mirror of
				https://github.com/python/cpython.git
				synced 2025-10-28 04:04:44 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			630 lines
		
	
	
	
		
			23 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			630 lines
		
	
	
	
		
			23 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Originally contributed by Sjoerd Mullender.
 | |
| # Significantly modified by Jeffrey Yasskin <jyasskin at gmail.com>.
 | |
| 
 | |
| """Fraction, infinite-precision, real numbers."""
 | |
| 
 | |
| from decimal import Decimal
 | |
| import math
 | |
| import numbers
 | |
| import operator
 | |
| import re
 | |
| import sys
 | |
| 
 | |
| __all__ = ['Fraction', 'gcd']
 | |
| 
 | |
| 
 | |
| 
 | |
| def gcd(a, b):
 | |
|     """Calculate the Greatest Common Divisor of a and b.
 | |
| 
 | |
|     Unless b==0, the result will have the same sign as b (so that when
 | |
|     b is divided by it, the result comes out positive).
 | |
|     """
 | |
|     while b:
 | |
|         a, b = b, a%b
 | |
|     return a
 | |
| 
 | |
| # Constants related to the hash implementation;  hash(x) is based
 | |
| # on the reduction of x modulo the prime _PyHASH_MODULUS.
 | |
| _PyHASH_MODULUS = sys.hash_info.modulus
 | |
| # Value to be used for rationals that reduce to infinity modulo
 | |
| # _PyHASH_MODULUS.
 | |
| _PyHASH_INF = sys.hash_info.inf
 | |
| 
 | |
| _RATIONAL_FORMAT = re.compile(r"""
 | |
|     \A\s*                      # optional whitespace at the start, then
 | |
|     (?P<sign>[-+]?)            # an optional sign, then
 | |
|     (?=\d|\.\d)                # lookahead for digit or .digit
 | |
|     (?P<num>\d*)               # numerator (possibly empty)
 | |
|     (?:                        # followed by
 | |
|        (?:/(?P<denom>\d+))?    # an optional denominator
 | |
|     |                          # or
 | |
|        (?:\.(?P<decimal>\d*))? # an optional fractional part
 | |
|        (?:E(?P<exp>[-+]?\d+))? # and optional exponent
 | |
|     )
 | |
|     \s*\Z                      # and optional whitespace to finish
 | |
| """, re.VERBOSE | re.IGNORECASE)
 | |
| 
 | |
| 
 | |
| class Fraction(numbers.Rational):
 | |
|     """This class implements rational numbers.
 | |
| 
 | |
|     In the two-argument form of the constructor, Fraction(8, 6) will
 | |
|     produce a rational number equivalent to 4/3. Both arguments must
 | |
|     be Rational. The numerator defaults to 0 and the denominator
 | |
|     defaults to 1 so that Fraction(3) == 3 and Fraction() == 0.
 | |
| 
 | |
|     Fractions can also be constructed from:
 | |
| 
 | |
|       - numeric strings similar to those accepted by the
 | |
|         float constructor (for example, '-2.3' or '1e10')
 | |
| 
 | |
|       - strings of the form '123/456'
 | |
| 
 | |
|       - float and Decimal instances
 | |
| 
 | |
|       - other Rational instances (including integers)
 | |
| 
 | |
|     """
 | |
| 
 | |
|     __slots__ = ('_numerator', '_denominator')
 | |
| 
 | |
|     # We're immutable, so use __new__ not __init__
 | |
|     def __new__(cls, numerator=0, denominator=None):
 | |
|         """Constructs a Rational.
 | |
| 
 | |
|         Takes a string like '3/2' or '1.5', another Rational instance, a
 | |
|         numerator/denominator pair, or a float.
