mirror of
				https://github.com/python/cpython.git
				synced 2025-11-03 15:11:34 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			872 lines
		
	
	
	
		
			30 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			872 lines
		
	
	
	
		
			30 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
"""Random variable generators.
 | 
						|
 | 
						|
    bytes
 | 
						|
    -----
 | 
						|
           uniform bytes (values between 0 and 255)
 | 
						|
 | 
						|
    integers
 | 
						|
    --------
 | 
						|
           uniform within range
 | 
						|
 | 
						|
    sequences
 | 
						|
    ---------
 | 
						|
           pick random element
 | 
						|
           pick random sample
 | 
						|
           pick weighted random sample
 | 
						|
           generate random permutation
 | 
						|
 | 
						|
    distributions on the real line:
 | 
						|
    ------------------------------
 | 
						|
           uniform
 | 
						|
           triangular
 | 
						|
           normal (Gaussian)
 | 
						|
           lognormal
 | 
						|
           negative exponential
 | 
						|
           gamma
 | 
						|
           beta
 | 
						|
           pareto
 | 
						|
           Weibull
 | 
						|
 | 
						|
    distributions on the circle (angles 0 to 2pi)
 | 
						|
    ---------------------------------------------
 | 
						|
           circular uniform
 | 
						|
           von Mises
 | 
						|
 | 
						|
General notes on the underlying Mersenne Twister core generator:
 | 
						|
 | 
						|
* The period is 2**19937-1.
 | 
						|
* It is one of the most extensively tested generators in existence.
 | 
						|
* The random() method is implemented in C, executes in a single Python step,
 | 
						|
  and is, therefore, threadsafe.
 | 
						|
 | 
						|
"""
 | 
						|
 | 
						|
# Translated by Guido van Rossum from C source provided by
 | 
						|
# Adrian Baddeley.  Adapted by Raymond Hettinger for use with
 | 
						|
# the Mersenne Twister  and os.urandom() core generators.
 | 
						|
 | 
						|
from warnings import warn as _warn
 | 
						|
from math import log as _log, exp as _exp, pi as _pi, e as _e, ceil as _ceil
 | 
						|
from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
 | 
						|
from math import tau as TWOPI, floor as _floor, isfinite as _isfinite
 | 
						|
from os import urandom as _urandom
 | 
						|
from _collections_abc import Set as _Set, Sequence as _Sequence
 | 
						|
from operator import index as _index
 | 
						|
from itertools import accumulate as _accumulate, repeat as _repeat
 | 
						|
from bisect import bisect as _bisect
 | 
						|
import os as _os
 | 
						|
import _random
 | 
						|
 | 
						|
try:
 | 
						|
    # hashlib is pretty heavy to load, try lean internal module first
 | 
						|
    from _sha512 import sha512 as _sha512
 | 
						|
except ImportError:
 | 
						|
    # fallback to official implementation
 | 
						|
    from hashlib import sha512 as _sha512
 | 
						|
 | 
						|
__all__ = [
 | 
						|
    "Random",
 | 
						|
    "SystemRandom",
 | 
						|
    "betavariate",
 | 
						|
    "choice",
 | 
						|
    "choices",
 | 
						|
    "expovariate",
 | 
						|
    "gammavariate",
 | 
						|
    "gauss",
 | 
						|
    "getrandbits",
 | 
						|
    "getstate",
 | 
						|
    "lognormvariate",
 | 
						|
    "normalvariate",
 | 
						|
    "paretovariate",
 | 
						|
    "randbytes",
 | 
						|
    "randint",
 | 
						|
    "random",
 | 
						|
    "randrange",
 | 
						|
    "sample",
 | 
						|
    "seed",
 | 
						|
    "setstate",
 | 
						|
    "shuffle",
 | 
						|
    "triangular",
 | 
						|
    "uniform",
 | 
						|
    "vonmisesvariate",
 | 
						|
    "weibullvariate",
 | 
						|
]
 | 
						|
 | 
						|
NV_MAGICCONST = 4 * _exp(-0.5) / _sqrt(2.0)
 | 
						|
LOG4 = _log(4.0)
 | 
						|
SG_MAGICCONST = 1.0 + _log(4.5)
 | 
						|
BPF = 53        # Number of bits in a float
 | 
						|
RECIP_BPF = 2 ** -BPF
 | 
						|
_ONE = 1
 | 
						|
 | 
						|
 | 
						|
class Random(_random.Random):
 | 
						|
    """Random number generator base class used by bound module functions.
 | 
						|
 | 
						|
    Used to instantiate instances of Random to get generators that don't
 | 
						|
    share state.
 | 
						|
 | 
						|
    Class Random can also be subclassed if you want to use a different basic
 | 
						|
    generator of your own devising: in that case, override the following
 | 
						|
    methods:  random(), seed(), getstate(), and setstate().
 | 
						|
    Optionally, implement a getrandbits() method so that randrange()
 | 
						|
    can cover arbitrarily large ranges.
 | 
						|
 | 
						|
    """
 | 
						|
 | 
						|
    VERSION = 3     # used by getstate/setstate
 | 
						|
 | 
						|
    def __init__(self, x=None):
 | 
						|
        """Initialize an instance.
 | 
						|
 | 
						|
        Optional argument x controls seeding, as for Random.seed().
