 
						|
		r.imag = (a.imag * ratio - a.real) / denom;
 | 
						|
	}
 | 
						|
	return r;
 | 
						|
}
 | 
						|
 | 
						|
Py_complex
 | 
						|
c_pow(Py_complex a, Py_complex b)
 | 
						|
{
 | 
						|
	Py_complex r;
 | 
						|
	double vabs,len,at,phase;
 | 
						|
	if (b.real == 0. && b.imag == 0.) {
 | 
						|
		r.real = 1.;
 | 
						|
		r.imag = 0.;
 | 
						|
	}
 | 
						|
	else if (a.real == 0. && a.imag == 0.) {
 | 
						|
		if (b.imag != 0. || b.real < 0.)
 | 
						|
			errno = EDOM;
 | 
						|
		r.real = 0.;
 | 
						|
		r.imag = 0.;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		vabs = hypot(a.real,a.imag);
 | 
						|
		len = pow(vabs,b.real);
 | 
						|
		at = atan2(a.imag, a.real);
 | 
						|
		phase = at*b.real;
 | 
						|
		if (b.imag != 0.0) {
 | 
						|
			len /= exp(at*b.imag);
 | 
						|
			phase += b.imag*log(vabs);
 | 
						|
		}
 | 
						|
		r.real = len*cos(phase);
 | 
						|
		r.imag = len*sin(phase);
 | 
						|
	}
 | 
						|
	return r;
 | 
						|
}
 | 
						|
 | 
						|
static Py_complex
 | 
						|
c_powu(Py_complex x, long n)
 | 
						|
{
 | 
						|
	Py_complex r, p;
 | 
						|
	long mask = 1;
 | 
						|
	r = c_1;
 | 
						|
	p = x;
 | 
						|
	while (mask > 0 && n >= mask) {
 | 
						|
		if (n & mask)
 | 
						|
			r = c_prod(r,p);
 | 
						|
		mask <<= 1;
 | 
						|
		p = c_prod(p,p);
 | 
						|
	}
 | 
						|
	return r;
 | 
						|
}
 | 
						|
 | 
						|
static Py_complex
 | 
						|
c_powi(Py_complex x, long n)
 | 
						|
{
 | 
						|
	Py_complex cn;
 | 
						|
 | 
						|
	if (n > 100 || n < -100) {
 | 
						|
		cn.real = (double) n;
 | 
						|
		cn.imag = 0.;
 | 
						|
		return c_pow(x,cn);
 | 
						|
	}
 | 
						|
	else if (n > 0)
 | 
						|
		return c_powu(x,n);
 | 
						|
	else
 | 
						|
		return c_quot(c_1,c_powu(x,-n));
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
double
 | 
						|
c_abs(Py_complex z)
 | 
						|
{
 | 
						|
	/* sets errno = ERANGE on overflow;  otherwise errno = 0 */
 | 
						|
	double result;
 | 
						|
 | 
						|
	if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
 | 
						|
		/* C99 rules: if either the real or the imaginary part is an
 | 
						|
		   infinity, return infinity, even if the other part is a
 | 
						|
		   NaN. */
 | 
						|
		if (Py_IS_INFINITY(z.real)) {
 | 
						|
			result = fabs(z.real);
 | 
						|
			errno = 0;
 | 
						|
			return result;
 | 
						|
		}
 | 
						|
		if (Py_IS_INFINITY(z.imag)) {
 | 
						|
			result = fabs(z.imag);
 | 
						|
			errno = 0;
 | 
						|
			return result;
 | 
						|
		}
 | 
						|
		/* either the real or imaginary part is a NaN,
 | 
						|
		   and neither is infinite. Result should be NaN. */
 | 
						|
		return Py_NAN;
 | 
						|
	}
 | 
						|
	result = hypot(z.real, z.imag);
 | 
						|
	if (!Py_IS_FINITE(result))
 | 
						|
		errno = ERANGE;
 | 
						|
	else
 | 
						|
		errno = 0;
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_subtype_from_c_complex(PyTypeObject *type, Py_complex cval)
 | 
						|
{
 | 
						|
	PyObject *op;
 | 
						|
 | 
						|
	op = type->tp_alloc(type, 0);
 | 
						|
	if (op != NULL)
 | 
						|
		((PyComplexObject *)op)->cval = cval;
 | 
						|
	return op;
 | 
						|
}
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyComplex_FromCComplex(Py_complex cval)
 | 
						|
{
 | 
						|
	register PyComplexObject *op;
 | 
						|
 | 
						|
	/* Inline PyObject_New */
 | 
						|
	op = (PyComplexObject *) PyObject_MALLOC(sizeof(PyComplexObject));
 | 
						|
	if (op == NULL)
 | 
						|
		return PyErr_NoMemory();
 | 
						|
	PyObject_INIT(op, &PyComplex_Type);
 | 
						|
	op->cval = cval;
 | 
						|
	return (PyObject *) op;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_subtype_from_doubles(PyTypeObject *type, double real, double imag)
 | 
						|
{
 | 
						|
	Py_complex c;
 | 
						|
	c.real = real;
 | 
						|
	c.imag = imag;
 | 
						|
	return complex_subtype_from_c_complex(type, c);
 | 
						|
}
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyComplex_FromDoubles(double real, double imag)
 | 
						|
{
 | 
						|
	Py_complex c;
 | 
						|
	c.real = real;
 | 
						|
	c.imag = imag;
 | 
						|
	return PyComplex_FromCComplex(c);
 | 
						|
}
 | 
						|
 | 
						|
double
 | 
						|
PyComplex_RealAsDouble(PyObject *op)
 | 
						|
{
 | 
						|
	if (PyComplex_Check(op)) {
 | 
						|
		return ((PyComplexObject *)op)->cval.real;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		return PyFloat_AsDouble(op);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
double
 | 
						|
PyComplex_ImagAsDouble(PyObject *op)
 | 
						|
{
 | 
						|
	if (PyComplex_Check(op)) {
 | 
						|
		return ((PyComplexObject *)op)->cval.imag;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		return 0.0;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
try_complex_special_method(PyObject *op) {
 | 
						|
	PyObject *f;
 | 
						|
	static PyObject *complexstr;
 | 
						|
 | 
						|
	if (complexstr == NULL) {
 | 
						|
		complexstr = PyString_InternFromString("__complex__");
 | 
						|
		if (complexstr == NULL)
 | 
						|
			return NULL;
 | 
						|
	}
 | 
						|
	if (PyInstance_Check(op)) {
 | 
						|
		f = PyObject_GetAttr(op, complexstr);
 | 
						|
		if (f == NULL) {
 | 
						|
			if (PyErr_ExceptionMatches(PyExc_AttributeError))
 | 
						|
				PyErr_Clear();
 | 
						|
			else
 | 
						|
				return NULL;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		f = _PyObject_LookupSpecial(op, "__complex__", &complexstr);
 | 
						|
		if (f == NULL && PyErr_Occurred())
