mirror of
				https://github.com/python/cpython.git
				synced 2025-11-03 07:01:21 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1321 lines
		
	
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1321 lines
		
	
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
 | 
						|
#include "Python.h"
 | 
						|
#include "pycore_ceval.h"         // _PyEval_SignalReceived()
 | 
						|
#include "pycore_initconfig.h"    // _PyStatus_OK()
 | 
						|
#include "pycore_interp.h"        // _Py_RunGC()
 | 
						|
#include "pycore_pyerrors.h"      // _PyErr_GetRaisedException()
 | 
						|
#include "pycore_pylifecycle.h"   // _PyErr_Print()
 | 
						|
#include "pycore_pymem.h"         // _PyMem_IsPtrFreed()
 | 
						|
#include "pycore_pystats.h"       // _Py_PrintSpecializationStats()
 | 
						|
#include "pycore_pythread.h"      // PyThread_hang_thread()
 | 
						|
 | 
						|
/*
 | 
						|
   Notes about the implementation:
 | 
						|
 | 
						|
   - The GIL is just a boolean variable (locked) whose access is protected
 | 
						|
     by a mutex (gil_mutex), and whose changes are signalled by a condition
 | 
						|
     variable (gil_cond). gil_mutex is taken for short periods of time,
 | 
						|
     and therefore mostly uncontended.
 | 
						|
 | 
						|
   - In the GIL-holding thread, the main loop (PyEval_EvalFrameEx) must be
 | 
						|
     able to release the GIL on demand by another thread. A volatile boolean
 | 
						|
     variable (gil_drop_request) is used for that purpose, which is checked
 | 
						|
     at every turn of the eval loop. That variable is set after a wait of
 | 
						|
     `interval` microseconds on `gil_cond` has timed out.
 | 
						|
 | 
						|
      [Actually, another volatile boolean variable (eval_breaker) is used
 | 
						|
       which ORs several conditions into one. Volatile booleans are
 | 
						|
       sufficient as inter-thread signalling means since Python is run
 | 
						|
       on cache-coherent architectures only.]
 | 
						|
 | 
						|
   - A thread wanting to take the GIL will first let pass a given amount of
 | 
						|
     time (`interval` microseconds) before setting gil_drop_request. This
 | 
						|
     encourages a defined switching period, but doesn't enforce it since
 | 
						|
     opcodes can take an arbitrary time to execute.
 | 
						|
 | 
						|
     The `interval` value is available for the user to read and modify
 | 
						|
     using the Python API `sys.{get,set}switchinterval()`.
 | 
						|
 | 
						|
   - When a thread releases the GIL and gil_drop_request is set, that thread
 | 
						|
     ensures that another GIL-awaiting thread gets scheduled.
 | 
						|
     It does so by waiting on a condition variable (switch_cond) until
 | 
						|
     the value of last_holder is changed to something else than its
 | 
						|
     own thread state pointer, indicating that another thread was able to
 | 
						|
     take the GIL.
 | 
						|
 | 
						|
     This is meant to prohibit the latency-adverse behaviour on multi-core
 | 
						|
     machines where one thread would speculatively release the GIL, but still
 | 
						|
     run and end up being the first to re-acquire it, making the "timeslices"
 | 
						|
     much longer than expected.
 | 
						|
     (Note: this mechanism is enabled with FORCE_SWITCHING above)
 | 
						|
*/
 | 
						|
 | 
						|
// Atomically copy the bits indicated by mask between two values.
 | 
						|
static inline void
 | 
						|
copy_eval_breaker_bits(uintptr_t *from, uintptr_t *to, uintptr_t mask)
 | 
						|
{
 | 
						|
    uintptr_t from_bits = _Py_atomic_load_uintptr_relaxed(from) & mask;
 | 
						|
    uintptr_t old_value = _Py_atomic_load_uintptr_relaxed(to);
 | 
						|
    uintptr_t to_bits = old_value & mask;
 | 
						|
    if (from_bits == to_bits) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    uintptr_t new_value;
 | 
						|
    do {
 | 
						|
        new_value = (old_value & ~mask) | from_bits;
 | 
						|
    } while (!_Py_atomic_compare_exchange_uintptr(to, &old_value, new_value));
 | 
						|
}
 | 
						|
 | 
						|
// When attaching a thread, set the global instrumentation version and
 | 
						|
// _PY_CALLS_TO_DO_BIT from the current state of the interpreter.
 | 
						|
static inline void
 | 
						|
update_eval_breaker_for_thread(PyInterpreterState *interp, PyThreadState *tstate)
 | 
						|
{
 | 
						|
#ifdef Py_GIL_DISABLED
 | 
						|
    // Free-threaded builds eagerly update the eval_breaker on *all* threads as
 | 
						|
    // needed, so this function doesn't apply.
 | 
						|
    return;
 | 
						|
#endif
 | 
						|
 | 
						|
    int32_t npending = _Py_atomic_load_int32_relaxed(
 | 
						|
        &interp->ceval.pending.npending);
 | 
						|
    if (npending) {
 | 
						|
        _Py_set_eval_breaker_bit(tstate, _PY_CALLS_TO_DO_BIT);
 | 
						|
    }
 | 
						|
    else if (_Py_IsMainThread()) {
 | 
						|
        npending = _Py_atomic_load_int32_relaxed(
 | 
						|
            &_PyRuntime.ceval.pending_mainthread.npending);
 | 
						|
        if (npending) {
 | 
						|
            _Py_set_eval_breaker_bit(tstate, _PY_CALLS_TO_DO_BIT);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // _PY_CALLS_TO_DO_BIT was derived from other state above, so the only bits
 | 
						|
    // we copy from our interpreter's state are the instrumentation version.
 | 
						|
    copy_eval_breaker_bits(&interp->ceval.instrumentation_version,
 | 
						|
                           &tstate->eval_breaker,
 | 
						|
                           ~_PY_EVAL_EVENTS_MASK);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Implementation of the Global Interpreter Lock (GIL).
