mirror of
				https://github.com/python/cpython.git
				synced 2025-10-25 02:43:41 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1456 lines
		
	
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1456 lines
		
	
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include "Python.h"
 | |
| #include "pycore_time.h"          // PyTime_t
 | |
| 
 | |
| #include <time.h>                 // gmtime_r()
 | |
| #ifdef HAVE_SYS_TIME_H
 | |
| #  include <sys/time.h>           // gettimeofday()
 | |
| #endif
 | |
| #ifdef MS_WINDOWS
 | |
| #  include <winsock2.h>           // struct timeval
 | |
| #endif
 | |
| 
 | |
| #if defined(__APPLE__)
 | |
| #  include <mach/mach_time.h>     // mach_absolute_time(), mach_timebase_info()
 | |
| 
 | |
| #if defined(__APPLE__) && defined(__has_builtin)
 | |
| #  if __has_builtin(__builtin_available)
 | |
| #    define HAVE_CLOCK_GETTIME_RUNTIME __builtin_available(macOS 10.12, iOS 10.0, tvOS 10.0, watchOS 3.0, *)
 | |
| #  endif
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| /* To millisecond (10^-3) */
 | |
| #define SEC_TO_MS 1000
 | |
| 
 | |
| /* To microseconds (10^-6) */
 | |
| #define MS_TO_US 1000
 | |
| #define SEC_TO_US (SEC_TO_MS * MS_TO_US)
 | |
| 
 | |
| /* To nanoseconds (10^-9) */
 | |
| #define US_TO_NS 1000
 | |
| #define MS_TO_NS (MS_TO_US * US_TO_NS)
 | |
| #define SEC_TO_NS (SEC_TO_MS * MS_TO_NS)
 | |
| 
 | |
| /* Conversion from nanoseconds */
 | |
| #define NS_TO_MS (1000 * 1000)
 | |
| #define NS_TO_US (1000)
 | |
| #define NS_TO_100NS (100)
 | |
| 
 | |
| #if SIZEOF_TIME_T == SIZEOF_LONG_LONG
 | |
| #  define PY_TIME_T_MAX LLONG_MAX
 | |
| #  define PY_TIME_T_MIN LLONG_MIN
 | |
| #elif SIZEOF_TIME_T == SIZEOF_LONG
 | |
| #  define PY_TIME_T_MAX LONG_MAX
 | |
| #  define PY_TIME_T_MIN LONG_MIN
 | |
| #else
 | |
| #  error "unsupported time_t size"
 | |
| #endif
 | |
| 
 | |
| #if PY_TIME_T_MAX + PY_TIME_T_MIN != -1
 | |
| #  error "time_t is not a two's complement integer type"
 | |
| #endif
 | |
| 
 | |
| #if PyTime_MIN + PyTime_MAX != -1
 | |
| #  error "PyTime_t is not a two's complement integer type"
 | |
| #endif
 | |
| 
 | |
| 
 | |
| static PyTime_t
 | |
| _PyTime_GCD(PyTime_t x, PyTime_t y)
 | |
| {
 | |
|     // Euclidean algorithm
 | |
|     assert(x >= 1);
 | |
|     assert(y >= 1);
 | |
|     while (y != 0) {
 | |
|         PyTime_t tmp = y;
 | |
|         y = x % y;
 | |
|         x = tmp;
 | |
|     }
 | |
|     assert(x >= 1);
 | |
|     return x;
 | |
| }
 | |
| 
 | |
| 
 | |
| int
 | |
| _PyTimeFraction_Set(_PyTimeFraction *frac, PyTime_t numer, PyTime_t denom)
 | |
| {
 | |
|     if (numer < 1 || denom < 1) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     PyTime_t gcd = _PyTime_GCD(numer, denom);
 | |
|     frac->numer = numer / gcd;
 | |
|     frac->denom = denom / gcd;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| double
 | |
| _PyTimeFraction_Resolution(const _PyTimeFraction *frac)
 | |
| {
 | |
|     return (double)frac->numer / (double)frac->denom / 1e9;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void
 | |
| pytime_time_t_overflow(void)
 | |
| {
 | |
|     PyErr_SetString(PyExc_OverflowError,
 | |
|                     "timestamp out of range for platform time_t");
 | |
| }
 | |
| 
 | |
| 
 | |
| static void
 | |
| pytime_overflow(void)
 | |
| {
 | |
|     PyErr_SetString(PyExc_OverflowError,
 | |
|                     "timestamp too large to convert to C PyTime_t");
 | |
| }
 | |
| 
 | |
| 
 | |
| static inline PyTime_t
 | |
| pytime_from_nanoseconds(PyTime_t t)
 | |
| {
 | |
|     // PyTime_t is a number of nanoseconds
 | |
|     return t;
 | |
| }
 | |
| 
 | |
| 
 | |
| static inline PyTime_t
 | |
| pytime_as_nanoseconds(PyTime_t t)
 | |
| {
 | |
|     // PyTime_t is a number of nanoseconds: see pytime_from_nanoseconds()
 | |
|     return t;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Compute t1 + t2. Clamp to [PyTime_MIN; PyTime_MAX] on overflow.
 | |
| static inline int
 | |
| pytime_add(PyTime_t *t1, PyTime_t t2)
 | |
| {
 | |
|     if (t2 > 0 && *t1 > PyTime_MAX - t2) {
 | |
|         *t1 = PyTime_MAX;
 | |
|         return -1;
 | |
|     }
 | |
|     else if (t2 < 0 && *t1 < PyTime_MIN - t2) {
 | |
|         *t1 = PyTime_MIN;
 | |
|         return -1;
 | |
|     }
 | |
|     else {
 | |
|         *t1 += t2;
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| PyTime_t
 | |
| _PyTime_Add(PyTime_t t1, PyTime_t t2)
 | |
| {
 | |
|     (void)pytime_add(&t1, t2);
 | |
|     return t1;
 | |
| }
 | |
| 
 | |
| 
 | |
| static inline int
 | |
| pytime_mul_check_overflow(PyTime_t a, PyTime_t b)
 | |
| {
 | |
|     if (b != 0) {
 | |
|         assert(b > 0);
 | |
|         return ((a < PyTime_MIN / b) || (PyTime_MAX / b < a));
 | |
|     }
 | |
|     else {
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| // Compute t * k. Clamp to [PyTime_MIN; PyTime_MAX] on overflow.
 | |
| static inline int
 | |
| pytime_mul(PyTime_t *t, PyTime_t k)
 | |
| {
 | |
|     assert(k >= 0);
 | |
|     if (pytime_mul_check_overflow(*t, k)) {
 | |
|         *t = (*t >= 0) ? PyTime_MAX : PyTime_MIN;
 | |
|         return -1;
 | |
|     }
 | |
|     else {
 | |
|         *t *= k;
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| // Compute t * k. Clamp to [PyTime_MIN; PyTime_MAX] on overflow.