 | 
						|
        """
 | 
						|
 | 
						|
        self.seed(x)
 | 
						|
        self.gauss_next = None
 | 
						|
 | 
						|
    def seed(self, a=None, version=2):
 | 
						|
        """Initialize internal state from a seed.
 | 
						|
 | 
						|
        The only supported seed types are None, int, float,
 | 
						|
        str, bytes, and bytearray.
 | 
						|
 | 
						|
        None or no argument seeds from current time or from an operating
 | 
						|
        system specific randomness source if available.
 | 
						|
 | 
						|
        If *a* is an int, all bits are used.
 | 
						|
 | 
						|
        For version 2 (the default), all of the bits are used if *a* is a str,
 | 
						|
        bytes, or bytearray.  For version 1 (provided for reproducing random
 | 
						|
        sequences from older versions of Python), the algorithm for str and
 | 
						|
        bytes generates a narrower range of seeds.
 | 
						|
 | 
						|
        """
 | 
						|
 | 
						|
        if version == 1 and isinstance(a, (str, bytes)):
 | 
						|
            a = a.decode('latin-1') if isinstance(a, bytes) else a
 | 
						|
            x = ord(a[0]) << 7 if a else 0
 | 
						|
            for c in map(ord, a):
 | 
						|
                x = ((1000003 * x) ^ c) & 0xFFFFFFFFFFFFFFFF
 | 
						|
            x ^= len(a)
 | 
						|
            a = -2 if x == -1 else x
 | 
						|
 | 
						|
        elif version == 2 and isinstance(a, (str, bytes, bytearray)):
 | 
						|
            if isinstance(a, str):
 | 
						|
                a = a.encode()
 | 
						|
            a = int.from_bytes(a + _sha512(a).digest())
 | 
						|
 | 
						|
        elif not isinstance(a, (type(None), int, float, str, bytes, bytearray)):
 | 
						|
            raise TypeError('The only supported seed types are: None,\n'
 | 
						|
                            'int, float, str, bytes, and bytearray.')
 | 
						|
 | 
						|
        super().seed(a)
 | 
						|
        self.gauss_next = None
 | 
						|
 | 
						|
    def getstate(self):
 | 
						|
        """Return internal state; can be passed to setstate() later."""
 | 
						|
        return self.VERSION, super().getstate(), self.gauss_next
 | 
						|
 | 
						|
    def setstate(self, state):
 | 
						|
        """Restore internal state from object returned by getstate()."""
 | 
						|
        version = state[0]
 | 
						|
        if version == 3:
 | 
						|
            version, internalstate, self.gauss_next = state
 | 
						|
            super().setstate(internalstate)
 | 
						|
        elif version == 2:
 | 
						|
            version, internalstate, self.gauss_next = state
 | 
						|
            # In version 2, the state was saved as signed ints, which causes
 | 
						|
            #   inconsistencies between 32/64-bit systems. The state is
 | 
						|
            #   really unsigned 32-bit ints, so we convert negative ints from
 | 
						|
            #   version 2 to positive longs for version 3.
 | 
						|
            try:
 | 
						|
                internalstate = tuple(x % (2 ** 32) for x in internalstate)
 | 
						|
            except ValueError as e:
 | 
						|
                raise TypeError from e
 | 
						|
            super().setstate(internalstate)
 | 
						|
        else:
 | 
						|
            raise ValueError("state with version %s passed to "
 | 
						|
                             "Random.setstate() of version %s" %
 | 
						|
                             (version, self.VERSION))
 | 
						|
 | 
						|
 | 
						|
    ## -------------------------------------------------------
 | 
						|
    ## ---- Methods below this point do not need to be overridden or extended
 | 
						|
    ## ---- when subclassing for the purpose of using a different core generator.
 | 
						|
 | 
						|
 | 
						|
    ## -------------------- pickle support  -------------------
 | 
						|
 | 
						|
    # Issue 17489: Since __reduce__ was defined to fix #759889 this is no
 | 
						|
    # longer called; we leave it here because it has been here since random was
 | 
						|
    # rewritten back in 2001 and why risk breaking something.
 | 
						|
    def __getstate__(self):  # for pickle
 | 
						|
        return self.getstate()
 | 
						|
 | 
						|
    def __setstate__(self, state):  # for pickle
 | 
						|
        self.setstate(state)
 | 
						|
 | 
						|
    def __reduce__(self):
 | 
						|
        return self.__class__, (), self.getstate()
 | 
						|
 | 
						|
 | 
						|
    ## ---- internal support method for evenly distributed integers ----
 | 
						|
 | 
						|
    def __init_subclass__(cls, /, **kwargs):
 | 
						|
        """Control how subclasses generate random integers.
 | 
						|
 | 
						|
        The algorithm a subclass can use depends on the random() and/or
 | 
						|
        getrandbits() implementation available to it and determines
 | 
						|
        whether it can generate random integers from arbitrarily large
 | 
						|
        ranges.