 | 
						|
			return NULL;
 | 
						|
	}
 | 
						|
	if (f != NULL) {
 | 
						|
		PyObject *res = PyObject_CallFunctionObjArgs(f, NULL);
 | 
						|
		Py_DECREF(f);
 | 
						|
		return res;
 | 
						|
	}
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
Py_complex
 | 
						|
PyComplex_AsCComplex(PyObject *op)
 | 
						|
{
 | 
						|
	Py_complex cv;
 | 
						|
	PyObject *newop = NULL;
 | 
						|
 | 
						|
	assert(op);
 | 
						|
	/* If op is already of type PyComplex_Type, return its value */
 | 
						|
	if (PyComplex_Check(op)) {
 | 
						|
		return ((PyComplexObject *)op)->cval;
 | 
						|
	}
 | 
						|
	/* If not, use op's __complex__  method, if it exists */
 | 
						|
 | 
						|
	/* return -1 on failure */
 | 
						|
	cv.real = -1.;
 | 
						|
	cv.imag = 0.;
 | 
						|
 | 
						|
	newop = try_complex_special_method(op);
 | 
						|
	
 | 
						|
	if (newop) {
 | 
						|
		if (!PyComplex_Check(newop)) {
 | 
						|
			PyErr_SetString(PyExc_TypeError,
 | 
						|
				"__complex__ should return a complex object");
 | 
						|
			Py_DECREF(newop);
 | 
						|
			return cv;
 | 
						|
		}
 | 
						|
		cv = ((PyComplexObject *)newop)->cval;
 | 
						|
		Py_DECREF(newop);
 | 
						|
		return cv;
 | 
						|
	}
 | 
						|
	else if (PyErr_Occurred()) {
 | 
						|
		return cv;
 | 
						|
	}
 | 
						|
	/* If neither of the above works, interpret op as a float giving the
 | 
						|
	   real part of the result, and fill in the imaginary part as 0. */
 | 
						|
	else {
 | 
						|
		/* PyFloat_AsDouble will return -1 on failure */
 | 
						|
		cv.real = PyFloat_AsDouble(op);
 | 
						|
		return cv;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
complex_dealloc(PyObject *op)
 | 
						|
{
 | 
						|
	op->ob_type->tp_free(op);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_format(PyComplexObject *v, int precision, char format_code)
 | 
						|
{
 | 
						|
	PyObject *result = NULL;
 | 
						|
	Py_ssize_t len;
 | 
						|
 | 
						|
	/* If these are non-NULL, they'll need to be freed. */
 | 
						|
	char *pre = NULL;
 | 
						|
	char *im = NULL;
 | 
						|
	char *buf = NULL;
 | 
						|
 | 
						|
	/* These do not need to be freed. re is either an alias
 | 
						|
	   for pre or a pointer to a constant.  lead and tail
 | 
						|
	   are pointers to constants. */
 | 
						|
	char *re = NULL;
 | 
						|
	char *lead = "";
 | 
						|
	char *tail = "";
 | 
						|
 | 
						|
	if (v->cval.real == 0. && copysign(1.0, v->cval.real)==1.0) {
 | 
						|
		re = "";
 | 
						|
		im = PyOS_double_to_string(v->cval.imag, format_code,
 | 
						|
					   precision, 0, NULL);
 | 
						|
		if (!im) {
 | 
						|
			PyErr_NoMemory();
 | 
						|
			goto done;
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		/* Format imaginary part with sign, real part without */
 | 
						|
		pre = PyOS_double_to_string(v->cval.real, format_code,
 | 
						|
					    precision, 0, NULL);
 | 
						|
		if (!pre) {
 | 
						|
			PyErr_NoMemory();
 | 
						|
			goto done;
 | 
						|
		}
 | 
						|
		re = pre;
 | 
						|
 | 
						|
		im = PyOS_double_to_string(v->cval.imag, format_code,
 | 
						|
					   precision, Py_DTSF_SIGN, NULL);
 | 
						|
		if (!im) {
 | 
						|
			PyErr_NoMemory();
 | 
						|
			goto done;
 | 
						|
		}
 | 
						|
		lead = "(";
 | 
						|
		tail = ")";
 | 
						|
	}
 | 
						|
	/* Alloc the final buffer. Add one for the "j" in the format string,
 | 
						|
	   and one for the trailing zero. */
 | 
						|
	len = strlen(lead) + strlen(re) + strlen(im) + strlen(tail) + 2;
 | 
						|
	buf = PyMem_Malloc(len);
 | 
						|
	if (!buf) {
 | 
						|
		PyErr_NoMemory();
 | 
						|
		goto done;
 | 
						|
	}
 | 
						|
	PyOS_snprintf(buf, len, "%s%s%sj%s", lead, re, im, tail);
 | 
						|
	result = PyString_FromString(buf);
 | 
						|
  done:
 | 
						|
	PyMem_Free(im);
 | 
						|
	PyMem_Free(pre);
 | 
						|
	PyMem_Free(buf);
 | 
						|
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
complex_print(PyComplexObject *v, FILE *fp, int flags)
 | 
						|
{
 | 
						|
	PyObject *formatv;
 | 
						|
	char *buf;
 | 
						|
        if (flags & Py_PRINT_RAW)
 | 
						|
            formatv = complex_format(v, PyFloat_STR_PRECISION, 'g');
 | 
						|
        else
 | 
						|
            formatv = complex_format(v, 0, 'r');
 | 
						|
	if (formatv == NULL)
 | 
						|
		return -1;
 | 
						|
	buf = PyString_AS_STRING(formatv);
 | 
						|
	Py_BEGIN_ALLOW_THREADS
 | 
						|
	fputs(buf, fp);
 | 
						|
	Py_END_ALLOW_THREADS
 | 
						|
	Py_DECREF(formatv);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_repr(PyComplexObject *v)
 | 
						|
{
 | 
						|
    return complex_format(v, 0, 'r');
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_str(PyComplexObject *v)
 | 
						|
{
 | 
						|
    return complex_format(v, PyFloat_STR_PRECISION, 'g');
 | 
						|
}
 | 
						|
 | 
						|
static long
 | 
						|
complex_hash(PyComplexObject *v)
 | 
						|
{
 | 
						|
	long hashreal, hashimag, combined;
 | 
						|
	hashreal = _Py_HashDouble(v->cval.real);
 | 
						|
	if (hashreal == -1)
 | 
						|
		return -1;
 | 
						|
	hashimag = _Py_HashDouble(v->cval.imag);
 | 
						|
	if (hashimag == -1)
 | 
						|
		return -1;
 | 
						|
	/* Note:  if the imaginary part is 0, hashimag is 0 now,
 | 
						|
	 * so the following returns hashreal unchanged.  This is
 | 
						|
	 * important because numbers of different types that
 | 
						|
	 * compare equal must have the same hash value, so that
 | 
						|
	 * hash(x + 0*j) must equal hash(x).