 | |
| static inline PyTime_t
 | |
| _PyTime_Mul(PyTime_t t, PyTime_t k)
 | |
| {
 | |
|     (void)pytime_mul(&t, k);
 | |
|     return t;
 | |
| }
 | |
| 
 | |
| 
 | |
| PyTime_t
 | |
| _PyTimeFraction_Mul(PyTime_t ticks, const _PyTimeFraction *frac)
 | |
| {
 | |
|     const PyTime_t mul = frac->numer;
 | |
|     const PyTime_t div = frac->denom;
 | |
| 
 | |
|     if (div == 1) {
 | |
|         // Fast-path taken by mach_absolute_time() with 1/1 time base.
 | |
|         return _PyTime_Mul(ticks, mul);
 | |
|     }
 | |
| 
 | |
|     /* Compute (ticks * mul / div) in two parts to reduce the risk of integer
 | |
|        overflow: compute the integer part, and then the remaining part.
 | |
| 
 | |
|        (ticks * mul) / div == (ticks / div) * mul + (ticks % div) * mul / div
 | |
|     */
 | |
|     PyTime_t intpart, remaining;
 | |
|     intpart = ticks / div;
 | |
|     ticks %= div;
 | |
|     remaining = _PyTime_Mul(ticks, mul) / div;
 | |
|     // intpart * mul + remaining
 | |
|     return _PyTime_Add(_PyTime_Mul(intpart, mul), remaining);
 | |
| }
 | |
| 
 | |
| 
 | |
| time_t
 | |
| _PyLong_AsTime_t(PyObject *obj)
 | |
| {
 | |
| #if SIZEOF_TIME_T == SIZEOF_LONG_LONG
 | |
|     long long val = PyLong_AsLongLong(obj);
 | |
| #elif SIZEOF_TIME_T <= SIZEOF_LONG
 | |
|     long val = PyLong_AsLong(obj);
 | |
| #else
 | |
| #   error "unsupported time_t size"
 | |
| #endif
 | |
|     if (val == -1 && PyErr_Occurred()) {
 | |
|         if (PyErr_ExceptionMatches(PyExc_OverflowError)) {
 | |
|             pytime_time_t_overflow();
 | |
|         }
 | |
|         return -1;
 | |
|     }
 | |
|     return (time_t)val;
 | |
| }
 | |
| 
 | |
| 
 | |
| PyObject *
 | |
| _PyLong_FromTime_t(time_t t)
 | |
| {
 | |
| #if SIZEOF_TIME_T == SIZEOF_LONG_LONG
 | |
|     return PyLong_FromLongLong((long long)t);
 | |
| #elif SIZEOF_TIME_T <= SIZEOF_LONG
 | |
|     return PyLong_FromLong((long)t);
 | |
| #else
 | |
| #   error "unsupported time_t size"
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| // Convert PyTime_t to time_t.
 | |
| // Return 0 on success. Return -1 and clamp the value on overflow.
 | |
| static int
 | |
| _PyTime_AsTime_t(PyTime_t t, time_t *t2)
 | |
| {
 | |
| #if SIZEOF_TIME_T < _SIZEOF_PYTIME_T
 | |
|     if ((PyTime_t)PY_TIME_T_MAX < t) {
 | |
|         *t2 = PY_TIME_T_MAX;
 | |
|         return -1;
 | |
|     }
 | |
|     if (t < (PyTime_t)PY_TIME_T_MIN) {
 | |
|         *t2 = PY_TIME_T_MIN;
 | |
|         return -1;
 | |
|     }
 | |
| #endif
 | |
|     *t2 = (time_t)t;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifdef MS_WINDOWS
 | |
| // Convert PyTime_t to long.
 | |
| // Return 0 on success. Return -1 and clamp the value on overflow.
 | |
| static int
 | |
| _PyTime_AsLong(PyTime_t t, long *t2)
 | |
| {
 | |
| #if SIZEOF_LONG < _SIZEOF_PYTIME_T
 | |
|     if ((PyTime_t)LONG_MAX < t) {
 | |
|         *t2 = LONG_MAX;
 | |
|         return -1;
 | |
|     }
 | |
|     if (t < (PyTime_t)LONG_MIN) {
 | |
|         *t2 = LONG_MIN;
 | |
|         return -1;
 | |
|     }
 | |
| #endif
 | |
|     *t2 = (long)t;
 | |
|     return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* Round to nearest with ties going to nearest even integer
 | |
|    (_PyTime_ROUND_HALF_EVEN) */
 | |
| static double
 | |
| pytime_round_half_even(double x)
 | |
| {
 | |
|     double rounded = round(x);
 | |
|     if (fabs(x-rounded) == 0.5) {
 | |
|         /* halfway case: round to even */
 | |
|         rounded = 2.0 * round(x / 2.0);
 | |
|     }
 | |
|     return rounded;
 | |
| }
 | |
| 
 | |
| 
 | |
| static double
 | |
| pytime_round(double x, _PyTime_round_t round)
 | |
| {
 | |
|     /* volatile avoids optimization changing how numbers are rounded */
 | |
|     volatile double d;
 | |
| 
 | |
|     d = x;
 | |
|     if (round == _PyTime_ROUND_HALF_EVEN) {
 | |
|         d = pytime_round_half_even(d);
 | |
|     }
 | |
|     else if (round == _PyTime_ROUND_CEILING) {
 | |
|         d = ceil(d);
 | |
|     }
 | |
|     else if (round == _PyTime_ROUND_FLOOR) {
 | |
|         d = floor(d);
 | |
|     }
 | |
|     else {
 | |
|         assert(round == _PyTime_ROUND_UP);
 | |
|         d = (d >= 0.0) ? ceil(d) : floor(d);
 | |
|     }
 | |
|     return d;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int
 | |
| pytime_double_to_denominator(double d, time_t *sec, long *numerator,
 | |
|                              long idenominator, _PyTime_round_t round)
 | |
| {
 | |
|     double denominator = (double)idenominator;
 | |
|     double intpart;
 | |
|     /* volatile avoids optimization changing how numbers are rounded */
 | |
|     volatile double floatpart;
 | |
| 
 | |
|     floatpart = modf(d, &intpart);
 | |
| 
 | |
|     floatpart *= denominator;
 | |
|     floatpart = pytime_round(floatpart, round);
 | |
|     if (floatpart >= denominator) {
 | |
|         floatpart -= denominator;
 | |
|         intpart += 1.0;
 | |
|     }
 | |
|     else if (floatpart < 0) {
 | |
|         floatpart += denominator;
 | |
|         intpart -= 1.0;
 | |
|     }
 | |
|     assert(0.0 <= floatpart && floatpart < denominator);
 | |
| 
 | |
|     /*
 | |
|        Conversion of an out-of-range value to time_t gives undefined behaviour
 | |
|        (C99 §6.3.1.4p1), so we must guard against it. However, checking that
 | |
|        `intpart` is in range is delicate: the obvious expression `intpart <=
 | |
|        PY_TIME_T_MAX` will first convert the value `PY_TIME_T_MAX` to a double,
 | |
|        potentially changing its value and leading to us failing to catch some
 | |
|        UB-inducing values. The code below works correctly under the mild
 | |
|        assumption that time_t is a two's complement integer type with no trap
 | |
|        representation, and that `PY_TIME_T_MIN` is within the representable
 | |
|        range of a C double.