 | 
						|
        """
 | 
						|
 | 
						|
        for c in cls.__mro__:
 | 
						|
            if '_randbelow' in c.__dict__:
 | 
						|
                # just inherit it
 | 
						|
                break
 | 
						|
            if 'getrandbits' in c.__dict__:
 | 
						|
                cls._randbelow = cls._randbelow_with_getrandbits
 | 
						|
                break
 | 
						|
            if 'random' in c.__dict__:
 | 
						|
                cls._randbelow = cls._randbelow_without_getrandbits
 | 
						|
                break
 | 
						|
 | 
						|
    def _randbelow_with_getrandbits(self, n):
 | 
						|
        "Return a random int in the range [0,n).  Returns 0 if n==0."
 | 
						|
 | 
						|
        if not n:
 | 
						|
            return 0
 | 
						|
        getrandbits = self.getrandbits
 | 
						|
        k = n.bit_length()  # don't use (n-1) here because n can be 1
 | 
						|
        r = getrandbits(k)  # 0 <= r < 2**k
 | 
						|
        while r >= n:
 | 
						|
            r = getrandbits(k)
 | 
						|
        return r
 | 
						|
 | 
						|
    def _randbelow_without_getrandbits(self, n, maxsize=1<<BPF):
 | 
						|
        """Return a random int in the range [0,n).  Returns 0 if n==0.
 | 
						|
 | 
						|
        The implementation does not use getrandbits, but only random.
 | 
						|
        """
 | 
						|
 | 
						|
        random = self.random
 | 
						|
        if n >= maxsize:
 | 
						|
            _warn("Underlying random() generator does not supply \n"
 | 
						|
                "enough bits to choose from a population range this large.\n"
 | 
						|
                "To remove the range limitation, add a getrandbits() method.")
 | 
						|
            return _floor(random() * n)
 | 
						|
        if n == 0:
 | 
						|
            return 0
 | 
						|
        rem = maxsize % n
 | 
						|
        limit = (maxsize - rem) / maxsize   # int(limit * maxsize) % n == 0
 | 
						|
        r = random()
 | 
						|
        while r >= limit:
 | 
						|
            r = random()
 | 
						|
        return _floor(r * maxsize) % n
 | 
						|
 | 
						|
    _randbelow = _randbelow_with_getrandbits
 | 
						|
 | 
						|
 | 
						|
    ## --------------------------------------------------------
 | 
						|
    ## ---- Methods below this point generate custom distributions
 | 
						|
    ## ---- based on the methods defined above.  They do not
 | 
						|
    ## ---- directly touch the underlying generator and only
 | 
						|
    ## ---- access randomness through the methods:  random(),
 | 
						|
    ## ---- getrandbits(), or _randbelow().
 | 
						|
 | 
						|
 | 
						|
    ## -------------------- bytes methods ---------------------
 | 
						|
 | 
						|
    def randbytes(self, n):
 | 
						|
        """Generate n random bytes."""
 | 
						|
        return self.getrandbits(n * 8).to_bytes(n, 'little')
 | 
						|
 | 
						|
 | 
						|
    ## -------------------- integer methods  -------------------
 | 
						|
 | 
						|
    def randrange(self, start, stop=None, step=_ONE):
 | 
						|
        """Choose a random item from range(stop) or range(start, stop[, step]).
 | 
						|
 | 
						|
        Roughly equivalent to ``choice(range(start, stop, step))``
 | 
						|
        but supports arbitrarily large ranges and is optimized
 | 
						|
        for common cases.
 | 
						|
 | 
						|
        """
 | 
						|
 | 
						|
        # This code is a bit messy to make it fast for the
 | 
						|
        # common case while still doing adequate error checking.
 | 
						|
        istart = _index(start)
 | 
						|
        if stop is None:
 | 
						|
            # We don't check for "step != 1" because it hasn't been
 | 
						|
            # type checked and converted to an integer yet.
 | 
						|
            if step is not _ONE:
 | 
						|
                raise TypeError('Missing a non-None stop argument')
 | 
						|
            if istart > 0:
 | 
						|
                return self._randbelow(istart)
 | 
						|
            raise ValueError("empty range for randrange()")
 | 
						|
 | 
						|
        # Stop argument supplied.
 | 
						|
        istop = _index(stop)
 | 
						|
        width = istop - istart
 | 
						|
        istep = _index(step)
 | 
						|
        # Fast path.
 | 
						|
        if istep == 1:
 | 
						|
            if width > 0:
 | 
						|
                return istart + self._randbelow(width)
 | 
						|
            raise ValueError(f"empty range in randrange({start}, {stop}, {step})")
 | 
						|
 | 
						|
        # Non-unit step argument supplied.
 | 
						|
        if istep > 0:
 | 
						|
            n = (width + istep - 1) // istep
 | 
						|
        elif istep < 0:
 | 
						|
            n = (width + istep + 1) // istep
 | 
						|
        else:
 | 
						|
            raise ValueError("zero step for randrange()")
 | 
						|
        if n <= 0:
 | 
						|
            raise ValueError(f"empty range in randrange({start}, {stop}, {step})")
 | 
						|
        return istart + istep * self._randbelow(n)
 | 
						|
 | 
						|
    def randint(self, a, b):
 | 
						|
        """Return random integer in range [a, b], including both end points.
 | 
						|
        """
 | 
						|
 | 
						|
        return self.randrange(a, b+1)
 | 
						|
 | 
						|
 | 
						|
    ## -------------------- sequence methods  -------------------
 | 
						|
 | 
						|
    def choice(self, seq):
 | 
						|
        """Choose a random element from a non-empty sequence."""