 | 
						|
 */
 | 
						|
 | 
						|
#include <stdlib.h>
 | 
						|
#include <errno.h>
 | 
						|
 | 
						|
#include "condvar.h"
 | 
						|
 | 
						|
#define MUTEX_INIT(mut) \
 | 
						|
    if (PyMUTEX_INIT(&(mut))) { \
 | 
						|
        Py_FatalError("PyMUTEX_INIT(" #mut ") failed"); };
 | 
						|
#define MUTEX_FINI(mut) \
 | 
						|
    if (PyMUTEX_FINI(&(mut))) { \
 | 
						|
        Py_FatalError("PyMUTEX_FINI(" #mut ") failed"); };
 | 
						|
#define MUTEX_LOCK(mut) \
 | 
						|
    if (PyMUTEX_LOCK(&(mut))) { \
 | 
						|
        Py_FatalError("PyMUTEX_LOCK(" #mut ") failed"); };
 | 
						|
#define MUTEX_UNLOCK(mut) \
 | 
						|
    if (PyMUTEX_UNLOCK(&(mut))) { \
 | 
						|
        Py_FatalError("PyMUTEX_UNLOCK(" #mut ") failed"); };
 | 
						|
 | 
						|
#define COND_INIT(cond) \
 | 
						|
    if (PyCOND_INIT(&(cond))) { \
 | 
						|
        Py_FatalError("PyCOND_INIT(" #cond ") failed"); };
 | 
						|
#define COND_FINI(cond) \
 | 
						|
    if (PyCOND_FINI(&(cond))) { \
 | 
						|
        Py_FatalError("PyCOND_FINI(" #cond ") failed"); };
 | 
						|
#define COND_SIGNAL(cond) \
 | 
						|
    if (PyCOND_SIGNAL(&(cond))) { \
 | 
						|
        Py_FatalError("PyCOND_SIGNAL(" #cond ") failed"); };
 | 
						|
#define COND_WAIT(cond, mut) \
 | 
						|
    if (PyCOND_WAIT(&(cond), &(mut))) { \
 | 
						|
        Py_FatalError("PyCOND_WAIT(" #cond ") failed"); };
 | 
						|
#define COND_TIMED_WAIT(cond, mut, microseconds, timeout_result) \
 | 
						|
    { \
 | 
						|
        int r = PyCOND_TIMEDWAIT(&(cond), &(mut), (microseconds)); \
 | 
						|
        if (r < 0) \
 | 
						|
            Py_FatalError("PyCOND_WAIT(" #cond ") failed"); \
 | 
						|
        if (r) /* 1 == timeout, 2 == impl. can't say, so assume timeout */ \
 | 
						|
            timeout_result = 1; \
 | 
						|
        else \
 | 
						|
            timeout_result = 0; \
 | 
						|
    } \
 | 
						|
 | 
						|
 | 
						|
#define DEFAULT_INTERVAL 5000
 | 
						|
 | 
						|
static void _gil_initialize(struct _gil_runtime_state *gil)
 | 
						|
{
 | 
						|
    gil->locked = -1;
 | 
						|
    gil->interval = DEFAULT_INTERVAL;
 | 
						|
}
 | 
						|
 | 
						|
static int gil_created(struct _gil_runtime_state *gil)
 | 
						|
{
 | 
						|
    if (gil == NULL) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    return (_Py_atomic_load_int_acquire(&gil->locked) >= 0);
 | 
						|
}
 | 
						|
 | 
						|
static void create_gil(struct _gil_runtime_state *gil)
 | 
						|
{
 | 
						|
    MUTEX_INIT(gil->mutex);
 | 
						|
#ifdef FORCE_SWITCHING
 | 
						|
    MUTEX_INIT(gil->switch_mutex);
 | 
						|
#endif
 | 
						|
    COND_INIT(gil->cond);
 | 
						|
#ifdef FORCE_SWITCHING
 | 
						|
    COND_INIT(gil->switch_cond);
 | 
						|
#endif
 | 
						|
    _Py_atomic_store_ptr_relaxed(&gil->last_holder, 0);
 | 
						|
    _Py_ANNOTATE_RWLOCK_CREATE(&gil->locked);
 | 
						|
    _Py_atomic_store_int_release(&gil->locked, 0);
 | 
						|
}
 | 
						|
 | 
						|
static void destroy_gil(struct _gil_runtime_state *gil)
 | 
						|
{
 | 
						|
    /* some pthread-like implementations tie the mutex to the cond
 | 
						|
     * and must have the cond destroyed first.
 | 
						|
     */
 | 
						|
    COND_FINI(gil->cond);
 | 
						|
    MUTEX_FINI(gil->mutex);
 | 
						|
#ifdef FORCE_SWITCHING
 | 
						|
    COND_FINI(gil->switch_cond);
 | 
						|
    MUTEX_FINI(gil->switch_mutex);
 | 
						|
#endif
 | 
						|
    _Py_atomic_store_int_release(&gil->locked, -1);
 | 
						|
    _Py_ANNOTATE_RWLOCK_DESTROY(&gil->locked);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef HAVE_FORK
 | 
						|
static void recreate_gil(struct _gil_runtime_state *gil)
 | 
						|
{
 | 
						|
    _Py_ANNOTATE_RWLOCK_DESTROY(&gil->locked);
 | 
						|
    /* XXX should we destroy the old OS resources here? */
 | 
						|
    create_gil(gil);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static inline void
 | 
						|
drop_gil_impl(PyThreadState *tstate, struct _gil_runtime_state *gil)
 | 
						|
{
 | 
						|
    MUTEX_LOCK(gil->mutex);
 | 
						|
    _Py_ANNOTATE_RWLOCK_RELEASED(&gil->locked, /*is_write=*/1);
 | 
						|
    _Py_atomic_store_int_relaxed(&gil->locked, 0);
 | 
						|
    if (tstate != NULL) {
 | 
						|
        tstate->_status.holds_gil = 0;
 | 
						|
    }
 | 
						|
    COND_SIGNAL(gil->cond);
 | 
						|
    MUTEX_UNLOCK(gil->mutex);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
drop_gil(PyInterpreterState *interp, PyThreadState *tstate, int final_release)
 | 
						|
{
 | 
						|
    struct _ceval_state *ceval = &interp->ceval;
 | 
						|
    /* If final_release is true, the caller is indicating that we're releasing
 | 
						|
       the GIL for the last time in this thread.  This is particularly
 | 
						|
       relevant when the current thread state is finalizing or its
 | 
						|
       interpreter is finalizing (either may be in an inconsistent
 | 
						|
       state).  In that case the current thread will definitely
 | 
						|
       never try to acquire the GIL again. */
 | 
						|
    // XXX It may be more correct to check tstate->_status.finalizing.
 | 
						|
    // XXX assert(final_release || !tstate->_status.cleared);
 | 
						|
 | 
						|
    assert(final_release || tstate != NULL);
 | 
						|
    struct _gil_runtime_state *gil = ceval->gil;
 | 
						|
#ifdef Py_GIL_DISABLED
 | 
						|
    // Check if we have the GIL before dropping it. tstate will be NULL if
 | 
						|
    // take_gil() detected that this thread has been destroyed, in which case
 | 
						|
    // we know we have the GIL.
 | 
						|
    if (tstate != NULL && !tstate->_status.holds_gil) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    if (!_Py_atomic_load_int_relaxed(&gil->locked)) {
 | 
						|
        Py_FatalError("drop_gil: GIL is not locked");
 | 
						|
    }
 | 
						|
 | 
						|
    if (!final_release) {
 | 
						|
        /* Sub-interpreter support: threads might have been switched
 | 
						|
           under our feet using PyThreadState_Swap(). Fix the GIL last
 | 
						|
           holder variable so that our heuristics work. */
 | 
						|
        _Py_atomic_store_ptr_relaxed(&gil->last_holder, tstate);
 | 
						|
    }
 | 
						|
 | 
						|
    drop_gil_impl(tstate, gil);
 | 
						|
 | 
						|
#ifdef FORCE_SWITCHING
 | 
						|
    /* We might be releasing the GIL for the last time in this thread.  In that
 | 
						|
       case there's a possible race with tstate->interp getting deleted after
 | 
						|
       gil->mutex is unlocked and before the following code runs, leading to a
 | 
						|
       crash.  We can use final_release to indicate the thread is done with the
 | 
						|
       GIL, and that's the only time we might delete the interpreter.  See
 | 
						|
       https://github.com/python/cpython/issues/104341. */
 | 
						|
    if (!final_release &&
 | 
						|
        _Py_eval_breaker_bit_is_set(tstate, _PY_GIL_DROP_REQUEST_BIT)) {
 | 
						|
        MUTEX_LOCK(gil->switch_mutex);
 | 
						|
        /* Not switched yet => wait */
 | 
						|
        if (((PyThreadState*)_Py_atomic_load_ptr_relaxed(&gil->last_holder)) == tstate)
 | 
						|
        {
 | 
						|
            assert(_PyThreadState_CheckConsistency(tstate));
 | 
						|
            _Py_unset_eval_breaker_bit(tstate, _PY_GIL_DROP_REQUEST_BIT);
 | 
						|
            /* NOTE: if COND_WAIT does not atomically start waiting when
 | 
						|
               releasing the mutex, another thread can run through, take
 | 
						|
               the GIL and drop it again, and reset the condition
 | 
						|
               before we even had a chance to wait for it. */
 | 
						|
            COND_WAIT(gil->switch_cond, gil->switch_mutex);
 | 
						|
        }
 | 
						|
        MUTEX_UNLOCK(gil->switch_mutex);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Take the GIL.