 | |
| 
 | |
|        Note: we want the `if` condition below to be true for NaNs; therefore,
 | |
|        resist any temptation to simplify by applying De Morgan's laws.
 | |
|     */
 | |
|     if (!((double)PY_TIME_T_MIN <= intpart && intpart < -(double)PY_TIME_T_MIN)) {
 | |
|         pytime_time_t_overflow();
 | |
|         return -1;
 | |
|     }
 | |
|     *sec = (time_t)intpart;
 | |
|     *numerator = (long)floatpart;
 | |
|     assert(0 <= *numerator && *numerator < idenominator);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int
 | |
| pytime_object_to_denominator(PyObject *obj, time_t *sec, long *numerator,
 | |
|                              long denominator, _PyTime_round_t round)
 | |
| {
 | |
|     assert(denominator >= 1);
 | |
| 
 | |
|     if (PyFloat_Check(obj)) {
 | |
|         double d = PyFloat_AsDouble(obj);
 | |
|         if (Py_IS_NAN(d)) {
 | |
|             *numerator = 0;
 | |
|             PyErr_SetString(PyExc_ValueError, "Invalid value NaN (not a number)");
 | |
|             return -1;
 | |
|         }
 | |
|         return pytime_double_to_denominator(d, sec, numerator,
 | |
|                                             denominator, round);
 | |
|     }
 | |
|     else {
 | |
|         *sec = _PyLong_AsTime_t(obj);
 | |
|         *numerator = 0;
 | |
|         if (*sec == (time_t)-1 && PyErr_Occurred()) {
 | |
|             return -1;
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| int
 | |
| _PyTime_ObjectToTime_t(PyObject *obj, time_t *sec, _PyTime_round_t round)
 | |
| {
 | |
|     if (PyFloat_Check(obj)) {
 | |
|         double intpart;
 | |
|         /* volatile avoids optimization changing how numbers are rounded */
 | |
|         volatile double d;
 | |
| 
 | |
|         d = PyFloat_AsDouble(obj);
 | |
|         if (Py_IS_NAN(d)) {
 | |
|             PyErr_SetString(PyExc_ValueError, "Invalid value NaN (not a number)");
 | |
|             return -1;
 | |
|         }
 | |
| 
 | |
|         d = pytime_round(d, round);
 | |
|         (void)modf(d, &intpart);
 | |
| 
 | |
|         /* See comments in pytime_double_to_denominator */
 | |
|         if (!((double)PY_TIME_T_MIN <= intpart && intpart < -(double)PY_TIME_T_MIN)) {
 | |
|             pytime_time_t_overflow();
 | |
|             return -1;
 | |
|         }
 | |
|         *sec = (time_t)intpart;
 | |
|         return 0;
 | |
|     }
 | |
|     else {
 | |
|         *sec = _PyLong_AsTime_t(obj);
 | |
|         if (*sec == (time_t)-1 && PyErr_Occurred()) {
 | |
|             return -1;
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| int
 | |
| _PyTime_ObjectToTimespec(PyObject *obj, time_t *sec, long *nsec,
 | |
|                          _PyTime_round_t round)
 | |
| {
 | |
|     return pytime_object_to_denominator(obj, sec, nsec, SEC_TO_NS, round);
 | |
| }
 | |
| 
 | |
| 
 | |
| int
 | |
| _PyTime_ObjectToTimeval(PyObject *obj, time_t *sec, long *usec,
 | |
|                         _PyTime_round_t round)
 | |
| {
 | |
|     return pytime_object_to_denominator(obj, sec, usec, SEC_TO_US, round);
 | |
| }
 | |
| 
 | |
| 
 | |
| PyTime_t
 | |
| _PyTime_FromSeconds(int seconds)
 | |
| {
 | |
|     /* ensure that integer overflow cannot happen, int type should have 32
 | |
|        bits, whereas PyTime_t type has at least 64 bits (SEC_TO_NS takes 30
 | |
|        bits). */
 | |
|     static_assert(INT_MAX <= PyTime_MAX / SEC_TO_NS, "PyTime_t overflow");
 | |
|     static_assert(INT_MIN >= PyTime_MIN / SEC_TO_NS, "PyTime_t underflow");
 | |
| 
 | |
|     PyTime_t t = (PyTime_t)seconds;
 | |
|     assert((t >= 0 && t <= PyTime_MAX / SEC_TO_NS)
 | |
|            || (t < 0 && t >= PyTime_MIN / SEC_TO_NS));
 | |
|     t *= SEC_TO_NS;
 | |
|     return pytime_from_nanoseconds(t);
 | |
| }
 | |
| 
 | |
| 
 | |
| PyTime_t
 | |
| _PyTime_FromNanoseconds(PyTime_t ns)
 | |
| {
 | |
|     return pytime_from_nanoseconds(ns);
 | |
| }
 | |
| 
 | |
| 
 | |
| PyTime_t
 | |
| _PyTime_FromMicrosecondsClamp(PyTime_t us)
 | |
| {
 | |
|     PyTime_t ns = _PyTime_Mul(us, US_TO_NS);
 | |
|     return pytime_from_nanoseconds(ns);
 | |
| }
 | |
| 
 | |
| 
 | |
| int
 | |
| _PyTime_FromNanosecondsObject(PyTime_t *tp, PyObject *obj)
 | |
| {
 | |
| 
 | |
|     if (!PyLong_Check(obj)) {
 | |
|         PyErr_Format(PyExc_TypeError, "expect int, got %s",
 | |
|                      Py_TYPE(obj)->tp_name);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     static_assert(sizeof(long long) == sizeof(PyTime_t),
 | |
|                   "PyTime_t is not long long");
 | |
|     long long nsec = PyLong_AsLongLong(obj);
 | |
|     if (nsec == -1 && PyErr_Occurred()) {
 | |
|         if (PyErr_ExceptionMatches(PyExc_OverflowError)) {
 | |
|             pytime_overflow();
 | |
|         }
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     PyTime_t t = (PyTime_t)nsec;
 | |
|     *tp = pytime_from_nanoseconds(t);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifdef HAVE_CLOCK_GETTIME
 | |
| static int
 | |
| pytime_fromtimespec(PyTime_t *tp, const struct timespec *ts, int raise_exc)
 | |
| {
 | |
|     PyTime_t t, tv_nsec;
 | |
| 
 | |
|     static_assert(sizeof(ts->tv_sec) <= sizeof(PyTime_t),
 | |
|                   "timespec.tv_sec is larger than PyTime_t");
 | |
|     t = (PyTime_t)ts->tv_sec;
 | |
| 
 | |
|     int res1 = pytime_mul(&t, SEC_TO_NS);
 | |
| 
 | |
|     tv_nsec = ts->tv_nsec;
 | |
|     int res2 = pytime_add(&t, tv_nsec);
 | |
| 
 | |