 | 
						|
        # raises IndexError if seq is empty
 | 
						|
        return seq[self._randbelow(len(seq))]
 | 
						|
 | 
						|
    def shuffle(self, x):
 | 
						|
        """Shuffle list x in place, and return None."""
 | 
						|
 | 
						|
        randbelow = self._randbelow
 | 
						|
        for i in reversed(range(1, len(x))):
 | 
						|
            # pick an element in x[:i+1] with which to exchange x[i]
 | 
						|
            j = randbelow(i + 1)
 | 
						|
            x[i], x[j] = x[j], x[i]
 | 
						|
 | 
						|
    def sample(self, population, k, *, counts=None):
 | 
						|
        """Chooses k unique random elements from a population sequence.
 | 
						|
 | 
						|
        Returns a new list containing elements from the population while
 | 
						|
        leaving the original population unchanged.  The resulting list is
 | 
						|
        in selection order so that all sub-slices will also be valid random
 | 
						|
        samples.  This allows raffle winners (the sample) to be partitioned
 | 
						|
        into grand prize and second place winners (the subslices).
 | 
						|
 | 
						|
        Members of the population need not be hashable or unique.  If the
 | 
						|
        population contains repeats, then each occurrence is a possible
 | 
						|
        selection in the sample.
 | 
						|
 | 
						|
        Repeated elements can be specified one at a time or with the optional
 | 
						|
        counts parameter.  For example:
 | 
						|
 | 
						|
            sample(['red', 'blue'], counts=[4, 2], k=5)
 | 
						|
 | 
						|
        is equivalent to:
 | 
						|
 | 
						|
            sample(['red', 'red', 'red', 'red', 'blue', 'blue'], k=5)
 | 
						|
 | 
						|
        To choose a sample from a range of integers, use range() for the
 | 
						|
        population argument.  This is especially fast and space efficient
 | 
						|
        for sampling from a large population:
 | 
						|
 | 
						|
            sample(range(10000000), 60)
 | 
						|
 | 
						|
        """
 | 
						|
 | 
						|
        # Sampling without replacement entails tracking either potential
 | 
						|
        # selections (the pool) in a list or previous selections in a set.
 | 
						|
 | 
						|
        # When the number of selections is small compared to the
 | 
						|
        # population, then tracking selections is efficient, requiring
 | 
						|
        # only a small set and an occasional reselection.  For
 | 
						|
        # a larger number of selections, the pool tracking method is
 | 
						|
        # preferred since the list takes less space than the
 | 
						|
        # set and it doesn't suffer from frequent reselections.
 | 
						|
 | 
						|
        # The number of calls to _randbelow() is kept at or near k, the
 | 
						|
        # theoretical minimum.  This is important because running time
 | 
						|
        # is dominated by _randbelow() and because it extracts the
 | 
						|
        # least entropy from the underlying random number generators.
 | 
						|
 | 
						|
        # Memory requirements are kept to the smaller of a k-length
 | 
						|
        # set or an n-length list.
 | 
						|
 | 
						|
        # There are other sampling algorithms that do not require
 | 
						|
        # auxiliary memory, but they were rejected because they made
 | 
						|
        # too many calls to _randbelow(), making them slower and
 | 
						|
        # causing them to eat more entropy than necessary.
 | 
						|
 | 
						|
        if not isinstance(population, _Sequence):
 | 
						|
            raise TypeError("Population must be a sequence.  "
 | 
						|
                            "For dicts or sets, use sorted(d).")
 | 
						|
        n = len(population)
 | 
						|
        if counts is not None:
 | 
						|
            cum_counts = list(_accumulate(counts))
 | 
						|
            if len(cum_counts) != n:
 | 
						|
                raise ValueError('The number of counts does not match the population')
 | 
						|
            total = cum_counts.pop()
 | 
						|
            if not isinstance(total, int):
 | 
						|
                raise TypeError('Counts must be integers')
 | 
						|
            if total <= 0:
 | 
						|
                raise ValueError('Total of counts must be greater than zero')
 | 
						|
            selections = self.sample(range(total), k=k)
 | 
						|
            bisect = _bisect
 | 
						|
            return [population[bisect(cum_counts, s)] for s in selections]
 | 
						|
        randbelow = self._randbelow
 | 
						|
        if not 0 <= k <= n:
 | 
						|
            raise ValueError("Sample larger than population or is negative")
 | 
						|
        result = [None] * k
 | 
						|
        setsize = 21        # size of a small set minus size of an empty list
 | 
						|
        if k > 5:
 | 
						|
            setsize += 4 ** _ceil(_log(k * 3, 4))  # table size for big sets
 | 
						|
        if n <= setsize:
 | 
						|
            # An n-length list is smaller than a k-length set.
 | 
						|
            # Invariant:  non-selected at pool[0 : n-i]
 | 
						|
            pool = list(population)
 | 
						|
            for i in range(k):
 | 
						|
                j = randbelow(n - i)
 | 
						|
                result[i] = pool[j]
 | 
						|
                pool[j] = pool[n - i - 1]  # move non-selected item into vacancy
 | 
						|
        else:
 | 
						|
            selected = set()
 | 
						|
            selected_add = selected.add
 | 
						|
            for i in range(k):
 | 
						|
                j = randbelow(n)
 | 
						|
                while j in selected:
 | 
						|
                    j = randbelow(n)
 | 
						|
                selected_add(j)
 | 
						|
                result[i] = population[j]
 | 
						|
        return result
 | 
						|
 | 
						|
    def choices(self, population, weights=None, *, cum_weights=None, k=1):
 | 
						|
        """Return a k sized list of population elements chosen with replacement.