 | 
						|
 | 
						|
   The function saves errno at entry and restores its value at exit.
 | 
						|
   It may hang rather than return if the interpreter has been finalized.
 | 
						|
 | 
						|
   tstate must be non-NULL. */
 | 
						|
static void
 | 
						|
take_gil(PyThreadState *tstate)
 | 
						|
{
 | 
						|
    int err = errno;
 | 
						|
 | 
						|
    assert(tstate != NULL);
 | 
						|
    /* We shouldn't be using a thread state that isn't viable any more. */
 | 
						|
    // XXX It may be more correct to check tstate->_status.finalizing.
 | 
						|
    // XXX assert(!tstate->_status.cleared);
 | 
						|
 | 
						|
    if (_PyThreadState_MustExit(tstate)) {
 | 
						|
        /* bpo-39877: If Py_Finalize() has been called and tstate is not the
 | 
						|
           thread which called Py_Finalize(), this thread cannot continue.
 | 
						|
 | 
						|
           This code path can be reached by a daemon thread after Py_Finalize()
 | 
						|
           completes. In this case, tstate is a dangling pointer: points to
 | 
						|
           PyThreadState freed memory.
 | 
						|
 | 
						|
           This used to call a *thread_exit API, but that was not safe as it
 | 
						|
           lacks stack unwinding and local variable destruction important to
 | 
						|
           C++. gh-87135: The best that can be done is to hang the thread as
 | 
						|
           the public APIs calling this have no error reporting mechanism (!).
 | 
						|
         */
 | 
						|
        PyThread_hang_thread();
 | 
						|
    }
 | 
						|
 | 
						|
    assert(_PyThreadState_CheckConsistency(tstate));
 | 
						|
    PyInterpreterState *interp = tstate->interp;
 | 
						|
    struct _gil_runtime_state *gil = interp->ceval.gil;
 | 
						|
#ifdef Py_GIL_DISABLED
 | 
						|
    if (!_Py_atomic_load_int_relaxed(&gil->enabled)) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    /* Check that _PyEval_InitThreads() was called to create the lock */
 | 
						|
    assert(gil_created(gil));
 | 
						|
 | 
						|
    MUTEX_LOCK(gil->mutex);
 | 
						|
 | 
						|
    int drop_requested = 0;
 | 
						|
    while (_Py_atomic_load_int_relaxed(&gil->locked)) {
 | 
						|
        unsigned long saved_switchnum = gil->switch_number;
 | 
						|
 | 
						|
        unsigned long interval = (gil->interval >= 1 ? gil->interval : 1);
 | 
						|
        int timed_out = 0;
 | 
						|
        COND_TIMED_WAIT(gil->cond, gil->mutex, interval, timed_out);
 | 
						|
 | 
						|
        /* If we timed out and no switch occurred in the meantime, it is time
 | 
						|
           to ask the GIL-holding thread to drop it. */
 | 
						|
        if (timed_out &&
 | 
						|
            _Py_atomic_load_int_relaxed(&gil->locked) &&
 | 
						|
            gil->switch_number == saved_switchnum)
 | 
						|
        {
 | 
						|
            PyThreadState *holder_tstate =
 | 
						|
                (PyThreadState*)_Py_atomic_load_ptr_relaxed(&gil->last_holder);
 | 
						|
            if (_PyThreadState_MustExit(tstate)) {
 | 
						|
                MUTEX_UNLOCK(gil->mutex);
 | 
						|
                // gh-96387: If the loop requested a drop request in a previous
 | 
						|
                // iteration, reset the request. Otherwise, drop_gil() can
 | 
						|
                // block forever waiting for the thread which exited. Drop
 | 
						|
                // requests made by other threads are also reset: these threads
 | 
						|
                // may have to request again a drop request (iterate one more
 | 
						|
                // time).
 | 
						|
                if (drop_requested) {
 | 
						|
                    _Py_unset_eval_breaker_bit(holder_tstate, _PY_GIL_DROP_REQUEST_BIT);
 | 
						|
                }
 | 
						|
                // gh-87135: hang the thread as *thread_exit() is not a safe
 | 
						|
                // API. It lacks stack unwind and local variable destruction.
 | 
						|
                PyThread_hang_thread();
 | 
						|
            }
 | 
						|
            assert(_PyThreadState_CheckConsistency(tstate));
 | 
						|
 | 
						|
            _Py_set_eval_breaker_bit(holder_tstate, _PY_GIL_DROP_REQUEST_BIT);
 | 
						|
            drop_requested = 1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
#ifdef Py_GIL_DISABLED
 | 
						|
    if (!_Py_atomic_load_int_relaxed(&gil->enabled)) {
 | 
						|
        // Another thread disabled the GIL between our check above and
 | 
						|
        // now. Don't take the GIL, signal any other waiting threads, and
 | 
						|
        // return.
 | 
						|
        COND_SIGNAL(gil->cond);
 | 
						|
        MUTEX_UNLOCK(gil->mutex);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef FORCE_SWITCHING
 | 
						|
    /* This mutex must be taken before modifying gil->last_holder:
 | 
						|
       see drop_gil(). */
 | 
						|
    MUTEX_LOCK(gil->switch_mutex);
 | 
						|
#endif
 | 
						|
    /* We now hold the GIL */
 | 
						|
    _Py_atomic_store_int_relaxed(&gil->locked, 1);
 | 
						|
    _Py_ANNOTATE_RWLOCK_ACQUIRED(&gil->locked, /*is_write=*/1);
 | 
						|
 | 
						|
    if (tstate != (PyThreadState*)_Py_atomic_load_ptr_relaxed(&gil->last_holder)) {
 | 
						|
        _Py_atomic_store_ptr_relaxed(&gil->last_holder, tstate);
 | 
						|
        ++gil->switch_number;
 | 
						|
    }
 | 
						|
 | 
						|
#ifdef FORCE_SWITCHING
 | 
						|
    COND_SIGNAL(gil->switch_cond);
 | 
						|
    MUTEX_UNLOCK(gil->switch_mutex);
 | 
						|
#endif
 | 
						|
 | 
						|
    if (_PyThreadState_MustExit(tstate)) {
 | 
						|
        /* bpo-36475: If Py_Finalize() has been called and tstate is not
 | 
						|
           the thread which called Py_Finalize(), gh-87135: hang the
 | 
						|
           thread.
 | 
						|
 | 
						|
           This code path can be reached by a daemon thread which was waiting
 | 
						|
           in take_gil() while the main thread called
 | 
						|
           wait_for_thread_shutdown() from Py_Finalize(). */
 | 
						|
        MUTEX_UNLOCK(gil->mutex);
 | 
						|
        /* tstate could be a dangling pointer, so don't pass it to
 | 
						|
           drop_gil(). */
 | 
						|
        drop_gil(interp, NULL, 1);
 | 
						|
        PyThread_hang_thread();
 | 
						|
    }
 | 
						|
    assert(_PyThreadState_CheckConsistency(tstate));
 | 
						|
 | 
						|
    tstate->_status.holds_gil = 1;
 | 
						|
    _Py_unset_eval_breaker_bit(tstate, _PY_GIL_DROP_REQUEST_BIT);
 | 
						|
    update_eval_breaker_for_thread(interp, tstate);
 | 
						|
 | 
						|
    MUTEX_UNLOCK(gil->mutex);
 | 
						|
 | 
						|
    errno = err;
 | 
						|
    return;
 | 
						|
}
 | 
						|
 | 
						|
void _PyEval_SetSwitchInterval(unsigned long microseconds)
 | 
						|
{
 | 
						|
    PyInterpreterState *interp = _PyInterpreterState_GET();
 | 
						|
    struct _gil_runtime_state *gil = interp->ceval.gil;
 | 
						|
    assert(gil != NULL);
 | 
						|
    gil->interval = microseconds;
 | 
						|
}
 | 
						|
 | 
						|
unsigned long _PyEval_GetSwitchInterval(void)
 | 
						|
{
 | 
						|
    PyInterpreterState *interp = _PyInterpreterState_GET();
 | 
						|
    struct _gil_runtime_state *gil = interp->ceval.gil;
 | 
						|
    assert(gil != NULL);
 | 
						|
    return gil->interval;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int
 | 
						|
_PyEval_ThreadsInitialized(void)
 | 
						|
{
 | 
						|
    /* XXX This is only needed for an assert in PyGILState_Ensure(),
 | 
						|
     * which currently does not work with subinterpreters.