|     *tp = pytime_from_nanoseconds(t);
 | |
| 
 | |
|     if (raise_exc && (res1 < 0 || res2 < 0)) {
 | |
|         pytime_overflow();
 | |
|         return -1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int
 | |
| _PyTime_FromTimespec(PyTime_t *tp, const struct timespec *ts)
 | |
| {
 | |
|     return pytime_fromtimespec(tp, ts, 1);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #ifndef MS_WINDOWS
 | |
| static int
 | |
| pytime_fromtimeval(PyTime_t *tp, struct timeval *tv, int raise_exc)
 | |
| {
 | |
|     static_assert(sizeof(tv->tv_sec) <= sizeof(PyTime_t),
 | |
|                   "timeval.tv_sec is larger than PyTime_t");
 | |
|     PyTime_t t = (PyTime_t)tv->tv_sec;
 | |
| 
 | |
|     int res1 = pytime_mul(&t, SEC_TO_NS);
 | |
| 
 | |
|     PyTime_t usec = (PyTime_t)tv->tv_usec * US_TO_NS;
 | |
|     int res2 = pytime_add(&t, usec);
 | |
| 
 | |
|     *tp = pytime_from_nanoseconds(t);
 | |
| 
 | |
|     if (raise_exc && (res1 < 0 || res2 < 0)) {
 | |
|         pytime_overflow();
 | |
|         return -1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| int
 | |
| _PyTime_FromTimeval(PyTime_t *tp, struct timeval *tv)
 | |
| {
 | |
|     return pytime_fromtimeval(tp, tv, 1);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| static int
 | |
| pytime_from_double(PyTime_t *tp, double value, _PyTime_round_t round,
 | |
|                    long unit_to_ns)
 | |
| {
 | |
|     /* volatile avoids optimization changing how numbers are rounded */
 | |
|     volatile double d;
 | |
| 
 | |
|     /* convert to a number of nanoseconds */
 | |
|     d = value;
 | |
|     d *= (double)unit_to_ns;
 | |
|     d = pytime_round(d, round);
 | |
| 
 | |
|     /* See comments in pytime_double_to_denominator */
 | |
|     if (!((double)PyTime_MIN <= d && d < -(double)PyTime_MIN)) {
 | |
|         pytime_time_t_overflow();
 | |
|         return -1;
 | |
|     }
 | |
|     PyTime_t ns = (PyTime_t)d;
 | |
| 
 | |
|     *tp = pytime_from_nanoseconds(ns);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int
 | |
| pytime_from_object(PyTime_t *tp, PyObject *obj, _PyTime_round_t round,
 | |
|                    long unit_to_ns)
 | |
| {
 | |
|     if (PyFloat_Check(obj)) {
 | |
|         double d;
 | |
|         d = PyFloat_AsDouble(obj);
 | |
|         if (Py_IS_NAN(d)) {
 | |
|             PyErr_SetString(PyExc_ValueError, "Invalid value NaN (not a number)");
 | |
|             return -1;
 | |
|         }
 | |
|         return pytime_from_double(tp, d, round, unit_to_ns);
 | |
|     }
 | |
|     else {
 | |
|         long long sec = PyLong_AsLongLong(obj);
 | |
|         if (sec == -1 && PyErr_Occurred()) {
 | |
|             if (PyErr_ExceptionMatches(PyExc_OverflowError)) {
 | |
|                 pytime_overflow();
 | |
|             }
 | |
|             return -1;
 | |
|         }
 | |
| 
 | |
|         static_assert(sizeof(long long) <= sizeof(PyTime_t),
 | |
|                       "PyTime_t is smaller than long long");
 | |
|         PyTime_t ns = (PyTime_t)sec;
 | |
|         if (pytime_mul(&ns, unit_to_ns) < 0) {
 | |
|             pytime_overflow();
 | |
|             return -1;
 | |
|         }
 | |
| 
 | |
|         *tp = pytime_from_nanoseconds(ns);
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| int
 | |
| _PyTime_FromSecondsObject(PyTime_t *tp, PyObject *obj, _PyTime_round_t round)
 | |
| {
 | |
|     return pytime_from_object(tp, obj, round, SEC_TO_NS);
 | |
| }
 | |
| 
 | |
| 
 | |
| int
 | |
| _PyTime_FromMillisecondsObject(PyTime_t *tp, PyObject *obj, _PyTime_round_t round)
 | |
| {
 | |
|     return pytime_from_object(tp, obj, round, MS_TO_NS);
 | |
| }
 | |
| 
 | |
| 
 | |
| double
 | |
| PyTime_AsSecondsDouble(PyTime_t t)
 | |
| {
 | |
|     /* volatile avoids optimization changing how numbers are rounded */
 | |
|     volatile double d;
 | |
| 
 | |
|     PyTime_t ns = pytime_as_nanoseconds(t);
 | |
|     if (ns % SEC_TO_NS == 0) {
 | |
|         /* Divide using integers to avoid rounding issues on the integer part.
 | |
|            1e-9 cannot be stored exactly in IEEE 64-bit. */
 | |
|         PyTime_t secs = ns / SEC_TO_NS;
 | |
|         d = (double)secs;
 | |
|     }
 | |
|     else {
 | |
|         d = (double)ns;
 | |
|         d /= 1e9;
 | |
|     }
 | |
|     return d;
 | |
| }
 | |
| 
 | |
| 
 | |
| PyObject *
 | |
| _PyTime_AsNanosecondsObject(PyTime_t t)
 | |
| {
 | |
|     PyTime_t ns =  pytime_as_nanoseconds(t);
 | |
|     static_assert(sizeof(long long) >= sizeof(PyTime_t),
 | |
|                   "PyTime_t is larger than long long");
 | |
|     return PyLong_FromLongLong((long long)ns);
 | |
| }
 | |
| 
 | |
| PyTime_t
 | |
| _PyTime_FromSecondsDouble(double seconds, _PyTime_round_t round)
 | |
| {
 | |
|     PyTime_t tp;
 | |
|     if(pytime_from_double(&tp, seconds, round, SEC_TO_NS) < 0) {
 | |
|         return -1;
 | |
|     }
 | |
|     return tp;
 | |
| }
 | |
| 
 | |
| 
 | |
| static PyTime_t
 | |
| pytime_divide_round_up(const PyTime_t t, const PyTime_t k)
 | |
| {
 | |
|     assert(k > 1);
 | |
|     if (t >= 0) {
 | |
|         // Don't use (t + k - 1) / k to avoid integer overflow
 | |
|         // if t is equal to PyTime_MAX
 | |
|         PyTime_t q = t / k;
 | |
|         if (t % k) {
 | |
|             q += 1;
 | |
|         }
 | |
|         return q;
 | |
|     }
 | |
|     else {
 | |
|         // Don't use (t - (k - 1)) / k to avoid integer overflow
 | |
|         // if t is equals to PyTime_MIN.
