mirror of
				https://github.com/python/cpython.git
				synced 2025-10-31 05:31:20 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			624 lines
		
	
	
	
		
			20 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			624 lines
		
	
	
	
		
			20 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """Random variable generators.
 | |
| 
 | |
|     integers
 | |
|     --------
 | |
|            uniform within range
 | |
| 
 | |
|     sequences
 | |
|     ---------
 | |
|            pick random element
 | |
|            generate random permutation
 | |
| 
 | |
|     distributions on the real line:
 | |
|     ------------------------------
 | |
|            uniform
 | |
|            normal (Gaussian)
 | |
|            lognormal
 | |
|            negative exponential
 | |
|            gamma
 | |
|            beta
 | |
| 
 | |
|     distributions on the circle (angles 0 to 2pi)
 | |
|     ---------------------------------------------
 | |
|            circular uniform
 | |
|            von Mises
 | |
| 
 | |
| Translated from anonymously contributed C/C++ source.
 | |
| 
 | |
| Multi-threading note:  the random number generator used here is not thread-
 | |
| safe; it is possible that two calls return the same random value.  However,
 | |
| you can instantiate a different instance of Random() in each thread to get
 | |
| generators that don't share state, then use .setstate() and .jumpahead() to
 | |
| move the generators to disjoint segments of the full period.  For example,
 | |
| 
 | |
| def create_generators(num, delta, firstseed=None):
 | |
|     ""\"Return list of num distinct generators.
 | |
|     Each generator has its own unique segment of delta elements from
 | |
|     Random.random()'s full period.
 | |
|     Seed the first generator with optional arg firstseed (default is
 | |
|     None, to seed from current time).
 | |
|     ""\"
 | |
| 
 | |
|     from random import Random
 | |
|     g = Random(firstseed)
 | |
|     result = [g]
 | |
|     for i in range(num - 1):
 | |
|         laststate = g.getstate()
 | |
|         g = Random()
 | |
|         g.setstate(laststate)
 | |
|         g.jumpahead(delta)
 | |
|         result.append(g)
 | |
|     return result
 | |
| 
 | |
| gens = create_generators(10, 1000000)
 | |
| 
 | |
| That creates 10 distinct generators, which can be passed out to 10 distinct
 | |
| threads.  The generators don't share state so can be called safely in
 | |
| parallel.  So long as no thread calls its g.random() more than a million
 | |
| times (the second argument to create_generators), the sequences seen by
 | |
| each thread will not overlap.
 | |
| 
 | |
| The period of the underlying Wichmann-Hill generator is 6,953,607,871,644,
 | |
| and that limits how far this technique can be pushed.
 | |
| 
 | |
| Just for fun, note that since we know the period, .jumpahead() can also be
 | |
| used to "move backward in time":
 | |
| 
 | |
| >>> g = Random(42)  # arbitrary
 | |
| >>> g.random()
 | |
| 0.24855401895528142
 | |
| >>> g.jumpahead(6953607871644L - 1) # move *back* one
 | |
| >>> g.random()
 | |
| 0.24855401895528142
 | |
| """
 | |
| # XXX The docstring sucks.
 | |
| 
 | |
| from math import log as _log, exp as _exp, pi as _pi, e as _e
 | |
| from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
 | |
| 
 | |
| def _verify(name, expected):
 | |
|     computed = eval(name)
 | |
|     if abs(computed - expected) > 1e-7:
 | |
|         raise ValueError(
 | |
|             "computed value for %s deviates too much "
 | |
|             "(computed %g, expected %g)" % (name, computed, expected))
 | |
| 
 | |
| NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0)
 | |
| _verify('NV_MAGICCONST', 1.71552776992141)
 | |
| 
 | |
| TWOPI = 2.0*_pi
 | |
| _verify('TWOPI', 6.28318530718)
 | |
| 
 | |
| LOG4 = _log(4.0)
 | |
| _verify('LOG4', 1.38629436111989)
 | |
| 
 | |
| SG_MAGICCONST = 1.0 + _log(4.5)
 | |
| _verify('SG_MAGICCONST', 2.50407739677627)
 | |
| 
 | |
| del _verify
 | |
| 
 | |
| # Translated by Guido van Rossum from C source provided by
 | |
| # Adrian Baddeley.