 | 
						|
     * Thus we only use the main interpreter. */
 | 
						|
    PyInterpreterState *interp = _PyInterpreterState_Main();
 | 
						|
    if (interp == NULL) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    struct _gil_runtime_state *gil = interp->ceval.gil;
 | 
						|
    return gil_created(gil);
 | 
						|
}
 | 
						|
 | 
						|
// Function removed in the Python 3.13 API but kept in the stable ABI.
 | 
						|
PyAPI_FUNC(int)
 | 
						|
PyEval_ThreadsInitialized(void)
 | 
						|
{
 | 
						|
    return _PyEval_ThreadsInitialized();
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
static inline int
 | 
						|
current_thread_holds_gil(struct _gil_runtime_state *gil, PyThreadState *tstate)
 | 
						|
{
 | 
						|
    int holds_gil = tstate->_status.holds_gil;
 | 
						|
 | 
						|
    // holds_gil is the source of truth; check that last_holder and gil->locked
 | 
						|
    // are consistent with it.
 | 
						|
    int locked = _Py_atomic_load_int_relaxed(&gil->locked);
 | 
						|
    int is_last_holder =
 | 
						|
        ((PyThreadState*)_Py_atomic_load_ptr_relaxed(&gil->last_holder)) == tstate;
 | 
						|
    assert(!holds_gil || locked);
 | 
						|
    assert(!holds_gil || is_last_holder);
 | 
						|
 | 
						|
    return holds_gil;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static void
 | 
						|
init_shared_gil(PyInterpreterState *interp, struct _gil_runtime_state *gil)
 | 
						|
{
 | 
						|
    assert(gil_created(gil));
 | 
						|
    interp->ceval.gil = gil;
 | 
						|
    interp->ceval.own_gil = 0;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
init_own_gil(PyInterpreterState *interp, struct _gil_runtime_state *gil)
 | 
						|
{
 | 
						|
    assert(!gil_created(gil));
 | 
						|
#ifdef Py_GIL_DISABLED
 | 
						|
    const PyConfig *config = _PyInterpreterState_GetConfig(interp);
 | 
						|
    gil->enabled = config->enable_gil == _PyConfig_GIL_ENABLE ? INT_MAX : 0;
 | 
						|
#endif
 | 
						|
    create_gil(gil);
 | 
						|
    assert(gil_created(gil));
 | 
						|
    interp->ceval.gil = gil;
 | 
						|
    interp->ceval.own_gil = 1;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
_PyEval_InitGIL(PyThreadState *tstate, int own_gil)
 | 
						|
{
 | 
						|
    assert(tstate->interp->ceval.gil == NULL);
 | 
						|
    if (!own_gil) {
 | 
						|
        /* The interpreter will share the main interpreter's instead. */
 | 
						|
        PyInterpreterState *main_interp = _PyInterpreterState_Main();
 | 
						|
        assert(tstate->interp != main_interp);
 | 
						|
        struct _gil_runtime_state *gil = main_interp->ceval.gil;
 | 
						|
        init_shared_gil(tstate->interp, gil);
 | 
						|
        assert(!current_thread_holds_gil(gil, tstate));
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        PyThread_init_thread();
 | 
						|
        init_own_gil(tstate->interp, &tstate->interp->_gil);
 | 
						|
    }
 | 
						|
 | 
						|
    // Lock the GIL and mark the current thread as attached.
 | 
						|
    _PyThreadState_Attach(tstate);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
_PyEval_FiniGIL(PyInterpreterState *interp)
 | 
						|
{
 | 
						|
    struct _gil_runtime_state *gil = interp->ceval.gil;
 | 
						|
    if (gil == NULL) {
 | 
						|
        /* It was already finalized (or hasn't been initialized yet). */
 | 
						|
        assert(!interp->ceval.own_gil);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    else if (!interp->ceval.own_gil) {
 | 
						|
#ifdef Py_DEBUG
 | 
						|
        PyInterpreterState *main_interp = _PyInterpreterState_Main();
 | 
						|
        assert(main_interp != NULL && interp != main_interp);
 | 
						|
        assert(interp->ceval.gil == main_interp->ceval.gil);
 | 
						|
#endif
 | 
						|
        interp->ceval.gil = NULL;
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!gil_created(gil)) {
 | 
						|
        /* First Py_InitializeFromConfig() call: the GIL doesn't exist
 | 
						|
           yet: do nothing. */
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    destroy_gil(gil);
 | 
						|
    assert(!gil_created(gil));
 | 
						|
    interp->ceval.gil = NULL;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
PyEval_InitThreads(void)
 | 
						|
{
 | 
						|
    /* Do nothing: kept for backward compatibility */
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
_PyEval_Fini(void)
 | 
						|
{
 | 
						|
#ifdef Py_STATS
 | 
						|
    _Py_PrintSpecializationStats(1);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
// Function removed in the Python 3.13 API but kept in the stable ABI.
 | 
						|
PyAPI_FUNC(void)
 | 
						|
PyEval_AcquireLock(void)
 | 
						|
{
 | 
						|
    PyThreadState *tstate = _PyThreadState_GET();
 | 
						|
    _Py_EnsureTstateNotNULL(tstate);
 | 
						|
 | 
						|
    take_gil(tstate);
 | 
						|
}
 | 
						|
 | 
						|
// Function removed in the Python 3.13 API but kept in the stable ABI.
 | 
						|
PyAPI_FUNC(void)
 | 
						|
PyEval_ReleaseLock(void)
 | 
						|
{
 | 
						|
    PyThreadState *tstate = _PyThreadState_GET();
 | 
						|
    /* This function must succeed when the current thread state is NULL.