 | 
						|
	 */
 | 
						|
	combined = hashreal + 1000003 * hashimag;
 | 
						|
	if (combined == -1)
 | 
						|
		combined = -2;
 | 
						|
	return combined;
 | 
						|
}
 | 
						|
 | 
						|
/* This macro may return! */
 | 
						|
#define TO_COMPLEX(obj, c) \
 | 
						|
	if (PyComplex_Check(obj)) \
 | 
						|
		c = ((PyComplexObject *)(obj))->cval; \
 | 
						|
	else if (to_complex(&(obj), &(c)) < 0) \
 | 
						|
		return (obj)
 | 
						|
 | 
						|
static int
 | 
						|
to_complex(PyObject **pobj, Py_complex *pc)
 | 
						|
{
 | 
						|
    PyObject *obj = *pobj;
 | 
						|
 | 
						|
    pc->real = pc->imag = 0.0;
 | 
						|
    if (PyInt_Check(obj)) {
 | 
						|
        pc->real = PyInt_AS_LONG(obj);
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    if (PyLong_Check(obj)) {
 | 
						|
        pc->real = PyLong_AsDouble(obj);
 | 
						|
        if (pc->real == -1.0 && PyErr_Occurred()) {
 | 
						|
            *pobj = NULL;
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    if (PyFloat_Check(obj)) {
 | 
						|
        pc->real = PyFloat_AsDouble(obj);
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    Py_INCREF(Py_NotImplemented);
 | 
						|
    *pobj = Py_NotImplemented;
 | 
						|
    return -1;
 | 
						|
}
 | 
						|
		
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_add(PyObject *v, PyObject *w)
 | 
						|
{
 | 
						|
	Py_complex result;
 | 
						|
	Py_complex a, b;
 | 
						|
	TO_COMPLEX(v, a);
 | 
						|
	TO_COMPLEX(w, b);
 | 
						|
	PyFPE_START_PROTECT("complex_add", return 0)
 | 
						|
	result = c_sum(a, b);
 | 
						|
	PyFPE_END_PROTECT(result)
 | 
						|
	return PyComplex_FromCComplex(result);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_sub(PyObject *v, PyObject *w)
 | 
						|
{
 | 
						|
        Py_complex result;
 | 
						|
	Py_complex a, b;
 | 
						|
	TO_COMPLEX(v, a);
 | 
						|
	TO_COMPLEX(w, b);;
 | 
						|
	PyFPE_START_PROTECT("complex_sub", return 0)
 | 
						|
	result = c_diff(a, b);
 | 
						|
	PyFPE_END_PROTECT(result)
 | 
						|
	return PyComplex_FromCComplex(result);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_mul(PyObject *v, PyObject *w)
 | 
						|
{
 | 
						|
	Py_complex result;
 | 
						|
	Py_complex a, b;
 | 
						|
	TO_COMPLEX(v, a);
 | 
						|
	TO_COMPLEX(w, b);
 | 
						|
	PyFPE_START_PROTECT("complex_mul", return 0)
 | 
						|
	result = c_prod(a, b);
 | 
						|
	PyFPE_END_PROTECT(result)
 | 
						|
	return PyComplex_FromCComplex(result);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_div(PyObject *v, PyObject *w)
 | 
						|
{
 | 
						|
	Py_complex quot;
 | 
						|
	Py_complex a, b;
 | 
						|
	TO_COMPLEX(v, a);
 | 
						|
	TO_COMPLEX(w, b);
 | 
						|
	PyFPE_START_PROTECT("complex_div", return 0)
 | 
						|
	errno = 0;
 | 
						|
	quot = c_quot(a, b);
 | 
						|
	PyFPE_END_PROTECT(quot)
 | 
						|
	if (errno == EDOM) {
 | 
						|
		PyErr_SetString(PyExc_ZeroDivisionError, "complex division by zero");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	return PyComplex_FromCComplex(quot);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_classic_div(PyObject *v, PyObject *w)
 | 
						|
{
 | 
						|
	Py_complex quot;
 | 
						|
	Py_complex a, b;
 | 
						|
	TO_COMPLEX(v, a);
 | 
						|
	TO_COMPLEX(w, b);
 | 
						|
	if (Py_DivisionWarningFlag >= 2 &&
 | 
						|
	    PyErr_Warn(PyExc_DeprecationWarning,
 | 
						|
		       "classic complex division") < 0)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	PyFPE_START_PROTECT("complex_classic_div", return 0)
 | 
						|
	errno = 0;
 | 
						|
	quot = c_quot(a, b);
 | 
						|
	PyFPE_END_PROTECT(quot)
 | 
						|
	if (errno == EDOM) {
 | 
						|
		PyErr_SetString(PyExc_ZeroDivisionError, "complex division by zero");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	return PyComplex_FromCComplex(quot);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_remainder(PyObject *v, PyObject *w)
 | 
						|
{
 | 
						|
	Py_complex div, mod;
 | 
						|
	Py_complex a, b;
 | 
						|
	TO_COMPLEX(v, a);
 | 
						|
	TO_COMPLEX(w, b);
 | 
						|
	if (PyErr_Warn(PyExc_DeprecationWarning,
 | 
						|
		       "complex divmod(), // and % are deprecated") < 0)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	errno = 0;
 | 
						|
	div = c_quot(a, b); /* The raw divisor value. */
 | 
						|
	if (errno == EDOM) {
 | 
						|
		PyErr_SetString(PyExc_ZeroDivisionError, "complex remainder");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	div.real = floor(div.real); /* Use the floor of the real part. */
 | 
						|
	div.imag = 0.0;
 | 
						|
	mod = c_diff(a, c_prod(b, div));
 | 
						|
 | 
						|
	return PyComplex_FromCComplex(mod);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_divmod(PyObject *v, PyObject *w)
 | 
						|
{
 | 
						|
	Py_complex div, mod;
 | 
						|
	PyObject *d, *m, *z;
 | 
						|
	Py_complex a, b;
 | 
						|
	TO_COMPLEX(v, a);
 | 
						|
	TO_COMPLEX(w, b);
 | 
						|
	if (PyErr_Warn(PyExc_DeprecationWarning,
 | 
						|