 | |
| 
 | |
|         Examples
 | |
|         --------
 | |
| 
 | |
|         >>> Fraction(10, -8)
 | |
|         Fraction(-5, 4)
 | |
|         >>> Fraction(Fraction(1, 7), 5)
 | |
|         Fraction(1, 35)
 | |
|         >>> Fraction(Fraction(1, 7), Fraction(2, 3))
 | |
|         Fraction(3, 14)
 | |
|         >>> Fraction('314')
 | |
|         Fraction(314, 1)
 | |
|         >>> Fraction('-35/4')
 | |
|         Fraction(-35, 4)
 | |
|         >>> Fraction('3.1415') # conversion from numeric string
 | |
|         Fraction(6283, 2000)
 | |
|         >>> Fraction('-47e-2') # string may include a decimal exponent
 | |
|         Fraction(-47, 100)
 | |
|         >>> Fraction(1.47)  # direct construction from float (exact conversion)
 | |
|         Fraction(6620291452234629, 4503599627370496)
 | |
|         >>> Fraction(2.25)
 | |
|         Fraction(9, 4)
 | |
|         >>> Fraction(Decimal('1.47'))
 | |
|         Fraction(147, 100)
 | |
| 
 | |
|         """
 | |
|         self = super(Fraction, cls).__new__(cls)
 | |
| 
 | |
|         if denominator is None:
 | |
|             if isinstance(numerator, numbers.Rational):
 | |
|                 self._numerator = numerator.numerator
 | |
|                 self._denominator = numerator.denominator
 | |
|                 return self
 | |
| 
 | |
|             elif isinstance(numerator, float):
 | |
|                 # Exact conversion from float
 | |
|                 value = Fraction.from_float(numerator)
 | |
|                 self._numerator = value._numerator
 | |
|                 self._denominator = value._denominator
 | |
|                 return self
 | |
| 
 | |
|             elif isinstance(numerator, Decimal):
 | |
|                 value = Fraction.from_decimal(numerator)
 | |
|                 self._numerator = value._numerator
 | |
|                 self._denominator = value._denominator
 | |
|                 return self
 | |
| 
 | |
|             elif isinstance(numerator, str):
 | |
|                 # Handle construction from strings.
 | |
|                 m = _RATIONAL_FORMAT.match(numerator)
 | |
|                 if m is None:
 | |
|                     raise ValueError('Invalid literal for Fraction: %r' %
 | |
|                                      numerator)
 | |
|                 numerator = int(m.group('num') or '0')
 | |
|                 denom = m.group('denom')
 | |
|                 if denom:
 | |
|                     denominator = int(denom)
 | |
|                 else:
 | |
|                     denominator = 1
 | |
|                     decimal = m.group('decimal')
 | |
|                     if decimal:
 | |
|                         scale = 10**len(decimal)
 | |
|                         numerator = numerator * scale + int(decimal)
 | |
|                         denominator *= scale
 | |
|                     exp = m.group('exp')
 | |
|                     if exp:
 | |
|                         exp = int(exp)
 | |
|                         if exp >= 0:
 | |
|                             numerator *= 10**exp
 | |
|                         else:
 | |
|                             denominator *= 10**-exp
 | |
|                 if m.group('sign') == '-':
 | |
|                     numerator = -numerator
 | |
| 
 | |
|             else:
 | |
|                 raise TypeError("argument should be a string "
 | |
|                                 "or a Rational instance")
 | |
| 
 | |
|         elif (isinstance(numerator, numbers.Rational) and
 | |
|             isinstance(denominator, numbers.Rational)):
 | |
|             numerator, denominator = (
 | |
|                 numerator.numerator * denominator.denominator,
 | |
|                 denominator.numerator * numerator.denominator
 | |
|                 )
 | |
|         else:
 | |
|             raise TypeError("both arguments should be "
 | |
|                             "Rational instances")
 | |
| 
 | |
|         if denominator == 0:
 | |
|             raise ZeroDivisionError('Fraction(%s, 0)' % numerator)
 | |
|         g = gcd(numerator, denominator)
 | |
|         self._numerator = numerator // g
 | |
|         self._denominator = denominator // g
 | |
|         return self
 | |
| 
 | |
|     @classmethod
 | |
|     def from_float(cls, f):
 | |
|         """Converts a finite float to a rational number, exactly.
 | |
| 
 | |
|         Beware that Fraction.from_float(0.3) != Fraction(3, 10).