 | |
| 
 | |
| class Random:
 | |
| 
 | |
|     VERSION = 1     # used by getstate/setstate
 | |
| 
 | |
|     def __init__(self, x=None):
 | |
|         """Initialize an instance.
 | |
| 
 | |
|         Optional argument x controls seeding, as for Random.seed().
 | |
|         """
 | |
| 
 | |
|         self.seed(x)
 | |
|         self.gauss_next = None
 | |
| 
 | |
| ## -------------------- core generator -------------------
 | |
| 
 | |
|     # Specific to Wichmann-Hill generator.  Subclasses wishing to use a
 | |
|     # different core generator should override the seed(), random(),
 | |
|     # getstate(), setstate() and jumpahead() methods.
 | |
| 
 | |
|     def __whseed(self, x=0, y=0, z=0):
 | |
|         """Set the Wichmann-Hill seed from (x, y, z).
 | |
| 
 | |
|         These must be integers in the range [0, 256).
 | |
|         """
 | |
| 
 | |
|         if not type(x) == type(y) == type(z) == type(0):
 | |
|             raise TypeError('seeds must be integers')
 | |
|         if not (0 <= x < 256 and 0 <= y < 256 and 0 <= z < 256):
 | |
|             raise ValueError('seeds must be in range(0, 256)')
 | |
|         if 0 == x == y == z:
 | |
|             # Initialize from current time
 | |
|             import time
 | |
|             t = long(time.time()) * 256
 | |
|             t = int((t&0xffffff) ^ (t>>24))
 | |
|             t, x = divmod(t, 256)
 | |
|             t, y = divmod(t, 256)
 | |
|             t, z = divmod(t, 256)
 | |
|         # Zero is a poor seed, so substitute 1
 | |
|         self._seed = (x or 1, y or 1, z or 1)
 | |
| 
 | |
|     def random(self):
 | |
|         """Get the next random number in the range [0.0, 1.0)."""
 | |
| 
 | |
|         # Wichman-Hill random number generator.
 | |
|         #
 | |
|         # Wichmann, B. A. & Hill, I. D. (1982)
 | |
|         # Algorithm AS 183:
 | |
|         # An efficient and portable pseudo-random number generator
 | |
|         # Applied Statistics 31 (1982) 188-190
 | |
|         #
 | |
|         # see also:
 | |
|         #        Correction to Algorithm AS 183
 | |
|         #        Applied Statistics 33 (1984) 123
 | |
|         #
 | |
|         #        McLeod, A. I. (1985)
 | |
|         #        A remark on Algorithm AS 183
 | |
|         #        Applied Statistics 34 (1985),198-200
 | |
| 
 | |
|         # This part is thread-unsafe:
 | |
|         # BEGIN CRITICAL SECTION
 | |
|         x, y, z = self._seed
 | |
|         x = (171 * x) % 30269
 | |
|         y = (172 * y) % 30307
 | |
|         z = (170 * z) % 30323
 | |
|         self._seed = x, y, z
 | |
|         # END CRITICAL SECTION
 | |
| 
 | |
|         # Note:  on a platform using IEEE-754 double arithmetic, this can
 | |
|         # never return 0.0 (asserted by Tim; proof too long for a comment).
 | |
|         return (x/30269.0 + y/30307.0 + z/30323.0) % 1.0
 | |
| 
 | |
|     def seed(self, a=None):
 | |
|         """Seed from hashable object's hash code.
 | |
| 
 | |
|         None or no argument seeds from current time.  It is not guaranteed
 | |
|         that objects with distinct hash codes lead to distinct internal
 | |
|         states.