 | 
						|
       We therefore avoid PyThreadState_Get() which dumps a fatal error
 | 
						|
       in debug mode. */
 | 
						|
    drop_gil(tstate->interp, tstate, 0);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
_PyEval_AcquireLock(PyThreadState *tstate)
 | 
						|
{
 | 
						|
    _Py_EnsureTstateNotNULL(tstate);
 | 
						|
    take_gil(tstate);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
_PyEval_ReleaseLock(PyInterpreterState *interp,
 | 
						|
                    PyThreadState *tstate,
 | 
						|
                    int final_release)
 | 
						|
{
 | 
						|
    assert(tstate != NULL);
 | 
						|
    assert(tstate->interp == interp);
 | 
						|
    drop_gil(interp, tstate, final_release);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
PyEval_AcquireThread(PyThreadState *tstate)
 | 
						|
{
 | 
						|
    _Py_EnsureTstateNotNULL(tstate);
 | 
						|
    _PyThreadState_Attach(tstate);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
PyEval_ReleaseThread(PyThreadState *tstate)
 | 
						|
{
 | 
						|
    assert(_PyThreadState_CheckConsistency(tstate));
 | 
						|
    _PyThreadState_Detach(tstate);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef HAVE_FORK
 | 
						|
/* This function is called from PyOS_AfterFork_Child to re-initialize the
 | 
						|
   GIL and pending calls lock. */
 | 
						|
PyStatus
 | 
						|
_PyEval_ReInitThreads(PyThreadState *tstate)
 | 
						|
{
 | 
						|
    assert(tstate->interp == _PyInterpreterState_Main());
 | 
						|
 | 
						|
    struct _gil_runtime_state *gil = tstate->interp->ceval.gil;
 | 
						|
    if (!gil_created(gil)) {
 | 
						|
        return _PyStatus_OK();
 | 
						|
    }
 | 
						|
    recreate_gil(gil);
 | 
						|
 | 
						|
    take_gil(tstate);
 | 
						|
 | 
						|
    struct _pending_calls *pending = &tstate->interp->ceval.pending;
 | 
						|
    _PyMutex_at_fork_reinit(&pending->mutex);
 | 
						|
 | 
						|
    return _PyStatus_OK();
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
PyThreadState *
 | 
						|
PyEval_SaveThread(void)
 | 
						|
{
 | 
						|
    PyThreadState *tstate = _PyThreadState_GET();
 | 
						|
    _PyThreadState_Detach(tstate);
 | 
						|
    return tstate;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
PyEval_RestoreThread(PyThreadState *tstate)
 | 
						|
{
 | 
						|
#ifdef MS_WINDOWS
 | 
						|
    int err = GetLastError();
 | 
						|
#endif
 | 
						|
 | 
						|
    _Py_EnsureTstateNotNULL(tstate);
 | 
						|
    _PyThreadState_Attach(tstate);
 | 
						|
 | 
						|
#ifdef MS_WINDOWS
 | 
						|
    SetLastError(err);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
_PyEval_SignalReceived(void)
 | 
						|
{
 | 
						|
    _Py_set_eval_breaker_bit(_PyRuntime.main_tstate, _PY_SIGNALS_PENDING_BIT);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#ifndef Py_GIL_DISABLED
 | 
						|
static void
 | 
						|
signal_active_thread(PyInterpreterState *interp, uintptr_t bit)
 | 
						|
{
 | 
						|
    struct _gil_runtime_state *gil = interp->ceval.gil;
 | 
						|
 | 
						|
    // If a thread from the targeted interpreter is holding the GIL, signal
 | 
						|
    // that thread. Otherwise, the next thread to run from the targeted
 | 
						|
    // interpreter will have its bit set as part of taking the GIL.
 | 
						|
    MUTEX_LOCK(gil->mutex);
 | 
						|
    if (_Py_atomic_load_int_relaxed(&gil->locked)) {
 | 
						|
        PyThreadState *holder = (PyThreadState*)_Py_atomic_load_ptr_relaxed(&gil->last_holder);
 | 
						|
        if (holder->interp == interp) {
 | 
						|
            _Py_set_eval_breaker_bit(holder, bit);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    MUTEX_UNLOCK(gil->mutex);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
/* Mechanism whereby asynchronously executing callbacks (e.g. UNIX
 | 
						|
   signal handlers or Mac I/O completion routines) can schedule calls
 | 
						|
   to a function to be called synchronously.
 | 
						|
   The synchronous function is called with one void* argument.
 | 
						|
   It should return 0 for success or -1 for failure -- failure should
 | 
						|
   be accompanied by an exception.
 | 
						|
 | 
						|
   If registry succeeds, the registry function returns 0; if it fails
 | 
						|
   (e.g. due to too many pending calls) it returns -1 (without setting
 | 
						|
   an exception condition).
 | 
						|
 | 
						|
   Note that because registry may occur from within signal handlers,
 | 
						|
   or other asynchronous events, calling malloc() is unsafe!
 | 
						|
 | 
						|
   Any thread can schedule pending calls, but only the main thread
 | 
						|
   will execute them.
 | 
						|
   There is no facility to schedule calls to a particular thread, but
 | 
						|
   that should be easy to change, should that ever be required.  In
 | 
						|
   that case, the static variables here should go into the python
 | 
						|
   threadstate.
 | 
						|
*/
 | 
						|
 | 
						|
/* Push one item onto the queue while holding the lock. */
 | 
						|
static int
 | 
						|
_push_pending_call(struct _pending_calls *pending,
 | 
						|
                   _Py_pending_call_func func, void *arg, int flags)
 | 
						|
{
 | 
						|
    if (pending->npending == pending->max) {
 | 
						|
        return _Py_ADD_PENDING_FULL;
 | 
						|
    }
 | 
						|
    assert(pending->npending < pending->max);
 | 
						|
 | 
						|
    int i = pending->next;
 | 
						|
    assert(pending->calls[i].func == NULL);
 | 
						|
 | 
						|
    pending->calls[i].func = func;
 | 
						|
    pending->calls[i].arg = arg;
 | 
						|
    pending->calls[i].flags = flags;
 | 
						|
 | 
						|
    assert(pending->npending < PENDINGCALLSARRAYSIZE);
 | 
						|
    _Py_atomic_add_int32(&pending->npending, 1);
 | 
						|
 | 
						|
    pending->next = (i + 1) % PENDINGCALLSARRAYSIZE;
 | 
						|
    assert(pending->next != pending->first
 | 
						|
            || pending->npending == pending->max);
 | 
						|
 | 
						|
    return _Py_ADD_PENDING_SUCCESS;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
_next_pending_call(struct _pending_calls *pending,
 | 
						|
                   int (**func)(void *), void **arg, int *flags)
 | 
						|
{
 | 
						|
    int i = pending->first;
 | 
						|
    if (pending->npending == 0) {
 | 
						|
        /* Queue empty */
 | 
						|
        assert(i == pending->next);
 | 
						|
        assert(pending->calls[i].func == NULL);
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    *func = pending->calls[i].func;
 | 
						|
    *arg = pending->calls[i].arg;
 | 
						|
    *flags = pending->calls[i].flags;
 | 
						|
    return i;
 | 
						|
}
 | 
						|
 | 
						|
/* Pop one item off the queue while holding the lock. */
 | 
						|
static void
 | 
						|
_pop_pending_call(struct _pending_calls *pending,
 | 
						|
                  int (**func)(void *), void **arg, int *flags)
 | 
						|
{
 | 
						|
    int i = _next_pending_call(pending, func, arg, flags);
 | 
						|
    if (i >= 0) {
 | 
						|
        pending->calls[i] = (struct _pending_call){0};
 | 
						|
        pending->first = (i + 1) % PENDINGCALLSARRAYSIZE;
 | 
						|
        assert(pending->npending > 0);
 | 
						|
        _Py_atomic_add_int32(&pending->npending, -1);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* This implementation is thread-safe.  It allows
 | 
						|
   scheduling to be made from any thread, and even from an executing
 | 
						|
   callback.