		       "complex divmod(), // and % are deprecated") < 0)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	errno = 0;
 | 
						|
	div = c_quot(a, b); /* The raw divisor value. */
 | 
						|
	if (errno == EDOM) {
 | 
						|
		PyErr_SetString(PyExc_ZeroDivisionError, "complex divmod()");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	div.real = floor(div.real); /* Use the floor of the real part. */
 | 
						|
	div.imag = 0.0;
 | 
						|
	mod = c_diff(a, c_prod(b, div));
 | 
						|
	d = PyComplex_FromCComplex(div);
 | 
						|
	m = PyComplex_FromCComplex(mod);
 | 
						|
	z = PyTuple_Pack(2, d, m);
 | 
						|
	Py_XDECREF(d);
 | 
						|
	Py_XDECREF(m);
 | 
						|
	return z;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_pow(PyObject *v, PyObject *w, PyObject *z)
 | 
						|
{
 | 
						|
	Py_complex p;
 | 
						|
	Py_complex exponent;
 | 
						|
	long int_exponent;
 | 
						|
	Py_complex a, b;
 | 
						|
	TO_COMPLEX(v, a);
 | 
						|
	TO_COMPLEX(w, b);
 | 
						|
	if (z!=Py_None) {
 | 
						|
		PyErr_SetString(PyExc_ValueError, "complex modulo");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	PyFPE_START_PROTECT("complex_pow", return 0)
 | 
						|
	errno = 0;
 | 
						|
	exponent = b;
 | 
						|
	int_exponent = (long)exponent.real;
 | 
						|
	if (exponent.imag == 0. && exponent.real == int_exponent)
 | 
						|
		p = c_powi(a,int_exponent);
 | 
						|
	else
 | 
						|
		p = c_pow(a,exponent);
 | 
						|
 | 
						|
	PyFPE_END_PROTECT(p)
 | 
						|
	Py_ADJUST_ERANGE2(p.real, p.imag);
 | 
						|
	if (errno == EDOM) {
 | 
						|
		PyErr_SetString(PyExc_ZeroDivisionError,
 | 
						|
				"0.0 to a negative or complex power");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	else if (errno == ERANGE) {
 | 
						|
		PyErr_SetString(PyExc_OverflowError,
 | 
						|
				"complex exponentiation");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	return PyComplex_FromCComplex(p);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_int_div(PyObject *v, PyObject *w)
 | 
						|
{
 | 
						|
	PyObject *t, *r;
 | 
						|
	Py_complex a, b;
 | 
						|
	TO_COMPLEX(v, a);
 | 
						|
	TO_COMPLEX(w, b);
 | 
						|
	if (PyErr_Warn(PyExc_DeprecationWarning,
 | 
						|
		       "complex divmod(), // and % are deprecated") < 0)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	t = complex_divmod(v, w);
 | 
						|
	if (t != NULL) {
 | 
						|
		r = PyTuple_GET_ITEM(t, 0);
 | 
						|
		Py_INCREF(r);
 | 
						|
		Py_DECREF(t);
 | 
						|
		return r;
 | 
						|
	}
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_neg(PyComplexObject *v)
 | 
						|
{
 | 
						|
	Py_complex neg;
 | 
						|
	neg.real = -v->cval.real;
 | 
						|
	neg.imag = -v->cval.imag;
 | 
						|
	return PyComplex_FromCComplex(neg);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_pos(PyComplexObject *v)
 | 
						|
{
 | 
						|
	if (PyComplex_CheckExact(v)) {
 | 
						|
		Py_INCREF(v);
 | 
						|
		return (PyObject *)v;
 | 
						|
	}
 | 
						|
	else
 | 
						|
		return PyComplex_FromCComplex(v->cval);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_abs(PyComplexObject *v)
 | 
						|
{
 | 
						|
	double result;
 | 
						|
 | 
						|
	PyFPE_START_PROTECT("complex_abs", return 0)
 | 
						|
	result = c_abs(v->cval);
 | 
						|
	PyFPE_END_PROTECT(result)
 | 
						|
 | 
						|
	if (errno == ERANGE) {
 | 
						|
		PyErr_SetString(PyExc_OverflowError,
 | 
						|
				"absolute value too large");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	return PyFloat_FromDouble(result);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
complex_nonzero(PyComplexObject *v)
 | 
						|
{
 | 
						|
	return v->cval.real != 0.0 || v->cval.imag != 0.0;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
complex_coerce(PyObject **pv, PyObject **pw)
 | 
						|
{
 | 
						|
	Py_complex cval;
 | 
						|
	cval.imag = 0.;
 | 
						|
	if (PyInt_Check(*pw)) {
 | 
						|
		cval.real = (double)PyInt_AsLong(*pw);
 | 
						|
		*pw = PyComplex_FromCComplex(cval);
 | 
						|
		Py_INCREF(*pv);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	else if (PyLong_Check(*pw)) {
 | 
						|
		cval.real = PyLong_AsDouble(*pw);
 | 
						|
		if (cval.real == -1.0 && PyErr_Occurred())
 | 
						|
			return -1;
 | 
						|
		*pw = PyComplex_FromCComplex(cval);
 | 
						|
		Py_INCREF(*pv);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	else if (PyFloat_Check(*pw)) {
 | 
						|
		cval.real = PyFloat_AsDouble(*pw);
 | 
						|
		*pw = PyComplex_FromCComplex(cval);
 | 
						|
		Py_INCREF(*pv);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	else if (PyComplex_Check(*pw)) {
 | 
						|
		Py_INCREF(*pv);
 | 
						|
		Py_INCREF(*pw);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	return 1; /* Can't do it */
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_richcompare(PyObject *v, PyObject *w, int op)
 | 
						|
{
 | 
						|
	int c;
 | 
						|
	Py_complex i, j;
 | 
						|
	PyObject *res;
 | 
						|
 | 
						|
	c = PyNumber_CoerceEx(&v, &w);