 | |
|         """
 | |
| 
 | |
|         if a is None:
 | |
|             self.__whseed()
 | |
|             return
 | |
|         a = hash(a)
 | |
|         a, x = divmod(a, 256)
 | |
|         a, y = divmod(a, 256)
 | |
|         a, z = divmod(a, 256)
 | |
|         x = (x + a) % 256 or 1
 | |
|         y = (y + a) % 256 or 1
 | |
|         z = (z + a) % 256 or 1
 | |
|         self.__whseed(x, y, z)
 | |
| 
 | |
|     def getstate(self):
 | |
|         """Return internal state; can be passed to setstate() later."""
 | |
|         return self.VERSION, self._seed, self.gauss_next
 | |
| 
 | |
|     def setstate(self, state):
 | |
|         """Restore internal state from object returned by getstate()."""
 | |
|         version = state[0]
 | |
|         if version == 1:
 | |
|             version, self._seed, self.gauss_next = state
 | |
|         else:
 | |
|             raise ValueError("state with version %s passed to "
 | |
|                              "Random.setstate() of version %s" %
 | |
|                              (version, self.VERSION))
 | |
| 
 | |
|     def jumpahead(self, n):
 | |
|         """Act as if n calls to random() were made, but quickly.
 | |
| 
 | |
|         n is an int, greater than or equal to 0.
 | |
| 
 | |
|         Example use:  If you have 2 threads and know that each will
 | |
|         consume no more than a million random numbers, create two Random
 | |
|         objects r1 and r2, then do
 | |
|             r2.setstate(r1.getstate())
 | |
|             r2.jumpahead(1000000)
 | |
|         Then r1 and r2 will use guaranteed-disjoint segments of the full
 | |
|         period.
 | |
|         """
 | |
| 
 | |
|         if not n >= 0:
 | |
|             raise ValueError("n must be >= 0")
 | |
|         x, y, z = self._seed
 | |
|         x = int(x * pow(171, n, 30269)) % 30269
 | |
|         y = int(y * pow(172, n, 30307)) % 30307
 | |
|         z = int(z * pow(170, n, 30323)) % 30323
 | |
|         self._seed = x, y, z
 | |
| 
 | |
| ## ---- Methods below this point do not need to be overridden when
 | |
| ## ---- subclassing for the purpose of using a different core generator.
 | |
| 
 | |
| ## -------------------- pickle support  -------------------
 | |
| 
 | |
|     def __getstate__(self): # for pickle
 | |
|         return self.getstate()
 | |
| 
 | |
|     def __setstate__(self, state):  # for pickle
 | |
|         self.setstate(state)
 | |
| 
 | |
| ## -------------------- integer methods  -------------------
 | |
| 
 | |
|     def randrange(self, start, stop=None, step=1, int=int, default=None):
 | |
|         """Choose a random item from range(start, stop[, step]).
 | |
| 
 | |
|         This fixes the problem with randint() which includes the
 | |
|         endpoint; in Python this is usually not what you want.
 | |
|         Do not supply the 'int' and 'default' arguments.
 | |
|         """
 | |
| 
 | |
|         # This code is a bit messy to make it fast for the
 | |
|         # common case while still doing adequate error checking
 | |
|         istart = int(start)
 | |
|         if istart != start:
 | |
|             raise ValueError, "non-integer arg 1 for randrange()"
 | |
|         if stop is default:
 | |
|             if istart > 0:
 | |
|                 return int(self.random() * istart)
 | |
|             raise ValueError, "empty range for randrange()"
 | |
|         istop = int(stop)
 | |
|         if istop != stop:
 | |
|             raise ValueError, "non-integer stop for randrange()"
 | |
|         if step == 1:
 | |
|             if istart < istop:
 | |
|                 return istart + int(self.random() *
 | |
|                                    (istop - istart))
 | |
|             raise ValueError, "empty range for randrange()"
 | |
|         istep = int(step)
 | |
|         if istep != step:
 | |
|             raise ValueError, "non-integer step for randrange()"
 | |
|         if istep > 0:
 | |
|             n = (istop - istart + istep - 1) / istep
 | |
|         elif istep < 0:
 | |
|             n = (istop - istart + istep + 1) / istep
 | |
|         else:
 | |
|             raise ValueError, "zero step for randrange()"
 | |
| 
 | |
|         if n <= 0:
 | |
|             raise ValueError, "empty range for randrange()"
 | |
|         return istart + istep*int(self.random() * n)
 | |
| 
 | |
|     def randint(self, a, b):
 | |
|         """Return random integer in range [a, b], including both end points.