 | |
| 
 | |
|         """
 | |
|         if isinstance(f, numbers.Integral):
 | |
|             return cls(f)
 | |
|         elif not isinstance(f, float):
 | |
|             raise TypeError("%s.from_float() only takes floats, not %r (%s)" %
 | |
|                             (cls.__name__, f, type(f).__name__))
 | |
|         if math.isnan(f):
 | |
|             raise ValueError("Cannot convert %r to %s." % (f, cls.__name__))
 | |
|         if math.isinf(f):
 | |
|             raise OverflowError("Cannot convert %r to %s." % (f, cls.__name__))
 | |
|         return cls(*f.as_integer_ratio())
 | |
| 
 | |
|     @classmethod
 | |
|     def from_decimal(cls, dec):
 | |
|         """Converts a finite Decimal instance to a rational number, exactly."""
 | |
|         from decimal import Decimal
 | |
|         if isinstance(dec, numbers.Integral):
 | |
|             dec = Decimal(int(dec))
 | |
|         elif not isinstance(dec, Decimal):
 | |
|             raise TypeError(
 | |
|                 "%s.from_decimal() only takes Decimals, not %r (%s)" %
 | |
|                 (cls.__name__, dec, type(dec).__name__))
 | |
|         if dec.is_infinite():
 | |
|             raise OverflowError(
 | |
|                 "Cannot convert %s to %s." % (dec, cls.__name__))
 | |
|         if dec.is_nan():
 | |
|             raise ValueError("Cannot convert %s to %s." % (dec, cls.__name__))
 | |
|         sign, digits, exp = dec.as_tuple()
 | |
|         digits = int(''.join(map(str, digits)))
 | |
|         if sign:
 | |
|             digits = -digits
 | |
|         if exp >= 0:
 | |
|             return cls(digits * 10 ** exp)
 | |
|         else:
 | |
|             return cls(digits, 10 ** -exp)
 | |
| 
 | |
|     def limit_denominator(self, max_denominator=1000000):
 | |
|         """Closest Fraction to self with denominator at most max_denominator.
 | |
| 
 | |
|         >>> Fraction('3.141592653589793').limit_denominator(10)
 | |
|         Fraction(22, 7)
 | |
|         >>> Fraction('3.141592653589793').limit_denominator(100)
 | |
|         Fraction(311, 99)
 | |
|         >>> Fraction(4321, 8765).limit_denominator(10000)
 | |
|         Fraction(4321, 8765)
 | |
| 
 | |
|         """
 | |
|         # Algorithm notes: For any real number x, define a *best upper
 | |
|         # approximation* to x to be a rational number p/q such that:
 | |
|         #
 | |
|         #   (1) p/q >= x, and
 | |
|         #   (2) if p/q > r/s >= x then s > q, for any rational r/s.
 | |
|         #
 | |
|         # Define *best lower approximation* similarly.  Then it can be
 | |
|         # proved that a rational number is a best upper or lower
 | |
|         # approximation to x if, and only if, it is a convergent or
 | |
|         # semiconvergent of the (unique shortest) continued fraction
 | |
|         # associated to x.
 | |
|         #
 | |
|         # To find a best rational approximation with denominator <= M,
 | |
|         # we find the best upper and lower approximations with
 | |
|         # denominator <= M and take whichever of these is closer to x.
 | |
|         # In the event of a tie, the bound with smaller denominator is
 | |
|         # chosen.  If both denominators are equal (which can happen
 | |
|         # only when max_denominator == 1 and self is midway between
 | |
|         # two integers) the lower bound---i.e., the floor of self, is
 | |
|         # taken.