 | 
						|
	if (c < 0)
 | 
						|
		return NULL;
 | 
						|
	if (c > 0) {
 | 
						|
		Py_INCREF(Py_NotImplemented);
 | 
						|
		return Py_NotImplemented;
 | 
						|
	}
 | 
						|
	/* Make sure both arguments are complex. */
 | 
						|
	if (!(PyComplex_Check(v) && PyComplex_Check(w))) {
 | 
						|
		Py_DECREF(v);
 | 
						|
		Py_DECREF(w);
 | 
						|
		Py_INCREF(Py_NotImplemented);
 | 
						|
		return Py_NotImplemented;
 | 
						|
	}
 | 
						|
 | 
						|
	i = ((PyComplexObject *)v)->cval;
 | 
						|
	j = ((PyComplexObject *)w)->cval;
 | 
						|
	Py_DECREF(v);
 | 
						|
	Py_DECREF(w);
 | 
						|
 | 
						|
	if (op != Py_EQ && op != Py_NE) {
 | 
						|
		PyErr_SetString(PyExc_TypeError,
 | 
						|
			"no ordering relation is defined for complex numbers");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	if ((i.real == j.real && i.imag == j.imag) == (op == Py_EQ))
 | 
						|
		res = Py_True;
 | 
						|
	else
 | 
						|
		res = Py_False;
 | 
						|
 | 
						|
	Py_INCREF(res);
 | 
						|
	return res;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_int(PyObject *v)
 | 
						|
{
 | 
						|
	PyErr_SetString(PyExc_TypeError,
 | 
						|
		   "can't convert complex to int");
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_long(PyObject *v)
 | 
						|
{
 | 
						|
	PyErr_SetString(PyExc_TypeError,
 | 
						|
		   "can't convert complex to long");
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_float(PyObject *v)
 | 
						|
{
 | 
						|
	PyErr_SetString(PyExc_TypeError,
 | 
						|
		   "can't convert complex to float");
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_conjugate(PyObject *self)
 | 
						|
{
 | 
						|
	Py_complex c;
 | 
						|
	c = ((PyComplexObject *)self)->cval;
 | 
						|
	c.imag = -c.imag;
 | 
						|
	return PyComplex_FromCComplex(c);
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(complex_conjugate_doc,
 | 
						|
"complex.conjugate() -> complex\n"
 | 
						|
"\n"
 | 
						|
"Returns the complex conjugate of its argument. (3-4j).conjugate() == 3+4j.");
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_getnewargs(PyComplexObject *v)
 | 
						|
{
 | 
						|
	Py_complex c = v->cval;
 | 
						|
	return Py_BuildValue("(dd)", c.real, c.imag);
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(complex__format__doc,
 | 
						|
"complex.__format__() -> str\n"
 | 
						|
"\n"
 | 
						|
"Converts to a string according to format_spec.");
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex__format__(PyObject* self, PyObject* args)
 | 
						|
{
 | 
						|
    PyObject *format_spec;
 | 
						|
 | 
						|
    if (!PyArg_ParseTuple(args, "O:__format__", &format_spec))
 | 
						|
        return NULL;
 | 
						|
    if (PyBytes_Check(format_spec))
 | 
						|
        return _PyComplex_FormatAdvanced(self,
 | 
						|
                                         PyBytes_AS_STRING(format_spec),
 | 
						|
                                         PyBytes_GET_SIZE(format_spec));
 | 
						|
    if (PyUnicode_Check(format_spec)) {
 | 
						|
        /* Convert format_spec to a str */
 | 
						|
        PyObject *result;
 | 
						|
        PyObject *str_spec = PyObject_Str(format_spec);
 | 
						|
 | 
						|
        if (str_spec == NULL)
 | 
						|
            return NULL;
 | 
						|
 | 
						|
        result = _PyComplex_FormatAdvanced(self,
 | 
						|
                                           PyBytes_AS_STRING(str_spec),
 | 
						|
                                           PyBytes_GET_SIZE(str_spec));
 | 
						|
 | 
						|
        Py_DECREF(str_spec);
 | 
						|
        return result;
 | 
						|
    }
 | 
						|
    PyErr_SetString(PyExc_TypeError, "__format__ requires str or unicode");
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
#if 0
 | 
						|
static PyObject *
 | 
						|
complex_is_finite(PyObject *self)
 | 
						|
{
 | 
						|
	Py_complex c;
 | 
						|
	c = ((PyComplexObject *)self)->cval;
 | 
						|
	return PyBool_FromLong((long)(Py_IS_FINITE(c.real) &&
 | 
						|
				      Py_IS_FINITE(c.imag)));
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(complex_is_finite_doc,
 | 
						|
"complex.is_finite() -> bool\n"
 | 
						|
"\n"
 | 
						|
"Returns True if the real and the imaginary part is finite.");
 | 
						|
#endif
 | 
						|
 | 
						|
static PyMethodDef complex_methods[] = {
 | 
						|
	{"conjugate",	(PyCFunction)complex_conjugate,	METH_NOARGS,
 | 
						|
	 complex_conjugate_doc},
 | 
						|
#if 0
 | 
						|
	{"is_finite",	(PyCFunction)complex_is_finite,	METH_NOARGS,
 | 
						|
	 complex_is_finite_doc},
 | 
						|
#endif
 | 
						|
	{"__getnewargs__",	(PyCFunction)complex_getnewargs,	METH_NOARGS},
 | 
						|
	{"__format__",          (PyCFunction)complex__format__,
 | 
						|
                                           METH_VARARGS, complex__format__doc},
 | 
						|
	{NULL,		NULL}		/* sentinel */
 | 
						|
};
 | 
						|
 | 
						|
static PyMemberDef complex_members[] = {
 | 
						|
	{"real", T_DOUBLE, offsetof(PyComplexObject, cval.real), READONLY,