 | |
| 
 | |
|         (Deprecated; use randrange(a, b+1).)
 | |
|         """
 | |
| 
 | |
|         return self.randrange(a, b+1)
 | |
| 
 | |
| ## -------------------- sequence methods  -------------------
 | |
| 
 | |
|     def choice(self, seq):
 | |
|         """Choose a random element from a non-empty sequence."""
 | |
|         return seq[int(self.random() * len(seq))]
 | |
| 
 | |
|     def shuffle(self, x, random=None, int=int):
 | |
|         """x, random=random.random -> shuffle list x in place; return None.
 | |
| 
 | |
|         Optional arg random is a 0-argument function returning a random
 | |
|         float in [0.0, 1.0); by default, the standard random.random.
 | |
| 
 | |
|         Note that for even rather small len(x), the total number of
 | |
|         permutations of x is larger than the period of most random number
 | |
|         generators; this implies that "most" permutations of a long
 | |
|         sequence can never be generated.
 | |
|         """
 | |
| 
 | |
|         if random is None:
 | |
|             random = self.random
 | |
|         for i in xrange(len(x)-1, 0, -1):
 | |
|             # pick an element in x[:i+1] with which to exchange x[i]
 | |
|             j = int(random() * (i+1))
 | |
|             x[i], x[j] = x[j], x[i]
 | |
| 
 | |
| ## -------------------- real-valued distributions  -------------------
 | |
| 
 | |
| ## -------------------- uniform distribution -------------------
 | |
| 
 | |
|     def uniform(self, a, b):
 | |
|         """Get a random number in the range [a, b)."""
 | |
|         return a + (b-a) * self.random()
 | |
| 
 | |
| ## -------------------- normal distribution --------------------
 | |
| 
 | |
|     def normalvariate(self, mu, sigma):
 | |
|         # mu = mean, sigma = standard deviation
 | |
| 
 | |
|         # Uses Kinderman and Monahan method. Reference: Kinderman,
 | |
|         # A.J. and Monahan, J.F., "Computer generation of random
 | |
|         # variables using the ratio of uniform deviates", ACM Trans
 | |
|         # Math Software, 3, (1977), pp257-260.
 | |
| 
 | |
|         random = self.random
 | |
|         while 1:
 | |
|             u1 = random()
 | |
|             u2 = random()
 | |
|             z = NV_MAGICCONST*(u1-0.5)/u2
 | |
|             zz = z*z/4.0
 | |
|             if zz <= -_log(u2):
 | |
|                 break
 | |
|         return mu + z*sigma
 | |
| 
 | |
| ## -------------------- lognormal distribution --------------------
 | |
| 
 | |
|     def lognormvariate(self, mu, sigma):
 | |
|         return _exp(self.normalvariate(mu, sigma))
 | |
| 
 | |
| ## -------------------- circular uniform --------------------
 | |
| 
 | |
|     def cunifvariate(self, mean, arc):
 | |
|         # mean: mean angle (in radians between 0 and pi)
 | |
|         # arc:  range of distribution (in radians between 0 and pi)
 | |
| 
 | |
|         return (mean + arc * (self.random() - 0.5)) % _pi
 | |
| 
 | |
| ## -------------------- exponential distribution --------------------
 | |
| 
 | |
|     def expovariate(self, lambd):
 | |
|         # lambd: rate lambd = 1/mean
 | |
|         # ('lambda' is a Python reserved word)
 | |
| 
 | |
|         random = self.random
 | |
|         u = random()
 | |
|         while u <= 1e-7:
 | |
|             u = random()
 | |
|         return -_log(u)/lambd
 | |
| 
 | |
| ## -------------------- von Mises distribution --------------------
 | |
| 
 | |
|     def vonmisesvariate(self, mu, kappa):
 | |
|         # mu:    mean angle (in radians between 0 and 2*pi)
 | |
|         # kappa: concentration parameter kappa (>= 0)
 | |
|         # if kappa = 0 generate uniform random angle
 | |
| 
 | |
|         # Based upon an algorithm published in: Fisher, N.I.,
 | |
|         # "Statistical Analysis of Circular Data", Cambridge
 | |
|         # University Press, 1993.