 | 
						|
 */
 | 
						|
 | 
						|
_Py_add_pending_call_result
 | 
						|
_PyEval_AddPendingCall(PyInterpreterState *interp,
 | 
						|
                       _Py_pending_call_func func, void *arg, int flags)
 | 
						|
{
 | 
						|
    struct _pending_calls *pending = &interp->ceval.pending;
 | 
						|
    int main_only = (flags & _Py_PENDING_MAINTHREADONLY) != 0;
 | 
						|
    if (main_only) {
 | 
						|
        /* The main thread only exists in the main interpreter. */
 | 
						|
        assert(_Py_IsMainInterpreter(interp));
 | 
						|
        pending = &_PyRuntime.ceval.pending_mainthread;
 | 
						|
    }
 | 
						|
 | 
						|
    PyMutex_Lock(&pending->mutex);
 | 
						|
    _Py_add_pending_call_result result =
 | 
						|
        _push_pending_call(pending, func, arg, flags);
 | 
						|
    PyMutex_Unlock(&pending->mutex);
 | 
						|
 | 
						|
    if (main_only) {
 | 
						|
        _Py_set_eval_breaker_bit(_PyRuntime.main_tstate, _PY_CALLS_TO_DO_BIT);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
#ifdef Py_GIL_DISABLED
 | 
						|
        _Py_set_eval_breaker_bit_all(interp, _PY_CALLS_TO_DO_BIT);
 | 
						|
#else
 | 
						|
        signal_active_thread(interp, _PY_CALLS_TO_DO_BIT);
 | 
						|
#endif
 | 
						|
    }
 | 
						|
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
Py_AddPendingCall(_Py_pending_call_func func, void *arg)
 | 
						|
{
 | 
						|
    /* Legacy users of this API will continue to target the main thread
 | 
						|
       (of the main interpreter). */
 | 
						|
    PyInterpreterState *interp = _PyInterpreterState_Main();
 | 
						|
    _Py_add_pending_call_result r =
 | 
						|
        _PyEval_AddPendingCall(interp, func, arg, _Py_PENDING_MAINTHREADONLY);
 | 
						|
    if (r == _Py_ADD_PENDING_FULL) {
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        assert(r == _Py_ADD_PENDING_SUCCESS);
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
handle_signals(PyThreadState *tstate)
 | 
						|
{
 | 
						|
    assert(_PyThreadState_CheckConsistency(tstate));
 | 
						|
    _Py_unset_eval_breaker_bit(tstate, _PY_SIGNALS_PENDING_BIT);
 | 
						|
    if (!_Py_ThreadCanHandleSignals(tstate->interp)) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    if (_PyErr_CheckSignalsTstate(tstate) < 0) {
 | 
						|
        /* On failure, re-schedule a call to handle_signals(). */
 | 
						|
        _Py_set_eval_breaker_bit(tstate, _PY_SIGNALS_PENDING_BIT);
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
_make_pending_calls(struct _pending_calls *pending, int32_t *p_npending)
 | 
						|
{
 | 
						|
    int res = 0;
 | 
						|
    int32_t npending = -1;
 | 
						|
 | 
						|
    assert(sizeof(pending->max) <= sizeof(size_t)
 | 
						|
            && ((size_t)pending->max) <= Py_ARRAY_LENGTH(pending->calls));
 | 
						|
    int32_t maxloop = pending->maxloop;
 | 
						|
    if (maxloop == 0) {
 | 
						|
        maxloop = pending->max;
 | 
						|
    }
 | 
						|
    assert(maxloop > 0 && maxloop <= pending->max);
 | 
						|
 | 
						|
    /* perform a bounded number of calls, in case of recursion */
 | 
						|
    for (int i=0; i<maxloop; i++) {
 | 
						|
        _Py_pending_call_func func = NULL;
 | 
						|
        void *arg = NULL;
 | 
						|
        int flags = 0;
 | 
						|
 | 
						|
        /* pop one item off the queue while holding the lock */
 | 
						|
        PyMutex_Lock(&pending->mutex);
 | 
						|
        _pop_pending_call(pending, &func, &arg, &flags);
 | 
						|
        npending = pending->npending;
 | 
						|
        PyMutex_Unlock(&pending->mutex);
 | 
						|
 | 
						|
        /* Check if there are any more pending calls. */
 | 
						|
        if (func == NULL) {
 | 
						|
            assert(npending == 0);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        /* having released the lock, perform the callback */
 | 
						|
        res = func(arg);
 | 
						|
        if ((flags & _Py_PENDING_RAWFREE) && arg != NULL) {
 | 
						|
            PyMem_RawFree(arg);
 | 
						|
        }
 | 
						|
        if (res != 0) {
 | 
						|
            res = -1;
 | 
						|
            goto finally;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
finally:
 | 
						|
    *p_npending = npending;
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
signal_pending_calls(PyThreadState *tstate, PyInterpreterState *interp)
 | 
						|
{
 | 
						|
#ifdef Py_GIL_DISABLED
 | 
						|
    _Py_set_eval_breaker_bit_all(interp, _PY_CALLS_TO_DO_BIT);
 | 
						|
#else
 | 
						|
    _Py_set_eval_breaker_bit(tstate, _PY_CALLS_TO_DO_BIT);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
unsignal_pending_calls(PyThreadState *tstate, PyInterpreterState *interp)
 | 
						|
{
 | 
						|
#ifdef Py_GIL_DISABLED
 | 
						|
    _Py_unset_eval_breaker_bit_all(interp, _PY_CALLS_TO_DO_BIT);
 | 
						|
#else
 | 
						|
    _Py_unset_eval_breaker_bit(tstate, _PY_CALLS_TO_DO_BIT);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
clear_pending_handling_thread(struct _pending_calls *pending)
 | 
						|
{
 | 
						|
#ifdef Py_GIL_DISABLED
 | 
						|
    PyMutex_Lock(&pending->mutex);
 | 
						|
    pending->handling_thread = NULL;
 | 
						|
    PyMutex_Unlock(&pending->mutex);
 | 
						|
#else
 | 
						|
    pending->handling_thread = NULL;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
make_pending_calls(PyThreadState *tstate)
 | 
						|
{
 | 
						|
    PyInterpreterState *interp = tstate->interp;
 | 
						|
    struct _pending_calls *pending = &interp->ceval.pending;
 | 
						|
    struct _pending_calls *pending_main = &_PyRuntime.ceval.pending_mainthread;
 | 
						|
 | 
						|
    /* Only one thread (per interpreter) may run the pending calls
 | 
						|
       at once.  In the same way, we don't do recursive pending calls. */
 | 
						|
    PyMutex_Lock(&pending->mutex);
 | 
						|
    if (pending->handling_thread != NULL) {
 | 
						|
        /* A pending call was added after another thread was already
 | 
						|
           handling the pending calls (and had already "unsignaled").
 | 
						|
           Once that thread is done, it may have taken care of all the
 | 
						|
           pending calls, or there might be some still waiting.