 | 
						|
	 "the real part of a complex number"},
 | 
						|
	{"imag", T_DOUBLE, offsetof(PyComplexObject, cval.imag), READONLY,
 | 
						|
	 "the imaginary part of a complex number"},
 | 
						|
	{0},
 | 
						|
};
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_subtype_from_string(PyTypeObject *type, PyObject *v)
 | 
						|
{
 | 
						|
	const char *s, *start;
 | 
						|
	char *end;
 | 
						|
	double x=0.0, y=0.0, z;
 | 
						|
	int got_bracket=0;
 | 
						|
#ifdef Py_USING_UNICODE
 | 
						|
	char *s_buffer = NULL;
 | 
						|
#endif
 | 
						|
	Py_ssize_t len;
 | 
						|
 | 
						|
	if (PyString_Check(v)) {
 | 
						|
		s = PyString_AS_STRING(v);
 | 
						|
		len = PyString_GET_SIZE(v);
 | 
						|
	}
 | 
						|
#ifdef Py_USING_UNICODE
 | 
						|
	else if (PyUnicode_Check(v)) {
 | 
						|
		s_buffer = (char *)PyMem_MALLOC(PyUnicode_GET_SIZE(v)+1);
 | 
						|
		if (s_buffer == NULL)
 | 
						|
			return PyErr_NoMemory();
 | 
						|
		if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v),
 | 
						|
					    PyUnicode_GET_SIZE(v),
 | 
						|
					    s_buffer,
 | 
						|
					    NULL))
 | 
						|
			goto error;
 | 
						|
		s = s_buffer;
 | 
						|
		len = strlen(s);
 | 
						|
	}
 | 
						|
#endif
 | 
						|
	else if (PyObject_AsCharBuffer(v, &s, &len)) {
 | 
						|
		PyErr_SetString(PyExc_TypeError,
 | 
						|
				"complex() arg is not a string");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	/* position on first nonblank */
 | 
						|
	start = s;
 | 
						|
	while (Py_ISSPACE(*s))
 | 
						|
		s++;
 | 
						|
	if (*s == '(') {
 | 
						|
		/* Skip over possible bracket from repr(). */
 | 
						|
		got_bracket = 1;
 | 
						|
		s++;
 | 
						|
		while (Py_ISSPACE(*s))
 | 
						|
			s++;
 | 
						|
	}
 | 
						|
 | 
						|
	/* a valid complex string usually takes one of the three forms:
 | 
						|
 | 
						|
	     <float>                  - real part only
 | 
						|
	     <float>j                 - imaginary part only
 | 
						|
	     <float><signed-float>j   - real and imaginary parts
 | 
						|
 | 
						|
	   where <float> represents any numeric string that's accepted by the
 | 
						|
	   float constructor (including 'nan', 'inf', 'infinity', etc.), and
 | 
						|
	   <signed-float> is any string of the form <float> whose first
 | 
						|
	   character is '+' or '-'.
 | 
						|
 | 
						|
	   For backwards compatibility, the extra forms
 | 
						|
 | 
						|
	     <float><sign>j
 | 
						|
	     <sign>j
 | 
						|
	     j
 | 
						|
 | 
						|
	   are also accepted, though support for these forms may be removed from
 | 
						|
	   a future version of Python.
 | 
						|
	*/
 | 
						|
 | 
						|
	/* first look for forms starting with <float> */
 | 
						|
	z = PyOS_string_to_double(s, &end, NULL);
 | 
						|
	if (z == -1.0 && PyErr_Occurred()) {
 | 
						|
		if (PyErr_ExceptionMatches(PyExc_ValueError))
 | 
						|
			PyErr_Clear();
 | 
						|
		else
 | 
						|
			goto error;
 | 
						|
	}
 | 
						|
	if (end != s) {
 | 
						|
		/* all 4 forms starting with <float> land here */
 | 
						|
		s = end;
 | 
						|
		if (*s == '+' || *s == '-') {
 | 
						|
			/* <float><signed-float>j | <float><sign>j */
 | 
						|
			x = z;
 | 
						|
			y = PyOS_string_to_double(s, &end, NULL);
 | 
						|
			if (y == -1.0 && PyErr_Occurred()) {
 | 
						|
				if (PyErr_ExceptionMatches(PyExc_ValueError))
 | 
						|
					PyErr_Clear();
 | 
						|
				else
 | 
						|
					goto error;
 | 
						|
			}
 | 
						|
			if (end != s)
 | 
						|
				/* <float><signed-float>j */
 | 
						|
				s = end;
 | 
						|
			else {
 | 
						|
				/* <float><sign>j */
 | 
						|
				y = *s == '+' ? 1.0 : -1.0;
 | 
						|
				s++;
 | 
						|
			}
 | 
						|
			if (!(*s == 'j' || *s == 'J'))
 | 
						|
				goto parse_error;
 | 
						|
			s++;
 | 
						|
		}
 | 
						|
		else if (*s == 'j' || *s == 'J') {
 | 
						|
			/* <float>j */
 | 
						|
			s++;
 | 
						|
			y = z;
 | 
						|
		}
 | 
						|
		else
 | 
						|
			/* <float> */
 | 
						|
			x = z;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		/* not starting with <float>; must be <sign>j or j */
 | 
						|
		if (*s == '+' || *s == '-') {
 | 
						|
			/* <sign>j */
 | 
						|
			y = *s == '+' ? 1.0 : -1.0;
 | 
						|
			s++;
 | 
						|
		}
 | 
						|
		else
 | 
						|
			/* j */
 | 
						|
			y = 1.0;
 | 
						|
		if (!(*s == 'j' || *s == 'J'))
 | 
						|
			goto parse_error;
 | 
						|
		s++;
 | 
						|
	}
 | 
						|
 | 
						|
	/* trailing whitespace and closing bracket */
 | 
						|
	while (Py_ISSPACE(*s))
 | 
						|
		s++;
 | 
						|
	if (got_bracket) {
 | 
						|
		/* if there was an opening parenthesis, then the corresponding
 | 
						|
		   closing parenthesis should be right here */
 | 
						|
		if (*s != ')')
 | 
						|
			goto parse_error;
 | 
						|
		s++;
 | 
						|
		while (Py_ISSPACE(*s))
 | 
						|
			s++;
 | 
						|
	}
 | 
						|
 | 
						|
