mirror of
				https://github.com/python/cpython.git
				synced 2025-10-31 13:41:24 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			197 lines
		
	
	
	
		
			5.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			197 lines
		
	
	
	
		
			5.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| List sort performance test.
 | |
| 
 | |
| To install `pyperf` you would need to:
 | |
| 
 | |
|     python3 -m pip install pyperf
 | |
| 
 | |
| To run:
 | |
| 
 | |
|     python3 Tools/scripts/sortperf
 | |
| 
 | |
| Options:
 | |
| 
 | |
|     * `benchmark` name to run
 | |
|     * `--rnd-seed` to set random seed
 | |
|     * `--size` to set the sorted list size
 | |
| 
 | |
| Based on https://github.com/python/cpython/blob/963904335e579bfe39101adf3fd6a0cf705975ff/Lib/test/sortperf.py
 | |
| """
 | |
| 
 | |
| from __future__ import annotations
 | |
| 
 | |
| import argparse
 | |
| import time
 | |
| import random
 | |
| 
 | |
| 
 | |
| # ===============
 | |
| # Data generation
 | |
| # ===============
 | |
| 
 | |
| def _random_data(size: int, rand: random.Random) -> list[float]:
 | |
|     result = [rand.random() for _ in range(size)]
 | |
|     # Shuffle it a bit...
 | |
|     for i in range(10):
 | |
|         i = rand.randrange(size)
 | |
|         temp = result[:i]
 | |
|         del result[:i]
 | |
|         temp.reverse()
 | |
|         result.extend(temp)
 | |
|         del temp
 | |
|     assert len(result) == size
 | |
|     return result
 | |
| 
 | |
| 
 | |
| def list_sort(size: int, rand: random.Random) -> list[float]:
 | |
|     return _random_data(size, rand)
 | |
| 
 | |
| 
 | |
| def list_sort_descending(size: int, rand: random.Random) -> list[float]:
 | |
|     return list(reversed(list_sort_ascending(size, rand)))
 | |
| 
 | |
| 
 | |
| def list_sort_ascending(size: int, rand: random.Random) -> list[float]:
 | |
|     return sorted(_random_data(size, rand))
 | |
| 
 | |
| 
 | |
| def list_sort_ascending_exchanged(size: int, rand: random.Random) -> list[float]:
 | |
|     result = list_sort_ascending(size, rand)
 | |
|     # Do 3 random exchanges.
 | |
|     for _ in range(3):
 | |
|         i1 = rand.randrange(size)
 | |
|         i2 = rand.randrange(size)
 | |
|         result[i1], result[i2] = result[i2], result[i1]
 | |
|     return result
 | |
| 
 | |
| 
 | |
| def list_sort_ascending_random(size: int, rand: random.Random) -> list[float]:
 | |
|     assert size >= 10, "This benchmark requires size to be >= 10"
 | |
|     result = list_sort_ascending(size, rand)
 | |
|     # Replace the last 10 with random floats.
 | |
|     result[-10:] = [rand.random() for _ in range(10)]
 | |
|     return result
 | |
| 
 | |
| 
 | |
| def list_sort_ascending_one_percent(size: int, rand: random.Random) -> list[float]:
 | |
|     result = list_sort_ascending(size, rand)
 | |
|     # Replace 1% of the elements at random.
 | |
|     for _ in range(size // 100):
 | |
|         result[rand.randrange(size)] = rand.random()
 | |
|     return result
 | |
| 
 | |
| 
 | |
| def list_sort_duplicates(size: int, rand: random.Random) -> list[float]:
 | |
|     assert size >= 4
 | |
|     result = list_sort_ascending(4, rand)
 | |
|     # Arrange for lots of duplicates.
 | |
|     result = result * (size // 4)
 | |
|     # Force the elements to be distinct objects, else timings can be
 | |
|     # artificially low.
 | |
|     return list(map(abs, result))
 | |
| 
 | |
| 
 | |
| def list_sort_equal(size: int, rand: random.Random) -> list[float]:
 | |
|     # All equal.  Again, force the elements to be distinct objects.
 | |
|     return list(map(abs, [-0.519012] * size))
 | |
| 
 | |
| 
 | |
| def list_sort_worst_case(size: int, rand: random.Random) -> list[float]:
 | |