 | |
| 
 | |
|         # Thanks to Magnus Kessler for a correction to the
 | |
|         # implementation of step 4.
 | |
| 
 | |
|         random = self.random
 | |
|         if kappa <= 1e-6:
 | |
|             return TWOPI * random()
 | |
| 
 | |
|         a = 1.0 + _sqrt(1.0 + 4.0 * kappa * kappa)
 | |
|         b = (a - _sqrt(2.0 * a))/(2.0 * kappa)
 | |
|         r = (1.0 + b * b)/(2.0 * b)
 | |
| 
 | |
|         while 1:
 | |
|             u1 = random()
 | |
| 
 | |
|             z = _cos(_pi * u1)
 | |
|             f = (1.0 + r * z)/(r + z)
 | |
|             c = kappa * (r - f)
 | |
| 
 | |
|             u2 = random()
 | |
| 
 | |
|             if not (u2 >= c * (2.0 - c) and u2 > c * _exp(1.0 - c)):
 | |
|                 break
 | |
| 
 | |
|         u3 = random()
 | |
|         if u3 > 0.5:
 | |
|             theta = (mu % TWOPI) + _acos(f)
 | |
|         else:
 | |
|             theta = (mu % TWOPI) - _acos(f)
 | |
| 
 | |
|         return theta
 | |
| 
 | |
| ## -------------------- gamma distribution --------------------
 | |
| 
 | |
|     def gammavariate(self, alpha, beta):
 | |
|         # beta times standard gamma
 | |
|         ainv = _sqrt(2.0 * alpha - 1.0)
 | |
|         return beta * self.stdgamma(alpha, ainv, alpha - LOG4, alpha + ainv)
 | |
| 
 | |
|     def stdgamma(self, alpha, ainv, bbb, ccc):
 | |
|         # ainv = sqrt(2 * alpha - 1)
 | |
|         # bbb = alpha - log(4)
 | |
|         # ccc = alpha + ainv
 | |
| 
 | |
|         random = self.random
 | |
|         if alpha <= 0.0:
 | |
|             raise ValueError, 'stdgamma: alpha must be > 0.0'
 | |
| 
 | |
|         if alpha > 1.0:
 | |
| 
 | |
|             # Uses R.C.H. Cheng, "The generation of Gamma
 | |
|             # variables with non-integral shape parameters",
 | |
|             # Applied Statistics, (1977), 26, No. 1, p71-74
 | |
| 
 | |
|             while 1:
 | |
|                 u1 = random()
 | |
|                 u2 = random()
 | |
|                 v = _log(u1/(1.0-u1))/ainv
 | |
|                 x = alpha*_exp(v)
 | |
|                 z = u1*u1*u2
 | |
|                 r = bbb+ccc*v-x
 | |
|                 if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z):
 | |
|                     return x
 | |
| 
 | |
|         elif alpha == 1.0:
 | |
|             # expovariate(1)
 | |
|             u = random()
 | |
|             while u <= 1e-7:
 | |
|                 u = random()
 | |
|             return -_log(u)
 | |
| 
 | |
|         else:   # alpha is between 0 and 1 (exclusive)
 | |
| 
 | |
|             # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
 | |
| 
 | |
|             while 1:
 | |
|                 u = random()
 | |
|                 b = (_e + alpha)/_e
 | |
|                 p = b*u
 | |
|                 if p <= 1.0:
 | |
|                     x = pow(p, 1.0/alpha)
 | |
|                 else:
 | |
|                     # p > 1
 | |
|                     x = -_log((b-p)/alpha)
 | |
|                 u1 = random()
 | |
|                 if not (((p <= 1.0) and (u1 > _exp(-x))) or
 | |
|                           ((p > 1)  and  (u1 > pow(x, alpha - 1.0)))):
 | |
|                     break
 | |
|             return x
 | |
| 
 | |
| 
 | |
| ## -------------------- Gauss (faster alternative) --------------------
 | |
| 
 | |
|     def gauss(self, mu, sigma):
 | |
| 
 | |
|         # When x and y are two variables from [0, 1), uniformly
 | |
|         # distributed, then
 | |
|         #
 | |
|         #    cos(2*pi*x)*sqrt(-2*log(1-y))
 | |
|         #    sin(2*pi*x)*sqrt(-2*log(1-y))
 | |
|         #
 | |
|         # are two *independent* variables with normal distribution
 | |
|         # (mu = 0, sigma = 1).