	/* we should now be at the end of the string */
 | 
						|
	if (s-start != len)
 | 
						|
		goto parse_error;
 | 
						|
 | 
						|
 | 
						|
#ifdef Py_USING_UNICODE
 | 
						|
	if (s_buffer)
 | 
						|
		PyMem_FREE(s_buffer);
 | 
						|
#endif
 | 
						|
	return complex_subtype_from_doubles(type, x, y);
 | 
						|
 | 
						|
  parse_error:
 | 
						|
	PyErr_SetString(PyExc_ValueError,
 | 
						|
			"complex() arg is a malformed string");
 | 
						|
  error:
 | 
						|
#ifdef Py_USING_UNICODE
 | 
						|
	if (s_buffer)
 | 
						|
		PyMem_FREE(s_buffer);
 | 
						|
#endif
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
 | 
						|
{
 | 
						|
	PyObject *r, *i, *tmp;
 | 
						|
	PyNumberMethods *nbr, *nbi = NULL;
 | 
						|
	Py_complex cr, ci;
 | 
						|
	int own_r = 0;
 | 
						|
	int cr_is_complex = 0;
 | 
						|
	int ci_is_complex = 0;
 | 
						|
	static char *kwlist[] = {"real", "imag", 0};
 | 
						|
 | 
						|
	r = Py_False;
 | 
						|
	i = NULL;
 | 
						|
	if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OO:complex", kwlist,
 | 
						|
					 &r, &i))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	/* Special-case for a single argument when type(arg) is complex. */
 | 
						|
	if (PyComplex_CheckExact(r) && i == NULL &&
 | 
						|
	    type == &PyComplex_Type) {
 | 
						|
		/* Note that we can't know whether it's safe to return
 | 
						|
		   a complex *subclass* instance as-is, hence the restriction
 | 
						|
		   to exact complexes here.  If either the input or the
 | 
						|
		   output is a complex subclass, it will be handled below 
 | 
						|
		   as a non-orthogonal vector.  */
 | 
						|
		Py_INCREF(r);
 | 
						|
		return r;
 | 
						|
	}
 | 
						|
	if (PyString_Check(r) || PyUnicode_Check(r)) {
 | 
						|
		if (i != NULL) {
 | 
						|
			PyErr_SetString(PyExc_TypeError,
 | 
						|
					"complex() can't take second arg"
 | 
						|
					" if first is a string");
 | 
						|
			return NULL;
 | 
						|
		}
 | 
						|
		return complex_subtype_from_string(type, r);
 | 
						|
	}
 | 
						|
	if (i != NULL && (PyString_Check(i) || PyUnicode_Check(i))) {
 | 
						|
		PyErr_SetString(PyExc_TypeError,
 | 
						|
				"complex() second arg can't be a string");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	tmp = try_complex_special_method(r);
 | 
						|
	if (tmp) {
 | 
						|
		r = tmp;
 | 
						|
		own_r = 1;
 | 
						|
	}
 | 
						|
	else if (PyErr_Occurred()) {
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	nbr = r->ob_type->tp_as_number;
 | 
						|
	if (i != NULL)
 | 
						|
		nbi = i->ob_type->tp_as_number;
 | 
						|
	if (nbr == NULL || nbr->nb_float == NULL ||
 | 
						|
	    ((i != NULL) && (nbi == NULL || nbi->nb_float == NULL))) {
 | 
						|
		PyErr_SetString(PyExc_TypeError,
 | 
						|
			   "complex() argument must be a string or a number");
 | 
						|
		if (own_r) {
 | 
						|
			Py_DECREF(r);
 | 
						|
		}
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	/* If we get this far, then the "real" and "imag" parts should
 | 
						|
	   both be treated as numbers, and the constructor should return a
 | 
						|
	   complex number equal to (real + imag*1j).
 | 
						|
 | 
						|
 	   Note that we do NOT assume the input to already be in canonical
 | 
						|
	   form; the "real" and "imag" parts might themselves be complex
 | 
						|
	   numbers, which slightly complicates the code below. */
 | 
						|
	if (PyComplex_Check(r)) {
 | 
						|
		/* Note that if r is of a complex subtype, we're only
 | 
						|
		   retaining its real & imag parts here, and the return
 | 
						|
		   value is (properly) of the builtin complex type. */
 | 
						|
		cr = ((PyComplexObject*)r)->cval;
 | 
						|
		cr_is_complex = 1;
 | 
						|
		if (own_r) {
 | 
						|
			Py_DECREF(r);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		/* The "real" part really is entirely real, and contributes
 | 
						|
		   nothing in the imaginary direction.  
 | 
						|
		   Just treat it as a double. */
 | 
						|
		tmp = PyNumber_Float(r);
 | 
						|
		if (own_r) {
 | 
						|
			/* r was a newly created complex number, rather
 | 
						|
			   than the original "real" argument. */
 | 
						|
			Py_DECREF(r);
 | 
						|
		}
 | 
						|
		if (tmp == NULL)
 | 
						|
			return NULL;
 | 
						|
		if (!PyFloat_Check(tmp)) {
 | 
						|
			PyErr_SetString(PyExc_TypeError,
 | 
						|
					"float(r) didn't return a float");
 | 
						|
			Py_DECREF(tmp);
 | 
						|
			return NULL;
 | 
						|
		}
 | 
						|
		cr.real = PyFloat_AsDouble(tmp);
 | 
						|
		cr.imag = 0.0; /* Shut up compiler warning */
 | 
						|
		Py_DECREF(tmp);
 | 
						|
	}
 | 
						|
	if (i == NULL) {
 | 
						|
		ci.real = 0.0;
 | 
						|
	}
 | 
						|
	else if (PyComplex_Check(i)) {
 | 
						|
		ci = ((PyComplexObject*)i)->cval;
 | 
						|
		ci_is_complex = 1;
 | 
						|
	} else {
 | 
						|
		/* The "imag" part really is entirely imaginary, and
 | 
						|
		   contributes nothing in the real direction.
