mirror of
				https://github.com/python/cpython.git
				synced 2025-10-31 05:31:20 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			259 lines
		
	
	
	
		
			6.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			259 lines
		
	
	
	
		
			6.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2008-2020 Stefan Krah. All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  *
 | |
|  * 1. Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  *
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in the
 | |
|  *    documentation and/or other materials provided with the distribution.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
 | |
|  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
|  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 | |
|  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
|  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 | |
|  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | |
|  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | |
|  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 | |
|  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 | |
|  * SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| 
 | |
| #include "mpdecimal.h"
 | |
| 
 | |
| #include <assert.h>
 | |
| 
 | |
| #include "constants.h"
 | |
| #include "fourstep.h"
 | |
| #include "numbertheory.h"
 | |
| #include "sixstep.h"
 | |
| #include "umodarith.h"
 | |
| 
 | |
| 
 | |
| /* Bignum: Cache efficient Matrix Fourier Transform for arrays of the
 | |
|    form 3 * 2**n (See literature/matrix-transform.txt). */
 | |
| 
 | |
| 
 | |
| #ifndef PPRO
 | |
| static inline void
 | |
| std_size3_ntt(mpd_uint_t *x1, mpd_uint_t *x2, mpd_uint_t *x3,
 | |
|               mpd_uint_t w3table[3], mpd_uint_t umod)
 | |
| {
 | |
|     mpd_uint_t r1, r2;
 | |
|     mpd_uint_t w;
 | |
|     mpd_uint_t s, tmp;
 | |
| 
 | |
| 
 | |
|     /* k = 0 -> w = 1 */
 | |
|     s = *x1;
 | |
|     s = addmod(s, *x2, umod);
 | |
|     s = addmod(s, *x3, umod);
 | |
| 
 | |
|     r1 = s;
 | |
| 
 | |
|     /* k = 1 */
 | |
|     s = *x1;
 | |
| 
 | |
|     w = w3table[1];
 | |
|     tmp = MULMOD(*x2, w);
 | |
|     s = addmod(s, tmp, umod);
 | |
| 
 | |
|     w = w3table[2];
 | |
|     tmp = MULMOD(*x3, w);
 | |
|     s = addmod(s, tmp, umod);
 | |
| 
 | |
|     r2 = s;
 | |
| 
 | |
|     /* k = 2 */
 | |
|     s = *x1;
 | |
| 
 | |
|     w = w3table[2];
 | |
|     tmp = MULMOD(*x2, w);
 | |
|     s = addmod(s, tmp, umod);
 | |
| 
 | |
|     w = w3table[1];
 | |
|     tmp = MULMOD(*x3, w);
 | |
|     s = addmod(s, tmp, umod);
 | |
| 
 | |
|     *x3 = s;
 | |
|     *x2 = r2;
 | |
|     *x1 = r1;
 | |
| }
 | |
| #else /* PPRO */
 | |
| static inline void
 | |
| ppro_size3_ntt(mpd_uint_t *x1, mpd_uint_t *x2, mpd_uint_t *x3, mpd_uint_t w3table[3],
 | |
|                mpd_uint_t umod, double *dmod, uint32_t dinvmod[3])
 | |
| {
 | |
|     mpd_uint_t r1, r2;
 | |
|     mpd_uint_t w;
 | |
|     mpd_uint_t s, tmp;
 | |
| 
 | |
| 
 | |
|     /* k = 0 -> w = 1 */
 | |
|     s = *x1;
 | |
|     s = addmod(s, *x2, umod);
 | |
|     s = addmod(s, *x3, umod);
 | |
| 
 | |
|     r1 = s;
 | |
| 
 | |
|     /* k = 1 */
 | |
|     s = *x1;
 | |
| 
 | |
|     w = w3table[1];
 | |
|     tmp = ppro_mulmod(*x2, w, dmod, dinvmod);
 | |
|     s = addmod(s, tmp, umod);
 | |
| 
 | |
|     w = w3table[2];
 | |
|     tmp = ppro_mulmod(*x3, w, dmod, dinvmod);
 | |
|     s = addmod(s, tmp, umod);
 | |
| 
 | |
|     r2 = s;
 | |
| 
 | |
|     /* k = 2 */
 | |
|     s = *x1;
 | |
| 
 | |
|     w = w3table[2];
 | |
|     tmp = ppro_mulmod(*x2, w, dmod, dinvmod);
 | |
|     s = addmod(s, tmp, umod);
 | |
| 
 | |
|     w = w3table[1];
 | |
|     tmp = ppro_mulmod(*x3, w, dmod, dinvmod);
 | |
|     s = addmod(s, tmp, umod);
 | |
| 
 | |
|     *x3 = s;
 | |
|     *x2 = r2;
 | |
|     *x1 = r1;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* forward transform, sign = -1; transform length = 3 * 2**n */
 | |