 | |
| 
 | |
|         if max_denominator < 1:
 | |
|             raise ValueError("max_denominator should be at least 1")
 | |
|         if self._denominator <= max_denominator:
 | |
|             return Fraction(self)
 | |
| 
 | |
|         p0, q0, p1, q1 = 0, 1, 1, 0
 | |
|         n, d = self._numerator, self._denominator
 | |
|         while True:
 | |
|             a = n//d
 | |
|             q2 = q0+a*q1
 | |
|             if q2 > max_denominator:
 | |
|                 break
 | |
|             p0, q0, p1, q1 = p1, q1, p0+a*p1, q2
 | |
|             n, d = d, n-a*d
 | |
| 
 | |
|         k = (max_denominator-q0)//q1
 | |
|         bound1 = Fraction(p0+k*p1, q0+k*q1)
 | |
|         bound2 = Fraction(p1, q1)
 | |
|         if abs(bound2 - self) <= abs(bound1-self):
 | |
|             return bound2
 | |
|         else:
 | |
|             return bound1
 | |
| 
 | |
|     @property
 | |
|     def numerator(a):
 | |
|         return a._numerator
 | |
| 
 | |
|     @property
 | |
|     def denominator(a):
 | |
|         return a._denominator
 | |
| 
 | |
|     def __repr__(self):
 | |
|         """repr(self)"""
 | |
|         return ('Fraction(%s, %s)' % (self._numerator, self._denominator))
 | |
| 
 | |
|     def __str__(self):
 | |
|         """str(self)"""
 | |
|         if self._denominator == 1:
 | |
|             return str(self._numerator)
 | |
|         else:
 | |
|             return '%s/%s' % (self._numerator, self._denominator)
 | |
| 
 | |
|     def _operator_fallbacks(monomorphic_operator, fallback_operator):
 | |
|         """Generates forward and reverse operators given a purely-rational
 | |
|         operator and a function from the operator module.
 | |
| 
 | |
|         Use this like:
 | |
|         __op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op)
 | |
| 
 | |
|         In general, we want to implement the arithmetic operations so
 | |
|         that mixed-mode operations either call an implementation whose
 | |
|         author knew about the types of both arguments, or convert both
 | |
|         to the nearest built in type and do the operation there. In
 | |
|         Fraction, that means that we define __add__ and __radd__ as:
 | |
| 
 | |
|             def __add__(self, other):
 | |
|                 # Both types have numerators/denominator attributes,
 | |
|                 # so do the operation directly
 | |
|                 if isinstance(other, (int, Fraction)):
 | |
|                     return Fraction(self.numerator * other.denominator +
 | |
|                                     other.numerator * self.denominator,
 | |
|                                     self.denominator * other.denominator)
 | |
|                 # float and complex don't have those operations, but we
 | |
|                 # know about those types, so special case them.
 | |
|                 elif isinstance(other, float):
 | |
|                     return float(self) + other
 | |
|                 elif isinstance(other, complex):
 | |
|                     return complex(self) + other
 | |
|                 # Let the other type take over.
 | |
|                 return NotImplemented
 | |
| 
 | |
|             def __radd__(self, other):
 | |
|                 # radd handles more types than add because there's
 | |
|                 # nothing left to fall back to.
 | |
|                 if isinstance(other, numbers.Rational):
 | |
|                     return Fraction(self.numerator * other.denominator +
 | |
|                                     other.numerator * self.denominator,
 | |
|                                     self.denominator * other.denominator)
 | |
|                 elif isinstance(other, Real):
 | |
|                     return float(other) + float(self)
 | |
|                 elif isinstance(other, Complex):
 | |
|                     return complex(other) + complex(self)
 | |
|                 return NotImplemented
 | |
| 
 | |
| 
 | |
|         There are 5 different cases for a mixed-type addition on
 | |
|         Fraction. I'll refer to all of the above code that doesn't
 | |
|         refer to Fraction, float, or complex as "boilerplate". 'r'
 | |
|         will be an instance of Fraction, which is a subtype of
 | |
|         Rational (r : Fraction <: Rational), and b : B <:
 | |
|         Complex. The first three involve 'r + b':
 | |
| 
 | |
|             1. If B <: Fraction, int, float, or complex, we handle
 | |
|                that specially, and all is well.
 | |
|             2. If Fraction falls back to the boilerplate code, and it
 | |
|                were to return a value from __add__, we'd miss the
 | |
|                possibility that B defines a more intelligent __radd__,
 | |
|                so the boilerplate should return NotImplemented from
 | |
|                __add__. In particular, we don't handle Rational
 | |
|                here, even though we could get an exact answer, in case
 | |
|                the other type wants to do something special.