 | |
|         # (Lambert Meertens)
 | |
|         # (corrected version; bug discovered by Mike Miller, fixed by LM)
 | |
| 
 | |
|         # Multithreading note: When two threads call this function
 | |
|         # simultaneously, it is possible that they will receive the
 | |
|         # same return value.  The window is very small though.  To
 | |
|         # avoid this, you have to use a lock around all calls.  (I
 | |
|         # didn't want to slow this down in the serial case by using a
 | |
|         # lock here.)
 | |
| 
 | |
|         random = self.random
 | |
|         z = self.gauss_next
 | |
|         self.gauss_next = None
 | |
|         if z is None:
 | |
|             x2pi = random() * TWOPI
 | |
|             g2rad = _sqrt(-2.0 * _log(1.0 - random()))
 | |
|             z = _cos(x2pi) * g2rad
 | |
|             self.gauss_next = _sin(x2pi) * g2rad
 | |
| 
 | |
|         return mu + z*sigma
 | |
| 
 | |
| ## -------------------- beta --------------------
 | |
| ## See
 | |
| ## http://sourceforge.net/bugs/?func=detailbug&bug_id=130030&group_id=5470
 | |
| ## for Ivan Frohne's insightful analysis of why the original implementation:
 | |
| ##
 | |
| ##    def betavariate(self, alpha, beta):
 | |
| ##        # Discrete Event Simulation in C, pp 87-88.
 | |
| ##
 | |
| ##        y = self.expovariate(alpha)
 | |
| ##        z = self.expovariate(1.0/beta)
 | |
| ##        return z/(y+z)
 | |
| ##
 | |
| ## was dead wrong, and how it probably got that way.
 | |
| 
 | |
|     def betavariate(self, alpha, beta):
 | |
|         # This version due to Janne Sinkkonen, and matches all the std
 | |
|         # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
 | |
|         y = self.gammavariate(alpha, 1.)
 | |
|         if y == 0:
 | |
|             return 0.0
 | |
|         else:
 | |
|             return y / (y + self.gammavariate(beta, 1.))