 | |
|         PyTime_t q = t / k;
 | |
|         if (t % k) {
 | |
|             q -= 1;
 | |
|         }
 | |
|         return q;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| static PyTime_t
 | |
| pytime_divide(const PyTime_t t, const PyTime_t k,
 | |
|               const _PyTime_round_t round)
 | |
| {
 | |
|     assert(k > 1);
 | |
|     if (round == _PyTime_ROUND_HALF_EVEN) {
 | |
|         PyTime_t x = t / k;
 | |
|         PyTime_t r = t % k;
 | |
|         PyTime_t abs_r = Py_ABS(r);
 | |
|         if (abs_r > k / 2 || (abs_r == k / 2 && (Py_ABS(x) & 1))) {
 | |
|             if (t >= 0) {
 | |
|                 x++;
 | |
|             }
 | |
|             else {
 | |
|                 x--;
 | |
|             }
 | |
|         }
 | |
|         return x;
 | |
|     }
 | |
|     else if (round == _PyTime_ROUND_CEILING) {
 | |
|         if (t >= 0) {
 | |
|             return pytime_divide_round_up(t, k);
 | |
|         }
 | |
|         else {
 | |
|             return t / k;
 | |
|         }
 | |
|     }
 | |
|     else if (round == _PyTime_ROUND_FLOOR){
 | |
|         if (t >= 0) {
 | |
|             return t / k;
 | |
|         }
 | |
|         else {
 | |
|             return pytime_divide_round_up(t, k);
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         assert(round == _PyTime_ROUND_UP);
 | |
|         return pytime_divide_round_up(t, k);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| // Compute (t / k, t % k) in (pq, pr).
 | |
| // Make sure that 0 <= pr < k.
 | |
| // Return 0 on success.
 | |
| // Return -1 on underflow and store (PyTime_MIN, 0) in (pq, pr).
 | |
| static int
 | |
| pytime_divmod(const PyTime_t t, const PyTime_t k,
 | |
|               PyTime_t *pq, PyTime_t *pr)
 | |
| {
 | |
|     assert(k > 1);
 | |
|     PyTime_t q = t / k;
 | |
|     PyTime_t r = t % k;
 | |
|     if (r < 0) {
 | |
|         if (q == PyTime_MIN) {
 | |
|             *pq = PyTime_MIN;
 | |
|             *pr = 0;
 | |
|             return -1;
 | |
|         }
 | |
|         r += k;
 | |
|         q -= 1;
 | |
|     }
 | |
|     assert(0 <= r && r < k);
 | |
| 
 | |
|     *pq = q;
 | |
|     *pr = r;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifdef MS_WINDOWS
 | |
| PyTime_t
 | |
| _PyTime_As100Nanoseconds(PyTime_t t, _PyTime_round_t round)
 | |
| {
 | |
|     PyTime_t ns = pytime_as_nanoseconds(t);
 | |
|     return pytime_divide(ns, NS_TO_100NS, round);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| PyTime_t
 | |
| _PyTime_AsMicroseconds(PyTime_t t, _PyTime_round_t round)
 | |
| {
 | |
|     PyTime_t ns = pytime_as_nanoseconds(t);
 | |
|     return pytime_divide(ns, NS_TO_US, round);
 | |
| }
 | |
| 
 | |
| 
 | |
| PyTime_t
 | |
| _PyTime_AsMilliseconds(PyTime_t t, _PyTime_round_t round)
 | |
| {
 | |
|     PyTime_t ns = pytime_as_nanoseconds(t);
 | |
|     return pytime_divide(ns, NS_TO_MS, round);
 | |
| }
 | |
| 
 | |
| 
 | |
| static int
 | |
| pytime_as_timeval(PyTime_t t, PyTime_t *ptv_sec, int *ptv_usec,
 | |
|                   _PyTime_round_t round)
 | |
| {
 | |
|     PyTime_t ns = pytime_as_nanoseconds(t);
 | |
|     PyTime_t us = pytime_divide(ns, US_TO_NS, round);
 | |
| 
 | |
|     PyTime_t tv_sec, tv_usec;
 | |
|     int res = pytime_divmod(us, SEC_TO_US, &tv_sec, &tv_usec);
 | |
|     *ptv_sec = tv_sec;
 | |
|     *ptv_usec = (int)tv_usec;
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int
 | |
| pytime_as_timeval_struct(PyTime_t t, struct timeval *tv,
 | |
|                          _PyTime_round_t round, int raise_exc)
 | |
| {
 | |
|     PyTime_t tv_sec;
 | |
|     int tv_usec;
 | |
|     int res = pytime_as_timeval(t, &tv_sec, &tv_usec, round);
 | |
|     int res2;
 | |
| #ifdef MS_WINDOWS
 | |
|     // On Windows, timeval.tv_sec type is long
 | |
|     res2 = _PyTime_AsLong(tv_sec, &tv->tv_sec);
 | |
| #else
 | |
|     res2 = _PyTime_AsTime_t(tv_sec, &tv->tv_sec);
 | |
| #endif
 | |
|     if (res2 < 0) {
 | |
|         tv_usec = 0;
 | |
|     }
 | |
|     tv->tv_usec = tv_usec;
 | |
| 
 | |
|     if (raise_exc && (res < 0 || res2 < 0)) {
 | |
|         pytime_time_t_overflow();
 | |
|         return -1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| int
 | |
| _PyTime_AsTimeval(PyTime_t t, struct timeval *tv, _PyTime_round_t round)
 | |
| {
 | |
|     return pytime_as_timeval_struct(t, tv, round, 1);
 | |
| }
 | |
| 
 | |
| 
 | |
| void
 | |
| _PyTime_AsTimeval_clamp(PyTime_t t, struct timeval *tv, _PyTime_round_t round)
 | |
| {
 | |
|     (void)pytime_as_timeval_struct(t, tv, round, 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| int
 | |
| _PyTime_AsTimevalTime_t(PyTime_t t, time_t *p_secs, int *us,
 | |
|                         _PyTime_round_t round)
 | |
| {
 | |
|     PyTime_t secs;
 | |
|     if (pytime_as_timeval(t, &secs, us, round) < 0) {
 | |
|         pytime_time_t_overflow();
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (_PyTime_AsTime_t(secs, p_secs) < 0) {
 | |
|         pytime_time_t_overflow();
 | |
|         return -1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| #if defined(HAVE_CLOCK_GETTIME) || defined(HAVE_KQUEUE)
 | |
| static int
 | |
| pytime_as_timespec(PyTime_t t, struct timespec *ts, int raise_exc)
 | |
| {
 | |
|     PyTime_t ns = pytime_as_nanoseconds(t);
 | |
|     PyTime_t tv_sec, tv_nsec;
 | |
|     int res = pytime_divmod(ns, SEC_TO_NS, &tv_sec, &tv_nsec);
 | |
| 
 | |
|     int res2 = _PyTime_AsTime_t(tv_sec, &ts->tv_sec);
 | |
|     if (res2 < 0) {
 | |
|         tv_nsec = 0;
 | |
|     }
 | |
|     ts->tv_nsec = tv_nsec;
 | |
| 
 | |
|     if (raise_exc && (res < 0 || res2 < 0)) {
 | |
|         pytime_time_t_overflow();
 | |
|         return -1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void
 | |
| _PyTime_AsTimespec_clamp(PyTime_t t, struct timespec *ts)
 | |
| {
 | |
|     (void)pytime_as_timespec(t, ts, 0);
 | |
| }
 | |
| 
 | |
| int
 | |
| _PyTime_AsTimespec(PyTime_t t, struct timespec *ts)
 | |
| {
 | |
|     return pytime_as_timespec(t, ts, 1);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| // N.B. If raise_exc=0, this may be called without the GIL.