 | |
|             3. If B <: Fraction, Python tries B.__radd__ before
 | |
|                Fraction.__add__. This is ok, because it was
 | |
|                implemented with knowledge of Fraction, so it can
 | |
|                handle those instances before delegating to Real or
 | |
|                Complex.
 | |
| 
 | |
|         The next two situations describe 'b + r'. We assume that b
 | |
|         didn't know about Fraction in its implementation, and that it
 | |
|         uses similar boilerplate code:
 | |
| 
 | |
|             4. If B <: Rational, then __radd_ converts both to the
 | |
|                builtin rational type (hey look, that's us) and
 | |
|                proceeds.
 | |
|             5. Otherwise, __radd__ tries to find the nearest common
 | |
|                base ABC, and fall back to its builtin type. Since this
 | |
|                class doesn't subclass a concrete type, there's no
 | |
|                implementation to fall back to, so we need to try as
 | |
|                hard as possible to return an actual value, or the user
 | |
|                will get a TypeError.
 | |
| 
 | |
|         """
 | |
|         def forward(a, b):
 | |
|             if isinstance(b, (int, Fraction)):
 | |
|                 return monomorphic_operator(a, b)
 | |
|             elif isinstance(b, float):
 | |
|                 return fallback_operator(float(a), b)
 | |
|             elif isinstance(b, complex):
 | |
|                 return fallback_operator(complex(a), b)
 | |
|             else:
 | |
|                 return NotImplemented
 | |
|         forward.__name__ = '__' + fallback_operator.__name__ + '__'
 | |
|         forward.__doc__ = monomorphic_operator.__doc__
 | |
| 
 | |
|         def reverse(b, a):
 | |
|             if isinstance(a, numbers.Rational):
 | |
|                 # Includes ints.
 | |
|                 return monomorphic_operator(a, b)
 | |
|             elif isinstance(a, numbers.Real):
 | |
|                 return fallback_operator(float(a), float(b))
 | |
|             elif isinstance(a, numbers.Complex):
 | |
|                 return fallback_operator(complex(a), complex(b))
 | |
|             else:
 | |
|                 return NotImplemented
 | |
|         reverse.__name__ = '__r' + fallback_operator.__name__ + '__'
 | |
|         reverse.__doc__ = monomorphic_operator.__doc__
 | |
| 
 | |
|         return forward, reverse
 | |
| 
 | |
|     def _add(a, b):
 | |
|         """a + b"""
 | |
|         return Fraction(a.numerator * b.denominator +
 | |
|                         b.numerator * a.denominator,
 | |
|                         a.denominator * b.denominator)
 | |
| 
 | |
|     __add__, __radd__ = _operator_fallbacks(_add, operator.add)
 | |
| 
 | |
|     def _sub(a, b):
 | |
|         """a - b"""
 | |
|         return Fraction(a.numerator * b.denominator -
 | |
|                         b.numerator * a.denominator,
 | |
|                         a.denominator * b.denominator)
 | |
| 
 | |
|     __sub__, __rsub__ = _operator_fallbacks(_sub, operator.sub)
 | |
| 
 | |
|     def _mul(a, b):
 | |
|         """a * b"""
 | |
|         return Fraction(a.numerator * b.numerator, a.denominator * b.denominator)
 | |
| 
 | |
|     __mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul)
 | |
| 
 | |
|     def _div(a, b):
 | |
|         """a / b"""
 | |
|         return Fraction(a.numerator * b.denominator,
 | |
|                         a.denominator * b.numerator)
 | |
| 
 | |
|     __truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv)
 | |
| 
 | |
|     def __floordiv__(a, b):
 | |
|         """a // b"""
 | |
|         return math.floor(a / b)
 | |
| 
 | |
|     def __rfloordiv__(b, a):
 | |
|         """a // b"""
 | |
|         return math.floor(a / b)
 | |
| 
 | |
|     def __mod__(a, b):
 | |
|         """a % b"""
 | |
|         div = a // b
 | |
|         return a - b * div
 | |
| 
 | |
|     def __rmod__(b, a):
 | |
|         """a % b"""
 | |
|         div = a // b
 | |
|         return a - b * div
 | |
| 
 | |
|     def __pow__(a, b):
 | |
|         """a ** b
 | |
| 
 | |
|         If b is not an integer, the result will be a float or complex
 | |
|         since roots are generally irrational. If b is an integer, the
 | |
|         result will be rational.