| int
 | |
| four_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum)
 | |
| {
 | |
|     mpd_size_t R = 3; /* number of rows */
 | |
|     mpd_size_t C = n / 3; /* number of columns */
 | |
|     mpd_uint_t w3table[3];
 | |
|     mpd_uint_t kernel, w0, w1, wstep;
 | |
|     mpd_uint_t *s, *p0, *p1, *p2;
 | |
|     mpd_uint_t umod;
 | |
| #ifdef PPRO
 | |
|     double dmod;
 | |
|     uint32_t dinvmod[3];
 | |
| #endif
 | |
|     mpd_size_t i, k;
 | |
| 
 | |
| 
 | |
|     assert(n >= 48);
 | |
|     assert(n <= 3*MPD_MAXTRANSFORM_2N);
 | |
| 
 | |
| 
 | |
|     /* Length R transform on the columns. */
 | |
|     SETMODULUS(modnum);
 | |
|     _mpd_init_w3table(w3table, -1, modnum);
 | |
|     for (p0=a, p1=p0+C, p2=p0+2*C; p0<a+C; p0++,p1++,p2++) {
 | |
| 
 | |
|         SIZE3_NTT(p0, p1, p2, w3table);
 | |
|     }
 | |
| 
 | |
|     /* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */
 | |
|     kernel = _mpd_getkernel(n, -1, modnum);
 | |
|     for (i = 1; i < R; i++) {
 | |
|         w0 = 1;                  /* r**(i*0): initial value for k=0 */
 | |
|         w1 = POWMOD(kernel, i);  /* r**(i*1): initial value for k=1 */
 | |
|         wstep = MULMOD(w1, w1);  /* r**(2*i) */
 | |
|         for (k = 0; k < C-1; k += 2) {
 | |
|             mpd_uint_t x0 = a[i*C+k];
 | |
|             mpd_uint_t x1 = a[i*C+k+1];
 | |
|             MULMOD2(&x0, w0, &x1, w1);
 | |
|             MULMOD2C(&w0, &w1, wstep);  /* r**(i*(k+2)) = r**(i*k) * r**(2*i) */
 | |
|             a[i*C+k] = x0;
 | |
|             a[i*C+k+1] = x1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Length C transform on the rows. */
 | |
|     for (s = a; s < a+n; s += C) {
 | |
|         if (!six_step_fnt(s, C, modnum)) {
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| #if 0
 | |
|     /* An unordered transform is sufficient for convolution. */
 | |
|     /* Transpose the matrix. */
 | |
|     #include "transpose.h"
 | |
|     transpose_3xpow2(a, R, C);
 | |
| #endif
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /* backward transform, sign = 1; transform length = 3 * 2**n */
 | |
| int
 | |
| inv_four_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum)
 | |
| {
 | |
|     mpd_size_t R = 3; /* number of rows */
 | |
|     mpd_size_t C = n / 3; /* number of columns */
 | |
|     mpd_uint_t w3table[3];
 | |
|     mpd_uint_t kernel, w0, w1, wstep;
 | |
|     mpd_uint_t *s, *p0, *p1, *p2;
 | |
|     mpd_uint_t umod;
 | |
| #ifdef PPRO
 | |
|     double dmod;
 | |
|     uint32_t dinvmod[3];
 | |
| #endif
 | |
|     mpd_size_t i, k;
 | |
| 
 | |
| 
 | |
|     assert(n >= 48);
 | |
|     assert(n <= 3*MPD_MAXTRANSFORM_2N);
 | |
| 
 | |
| 
 | |
| #if 0
 | |
|     /* An unordered transform is sufficient for convolution. */
 | |
|     /* Transpose the matrix, producing an R*C matrix. */
 | |
|     #include "transpose.h"
 | |
|     transpose_3xpow2(a, C, R);
 | |
| #endif
 | |
| 
 | |
|     /* Length C transform on the rows. */
 | |
|     for (s = a; s < a+n; s += C) {
 | |
|         if (!inv_six_step_fnt(s, C, modnum)) {
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */
 | |
|     SETMODULUS(modnum);
 | |
|     kernel = _mpd_getkernel(n, 1, modnum);
 | |
|     for (i = 1; i < R; i++) {
 | |
|         w0 = 1;
 | |
|         w1 = POWMOD(kernel, i);
 | |
|         wstep = MULMOD(w1, w1);
 | |
|         for (k = 0; k < C; k += 2) {
 | |
|             mpd_uint_t x0 = a[i*C+k];
 | |
|             mpd_uint_t x1 = a[i*C+k+1];
 | |
|             MULMOD2(&x0, w0, &x1, w1);
 | |
|             MULMOD2C(&w0, &w1, wstep);
 | |
|             a[i*C+k] = x0;
 | |
|             a[i*C+k+1] = x1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Length R transform on the columns. */
 | |
|     _mpd_init_w3table(w3table, 1, modnum);
 | |
|     for (p0=a, p1=p0+C, p2=p0+2*C; p0<a+C; p0++,p1++,p2++) {
 | |
| 
 | |
|         SIZE3_NTT(p0, p1, p2, w3table);
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| }
 | 