 | |
| static int
 | |
| py_get_system_clock(PyTime_t *tp, _Py_clock_info_t *info, int raise_exc)
 | |
| {
 | |
|     assert(info == NULL || raise_exc);
 | |
| 
 | |
| #ifdef MS_WINDOWS
 | |
|     FILETIME system_time;
 | |
|     ULARGE_INTEGER large;
 | |
| 
 | |
|     GetSystemTimeAsFileTime(&system_time);
 | |
|     large.u.LowPart = system_time.dwLowDateTime;
 | |
|     large.u.HighPart = system_time.dwHighDateTime;
 | |
|     /* 11,644,473,600,000,000,000: number of nanoseconds between
 | |
|        the 1st january 1601 and the 1st january 1970 (369 years + 89 leap
 | |
|        days). */
 | |
|     PyTime_t ns = large.QuadPart * 100 - 11644473600000000000;
 | |
|     *tp = pytime_from_nanoseconds(ns);
 | |
|     if (info) {
 | |
|         DWORD timeAdjustment, timeIncrement;
 | |
|         BOOL isTimeAdjustmentDisabled, ok;
 | |
| 
 | |
|         info->implementation = "GetSystemTimeAsFileTime()";
 | |
|         info->monotonic = 0;
 | |
|         ok = GetSystemTimeAdjustment(&timeAdjustment, &timeIncrement,
 | |
|                                      &isTimeAdjustmentDisabled);
 | |
|         if (!ok) {
 | |
|             PyErr_SetFromWindowsErr(0);
 | |
|             return -1;
 | |
|         }
 | |
|         info->resolution = timeIncrement * 1e-7;
 | |
|         info->adjustable = 1;
 | |
|     }
 | |
| 
 | |
| #else   /* MS_WINDOWS */
 | |
|     int err;
 | |
| #if defined(HAVE_CLOCK_GETTIME)
 | |
|     struct timespec ts;
 | |
| #endif
 | |
| 
 | |
| #if !defined(HAVE_CLOCK_GETTIME) || defined(__APPLE__)
 | |
|     struct timeval tv;
 | |
| #endif
 | |
| 
 | |
| #ifdef HAVE_CLOCK_GETTIME
 | |
| 
 | |
| #ifdef HAVE_CLOCK_GETTIME_RUNTIME
 | |
|     if (HAVE_CLOCK_GETTIME_RUNTIME) {
 | |
| #endif
 | |
| 
 | |
|     err = clock_gettime(CLOCK_REALTIME, &ts);
 | |
|     if (err) {
 | |
|         if (raise_exc) {
 | |
|             PyErr_SetFromErrno(PyExc_OSError);
 | |
|         }
 | |
|         return -1;
 | |
|     }
 | |
|     if (pytime_fromtimespec(tp, &ts, raise_exc) < 0) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (info) {
 | |
|         struct timespec res;
 | |
|         info->implementation = "clock_gettime(CLOCK_REALTIME)";
 | |
|         info->monotonic = 0;
 | |
|         info->adjustable = 1;
 | |
|         if (clock_getres(CLOCK_REALTIME, &res) == 0) {
 | |
|             info->resolution = (double)res.tv_sec + (double)res.tv_nsec * 1e-9;
 | |
|         }
 | |
|         else {
 | |
|             info->resolution = 1e-9;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| #ifdef HAVE_CLOCK_GETTIME_RUNTIME
 | |
|     }
 | |
|     else {
 | |
| #endif
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #if !defined(HAVE_CLOCK_GETTIME) || defined(HAVE_CLOCK_GETTIME_RUNTIME)
 | |
| 
 | |
|      /* test gettimeofday() */
 | |
|     err = gettimeofday(&tv, (struct timezone *)NULL);
 | |
|     if (err) {
 | |
|         if (raise_exc) {
 | |
|             PyErr_SetFromErrno(PyExc_OSError);
 | |
|         }
 | |
|         return -1;
 | |
|     }
 | |
|     if (pytime_fromtimeval(tp, &tv, raise_exc) < 0) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (info) {
 | |
|         info->implementation = "gettimeofday()";
 | |
|         info->resolution = 1e-6;
 | |
|         info->monotonic = 0;
 | |
|         info->adjustable = 1;
 | |
|     }
 | |
| 
 | |
| #if defined(HAVE_CLOCK_GETTIME_RUNTIME) && defined(HAVE_CLOCK_GETTIME)
 | |
|     } /* end of availability block */
 | |
| #endif
 | |
| 
 | |
| #endif   /* !HAVE_CLOCK_GETTIME */
 | |
| #endif   /* !MS_WINDOWS */
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| PyTime_t
 | |
| _PyTime_GetSystemClock(void)
 | |
| {
 | |
|     PyTime_t t;
 | |
|     if (py_get_system_clock(&t, NULL, 0) < 0) {
 | |
|         // If clock_gettime(CLOCK_REALTIME) or gettimeofday() fails:
 | |
|         // silently ignore the failure and return 0.
 | |
|         t = 0;
 | |
|     }
 | |
|     return t;
 | |
| }
 | |
| 
 | |
| 
 | |
| int
 | |
| PyTime_Time(PyTime_t *result)
 | |
| {
 | |
|     if (py_get_system_clock(result, NULL, 1) < 0) {
 | |
|         // If clock_gettime(CLOCK_REALTIME) or gettimeofday() fails:
 | |
|         // silently ignore the failure and return 0.
 | |
|         *result = 0;
 | |
|         return -1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int
 | |
| _PyTime_GetSystemClockWithInfo(PyTime_t *t, _Py_clock_info_t *info)
 | |
| {
 | |
|     return py_get_system_clock(t, info, 1);
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifdef __APPLE__
 | |
| static int
 | |
| py_mach_timebase_info(_PyTimeFraction *base, int raise)
 | |
| {
 | |
|     mach_timebase_info_data_t timebase;
 | |
|     // According to the Technical Q&A QA1398, mach_timebase_info() cannot
 | |
|     // fail: https://developer.apple.com/library/mac/#qa/qa1398/
 | |
|     (void)mach_timebase_info(&timebase);
 | |
| 
 | |
|     // Check that timebase.numer and timebase.denom can be casted to
 | |
|     // PyTime_t. In practice, timebase uses uint32_t, so casting cannot
 | |
|     // overflow. At the end, only make sure that the type is uint32_t
 | |
|     // (PyTime_t is 64-bit long).