 | 
						|
 | 
						|
        If the relative weights or cumulative weights are not specified,
 | 
						|
        the selections are made with equal probability.
 | 
						|
 | 
						|
        """
 | 
						|
        random = self.random
 | 
						|
        n = len(population)
 | 
						|
        if cum_weights is None:
 | 
						|
            if weights is None:
 | 
						|
                floor = _floor
 | 
						|
                n += 0.0    # convert to float for a small speed improvement
 | 
						|
                return [population[floor(random() * n)] for i in _repeat(None, k)]
 | 
						|
            try:
 | 
						|
                cum_weights = list(_accumulate(weights))
 | 
						|
            except TypeError:
 | 
						|
                if not isinstance(weights, int):
 | 
						|
                    raise
 | 
						|
                k = weights
 | 
						|
                raise TypeError(
 | 
						|
                    f'The number of choices must be a keyword argument: {k=}'
 | 
						|
                ) from None
 | 
						|
        elif weights is not None:
 | 
						|
            raise TypeError('Cannot specify both weights and cumulative weights')
 | 
						|
        if len(cum_weights) != n:
 | 
						|
            raise ValueError('The number of weights does not match the population')
 | 
						|
        total = cum_weights[-1] + 0.0   # convert to float
 | 
						|
        if total <= 0.0:
 | 
						|
            raise ValueError('Total of weights must be greater than zero')
 | 
						|
        if not _isfinite(total):
 | 
						|
            raise ValueError('Total of weights must be finite')
 | 
						|
        bisect = _bisect
 | 
						|
        hi = n - 1
 | 
						|
        return [population[bisect(cum_weights, random() * total, 0, hi)]
 | 
						|
                for i in _repeat(None, k)]
 | 
						|
 | 
						|
 | 
						|
    ## -------------------- real-valued distributions  -------------------
 | 
						|
 | 
						|
    def uniform(self, a, b):
 | 
						|
        "Get a random number in the range [a, b) or [a, b] depending on rounding."
 | 
						|
        return a + (b - a) * self.random()
 | 
						|
 | 
						|
    def triangular(self, low=0.0, high=1.0, mode=None):
 | 
						|
        """Triangular distribution.
 | 
						|
 | 
						|
        Continuous distribution bounded by given lower and upper limits,
 | 
						|
        and having a given mode value in-between.
 | 
						|
 | 
						|
        http://en.wikipedia.org/wiki/Triangular_distribution
 | 
						|
 | 
						|
        """
 | 
						|
        u = self.random()
 | 
						|
        try:
 | 
						|
            c = 0.5 if mode is None else (mode - low) / (high - low)
 | 
						|
        except ZeroDivisionError:
 | 
						|
            return low
 | 
						|
        if u > c:
 | 
						|
            u = 1.0 - u
 | 
						|
            c = 1.0 - c
 | 
						|
            low, high = high, low
 | 
						|
        return low + (high - low) * _sqrt(u * c)
 | 
						|
 | 
						|
    def normalvariate(self, mu, sigma):
 | 
						|
        """Normal distribution.
 | 
						|
 | 
						|
        mu is the mean, and sigma is the standard deviation.
 | 
						|
 | 
						|
        """
 | 
						|
        # Uses Kinderman and Monahan method. Reference: Kinderman,
 | 
						|
        # A.J. and Monahan, J.F., "Computer generation of random
 | 
						|
        # variables using the ratio of uniform deviates", ACM Trans
 | 
						|
        # Math Software, 3, (1977), pp257-260.
 | 
						|
 | 
						|
        random = self.random
 | 
						|
        while True:
 | 
						|
            u1 = random()
 | 
						|
            u2 = 1.0 - random()
 | 
						|
            z = NV_MAGICCONST * (u1 - 0.5) / u2
 | 
						|
            zz = z * z / 4.0
 | 
						|
            if zz <= -_log(u2):
 | 
						|
                break
 | 
						|
        return mu + z * sigma
 | 
						|
 | 
						|
    def gauss(self, mu, sigma):
 | 
						|
        """Gaussian distribution.
 | 
						|
 | 
						|
        mu is the mean, and sigma is the standard deviation.  This is
 | 
						|
        slightly faster than the normalvariate() function.
 | 
						|
 | 
						|
        Not thread-safe without a lock around calls.