 | |
| 
 | |
|         """
 | |
|         if isinstance(b, numbers.Rational):
 | |
|             if b.denominator == 1:
 | |
|                 power = b.numerator
 | |
|                 if power >= 0:
 | |
|                     return Fraction(a._numerator ** power,
 | |
|                                     a._denominator ** power)
 | |
|                 else:
 | |
|                     return Fraction(a._denominator ** -power,
 | |
|                                     a._numerator ** -power)
 | |
|             else:
 | |
|                 # A fractional power will generally produce an
 | |
|                 # irrational number.
 | |
|                 return float(a) ** float(b)
 | |
|         else:
 | |
|             return float(a) ** b
 | |
| 
 | |
|     def __rpow__(b, a):
 | |
|         """a ** b"""
 | |
|         if b._denominator == 1 and b._numerator >= 0:
 | |
|             # If a is an int, keep it that way if possible.
 | |
|             return a ** b._numerator
 | |
| 
 | |
|         if isinstance(a, numbers.Rational):
 | |
|             return Fraction(a.numerator, a.denominator) ** b
 | |
| 
 | |
|         if b._denominator == 1:
 | |
|             return a ** b._numerator
 | |
| 
 | |
|         return a ** float(b)
 | |
| 
 | |
|     def __pos__(a):
 | |
|         """+a: Coerces a subclass instance to Fraction"""
 | |
|         return Fraction(a._numerator, a._denominator)
 | |
| 
 | |
|     def __neg__(a):
 | |
|         """-a"""
 | |
|         return Fraction(-a._numerator, a._denominator)
 | |
| 
 | |
|     def __abs__(a):
 | |
|         """abs(a)"""
 | |
|         return Fraction(abs(a._numerator), a._denominator)
 | |
| 
 | |
|     def __trunc__(a):
 | |
|         """trunc(a)"""
 | |
|         if a._numerator < 0:
 | |
|             return -(-a._numerator // a._denominator)
 | |
|         else:
 | |
|             return a._numerator // a._denominator
 | |
| 
 | |
|     def __floor__(a):
 | |
|         """Will be math.floor(a) in 3.0."""
 | |
|         return a.numerator // a.denominator
 | |
| 
 | |
|     def __ceil__(a):
 | |
|         """Will be math.ceil(a) in 3.0."""
 | |
|         # The negations cleverly convince floordiv to return the ceiling.
 | |
|         return -(-a.numerator // a.denominator)
 | |
| 
 | |
|     def __round__(self, ndigits=None):
 | |
|         """Will be round(self, ndigits) in 3.0.
 | |
| 
 | |
|         Rounds half toward even.
 | |
|         """
 | |
|         if ndigits is None:
 | |
|             floor, remainder = divmod(self.numerator, self.denominator)
 | |
|             if remainder * 2 < self.denominator:
 | |
|                 return floor
 | |
|             elif remainder * 2 > self.denominator:
 | |
|                 return floor + 1
 | |
|             # Deal with the half case:
 | |
|             elif floor % 2 == 0:
 | |
|                 return floor
 | |
|             else:
 | |
|                 return floor + 1
 | |
|         shift = 10**abs(ndigits)
 | |
|         # See _operator_fallbacks.forward to check that the results of
 | |
|         # these operations will always be Fraction and therefore have
 | |
|         # round().
 | |
|         if ndigits > 0:
 | |
|             return Fraction(round(self * shift), shift)
 | |
|         else:
 | |
|             return Fraction(round(self / shift) * shift)
 | |
| 
 | |
|     def __hash__(self):
 | |
|         """hash(self)"""
 | |
| 
 | |
|         # XXX since this method is expensive, consider caching the result
 | |
| 
 | |
|         # In order to make sure that the hash of a Fraction agrees
 | |
|         # with the hash of a numerically equal integer, float or
 | |
|         # Decimal instance, we follow the rules for numeric hashes
 | |
|         # outlined in the documentation.  (See library docs, 'Built-in
 | |
|         # Types').