 | 
						|
           To avoid all threads constantly stopping on the eval breaker,
 | 
						|
           we clear the bit for this thread and make sure it is set
 | 
						|
           for the thread currently handling the pending call. */
 | 
						|
        _Py_set_eval_breaker_bit(pending->handling_thread, _PY_CALLS_TO_DO_BIT);
 | 
						|
        _Py_unset_eval_breaker_bit(tstate, _PY_CALLS_TO_DO_BIT);
 | 
						|
        PyMutex_Unlock(&pending->mutex);
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    pending->handling_thread = tstate;
 | 
						|
    PyMutex_Unlock(&pending->mutex);
 | 
						|
 | 
						|
    /* unsignal before starting to call callbacks, so that any callback
 | 
						|
       added in-between re-signals */
 | 
						|
    unsignal_pending_calls(tstate, interp);
 | 
						|
 | 
						|
    int32_t npending;
 | 
						|
    if (_make_pending_calls(pending, &npending) != 0) {
 | 
						|
        clear_pending_handling_thread(pending);
 | 
						|
        /* There might not be more calls to make, but we play it safe. */
 | 
						|
        signal_pending_calls(tstate, interp);
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    if (npending > 0) {
 | 
						|
        /* We hit pending->maxloop. */
 | 
						|
        signal_pending_calls(tstate, interp);
 | 
						|
    }
 | 
						|
 | 
						|
    if (_Py_IsMainThread() && _Py_IsMainInterpreter(interp)) {
 | 
						|
        if (_make_pending_calls(pending_main, &npending) != 0) {
 | 
						|
            clear_pending_handling_thread(pending);
 | 
						|
            /* There might not be more calls to make, but we play it safe. */
 | 
						|
            signal_pending_calls(tstate, interp);
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        if (npending > 0) {
 | 
						|
            /* We hit pending_main->maxloop. */
 | 
						|
            signal_pending_calls(tstate, interp);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    clear_pending_handling_thread(pending);
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
_Py_set_eval_breaker_bit_all(PyInterpreterState *interp, uintptr_t bit)
 | 
						|
{
 | 
						|
    _Py_FOR_EACH_TSTATE_BEGIN(interp, tstate) {
 | 
						|
        _Py_set_eval_breaker_bit(tstate, bit);
 | 
						|
    }
 | 
						|
    _Py_FOR_EACH_TSTATE_END(interp);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
_Py_unset_eval_breaker_bit_all(PyInterpreterState *interp, uintptr_t bit)
 | 
						|
{
 | 
						|
    _Py_FOR_EACH_TSTATE_BEGIN(interp, tstate) {
 | 
						|
        _Py_unset_eval_breaker_bit(tstate, bit);
 | 
						|
    }
 | 
						|
    _Py_FOR_EACH_TSTATE_END(interp);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
_Py_FinishPendingCalls(PyThreadState *tstate)
 | 
						|
{
 | 
						|
    _Py_AssertHoldsTstate();
 | 
						|
    assert(_PyThreadState_CheckConsistency(tstate));
 | 
						|
 | 
						|
    struct _pending_calls *pending = &tstate->interp->ceval.pending;
 | 
						|
    struct _pending_calls *pending_main =
 | 
						|
            _Py_IsMainThread() && _Py_IsMainInterpreter(tstate->interp)
 | 
						|
            ? &_PyRuntime.ceval.pending_mainthread
 | 
						|
            : NULL;
 | 
						|
    /* make_pending_calls() may return early without making all pending
 | 
						|
       calls, so we keep trying until we're actually done. */
 | 
						|
    int32_t npending;
 | 
						|
#ifndef NDEBUG
 | 
						|
    int32_t npending_prev = INT32_MAX;
 | 
						|
#endif
 | 
						|
    do {
 | 
						|
        if (make_pending_calls(tstate) < 0) {
 | 
						|
            PyObject *exc = _PyErr_GetRaisedException(tstate);
 | 
						|
            PyErr_BadInternalCall();
 | 
						|
            _PyErr_ChainExceptions1(exc);
 | 
						|
            _PyErr_Print(tstate);
 | 
						|
        }
 | 
						|
 | 
						|
        npending = _Py_atomic_load_int32_relaxed(&pending->npending);
 | 
						|
        if (pending_main != NULL) {
 | 
						|
            npending += _Py_atomic_load_int32_relaxed(&pending_main->npending);
 | 
						|
        }
 | 
						|
#ifndef NDEBUG
 | 
						|
        assert(npending_prev > npending);
 | 
						|
        npending_prev = npending;
 | 
						|
#endif
 | 
						|
    } while (npending > 0);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
_PyEval_MakePendingCalls(PyThreadState *tstate)
 | 
						|
{
 | 
						|
    int res;
 | 
						|
 | 
						|
    if (_Py_IsMainThread() && _Py_IsMainInterpreter(tstate->interp)) {
 | 
						|
        /* Python signal handler doesn't really queue a callback:
 | 
						|
           it only signals that a signal was received,
 | 
						|
           see _PyEval_SignalReceived(). */
 | 
						|
        res = handle_signals(tstate);
 | 
						|
        if (res != 0) {
 | 
						|
            return res;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    res = make_pending_calls(tstate);
 | 
						|
    if (res != 0) {
 | 
						|
        return res;
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Py_MakePendingCalls() is a simple wrapper for the sake
 | 
						|
   of backward-compatibility. */
 | 
						|
int
 | 
						|
Py_MakePendingCalls(void)
 | 
						|
{
 | 
						|
    _Py_AssertHoldsTstate();
 | 
						|
 | 
						|
    PyThreadState *tstate = _PyThreadState_GET();
 | 
						|
    assert(_PyThreadState_CheckConsistency(tstate));
 | 
						|
 | 
						|
    /* Only execute pending calls on the main thread. */
 | 
						|
    if (!_Py_IsMainThread() || !_Py_IsMainInterpreter(tstate->interp)) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    return _PyEval_MakePendingCalls(tstate);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
_PyEval_InitState(PyInterpreterState *interp)
 | 
						|
{
 | 
						|
    _gil_initialize(&interp->_gil);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef Py_GIL_DISABLED
 | 
						|
int
 | 
						|
_PyEval_EnableGILTransient(PyThreadState *tstate)
 | 
						|
{
 | 
						|
    const PyConfig *config = _PyInterpreterState_GetConfig(tstate->interp);
 | 
						|
    if (config->enable_gil != _PyConfig_GIL_DEFAULT) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    struct _gil_runtime_state *gil = tstate->interp->ceval.gil;
 | 
						|
 | 
						|
    int enabled = _Py_atomic_load_int_relaxed(&gil->enabled);
 | 
						|
    if (enabled == INT_MAX) {
 | 
						|
        // The GIL is already enabled permanently.
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    if (enabled == INT_MAX - 1) {
 | 
						|
        Py_FatalError("Too many transient requests to enable the GIL");
 | 
						|
    }
 | 
						|
    if (enabled > 0) {
 | 
						|
        // If enabled is nonzero, we know we hold the GIL. This means that no
 | 
						|
        // other threads are attached, and nobody else can be concurrently
 | 
						|
        // mutating it.
 | 
						|
        _Py_atomic_store_int_relaxed(&gil->enabled, enabled + 1);
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    // Enabling the GIL changes what it means to be an "attached" thread. To
 | 
						|
    // safely make this transition, we:
 | 
						|
    // 1. Detach the current thread.
 | 
						|
    // 2. Stop the world to detach (and suspend) all other threads.
 | 
						|
    // 3. Enable the GIL, if nobody else did between our check above and when
 | 
						|
    //    our stop-the-world begins.
 | 
						|
    // 4. Start the world.
 | 
						|
    // 5. Attach the current thread. Other threads may attach and hold the GIL
 | 
						|
    //    before this thread, which is harmless.
 | 
						|
    _PyThreadState_Detach(tstate);
 | 
						|
 | 
						|
    // This could be an interpreter-local stop-the-world in situations where we
 | 
						|
    // know that this interpreter's GIL is not shared, and that it won't become
 | 
						|
    // shared before the stop-the-world begins. For now, we always stop all
 | 
						|
    // interpreters for simplicity.
 | 
						|
    _PyEval_StopTheWorldAll(&_PyRuntime);
 | 
						|
 | 
						|
    enabled = _Py_atomic_load_int_relaxed(&gil->enabled);
 | 
						|
    int this_thread_enabled = enabled == 0;
 | 
						|
    _Py_atomic_store_int_relaxed(&gil->enabled, enabled + 1);
 | 
						|
 | 
						|
    _PyEval_StartTheWorldAll(&_PyRuntime);
 | 
						|
    _PyThreadState_Attach(tstate);
 | 
						|
 | 
						|
    return this_thread_enabled;
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
_PyEval_EnableGILPermanent(PyThreadState *tstate)
 | 
						|
{
 | 
						|
    const PyConfig *config = _PyInterpreterState_GetConfig(tstate->interp);
 | 
						|
    if (config->enable_gil != _PyConfig_GIL_DEFAULT) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    struct _gil_runtime_state *gil = tstate->interp->ceval.gil;
 | 
						|
    assert(current_thread_holds_gil(gil, tstate));
 | 
						|
 | 
						|
    int enabled = _Py_atomic_load_int_relaxed(&gil->enabled);
 | 
						|
    if (enabled == INT_MAX) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    _Py_atomic_store_int_relaxed(&gil->enabled, INT_MAX);
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
_PyEval_DisableGIL(PyThreadState *tstate)
 | 
						|
{
 | 
						|
    const PyConfig *config = _PyInterpreterState_GetConfig(tstate->interp);
 | 
						|
    if (config->enable_gil != _PyConfig_GIL_DEFAULT) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    struct _gil_runtime_state *gil = tstate->interp->ceval.gil;
 | 
						|
    assert(current_thread_holds_gil(gil, tstate));
 | 
						|
 | 
						|
    int enabled = _Py_atomic_load_int_relaxed(&gil->enabled);
 | 
						|
    if (enabled == INT_MAX) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    assert(enabled >= 1);
 | 
						|
    enabled--;
 | 
						|
 | 
						|
    // Disabling the GIL is much simpler than enabling it, since we know we are
 | 
						|
    // the only attached thread. Other threads may start free-threading as soon
 | 
						|
    // as this store is complete, if it sets gil->enabled to 0.