 | 
						|
		   Just treat it as a double. */
 | 
						|
		tmp = (*nbi->nb_float)(i);
 | 
						|
		if (tmp == NULL)
 | 
						|
			return NULL;
 | 
						|
		ci.real = PyFloat_AsDouble(tmp);
 | 
						|
		Py_DECREF(tmp);
 | 
						|
	}
 | 
						|
	/*  If the input was in canonical form, then the "real" and "imag"
 | 
						|
	    parts are real numbers, so that ci.imag and cr.imag are zero.
 | 
						|
	    We need this correction in case they were not real numbers. */
 | 
						|
 | 
						|
	if (ci_is_complex) {
 | 
						|
		cr.real -= ci.imag;
 | 
						|
	}
 | 
						|
	if (cr_is_complex) {
 | 
						|
		ci.real += cr.imag;
 | 
						|
	}
 | 
						|
	return complex_subtype_from_doubles(type, cr.real, ci.real);
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(complex_doc,
 | 
						|
"complex(real[, imag]) -> complex number\n"
 | 
						|
"\n"
 | 
						|
"Create a complex number from a real part and an optional imaginary part.\n"
 | 
						|
"This is equivalent to (real + imag*1j) where imag defaults to 0.");
 | 
						|
 | 
						|
static PyNumberMethods complex_as_number = {
 | 
						|
	(binaryfunc)complex_add, 		/* nb_add */
 | 
						|
	(binaryfunc)complex_sub, 		/* nb_subtract */
 | 
						|
	(binaryfunc)complex_mul, 		/* nb_multiply */
 | 
						|
	(binaryfunc)complex_classic_div,	/* nb_divide */
 | 
						|
	(binaryfunc)complex_remainder,		/* nb_remainder */
 | 
						|
	(binaryfunc)complex_divmod,		/* nb_divmod */
 | 
						|
	(ternaryfunc)complex_pow,		/* nb_power */
 | 
						|
	(unaryfunc)complex_neg,			/* nb_negative */
 | 
						|
	(unaryfunc)complex_pos,			/* nb_positive */
 | 
						|
	(unaryfunc)complex_abs,			/* nb_absolute */
 | 
						|
	(inquiry)complex_nonzero,		/* nb_nonzero */
 | 
						|
	0,					/* nb_invert */
 | 
						|
	0,					/* nb_lshift */
 | 
						|
	0,					/* nb_rshift */
 | 
						|
	0,					/* nb_and */
 | 
						|
	0,					/* nb_xor */
 | 
						|
	0,					/* nb_or */
 | 
						|
	complex_coerce,				/* nb_coerce */
 | 
						|
	complex_int,				/* nb_int */
 | 
						|
	complex_long,				/* nb_long */
 | 
						|
	complex_float,				/* nb_float */
 | 
						|
	0,					/* nb_oct */
 | 
						|
	0,					/* nb_hex */
 | 
						|
	0,					/* nb_inplace_add */
 | 
						|
	0,					/* nb_inplace_subtract */
 | 
						|
	0,					/* nb_inplace_multiply*/
 | 
						|
	0,					/* nb_inplace_divide */
 | 
						|
	0,					/* nb_inplace_remainder */
 | 
						|
	0, 					/* nb_inplace_power */
 | 
						|
	0,					/* nb_inplace_lshift */
 | 
						|
	0,					/* nb_inplace_rshift */
 | 
						|
	0,					/* nb_inplace_and */
 | 
						|
	0,					/* nb_inplace_xor */
 | 
						|
	0,					/* nb_inplace_or */
 | 
						|
	(binaryfunc)complex_int_div,		/* nb_floor_divide */
 | 
						|
	(binaryfunc)complex_div,		/* nb_true_divide */
 | 
						|
	0,					/* nb_inplace_floor_divide */
 | 
						|
	0,					/* nb_inplace_true_divide */
 | 
						|
};
 | 
						|
 | 
						|
PyTypeObject PyComplex_Type = {
 | 
						|
	PyVarObject_HEAD_INIT(&PyType_Type, 0)
 | 
						|
	"complex",
 | 
						|
	sizeof(PyComplexObject),
 | 
						|
	0,
 | 
						|
	complex_dealloc,			/* tp_dealloc */
 | 
						|
	(printfunc)complex_print,		/* tp_print */
 | 
						|
	0,					/* tp_getattr */
 | 
						|
	0,					/* tp_setattr */
 | 
						|
	0,					/* tp_compare */
 | 
						|
	(reprfunc)complex_repr,			/* tp_repr */
 | 
						|
	&complex_as_number,    			/* tp_as_number */
 | 
						|
	0,					/* tp_as_sequence */
 | 
						|
	0,					/* tp_as_mapping */
 | 
						|
	(hashfunc)complex_hash, 		/* tp_hash */
 | 
						|
	0,					/* tp_call */
 | 
						|
	(reprfunc)complex_str,			/* tp_str */
 | 
						|
	PyObject_GenericGetAttr,		/* tp_getattro */
 | 
						|
	0,					/* tp_setattro */
 | 
						|
	0,					/* tp_as_buffer */
 | 
						|
	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
 | 
						|
		Py_TPFLAGS_BASETYPE,		/* tp_flags */
 | 
						|
	complex_doc,				/* tp_doc */
 | 
						|
	0,					/* tp_traverse */
 | 
						|
	0,					/* tp_clear */
 | 
						|
	complex_richcompare,			/* tp_richcompare */
 | 
						|
	0,					/* tp_weaklistoffset */
 | 
						|
	0,					/* tp_iter */
 | 
						|
	0,					/* tp_iternext */
 | 
						|
	complex_methods,			/* tp_methods */
 | 
						|
	complex_members,			/* tp_members */
 | 
						|
	0,					/* tp_getset */
 | 
						|
	0,					/* tp_base */
 | 
						|
	0,					/* tp_dict */
 | 
						|
	0,					/* tp_descr_get */
 | 
						|
	0,					/* tp_descr_set */
 | 
						|
	0,					/* tp_dictoffset */
 | 
						|
	0,					/* tp_init */
 | 
						|
	PyType_GenericAlloc,			/* tp_alloc */
 | 
						|
	complex_new,				/* tp_new */
 | 
						|
	PyObject_Del,           		/* tp_free */
 | 
						|
};
 | 
						|
 | 
						|
#endif
 |