 | |
| 
 | |
|         # dinv is the inverse of self._denominator modulo the prime
 | |
|         # _PyHASH_MODULUS, or 0 if self._denominator is divisible by
 | |
|         # _PyHASH_MODULUS.
 | |
|         dinv = pow(self._denominator, _PyHASH_MODULUS - 2, _PyHASH_MODULUS)
 | |
|         if not dinv:
 | |
|             hash_ = _PyHASH_INF
 | |
|         else:
 | |
|             hash_ = abs(self._numerator) * dinv % _PyHASH_MODULUS
 | |
|         result = hash_ if self >= 0 else -hash_
 | |
|         return -2 if result == -1 else result
 | |
| 
 | |
|     def __eq__(a, b):
 | |
|         """a == b"""
 | |
|         if isinstance(b, numbers.Rational):
 | |
|             return (a._numerator == b.numerator and
 | |
|                     a._denominator == b.denominator)
 | |
|         if isinstance(b, numbers.Complex) and b.imag == 0:
 | |
|             b = b.real
 | |
|         if isinstance(b, float):
 | |
|             if math.isnan(b) or math.isinf(b):
 | |
|                 # comparisons with an infinity or nan should behave in
 | |
|                 # the same way for any finite a, so treat a as zero.
 | |
|                 return 0.0 == b
 | |
|             else:
 | |
|                 return a == a.from_float(b)
 | |
|         else:
 | |
|             # Since a doesn't know how to compare with b, let's give b
 | |
|             # a chance to compare itself with a.
 | |
|             return NotImplemented
 | |
| 
 | |
|     def _richcmp(self, other, op):
 | |
|         """Helper for comparison operators, for internal use only.
 | |
| 
 | |
|         Implement comparison between a Rational instance `self`, and
 | |
|         either another Rational instance or a float `other`.  If
 | |
|         `other` is not a Rational instance or a float, return
 | |
|         NotImplemented. `op` should be one of the six standard
 | |
|         comparison operators.
 | |
| 
 | |
|         """
 | |
|         # convert other to a Rational instance where reasonable.
 | |
|         if isinstance(other, numbers.Rational):
 | |
|             return op(self._numerator * other.denominator,
 | |
|                       self._denominator * other.numerator)
 | |
|         if isinstance(other, float):
 | |
|             if math.isnan(other) or math.isinf(other):
 | |
|                 return op(0.0, other)
 | |
|             else:
 | |
|                 return op(self, self.from_float(other))
 | |
|         else:
 | |
|             return NotImplemented
 | |
| 
 | |
|     def __lt__(a, b):
 | |
|         """a < b"""
 | |
|         return a._richcmp(b, operator.lt)
 | |
| 
 | |
|     def __gt__(a, b):
 | |
|         """a > b"""
 | |
|         return a._richcmp(b, operator.gt)
 | |
| 
 | |
|     def __le__(a, b):
 | |
|         """a <= b"""
 | |
|         return a._richcmp(b, operator.le)
 | |
| 
 | |
|     def __ge__(a, b):
 | |
|         """a >= b"""
 | |
|         return a._richcmp(b, operator.ge)
 | |
| 
 | |
|     def __bool__(a):
 | |
|         """a != 0"""
 | |
|         return a._numerator != 0
 | |
| 
 | |
|     # support for pickling, copy, and deepcopy
 | |
| 
 | |
|     def __reduce__(self):
 | |
|         return (self.__class__, (str(self),))
 | |
| 
 | |
|     def __copy__(self):
 | |
|         if type(self) == Fraction:
 | |
|             return self     # I'm immutable; therefore I am my own clone
 | |
|         return self.__class__(self._numerator, self._denominator)
 | |
| 
 | |
|     def __deepcopy__(self, memo):
 | |
|         if type(self) == Fraction:
 | |
|             return self     # My components are also immutable
 | |
|         return self.__class__(self._numerator, self._denominator)
 | 