|     # This one looks like [3, 2, 1, 0, 0, 1, 2, 3].  It was a bad case
 | |
|     # for an older implementation of quicksort, which used the median
 | |
|     # of the first, last and middle elements as the pivot.
 | |
|     half = size // 2
 | |
|     result = list(range(half - 1, -1, -1))
 | |
|     result.extend(range(half))
 | |
|     # Force to float, so that the timings are comparable.  This is
 | |
|     # significantly faster if we leave them as ints.
 | |
|     return list(map(float, result))
 | |
| 
 | |
| 
 | |
| # =========
 | |
| # Benchmark
 | |
| # =========
 | |
| 
 | |
| class Benchmark:
 | |
|     def __init__(self, name: str, size: int, seed: int) -> None:
 | |
|         self._name = name
 | |
|         self._size = size
 | |
|         self._seed = seed
 | |
|         self._random = random.Random(self._seed)
 | |
| 
 | |
|     def run(self, loops: int) -> float:
 | |
|         all_data = self._prepare_data(loops)
 | |
|         start = time.perf_counter()
 | |
| 
 | |
|         for data in all_data:
 | |
|             data.sort()  # Benching this method!
 | |
| 
 | |
|         return time.perf_counter() - start
 | |
| 
 | |
|     def _prepare_data(self, loops: int) -> list[float]:
 | |
|         bench = BENCHMARKS[self._name]
 | |
|         data = bench(self._size, self._random)
 | |
|         return [data.copy() for _ in range(loops)]
 | |
| 
 | |
| 
 | |
| def add_cmdline_args(cmd: list[str], args) -> None:
 | |
|     if args.benchmark:
 | |
|         cmd.append(args.benchmark)
 | |
|     cmd.append(f"--size={args.size}")
 | |
|     cmd.append(f"--rng-seed={args.rng_seed}")
 | |
| 
 | |
| 
 | |
| def add_parser_args(parser: argparse.ArgumentParser) -> None:
 | |
|     parser.add_argument(
 | |
|         "benchmark",
 | |
|         choices=BENCHMARKS,
 | |
|         nargs="?",
 | |
|         help="Can be any of: {0}".format(", ".join(BENCHMARKS)),
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--size",
 | |
|         type=int,
 | |
|         default=DEFAULT_SIZE,
 | |
|         help=f"Size of the lists to sort (default: {DEFAULT_SIZE})",
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--rng-seed",
 | |
|         type=int,
 | |
|         default=DEFAULT_RANDOM_SEED,
 | |
|         help=f"Random number generator seed (default: {DEFAULT_RANDOM_SEED})",
 | |
|     )
 | |
| 
 | |
| 
 | |
| DEFAULT_SIZE = 1 << 14
 | |
| DEFAULT_RANDOM_SEED = 0
 | |
| BENCHMARKS = {
 | |
|     "list_sort": list_sort,
 | |
|     "list_sort_descending": list_sort_descending,
 | |
|     "list_sort_ascending": list_sort_ascending,
 | |
|     "list_sort_ascending_exchanged": list_sort_ascending_exchanged,
 | |
|     "list_sort_ascending_random": list_sort_ascending_random,
 | |
|     "list_sort_ascending_one_percent": list_sort_ascending_one_percent,
 | |
|     "list_sort_duplicates": list_sort_duplicates,
 | |
|     "list_sort_equal": list_sort_equal,
 | |
|     "list_sort_worst_case": list_sort_worst_case,
 | |
| }
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     # This needs `pyperf` 3rd party library:
 | |
|     import pyperf
 | |
| 
 | |
|     runner = pyperf.Runner(add_cmdline_args=add_cmdline_args)
 | |
|     add_parser_args(runner.argparser)
 | |
|     args = runner.parse_args()
 | |
| 
 | |
|     runner.metadata["description"] = "Test `list.sort()` with different data"
 | |
|     runner.metadata["list_sort_size"] = args.size
 | |
|     runner.metadata["list_sort_random_seed"] = args.rng_seed
 | |
| 
 | |
|     if args.benchmark:
 | |
|         benchmarks = (args.benchmark,)
 | |
|     else:
 | |
|         benchmarks = sorted(BENCHMARKS)
 | |
|     for bench in benchmarks:
 | |
|         benchmark = Benchmark(bench, args.size, args.rng_seed)
 | |
|         runner.bench_time_func(bench, benchmark.run)
 | 