 | 
						|
 | 
						|
        """
 | 
						|
        # When x and y are two variables from [0, 1), uniformly
 | 
						|
        # distributed, then
 | 
						|
        #
 | 
						|
        #    cos(2*pi*x)*sqrt(-2*log(1-y))
 | 
						|
        #    sin(2*pi*x)*sqrt(-2*log(1-y))
 | 
						|
        #
 | 
						|
        # are two *independent* variables with normal distribution
 | 
						|
        # (mu = 0, sigma = 1).
 | 
						|
        # (Lambert Meertens)
 | 
						|
        # (corrected version; bug discovered by Mike Miller, fixed by LM)
 | 
						|
 | 
						|
        # Multithreading note: When two threads call this function
 | 
						|
        # simultaneously, it is possible that they will receive the
 | 
						|
        # same return value.  The window is very small though.  To
 | 
						|
        # avoid this, you have to use a lock around all calls.  (I
 | 
						|
        # didn't want to slow this down in the serial case by using a
 | 
						|
        # lock here.)
 | 
						|
 | 
						|
        random = self.random
 | 
						|
        z = self.gauss_next
 | 
						|
        self.gauss_next = None
 | 
						|
        if z is None:
 | 
						|
            x2pi = random() * TWOPI
 | 
						|
            g2rad = _sqrt(-2.0 * _log(1.0 - random()))
 | 
						|
            z = _cos(x2pi) * g2rad
 | 
						|
            self.gauss_next = _sin(x2pi) * g2rad
 | 
						|
 | 
						|
        return mu + z * sigma
 | 
						|
 | 
						|
    def lognormvariate(self, mu, sigma):
 | 
						|
        """Log normal distribution.
 | 
						|
 | 
						|
        If you take the natural logarithm of this distribution, you'll get a
 | 
						|
        normal distribution with mean mu and standard deviation sigma.
 | 
						|
        mu can have any value, and sigma must be greater than zero.
 | 
						|
 | 
						|
        """
 | 
						|
        return _exp(self.normalvariate(mu, sigma))
 | 
						|
 | 
						|
    def expovariate(self, lambd):
 | 
						|
        """Exponential distribution.
 | 
						|
 | 
						|
        lambd is 1.0 divided by the desired mean.  It should be
 | 
						|
        nonzero.  (The parameter would be called "lambda", but that is
 | 
						|
        a reserved word in Python.)  Returned values range from 0 to
 | 
						|
        positive infinity if lambd is positive, and from negative
 | 
						|
        infinity to 0 if lambd is negative.
 | 
						|
 | 
						|
        """
 | 
						|
        # lambd: rate lambd = 1/mean
 | 
						|
        # ('lambda' is a Python reserved word)
 | 
						|
 | 
						|
        # we use 1-random() instead of random() to preclude the
 | 
						|
        # possibility of taking the log of zero.
 | 
						|
        return -_log(1.0 - self.random()) / lambd
 | 
						|
 | 
						|
    def vonmisesvariate(self, mu, kappa):
 | 
						|
        """Circular data distribution.
 | 
						|
 | 
						|
        mu is the mean angle, expressed in radians between 0 and 2*pi, and
 | 
						|
        kappa is the concentration parameter, which must be greater than or
 | 
						|
        equal to zero.  If kappa is equal to zero, this distribution reduces
 | 
						|
        to a uniform random angle over the range 0 to 2*pi.
 | 
						|
 | 
						|
        """
 | 
						|
        # Based upon an algorithm published in: Fisher, N.I.,
 | 
						|
        # "Statistical Analysis of Circular Data", Cambridge
 | 
						|
        # University Press, 1993.
 | 
						|
 | 
						|
        # Thanks to Magnus Kessler for a correction to the
 | 
						|
        # implementation of step 4.
 | 
						|
 | 
						|
        random = self.random
 | 
						|
        if kappa <= 1e-6:
 | 
						|
            return TWOPI * random()
 | 
						|
 | 
						|
        s = 0.5 / kappa
 | 
						|
        r = s + _sqrt(1.0 + s * s)
 | 
						|
 | 
						|
        while True:
 | 
						|
            u1 = random()
 | 
						|
            z = _cos(_pi * u1)
 | 
						|
 | 
						|
            d = z / (r + z)
 | 
						|
            u2 = random()
 | 
						|
            if u2 < 1.0 - d * d or u2 <= (1.0 - d) * _exp(d):
 | 
						|
                break
 | 
						|
 | 
						|
        q = 1.0 / r
 | 
						|
        f = (q + z) / (1.0 + q * z)
 | 
						|
        u3 = random()
 | 
						|
        if u3 > 0.5:
 | 
						|
            theta = (mu + _acos(f)) % TWOPI
 | 
						|
        else:
 | 
						|
            theta = (mu - _acos(f)) % TWOPI
 | 
						|
 | 
						|
        return theta
 | 
						|
 | 
						|
    def gammavariate(self, alpha, beta):
 | 
						|
        """Gamma distribution.  Not the gamma function!
 | 
						|
 | 
						|
        Conditions on the parameters are alpha > 0 and beta > 0.