 | |
| 
 | |
| ## -------------------- Pareto --------------------
 | |
| 
 | |
|     def paretovariate(self, alpha):
 | |
|         # Jain, pg. 495
 | |
| 
 | |
|         u = self.random()
 | |
|         return 1.0 / pow(u, 1.0/alpha)
 | |
| 
 | |
| ## -------------------- Weibull --------------------
 | |
| 
 | |
|     def weibullvariate(self, alpha, beta):
 | |
|         # Jain, pg. 499; bug fix courtesy Bill Arms
 | |
| 
 | |
|         u = self.random()
 | |
|         return alpha * pow(-_log(u), 1.0/beta)
 | |
| 
 | |
| ## -------------------- test program --------------------
 | |
| 
 | |
| def _test_generator(n, funccall):
 | |
|     import time
 | |
|     print n, 'times', funccall
 | |
|     code = compile(funccall, funccall, 'eval')
 | |
|     sum = 0.0
 | |
|     sqsum = 0.0
 | |
|     smallest = 1e10
 | |
|     largest = -1e10
 | |
|     t0 = time.time()
 | |
|     for i in range(n):
 | |
|         x = eval(code)
 | |
|         sum = sum + x
 | |
|         sqsum = sqsum + x*x
 | |
|         smallest = min(x, smallest)
 | |
|         largest = max(x, largest)
 | |
|     t1 = time.time()
 | |
|     print round(t1-t0, 3), 'sec,',
 | |
|     avg = sum/n
 | |
|     stddev = _sqrt(sqsum/n - avg*avg)
 | |
|     print 'avg %g, stddev %g, min %g, max %g' % \
 | |
|               (avg, stddev, smallest, largest)
 | |
| 
 | |
| def _test(N=200):
 | |
|     print 'TWOPI         =', TWOPI
 | |
|     print 'LOG4          =', LOG4
 | |
|     print 'NV_MAGICCONST =', NV_MAGICCONST
 | |
|     print 'SG_MAGICCONST =', SG_MAGICCONST
 | |
|     _test_generator(N, 'random()')
 | |
|     _test_generator(N, 'normalvariate(0.0, 1.0)')
 | |
|     _test_generator(N, 'lognormvariate(0.0, 1.0)')
 | |
|     _test_generator(N, 'cunifvariate(0.0, 1.0)')
 | |
|     _test_generator(N, 'expovariate(1.0)')
 | |
|     _test_generator(N, 'vonmisesvariate(0.0, 1.0)')
 | |
|     _test_generator(N, 'gammavariate(0.5, 1.0)')
 | |
|     _test_generator(N, 'gammavariate(0.9, 1.0)')
 | |
|     _test_generator(N, 'gammavariate(1.0, 1.0)')
 | |
|     _test_generator(N, 'gammavariate(2.0, 1.0)')
 | |
|     _test_generator(N, 'gammavariate(20.0, 1.0)')
 | |
|     _test_generator(N, 'gammavariate(200.0, 1.0)')
 | |
|     _test_generator(N, 'gauss(0.0, 1.0)')
 | |
|     _test_generator(N, 'betavariate(3.0, 3.0)')
 | |
|     _test_generator(N, 'paretovariate(1.0)')
 | |
|     _test_generator(N, 'weibullvariate(1.0, 1.0)')
 | |
| 
 | |
|     # Test jumpahead.
 | |
|     s = getstate()
 | |
|     jumpahead(N)
 | |
|     r1 = random()
 | |
|     # now do it the slow way
 | |
|     setstate(s)
 | |
|     for i in range(N):
 | |
|         random()
 | |
|     r2 = random()
 | |
|     if r1 != r2:
 | |
|         raise ValueError("jumpahead test failed " + `(N, r1, r2)`)
 | |
| 
 | |
| # Initialize from current time.
 | |
| _inst = Random()
 | |
| seed = _inst.seed
 | |
| random = _inst.random
 | |
| uniform = _inst.uniform
 | |
| randint = _inst.randint
 | |
| choice = _inst.choice
 | |
| randrange = _inst.randrange
 | |
| shuffle = _inst.shuffle
 | |
| normalvariate = _inst.normalvariate
 | |
| lognormvariate = _inst.lognormvariate
 | |
| cunifvariate = _inst.cunifvariate
 | |
| expovariate = _inst.expovariate
 | |
| vonmisesvariate = _inst.vonmisesvariate
 | |
| gammavariate = _inst.gammavariate
 | |
| stdgamma = _inst.stdgamma
 | |
| gauss = _inst.gauss
 | |
| betavariate = _inst.betavariate
 | |
| paretovariate = _inst.paretovariate
 | |
| weibullvariate = _inst.weibullvariate
 | |
| getstate = _inst.getstate
 | |
| setstate = _inst.setstate
 | |
| jumpahead = _inst.jumpahead
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     _test()
 | 