 | |
|     Py_BUILD_ASSERT(sizeof(timebase.numer) <= sizeof(PyTime_t));
 | |
|     Py_BUILD_ASSERT(sizeof(timebase.denom) <= sizeof(PyTime_t));
 | |
|     PyTime_t numer = (PyTime_t)timebase.numer;
 | |
|     PyTime_t denom = (PyTime_t)timebase.denom;
 | |
| 
 | |
|     // Known time bases:
 | |
|     //
 | |
|     // * (1, 1) on Intel: 1 ns
 | |
|     // * (1000000000, 33333335) on PowerPC: ~30 ns
 | |
|     // * (1000000000, 25000000) on PowerPC: 40 ns
 | |
|     if (_PyTimeFraction_Set(base, numer, denom) < 0) {
 | |
|         if (raise) {
 | |
|             PyErr_SetString(PyExc_RuntimeError,
 | |
|                             "invalid mach_timebase_info");
 | |
|         }
 | |
|         return -1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| // N.B. If raise_exc=0, this may be called without the GIL.
 | |
| static int
 | |
| py_get_monotonic_clock(PyTime_t *tp, _Py_clock_info_t *info, int raise_exc)
 | |
| {
 | |
|     assert(info == NULL || raise_exc);
 | |
| 
 | |
| #if defined(MS_WINDOWS)
 | |
|     ULONGLONG ticks = GetTickCount64();
 | |
|     static_assert(sizeof(ticks) <= sizeof(PyTime_t),
 | |
|                   "ULONGLONG is larger than PyTime_t");
 | |
|     PyTime_t t;
 | |
|     if (ticks <= (ULONGLONG)PyTime_MAX) {
 | |
|         t = (PyTime_t)ticks;
 | |
|     }
 | |
|     else {
 | |
|         // GetTickCount64() maximum is larger than PyTime_t maximum:
 | |
|         // ULONGLONG is unsigned, whereas PyTime_t is signed.
 | |
|         t = PyTime_MAX;
 | |
|     }
 | |
| 
 | |
|     int res = pytime_mul(&t, MS_TO_NS);
 | |
|     *tp = t;
 | |
| 
 | |
|     if (raise_exc && res < 0) {
 | |
|         pytime_overflow();
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (info) {
 | |
|         DWORD timeAdjustment, timeIncrement;
 | |
|         BOOL isTimeAdjustmentDisabled, ok;
 | |
|         info->implementation = "GetTickCount64()";
 | |
|         info->monotonic = 1;
 | |
|         ok = GetSystemTimeAdjustment(&timeAdjustment, &timeIncrement,
 | |
|                                      &isTimeAdjustmentDisabled);
 | |
|         if (!ok) {
 | |
|             PyErr_SetFromWindowsErr(0);
 | |
|             return -1;
 | |
|         }
 | |
|         info->resolution = timeIncrement * 1e-7;
 | |
|         info->adjustable = 0;
 | |
|     }
 | |
| 
 | |
| #elif defined(__APPLE__)
 | |
|     static _PyTimeFraction base = {0, 0};
 | |
|     if (base.denom == 0) {
 | |
|         if (py_mach_timebase_info(&base, raise_exc) < 0) {
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (info) {
 | |
|         info->implementation = "mach_absolute_time()";
 | |
|         info->resolution = _PyTimeFraction_Resolution(&base);
 | |
|         info->monotonic = 1;
 | |
|         info->adjustable = 0;
 | |
|     }
 | |
| 
 | |
|     uint64_t uticks = mach_absolute_time();
 | |
|     // unsigned => signed
 | |
|     assert(uticks <= (uint64_t)PyTime_MAX);
 | |
|     PyTime_t ticks = (PyTime_t)uticks;
 | |
| 
 | |
|     PyTime_t ns = _PyTimeFraction_Mul(ticks, &base);
 | |
|     *tp = pytime_from_nanoseconds(ns);
 | |
| 
 | |
| #elif defined(__hpux)
 | |
|     hrtime_t time;
 | |
| 
 | |
|     time = gethrtime();
 | |
|     if (time == -1) {
 | |
|         if (raise_exc) {
 | |
|             PyErr_SetFromErrno(PyExc_OSError);
 | |
|         }
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     *tp = pytime_from_nanoseconds(time);
 | |
| 
 | |
|     if (info) {
 | |
|         info->implementation = "gethrtime()";
 | |
|         info->resolution = 1e-9;
 | |
|         info->monotonic = 1;
 | |
|         info->adjustable = 0;
 | |
|     }
 | |
| 
 | |
| #else
 | |
| 
 | |
| #ifdef CLOCK_HIGHRES
 | |
|     const clockid_t clk_id = CLOCK_HIGHRES;
 | |
|     const char *implementation = "clock_gettime(CLOCK_HIGHRES)";
 | |
| #else
 | |
|     const clockid_t clk_id = CLOCK_MONOTONIC;
 | |
|     const char *implementation = "clock_gettime(CLOCK_MONOTONIC)";
 | |
| #endif
 | |
| 
 | |
|     struct timespec ts;
 | |
|     if (clock_gettime(clk_id, &ts) != 0) {
 | |
|         if (raise_exc) {
 | |
|             PyErr_SetFromErrno(PyExc_OSError);
 | |
|             return -1;
 | |
|         }
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (pytime_fromtimespec(tp, &ts, raise_exc) < 0) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (info) {
 | |
|         info->monotonic = 1;
 | |
|         info->implementation = implementation;
 | |
|         info->adjustable = 0;
 | |
|         struct timespec res;
 | |
|         if (clock_getres(clk_id, &res) != 0) {
 | |
|             PyErr_SetFromErrno(PyExc_OSError);
 | |
|             return -1;
 | |
|         }
 | |
|         info->resolution = res.tv_sec + res.tv_nsec * 1e-9;
 | |
|     }
 | |
| #endif
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| PyTime_t
 | |
| _PyTime_GetMonotonicClock(void)
 | |
| {
 | |
|     PyTime_t t;
 | |
|     if (py_get_monotonic_clock(&t, NULL, 0) < 0) {
 | |
|         // If mach_timebase_info(), clock_gettime() or gethrtime() fails:
 | |
|         // silently ignore the failure and return 0.
 | |
|         t = 0;
 | |
|     }
 | |
|     return t;
 | |
| }
 | |
| 
 | |
| 
 | |
| int
 | |
| PyTime_Monotonic(PyTime_t *result)
 | |
| {
 | |
|     if (py_get_monotonic_clock(result, NULL, 1) < 0) {
 | |
|         *result = 0;
 | |
|         return -1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| int
 | |
| _PyTime_GetMonotonicClockWithInfo(PyTime_t *tp, _Py_clock_info_t *info)
 | |
| {
 | |
|     return py_get_monotonic_clock(tp, info, 1);
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifdef MS_WINDOWS
 | |
| static int
 | |
| py_win_perf_counter_frequency(_PyTimeFraction *base, int raise)
 | |
| {
 | |
|     LONGLONG frequency;
 | |
| 
 | |
|     LARGE_INTEGER freq;
 | |
|     // Since Windows XP, the function cannot fail.
 | |
|     (void)QueryPerformanceFrequency(&freq);
 | |
|     frequency = freq.QuadPart;
 | |
| 
 | |
|     // Since Windows XP, frequency cannot be zero.