 | 
						|
 | 
						|
        The probability distribution function is:
 | 
						|
 | 
						|
                    x ** (alpha - 1) * math.exp(-x / beta)
 | 
						|
          pdf(x) =  --------------------------------------
 | 
						|
                      math.gamma(alpha) * beta ** alpha
 | 
						|
 | 
						|
        """
 | 
						|
        # alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2
 | 
						|
 | 
						|
        # Warning: a few older sources define the gamma distribution in terms
 | 
						|
        # of alpha > -1.0
 | 
						|
        if alpha <= 0.0 or beta <= 0.0:
 | 
						|
            raise ValueError('gammavariate: alpha and beta must be > 0.0')
 | 
						|
 | 
						|
        random = self.random
 | 
						|
        if alpha > 1.0:
 | 
						|
 | 
						|
            # Uses R.C.H. Cheng, "The generation of Gamma
 | 
						|
            # variables with non-integral shape parameters",
 | 
						|
            # Applied Statistics, (1977), 26, No. 1, p71-74
 | 
						|
 | 
						|
            ainv = _sqrt(2.0 * alpha - 1.0)
 | 
						|
            bbb = alpha - LOG4
 | 
						|
            ccc = alpha + ainv
 | 
						|
 | 
						|
            while True:
 | 
						|
                u1 = random()
 | 
						|
                if not 1e-7 < u1 < 0.9999999:
 | 
						|
                    continue
 | 
						|
                u2 = 1.0 - random()
 | 
						|
                v = _log(u1 / (1.0 - u1)) / ainv
 | 
						|
                x = alpha * _exp(v)
 | 
						|
                z = u1 * u1 * u2
 | 
						|
                r = bbb + ccc * v - x
 | 
						|
                if r + SG_MAGICCONST - 4.5 * z >= 0.0 or r >= _log(z):
 | 
						|
                    return x * beta
 | 
						|
 | 
						|
        elif alpha == 1.0:
 | 
						|
            # expovariate(1/beta)
 | 
						|
            return -_log(1.0 - random()) * beta
 | 
						|
 | 
						|
        else:
 | 
						|
            # alpha is between 0 and 1 (exclusive)
 | 
						|
            # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
 | 
						|
            while True:
 | 
						|
                u = random()
 | 
						|
                b = (_e + alpha) / _e
 | 
						|
                p = b * u
 | 
						|
                if p <= 1.0:
 | 
						|
                    x = p ** (1.0 / alpha)
 | 
						|
                else:
 | 
						|
                    x = -_log((b - p) / alpha)
 | 
						|
                u1 = random()
 | 
						|
                if p > 1.0:
 | 
						|
                    if u1 <= x ** (alpha - 1.0):
 | 
						|
                        break
 | 
						|
                elif u1 <= _exp(-x):
 | 
						|
                    break
 | 
						|
            return x * beta
 | 
						|
 | 
						|
    def betavariate(self, alpha, beta):
 | 
						|
        """Beta distribution.
 | 
						|
 | 
						|
        Conditions on the parameters are alpha > 0 and beta > 0.
 | 
						|
        Returned values range between 0 and 1.
 | 
						|
 | 
						|
        """
 | 
						|
        ## See
 | 
						|
        ## http://mail.python.org/pipermail/python-bugs-list/2001-January/003752.html
 | 
						|
        ## for Ivan Frohne's insightful analysis of why the original implementation:
 | 
						|
        ##
 | 
						|
        ##    def betavariate(self, alpha, beta):
 | 
						|
        ##        # Discrete Event Simulation in C, pp 87-88.
 | 
						|
        ##
 | 
						|
        ##        y = self.expovariate(alpha)
 | 
						|
        ##        z = self.expovariate(1.0/beta)
 | 
						|
        ##        return z/(y+z)
 | 
						|
        ##
 | 
						|
        ## was dead wrong, and how it probably got that way.
 | 
						|
 | 
						|
        # This version due to Janne Sinkkonen, and matches all the std
 | 
						|
        # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
 | 
						|
        y = self.gammavariate(alpha, 1.0)
 | 
						|
        if y:
 | 
						|
            return y / (y + self.gammavariate(beta, 1.0))
 | 
						|
        return 0.0
 | 
						|
 | 
						|
    def paretovariate(self, alpha):
 | 
						|
        """Pareto distribution.  alpha is the shape parameter."""
 | 
						|
        # Jain, pg. 495
 | 
						|
 | 
						|
        u = 1.0 - self.random()
 | 
						|
        return u ** (-1.0 / alpha)
 | 
						|
 | 
						|
    def weibullvariate(self, alpha, beta):
 | 
						|
        """Weibull distribution.
 | 
						|
 | 
						|
        alpha is the scale parameter and beta is the shape parameter.
 | 
						|
 | 
						|
        """
 | 
						|
        # Jain, pg. 499; bug fix courtesy Bill Arms
 | 
						|
 | 
						|
        u = 1.0 - self.random()
 | 
						|
        return alpha * (-_log(u)) ** (1.0 / beta)
 | 
						|
 | 
						|
 | 
						|
## ------------------------------------------------------------------
 | 
						|
## --------------- Operating System Random Source  ------------------
 | 
						|
 | 
						|
 | 
						|
class SystemRandom(Random):
 | 
						|
    """Alternate random number generator using sources provided
 | 
						|
    by the operating system (such as /dev/urandom on Unix or
 | 
						|
    CryptGenRandom on Windows).
 | 
						|
 | 
						|
     Not available on all systems (see os.urandom() for details).
 | 
						|
 | 
						|
    """
 | 
						|
 | 
						|
    def random(self):
 | 
						|
        """Get the next random number in the range [0.0, 1.0)."""
 | 
						|
        return (int.from_bytes(_urandom(7)) >> 3) * RECIP_BPF
 | 
						|
 | 
						|
    def getrandbits(self, k):
 | 
						|
        """getrandbits(k) -> x.  Generates an int with k random bits."""