 | 
						|
    _Py_atomic_store_int_relaxed(&gil->enabled, enabled);
 | 
						|
 | 
						|
    if (enabled == 0) {
 | 
						|
        // We're attached, so we know the GIL will remain disabled until at
 | 
						|
        // least the next time we detach, which must be after this function
 | 
						|
        // returns.
 | 
						|
        //
 | 
						|
        // Drop the GIL, which will wake up any threads waiting in take_gil()
 | 
						|
        // and let them resume execution without the GIL.
 | 
						|
        drop_gil_impl(tstate, gil);
 | 
						|
 | 
						|
        // If another thread asked us to drop the GIL, they should be
 | 
						|
        // free-threading by now. Remove any such request so we have a clean
 | 
						|
        // slate if/when the GIL is enabled again.
 | 
						|
        _Py_unset_eval_breaker_bit(tstate, _PY_GIL_DROP_REQUEST_BIT);
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
/* Do periodic things, like check for signals and async I/0.
 | 
						|
* We need to do reasonably frequently, but not too frequently.
 | 
						|
* All loops should include a check of the eval breaker.
 | 
						|
* We also check on return from any builtin function.
 | 
						|
*
 | 
						|
* ## More Details ###
 | 
						|
*
 | 
						|
* The eval loop (this function) normally executes the instructions
 | 
						|
* of a code object sequentially.  However, the runtime supports a
 | 
						|
* number of out-of-band execution scenarios that may pause that
 | 
						|
* sequential execution long enough to do that out-of-band work
 | 
						|
* in the current thread using the current PyThreadState.
 | 
						|
*
 | 
						|
* The scenarios include:
 | 
						|
*
 | 
						|
*  - cyclic garbage collection
 | 
						|
*  - GIL drop requests
 | 
						|
*  - "async" exceptions
 | 
						|
*  - "pending calls"  (some only in the main thread)
 | 
						|
*  - signal handling (only in the main thread)
 | 
						|
*
 | 
						|
* When the need for one of the above is detected, the eval loop
 | 
						|
* pauses long enough to handle the detected case.  Then, if doing
 | 
						|
* so didn't trigger an exception, the eval loop resumes executing
 | 
						|
* the sequential instructions.
 | 
						|
*
 | 
						|
* To make this work, the eval loop periodically checks if any
 | 
						|
* of the above needs to happen.  The individual checks can be
 | 
						|
* expensive if computed each time, so a while back we switched
 | 
						|
* to using pre-computed, per-interpreter variables for the checks,
 | 
						|
* and later consolidated that to a single "eval breaker" variable
 | 
						|
* (now a PyInterpreterState field).
 | 
						|
*
 | 
						|
* For the longest time, the eval breaker check would happen
 | 
						|
* frequently, every 5 or so times through the loop, regardless
 | 
						|
* of what instruction ran last or what would run next.  Then, in
 | 
						|
* early 2021 (gh-18334, commit 4958f5d), we switched to checking
 | 
						|
* the eval breaker less frequently, by hard-coding the check to
 | 
						|
* specific places in the eval loop (e.g. certain instructions).
 | 
						|
* The intent then was to check after returning from calls
 | 
						|
* and on the back edges of loops.
 | 
						|
*
 | 
						|
* In addition to being more efficient, that approach keeps
 | 
						|
* the eval loop from running arbitrary code between instructions
 | 
						|
* that don't handle that well.  (See gh-74174.)
 | 
						|
*
 | 
						|
* Currently, the eval breaker check happens on back edges in
 | 
						|
* the control flow graph, which pretty much applies to all loops,
 | 
						|
* and most calls.
 | 
						|
* (See bytecodes.c for exact information.)
 | 
						|
*
 | 
						|
* One consequence of this approach is that it might not be obvious
 | 
						|
* how to force any specific thread to pick up the eval breaker,
 | 
						|
* or for any specific thread to not pick it up.  Mostly this
 | 
						|
* involves judicious uses of locks and careful ordering of code,
 | 
						|
* while avoiding code that might trigger the eval breaker
 | 
						|
* until so desired.
 | 
						|
*/
 | 
						|
int
 | 
						|
_Py_HandlePending(PyThreadState *tstate)
 | 
						|
{
 | 
						|
    uintptr_t breaker = _Py_atomic_load_uintptr_relaxed(&tstate->eval_breaker);
 | 
						|
 | 
						|
    /* Stop-the-world */
 | 
						|
    if ((breaker & _PY_EVAL_PLEASE_STOP_BIT) != 0) {
 | 
						|
        _Py_unset_eval_breaker_bit(tstate, _PY_EVAL_PLEASE_STOP_BIT);
 | 
						|
        _PyThreadState_Suspend(tstate);
 | 
						|
 | 
						|
        /* The attach blocks until the stop-the-world event is complete. */
 | 
						|
        _PyThreadState_Attach(tstate);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Pending signals */
 | 
						|
    if ((breaker & _PY_SIGNALS_PENDING_BIT) != 0) {
 | 
						|
        if (handle_signals(tstate) != 0) {
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Pending calls */
 | 
						|
    if ((breaker & _PY_CALLS_TO_DO_BIT) != 0) {
 | 
						|
        if (make_pending_calls(tstate) != 0) {
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
#ifdef Py_GIL_DISABLED
 | 
						|
    /* Objects with refcounts to merge */
 | 
						|
    if ((breaker & _PY_EVAL_EXPLICIT_MERGE_BIT) != 0) {
 | 
						|
        _Py_unset_eval_breaker_bit(tstate, _PY_EVAL_EXPLICIT_MERGE_BIT);
 | 
						|
        _Py_brc_merge_refcounts(tstate);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    /* GC scheduled to run */
 | 
						|
    if ((breaker & _PY_GC_SCHEDULED_BIT) != 0) {
 | 
						|
        _Py_unset_eval_breaker_bit(tstate, _PY_GC_SCHEDULED_BIT);
 | 
						|
        _Py_RunGC(tstate);
 | 
						|
    }
 | 
						|
 | 
						|
    if ((breaker & _PY_EVAL_JIT_INVALIDATE_COLD_BIT) != 0) {
 | 
						|
        _Py_unset_eval_breaker_bit(tstate, _PY_EVAL_JIT_INVALIDATE_COLD_BIT);
 | 
						|
        _Py_Executors_InvalidateCold(tstate->interp);
 | 
						|
        tstate->interp->trace_run_counter = JIT_CLEANUP_THRESHOLD;
 | 
						|
    }
 | 
						|
 | 
						|
    /* GIL drop request */
 | 
						|
    if ((breaker & _PY_GIL_DROP_REQUEST_BIT) != 0) {
 | 
						|
        /* Give another thread a chance */
 | 
						|
        _PyThreadState_Detach(tstate);
 | 
						|
 | 
						|
        /* Other threads may run now */
 | 
						|
 | 
						|
        _PyThreadState_Attach(tstate);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Check for asynchronous exception. */
 | 
						|
    if ((breaker & _PY_ASYNC_EXCEPTION_BIT) != 0) {
 | 
						|
        _Py_unset_eval_breaker_bit(tstate, _PY_ASYNC_EXCEPTION_BIT);
 | 
						|
        PyObject *exc = _Py_atomic_exchange_ptr(&tstate->async_exc, NULL);
 | 
						|
        if (exc != NULL) {
 | 
						|
            _PyErr_SetNone(tstate, exc);
 | 
						|
            Py_DECREF(exc);
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 |