 | |
|     assert(frequency >= 1);
 | |
| 
 | |
|     Py_BUILD_ASSERT(sizeof(PyTime_t) == sizeof(frequency));
 | |
|     PyTime_t denom = (PyTime_t)frequency;
 | |
| 
 | |
|     // Known QueryPerformanceFrequency() values:
 | |
|     //
 | |
|     // * 10,000,000 (10 MHz): 100 ns resolution
 | |
|     // * 3,579,545 Hz (3.6 MHz): 279 ns resolution
 | |
|     if (_PyTimeFraction_Set(base, SEC_TO_NS, denom) < 0) {
 | |
|         if (raise) {
 | |
|             PyErr_SetString(PyExc_RuntimeError,
 | |
|                             "invalid QueryPerformanceFrequency");
 | |
|         }
 | |
|         return -1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| // N.B. If raise_exc=0, this may be called without the GIL.
 | |
| static int
 | |
| py_get_win_perf_counter(PyTime_t *tp, _Py_clock_info_t *info, int raise_exc)
 | |
| {
 | |
|     assert(info == NULL || raise_exc);
 | |
| 
 | |
|     static _PyTimeFraction base = {0, 0};
 | |
|     if (base.denom == 0) {
 | |
|         if (py_win_perf_counter_frequency(&base, raise_exc) < 0) {
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (info) {
 | |
|         info->implementation = "QueryPerformanceCounter()";
 | |
|         info->resolution = _PyTimeFraction_Resolution(&base);
 | |
|         info->monotonic = 1;
 | |
|         info->adjustable = 0;
 | |
|     }
 | |
| 
 | |
|     LARGE_INTEGER now;
 | |
|     QueryPerformanceCounter(&now);
 | |
|     LONGLONG ticksll = now.QuadPart;
 | |
| 
 | |
|     /* Make sure that casting LONGLONG to PyTime_t cannot overflow,
 | |
|        both types are signed */
 | |
|     PyTime_t ticks;
 | |
|     static_assert(sizeof(ticksll) <= sizeof(ticks),
 | |
|                   "LONGLONG is larger than PyTime_t");
 | |
|     ticks = (PyTime_t)ticksll;
 | |
| 
 | |
|     PyTime_t ns = _PyTimeFraction_Mul(ticks, &base);
 | |
|     *tp = pytime_from_nanoseconds(ns);
 | |
|     return 0;
 | |
| }
 | |
| #endif  // MS_WINDOWS
 | |
| 
 | |
| 
 | |
| int
 | |
| _PyTime_GetPerfCounterWithInfo(PyTime_t *t, _Py_clock_info_t *info)
 | |
| {
 | |
| #ifdef MS_WINDOWS
 | |
|     return py_get_win_perf_counter(t, info, 1);
 | |
| #else
 | |
|     return _PyTime_GetMonotonicClockWithInfo(t, info);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| PyTime_t
 | |
| _PyTime_GetPerfCounter(void)
 | |
| {
 | |
|     PyTime_t t;
 | |
|     int res;
 | |
| #ifdef MS_WINDOWS
 | |
|     res = py_get_win_perf_counter(&t, NULL, 0);
 | |
| #else
 | |
|     res = py_get_monotonic_clock(&t, NULL, 0);
 | |
| #endif
 | |
|     if (res  < 0) {
 | |
|         // If py_win_perf_counter_frequency() or py_get_monotonic_clock()
 | |
|         // fails: silently ignore the failure and return 0.
 | |
|         t = 0;
 | |
|     }
 | |
|     return t;
 | |
| }
 | |
| 
 | |
| 
 | |
| int
 | |
| PyTime_PerfCounter(PyTime_t *result)
 | |
| {
 | |
|     int res;
 | |
| #ifdef MS_WINDOWS
 | |
|     res = py_get_win_perf_counter(result, NULL, 1);
 | |
| #else
 | |
|     res = py_get_monotonic_clock(result, NULL, 1);
 | |
| #endif
 | |
|     if (res  < 0) {
 | |
|         // If py_win_perf_counter_frequency() or py_get_monotonic_clock()
 | |
|         // fails: silently ignore the failure and return 0.
 | |
|         *result = 0;
 | |
|         return -1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| int
 | |
| _PyTime_localtime(time_t t, struct tm *tm)
 | |
| {
 | |
| #ifdef MS_WINDOWS
 | |
|     int error;
 | |
| 
 | |
|     error = localtime_s(tm, &t);
 | |
|     if (error != 0) {
 | |
|         errno = error;
 | |
|         PyErr_SetFromErrno(PyExc_OSError);
 | |
|         return -1;
 | |
|     }
 | |
|     return 0;
 | |
| #else /* !MS_WINDOWS */
 | |
| 
 | |
| #if defined(_AIX) && (SIZEOF_TIME_T < 8)
 | |
|     /* bpo-34373: AIX does not return NULL if t is too small or too large */
 | |
|     if (t < -2145916800 /* 1902-01-01 */
 | |
|        || t > 2145916800 /* 2038-01-01 */) {
 | |
|         errno = EINVAL;
 | |
|         PyErr_SetString(PyExc_OverflowError,
 | |
|                         "localtime argument out of range");
 | |
|         return -1;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     errno = 0;
 | |
|     if (localtime_r(&t, tm) == NULL) {
 | |
|         if (errno == 0) {
 | |
|             errno = EINVAL;
 | |
|         }
 | |
|         PyErr_SetFromErrno(PyExc_OSError);
 | |
|         return -1;
 | |
|     }
 | |
|     return 0;
 | |
| #endif /* MS_WINDOWS */
 | |
| }
 | |
| 
 | |
| 
 | |
| int
 | |
| _PyTime_gmtime(time_t t, struct tm *tm)
 | |
| {
 | |
| #ifdef MS_WINDOWS
 | |
|     int error;
 | |
| 
 | |
|     error = gmtime_s(tm, &t);
 | |
|     if (error != 0) {
 | |
|         errno = error;
 | |
|         PyErr_SetFromErrno(PyExc_OSError);
 | |
|         return -1;
 | |
|     }
 | |
|     return 0;
 | |
| #else /* !MS_WINDOWS */
 | |
|     if (gmtime_r(&t, tm) == NULL) {
 | |
| #ifdef EINVAL
 | |
|         if (errno == 0) {
 | |
|             errno = EINVAL;
 | |
|         }
 | |
| #endif
 | |
|         PyErr_SetFromErrno(PyExc_OSError);
 | |
|         return -1;
 | |
|     }
 | |
|     return 0;
 | |
| #endif /* MS_WINDOWS */
 | |
| }
 | |
| 
 | |
| 
 | |
| PyTime_t
 | |
| _PyDeadline_Init(PyTime_t timeout)
 | |
| {
 | |
|     PyTime_t now = _PyTime_GetMonotonicClock();
 | |
|     return _PyTime_Add(now, timeout);
 | |
| }
 | |
| 
 | |
| 
 | |
| PyTime_t
 | |
| _PyDeadline_Get(PyTime_t deadline)
 | |
| {
 | |
|     PyTime_t now = _PyTime_GetMonotonicClock();
 | |
|     return deadline - now;
 | |
| }
 | 