 | 
						|
        if k < 0:
 | 
						|
            raise ValueError('number of bits must be non-negative')
 | 
						|
        numbytes = (k + 7) // 8                       # bits / 8 and rounded up
 | 
						|
        x = int.from_bytes(_urandom(numbytes))
 | 
						|
        return x >> (numbytes * 8 - k)                # trim excess bits
 | 
						|
 | 
						|
    def randbytes(self, n):
 | 
						|
        """Generate n random bytes."""
 | 
						|
        # os.urandom(n) fails with ValueError for n < 0
 | 
						|
        # and returns an empty bytes string for n == 0.
 | 
						|
        return _urandom(n)
 | 
						|
 | 
						|
    def seed(self, *args, **kwds):
 | 
						|
        "Stub method.  Not used for a system random number generator."
 | 
						|
        return None
 | 
						|
 | 
						|
    def _notimplemented(self, *args, **kwds):
 | 
						|
        "Method should not be called for a system random number generator."
 | 
						|
        raise NotImplementedError('System entropy source does not have state.')
 | 
						|
    getstate = setstate = _notimplemented
 | 
						|
 | 
						|
 | 
						|
# ----------------------------------------------------------------------
 | 
						|
# Create one instance, seeded from current time, and export its methods
 | 
						|
# as module-level functions.  The functions share state across all uses
 | 
						|
# (both in the user's code and in the Python libraries), but that's fine
 | 
						|
# for most programs and is easier for the casual user than making them
 | 
						|
# instantiate their own Random() instance.
 | 
						|
 | 
						|
_inst = Random()
 | 
						|
seed = _inst.seed
 | 
						|
random = _inst.random
 | 
						|
uniform = _inst.uniform
 | 
						|
triangular = _inst.triangular
 | 
						|
randint = _inst.randint
 | 
						|
choice = _inst.choice
 | 
						|
randrange = _inst.randrange
 | 
						|
sample = _inst.sample
 | 
						|
shuffle = _inst.shuffle
 | 
						|
choices = _inst.choices
 | 
						|
normalvariate = _inst.normalvariate
 | 
						|
lognormvariate = _inst.lognormvariate
 | 
						|
expovariate = _inst.expovariate
 | 
						|
vonmisesvariate = _inst.vonmisesvariate
 | 
						|
gammavariate = _inst.gammavariate
 | 
						|
gauss = _inst.gauss
 | 
						|
betavariate = _inst.betavariate
 | 
						|
paretovariate = _inst.paretovariate
 | 
						|
weibullvariate = _inst.weibullvariate
 | 
						|
getstate = _inst.getstate
 | 
						|
setstate = _inst.setstate
 | 
						|
getrandbits = _inst.getrandbits
 | 
						|
randbytes = _inst.randbytes
 | 
						|
 | 
						|
 | 
						|
## ------------------------------------------------------
 | 
						|
## ----------------- test program -----------------------
 | 
						|
 | 
						|
def _test_generator(n, func, args):
 | 
						|
    from statistics import stdev, fmean as mean
 | 
						|
    from time import perf_counter
 | 
						|
 | 
						|
    t0 = perf_counter()
 | 
						|
    data = [func(*args) for i in _repeat(None, n)]
 | 
						|
    t1 = perf_counter()
 | 
						|
 | 
						|
    xbar = mean(data)
 | 
						|
    sigma = stdev(data, xbar)
 | 
						|
    low = min(data)
 | 
						|
    high = max(data)
 | 
						|
 | 
						|
    print(f'{t1 - t0:.3f} sec, {n} times {func.__name__}')
 | 
						|
    print('avg %g, stddev %g, min %g, max %g\n' % (xbar, sigma, low, high))
 | 
						|
 | 
						|
 | 
						|
def _test(N=2000):
 | 
						|
    _test_generator(N, random, ())
 | 
						|
    _test_generator(N, normalvariate, (0.0, 1.0))
 | 
						|
    _test_generator(N, lognormvariate, (0.0, 1.0))
 | 
						|
    _test_generator(N, vonmisesvariate, (0.0, 1.0))
 | 
						|
    _test_generator(N, gammavariate, (0.01, 1.0))
 | 
						|
    _test_generator(N, gammavariate, (0.1, 1.0))
 | 
						|
    _test_generator(N, gammavariate, (0.1, 2.0))
 | 
						|
    _test_generator(N, gammavariate, (0.5, 1.0))
 | 
						|
    _test_generator(N, gammavariate, (0.9, 1.0))
 | 
						|
    _test_generator(N, gammavariate, (1.0, 1.0))
 | 
						|
    _test_generator(N, gammavariate, (2.0, 1.0))
 | 
						|
    _test_generator(N, gammavariate, (20.0, 1.0))
 | 
						|
    _test_generator(N, gammavariate, (200.0, 1.0))
 | 
						|
    _test_generator(N, gauss, (0.0, 1.0))
 | 
						|
    _test_generator(N, betavariate, (3.0, 3.0))
 | 
						|
    _test_generator(N, triangular, (0.0, 1.0, 1.0 / 3.0))
 | 
						|
 | 
						|
 | 
						|
## ------------------------------------------------------
 | 
						|
## ------------------ fork support  ---------------------
 | 
						|
 | 
						|
if hasattr(_os, "fork"):
 | 
						|
    _os.register_at_fork(after_in_child=_inst.seed)
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    _test()
 |